
N94- 36494

So wa e n,ino r n,w,,.A, p,i a,ioo-S e ,.c
David J. Campl)ell

Unisys Corporation

Valley Forge Engineering Center

P.O. Box 517, Paoli, PA 19301-0517

Linda Barker

Deborah Mitchell

Unisys Corporation

Space Systems Division

Mail Stop U04D

600 Gemini Ave, Houston, TX 77058

Robert H. Pollack

Unisys Corporation

Valley Forge Engineering ('enter

P.O. Box 517, Paoli, PA 19301-0517

!
|

|
.i

t

1

Abstract

Application-Specific Languages (ASLs) are small, special-purpose lan-

guages that are targeted to solve a specific class of problems. Using

ASLs on software development projects can provide considerable cost

savings, reduce risk, and enhance quality and reliability. ASLs pro-

vide a platform for reuse within a project or across many projects

and enable less-experienced programmers to tap into the expertise of

application-area experts.

ASLs have been used on several software development projects for the

Space Shuttle Program. On these projects, the use of ASLs resulted

in considerable cost savings over conventional development techniques.

Two of these projects are described.

Introduction

An application-specific language is a special purpose language that is oriented towards

writing programs for a specific class of problems. An ASL presents the programmer with a

higher level of abstraction than a general-purpose programmiug language, and, as a result,

the programmer needs to write much less code to implement a software system.

The ASL code written by a programmer is called a specification: it describes the requiro-

ments for a software system. A tran._lator reads a specification, as shown in Figure 1, and

automatically generates software and perhaps other related products, such as accompanying

SEW Proceedings 253 SEL-93-003

Written in an application specfic language

Application

] I

Application

Inputs

Work products could include program
source code, documentation, data files, Application
testing material, or even another ASI.. Outputs

Figure 1: The ASL translator generates software and other related products based on

a specification written in a high level language.

design documentation, that satisfy the specification. Usually, the generated software is in a

high-order language such as C or Ada.

Today, there are many ASL based commercial off-the-shelf products (sometimes called

4GLs), that address such diverse application areas as data base applications, spread sheets,

and graphical user interfaces. If a COTS ASL can be found which meets the needs of a

software development project, it will often produce seemingly miraculous results. If such a

tool cannot be found, however, an ASL approach is usually abandoned.

This is unfortunate because custom ASLs can be created rather inexpensively, and they

can provide considerable advantages to projects that are developing software with certain

characteristics. ASLs can increase productivity and reliability by shifting more of the tedious

work and mechanical details to the computer, freeing programmers to spend more time

addressing the decisions that require creative thinking. ASLs also provide a single point of

control for a large amount of software. This enables requirements and design decisions to

change with minimal impact on cost and schedule.

2 An Overview of ASL-Based Software Engineering

ASL-based software engineering is a software engineering technique for creating software

through automatic code generation. It is not suited to all projects, but there is a large

SEW Proceedings 254 SEL-93-003

class of applications where its use can dramatically reduce cost and schedule. For any given

project, many different techniques may be applicable, and the best approach may be a

combination of techniques. Since software engineers are relied upon to identify the most

cost-effective approach, they should be knowledgeable of this technique.

An ASL approach is indicated for a software system when it has recurring similar

requirements, especially if there is a large number of them. For example, the requirements

might define a series of screens that a system uses to interact with its user. While each

screen is different, they are also similar, e.g., each screen contains editable fields for data

entry and data validation must be done on each field. If these similar requirements can be

implemented with similar code, and an algorithm to transform the requirements into the

code can be found, then an ASL can be used.

Cost

T

One-time cost

toiAt_lLement

1
Number of similar requirements

Figure 2: This graph compares the cost of using an ASL versus the cost of using a

general-purpose programming language, based on the number of similar requirements.

Initially, the ASL is more expensive, because of the one-time only cost to develop the

translator. With sufficient repetition in the requirements, however, the cost to develop
translator pays for itself.

With ASLs, there is a one-time cost to implement the translator. After the translator

is implemented: a specification still must be written to obtain any application code. How-

ever, compared with a general-purpose programming language, fewer lines of ASL code are

required to implement a corresponding amount of the system's functionality. Moreover, a

programmer can typically write more lines of ASL code per day, because, with ASLs, the

programmer is transcribing already written requirements into the syntax of the ASL, whereas

with a general-purpose programming language, the programmer must write code which

describes how to implement the requirements. Consequently, as the amount of repetition

in the requirements increases, the cost of implementation with an ASL falls below the cosl

of implementing software with general-purpose programming language. This relationship is

shown in Figure 2

Even if there is not enough repetition to produce a dramatic cost difference, other factors

may warrant the use of an ASL. For example, can the ASL be reused on other projects?

SEW Proceedings 255 SEL-93-003

Is the algorithm to transform requirements into implementation so complex, that it is best

handled by a computer? Are the requirements volatile? Are there risk factors that might

cause a possible re-design of the software, e.g., performance issues? If there is significant risk

that the requirements or the design may change, then using an ASL will make the software

more manageable, because the code is controlled from a single point.

Implementation of an ASL requires a team of engineers with collective expertise both in

the application area being addressed and in language implementation. This team must design

a generic solution to the problem, which is expressed as a set of reusable code templates and

an algorithm to instantiate these templates based on requirements. This design, i.e., the

templates and the translation algorithm can be reviewed just like any other form of design.

The language expert designs a language for expressing the information required to instan-

tiate the templates. This language will typically incorporate terminology and notations used

by the application experts so that they can easily write or review the specifications. The

language enables the variances in the similar requirements to be expressed. For example,

while each screen consists of a set of unique fields and control buttons, they may also contain a

set of standard controls, e.g., controls that return to the previous screen or quit the program.

Since the standard controls appear on all screens, they do not need to be specified in the

ASL; instead, the translator can automatically supply them.

The language expert also builds the translator. The translator reads an input specifica-

tion, extracts the information needed by the translation algorithm, and generates the output

products by instantiating the templates. The translator may perform semantic checks on

the input specification to check that it describes a valid application.

In order to produce other related products from the same specification, such as design

documents, test plans, or test data, templates for these products must be designed and logic
must be added to the translator to instantiate these templates. The ASL may be enhanced

to include additional information that is necessary to instantiate these templates.

Based on our experiences at Valley Forge Engineering Center implementing many dif-

ferent ASLs over t]ae past decades, implementing an ASL, i.e., designing the language and

implementing the translator, typically takes from a few weeks to several months, depending

on the complexity of the specification language. This cost includes designing the language

and implementing the translator only; it does not include the cost of writing any required

support software which the generated code may call upon. Since the support software (or

software with similar functionality) is usually required whether or not an ASL is used, it is

not be figured into the cost of implementing the translator.

There are two reasons why ASLs are relatively inexpensive to implement. First, the un-

derlying technology and theory used to build ASL translators comes from the well-understood

software domain of compilers. Many automated tools exist for this domain, e.g., code gener-

ators for building lexical analyzers and parsers. Besides automated tools, there are standard

architectural designs for translator programs and libraries of commonly used components.

Second, ASLs are much easier to implement than compilers. The generated code is a

high-level language, instead of a machine language. The generated code can interface wilh

other software components to implement its functionality. Also, ASLs are much simpler

SEW Proceedings 256 SEL-93-003

languages than general-purpose programming languages. Since the design of the language

is under the control of the implementer, language constructs which are hard to implement

can be avoided. It, therefore, is possible to design and implement a translator for a small,

special-purpose language, at lower cost and risk than most other types of software.

The Benefits of ASL-Based Software Engineering

ASL-based software engineering provides a number of benefits, including:

• Increased Productivity

• Increased Reliability

• Better Control

• Lower bIaintenance Cost

• Increased Reusability

Increased Productivity

First, there is less code to write, because a software description written in an ASL is

much shorter than that same software written in a general-purpose programming language.

Second, more lines of ASL code can be written per day than lines of a general-purpose

programming language, because, when an ASL is used, the programmer writes a description

of what the application does, instead of writing a description of how it does it.

Moreover, ASLs can be use to capture the expertise of an experienced programmer and

transfer it to less experienced programmers. For example, an ASL that allows programmer

to build screens for X-windows by just describing their appearance, enables the coding of

the screens to be done by a programmer that does not know X-windows. The translator

contains the knowledge of an X-windows expert on how to transform the descriptions into

the appropriate X-windows code.

Increased Reliability

Generated code is more reliable than hand-written code. Since all of the code is based on

the same set of templates, once the templates are correct, all of the code will be correct. The

computer can be counted on to perform the repetitive task of instantiating the templates

accurately.

Better Control

The form and content of the generated code is controlled from a single-point, the trans-

lator; consequently, all of the generated code can easily be changed. A single point, of

control reduces risk by allowing many design decisions to be deferred. For example, if, a

generated system interfaces with another complex system, e.g., X-Windows, the design of

the generated system can be fine-tuned later, after more experience is gained, by simply

SEW Proceedings 257 SEL-93-003

changing the generator. On the other hand, when there is large amount of hand-written

code, it is desirable to completely decide on the design before the code is written, because

of the cost of retrofitting a change in all of the code.

Also, if the translator generates multiple products, then the products are kept in syn-

chronization automatically. For example, if a translator generates a program and a structure

chart which describes the design of the program, then the design documentation and program

always parallel each other.

Lower Maintenance Cost

Perhaps the biggest benefit of using an ASL approach is realized in the maintenance

phase of the life cycle. There is less code to maintain. Moreover, the capability evolve the

system to accommodate new requirements is built into the system; features can be added or

modified by making changes to the specification.

Sometimes, over the lifetime of a program, fundamental changes must be made to its

overall design, e.g., porting the program to a different hardware platform, operating system,

windowing system, database, or even programming language. ASLs facilitate this, because

the specification and translator maintain a clean separation between what a program does

and how a program does it. In order to retarget a program, only the translator must change.

All of the code invested in the specification is still valid because it is independent of the

implementation.

b_creased Reusability

ASLs extend the scope of reuse beyond what is possible with conventional development

techniques and general-purpose programming languages. When an software component is

implemented in a general-purpose programming language, the amount of customization that

can be done is limited by the parameterization methods available in the language. When

a component is generated, however, more possibilities for customization exist, because the

generator can add, modify or omit code.

3 Examples of ASLs

ASL technology has been applied on several software development project at NASA/Johnson

Space Center. The work was performed under the Space Transportation System Operations

Contract (STSOC) on which Unisys Space Systems Division is a subcontractor to Rockwell

Space Operations Company.

In this section, we present the work done on two projects to give examples of two ASLs

that address completely different kinds of problems. On one project, done for the Payload

Operations branch, a command editor for the Tethered Satellite was implemented using

ASLs. On the other project, done for the Shuttle Flight Design and Dynamics branch, an

ASL was implemented to serve as a general-purpose tool for analyzing data files used during

flight design.

SEW Proceedings 258 SEL-93-003

3.1 Tethered Satellite Command Editor

Approximately 500 Tethered Satellite System (TSS) payload commands required editing.

The ground control specialist uses menus to select commands for editing. Menu buttons

either display a submenu or a screen for editing commands. A sample of a menu and a

screen is shown in Figure 3.

Satellite RF

Auloreconfiguration

Override Telemetry

AMCS 32-bit Constanls - I

AMCS 32-bit Constants- II

AMCS 16-bi1 Constants

Gyro Constants

Memory Dump

D RBS

Time Tag Command

PREVIOUS

Satellite Hold/Spin Mode (RF)

Hold Angle I [DEG

Spin Rate] RPM

MSG FLD:

I-=qIP v,o0sII.E REs.I

Figure 3: The command editor provides a GUI for selecting and editing commands.

A sample menu and and a screen for editing two commands is shown.

Screens have varying requirements for grouping of commands; some screens process one

command, while others process 35 or more commands. Each command must be retrieved

from a database and stored again after it has been modified. Five different command

formats must be processed, each with a unique checksum calculation. Some commands

required values to be converted to engineering units, and most commands require values

to be displayed both symbolic and in hexadecimal. A single group of commands can be

optionally loaded from an external file, rather than the database.

Rather than assigning many programmers to build 140 or so screens--having each pro-

grannner code similar sorts of things, but each doing it differently--we invested in the

design of special specification language, in which each command and screen layout can be

described. A sample of this language is shown in Figure 4. Common capabilities such as the

need for certain buttons on each screen, the retrieval of data, and conversion and checksum

calculation were built directly into the associated generation process. The specification had

SEW Proceedings 259 SEL-93-003

Command Format RF_32_bit_degrees is

Format : RF;

(7,0)[32] Degrees : Sat_Degrees;

end RF_32_bit_degrees;

Command format RF_I6_bit_RPM is

Format : KF;

(7,0)[16] RPM : Sat_RPM;

end RF_I6_bit_RPM;

Satellite_Hold_Mode_0n_RF: PI3KI020L RF_32_bit_degrees;

Satellite_Spin_Mode_0n: PI3KI022L RF_!6_bit_RPM;

Form Hold_Spin_Mode_RF is

title : "Satellite Hold/Spin Mode (RF)";

"Hold Angle", Satellite_Hold_Mode_0n_RF.Degrees,

"Spin Rate", Satellite_Spin_Mode_0n.RPM,

end Hold_Spin_Mode_RF;

"DEG" ;

"RPM" ;

Menu RF_Menu is

title : "Satellite RF";

"Autoreconf igurat ion"

"0verride Telemetry"

"AMCS 32-bit Constants - I"

"AMCS 32-bit Constants -II"

"AMCS 16-bit Constants"

"Gyro Constants"

"Memory Dump"

"DRBS"

"Time Tag Command"

"Hold/Spin Mode"

end RF_Menu;

=> Auto_Reconfiguration_RF;

=> RF_0verride_Telemetry_Form;

=> amcs_constants_32_RF_pagel;

=> amcs_constants_32_RF_page2;

=> AMCS_Constants_16_RF;

=> RF_Gyro_Constants;

=> RF_Memory_Dump_Form;

=> DRB_Menu;

=> RF_Time_Tag_Command;

=> Hold_Spin_Mode_RF;

Figure 4: This is the specification for the screens shown in Figure 3. Besides displaying

the menu, the code generated for this specification fetches two commands from the

database (P13K1020L and PlSK1022L), extracts the Degrees and RPM field from

each command respectively, and displays their values on the screen for editing by the

user. If the user presses the STORE button, the commands in the database will be

updated with the last value the user entered.

SEWProceedings 260 SEL-93-003

all the implementation details for each command; the generator integrated all special process

requirements with common capabilities.

I Input I

ASL
Translator

Compilable
Program

Documentation

Test
Cases

Figure 5: The TSS ASL translator generates a command editor, a user's manual for

the command editor, and test program from a single specification.

The translator generates three significant products for this project as shown in Figure 5.

The main product consists of several thousand lines of high quality, maintainable C code.

In addition, a 200 page user's manual and test program are produced. The user's manual

describes how to use the editor and the screens that editor is capable of displaying. The test

program validates that each TSS command exists in the database and is defined as specified.

Additionally, high and low value entry is simulated for each editable data value.

The ASL approach accommodated introducing new requirements in the unit testing phase

with no impact to schedule. During this phase, about 40 new screens were requested by tile
customer to handle science commands. To accommodate this request, no actual C coding

was required, only descriptions of the new screens had to be added to the specification. Then

a new editor, user's manual, and test program were generated automatically.

The productivity for the command editor application was not tracked in detail. The

translator consists of 7K lines of code, 4K lines were hand written for this project and 3K

lines were reused or generated; the level of effort to produce the translator was 3 person

months, including the design of the templates for the generated code. The TSS Command

Editor is 12K lines of code, 7K lines are generated by the translator, and 5k lines are

hand written. The hand-written code is used by the generated code and is not changed

to accommodate new specifications. The generated test program for the TSS editor is 6K

lines of code, and the generated user's manual is 12K lines of troll and p±¢ commands.

Additional productivity gains have been achieved, because the command editor generator

has been used for other payloads, e.g., SSBUV and Wake Shield.

3.2 Strip Manipulate and Merge Tool

The Strip Manipulate and Merge (STMM) tool was created by the Common Software task

as part of its overall goal to reduce maintenance cost by creating a common set of tools for

use by flight designers, since many of the existing tools duplicate functionality.

SEW Proceedings 261 SEL-93-003

STMM accepts a specification that describes operations to be performed on standard

flight design data files. There are several different types of data files used for flight design.

Each data file type has its own physical format; however, all of the data files are logically

similar--Each file consists of a collection of records; each record is the same type, consisting

of a set of named fields; and each file has a data dictionary which describes the structure

of the records, i.e., the names of the fields in the record, the number of bytes allocated to

the field, the type of data in the field (e.g. ASCII or binary), and the engineering units

represented by the data.

STMM replaces an existing set of forty or so tools that perform similar, but specific,

operations on flight design data files, such as converting from one file format to another;

creating a file from selected records of another file; or omitting, reordering, renaming, or

adding fields to the records of a file. In addition, some tools perform operations on multiple

data files, such as concatenating, merging or joining them. Each tool did some specific

combination of the above operations on a specific set of data files. With STMM, these forty

custom tools are replaced by forty small specifications and the STMM tool itself.

Originally, STMM was to be implemented using a COTS product that manipulates flat

files. After analysis, it was found that the COTS product could not adequately replace the

existing set of tools. The COTS product did not support the number fields that records in

some of the data files had. It did not support operations such as joining or merging files

based on a tolerance for the key fields. And finally, it could not convert from one file type to

another. The additional support code required to use the COTS solution made the COTS

implementation unfeasible, so a custom ASL was implemented.

merge "run1. cff" (cff) and "run2. cff" (cff) giving "out .merge" (fcff) ;

record selection for "runl.cff"(cff) is

range : Number in 1.0e6 .. 2.0e6;

end;

key is Pressure;

end ;

run

Figure 6: This sample language specification merges two data files, runl.cffand run2.cff,

producing a the result file out.merge. The files are merged on the key field Pressure.

The only records selected from runl.cffare records where the value of the field Number

is in the range one million to two million.

One of goals of STMM, was to make the language easy to use by flight design engineers,

who are not necessarily computer programmers, so that new file manipulation programs

could easily be created by them. The language designed for STMM allows the user to

express operations on data files using an is English-like syntax, which is easy to read ar, d

write. A sample of the STMM language is shown in Figure 6. Also, extensive error checking

was built into the translator to make it easier for the user to debug specifications.

10

SEW Proceedings 262 SEL-93-003

The architecture of STMM is slightly different from the other ASLs that we have been

discussing. Instead of translating the user specification into an HOL program, which must

then be compiled, the translator generates an internal, intermediate language that represents

the user's program. A component called an interpreter executes this intermediate language.

The interpreter for STMM makes use of a library that defines a class of objects called

filters. There are several types of filters; each type of filter can be connected to one or more

input streams of data and produces an output stream of data. In addition, each type of

filter is capable of doing some kind of transformation on its input streams to produce its

output stream. For example, there are filters which select records based on parameterizable

criteria, strip fields from records, or concatenate, merge, or join multiple streams of data.

The STMM translator translates the specification into the appropriate chain of filters. Once

the filter chain has been constructed, the translator turns to control over to the filters to

executed the operations.

Summary

The way in which software is produced has changed several times since the invention of

electronic computers. All of these changes consist of transferring an increasing amount of

work from human beings to the machine itself. Application-specific languages are a step

in this trend. They enable software engineers to leverage the tools and techniques from a

well-understood domain--compilers--against problems of developing new software.

Application-specific languages provide many important benefits to a project during imple-

mentation and maintenance phases. They increase productivity, increase reliability, provide

control of a large amount of software and related products from a single point, and enhance

the ability of a system to adapt changing requirements.

Because of the success of ASLs on these and other STSOC software development projects,

ASL training was given to a team of about twenty STSOC software engineers. These

engineers will assess new projects and existing maintenance efforts to find areas where ASLs
can reduce cost.

Biographical Sketch

David J. Campbell has over seventeen years experience in compiler, operating system, and

support tools development. In addition to his work at Unisys, he is a part-time instructor

for the Mathematical Sciences Department/Computer Science Division, Villanova University.

For the past seven years, the main focus of his work has been on automatic generation of

software, chiefly through the use of compiler development technology. His work includes

the imt)lementation of many software generators and the creation of tools to build software

generators, tte has also been involved with many tasks on the STARS program, including

porting a Sun Unix version of the Common APSE Interface Set, revision A, to the MACII

operating system, and serving as chief programmer on the rapid software modeling task.

ll

SEW Proceedings 263 SEL-93-003

Mr. Campbell is currently a Staff Engineer in the Research and Development Division of

Valley Forge Laboratories. He holds an B.S. degree in computer science from Wichita State

University.

Linda Barker has over seventeen years experience in the computer industry. She is

currently Supervisor of Software Engineering for the Mission Control Center, Data Systems

Software Section, which is responsible for maintaining several applications used in the ground

support operations for space shuttle flights. She is also a charter member of the Houston-SSO

Software Engineering Process Group (SEPG).

Deborah A. Mitchell has over fourteen years experience in programming and software

support on a variety of hardware systems. For the past six years, she has worked on the Space

Transportation System Operation Contract in the Flight Design and Dynamics Department.

Her work includes project management of Common Software applications, the development

of two ASL applications, the General Purpose Input Processor and the Strip Manipulate

and Merge, Generic Report Writer.

Deborah Mitchell is currently a project manager in the Reconfiguration Department of

the Unisys, Houston, division. She holds a Bachelor of Science in Electrical Engineering

(BSEE) from Prairie View A&M University.

Robert H. Pollack has over twenty years experience in programming and software

support, on a variety of hardware and operating systems. For the past nine years, the main

focus of his work has been on the automated creation of application software, chiefly through

the use of compiler development technology. His work includes the creation of a system to

generate Ada message validation code from abstract specifications of the message formats,

a system which is used for software development in several Unisys projects. He is also the

creator of a major subsystem of an interpreter for the Ada language developed under the

STARS program.

Mr. Pollack is currently a Staff Engineer in the Research and Development Division of

Valley Forge Laboratories, where he is assigned to the Re-Engineering IR&D project. He

holds an M.S.E. (Computer and Information Science) from the University of Pennsylvania.

12

SEW Proceedings 264 SEL-93-003

Software Engineering With Application-Specific Languages

David J Campbell

Unisys Corporation

PO Box 517

Paoli. PA 19301

Campben@VFL Paramax.COM

._.prli¢_cian-S_ifi¢ [,an_,uss*'s[29 No_'mbCr 1993) Foi_ !

Application-Specific Languages (ASLs)

• Special-purpose languages targeted to solve a specific class of

problems

• Present programmers with a higher level of abstraction than

general-purpose languages, allowing a programmer to write less
code

• Used to automatically generate required software or other related

work products

• Inexpensive to produce (typically, from a few weeks to a few

months)

Applic_tioi.Sp_ific LsRgsLses(29 No_ember]9t)3] Fc_) 2

SEW Proceedings 265 SEL-93-003

Automatic Software Generation With ASLs

Wrirtett itt atl appli¢otio_ ype¢fic l_,ngu_ge

I==1
_ Application

I I

Work producr coMd i_clude program

_pphca_iol-$pecific LL.gw_q[_(29 _o_mber 1_1_3) Fo£ 3

Automatic Software Generation With ASLs (Cont.)

, Specification and translator maintain a clean separation between

what software does, and how it does it

• Generic solution to problem is formulated as a set of reusable

code templates

• Translator executes an algorithm that instantiates templates

from a specification which describes the requirements for the

software

AiPl_licatkm-Spcciiic LinsvqSeS{2$ November 1g_95) Fo_l4

SEW Proceedings 266 SEL-93-003

Evaluation process

, Determine if a software component is a candidate for ASL

implementation

- Repetitive coding tasks

- Complex or error-prone coding tasks

- Requirements subject to change

- Recurring problem (i.e., ASL is reusable on other projects)

, Perform tradeoff analysis, ASL vs other approaches

Ap_,lic_h©n-Sp_i_¢ [-aalplll,l_[2 rJ _o_,'_tlbet 1|91) Foll S

Cost Tradeoff

Cost

T
One-time cost
to implement

ASL

1

 :22" .o,

Number of similar requirements

T
Cost
Savings
with ASL

l

App_ic|l;ol-Specili¢ [,|ll_ilklll'l(2// NovemheT 1_13) Fm_ 6

SEW Proceedings 267 SEL-93-003

ASL Development Activities

• Language Design

- Design a language for specifying requirements in terms

familiar to the application expert

• Translator Development

- Develop a translator that checks the input specification for

errors and generates code that satisfies the requirements

• Product Generation

- Write specification for the required work products and

generate the actual components

Appliczt_on-Sp_clac L_gz_C29 November 2_) Foil ?

Benefits

• Increased Productivity

- Less code to develop and maintain

• Increased Reliability

- All code based on same templates

- Computer accurately instantiates templates

• Increase Manageability

- Translator provides a single-place for controlling a large

amount of code and related work products

- Design decisions are encapsulate in the translator

- Less impact to evolve design or tune implementation

AppI;clt;om-Sl_'_;fK 1,uS._el{_'9 Ho_m_'r 1_!3) F(_l e

SEW Proceedings 268 SEL-93-003

Benefits (Cont.)

- Related work products are always consistent

- Less impact to handle anticipated requirements changes

• Increased Reusability

- Generated components are more tailorable than components

implemented in programming languages

AppIicit_on-Sp('_iKc L[Blla|n(29 No,ember 1913) Foi|

Examples of ASLs

• Editor Generator (Egen)

• Strip Manipulate and Merge (STMM)

kpplN:kti_-$_,e_pE¢ LIn||Z|eS(29 ,_oven_lX't _993_ Foil I0

SEW Proceedings 269 SEL-93-003

Egen (Editor Generator)

• Egen is an ASL that generates a payload command editor from

a high-level specification

• Initially developed for the TSS payload, subsequently used on

the SSBUV and Wake Shield payloads

Appl_cl_b_ $1r, cillt buSl,$_(_9 Nuwmher 19911 FO_ z]

Command Editor

• Fetches and stores commands from a data base

. Enables the user to display and change the variable fields of

commands

• Converts values to engineering units

• Handles different command formats and computes checksum

required by formats

. Provides a GUI for editing commands

App]_calioe-Spt¢ific L*_u,L$¢.(29 _ovem_r 1_9_) Ya.il 12

SEW Proceedings 270 SEL-93-003

Example of User Interface

Hole, Sp, n Mode

0 R_'VI(M/g

S_,llit, Hol_ Elodo (RF')

H,_dA._ L J re+c,

k_G FLD:

ApplJclz+ol.Spec+f,c I.II, R.IR+_(_9 Nov+l,+_',+t 199_ Fol'I ,3

The Egen Specification

Command Format RF_32_bit_degrees is
Format : B/';

(7,0)[32] Degrees : Sat_DeErees;
end RF_32_bit_degrees;

Command format KF_I6_bit_RPM is
Format : KF;
(7,0)[16] RPM : Sat_RPM;

end KF_16_bit_R2M;

Sat_Hold_Mode_On_KF: PI3KI020L RF_32_bit_degrees;

Sat_Spin_Mode_0n: PI3KIO22L RP_IB_bit_RPM;

Form Hold_Spin_Mode_RF is
II II

title : Satellite Hold/Spin Mode (RF) ;
l, II FHold Angle , Sat_Hold_Mode_0n_R .Degrees "DEG";
"Spin Kate", Sat_Spin_Mode_0n.RPM, "RPM" ;

end Hold_Spin_Mode_RF ;

AppI+cllt_,on+Sjl_-41_¢ L_IIJIx_II(29 Nc..._mber 1995)Foll 14

SEW Proceedings 271 8EL-93-003

The Egen Specification (Cont.)

Menu KF_Menu is
title : "Satellite RF";

"Autoreconfiguration" => Auto_Recon_RF ;
"Override Telemetry" => RF_Override_Telm;
"AMCS 32-bit Constants - I" => amcs_32_RF_page1;
"AMCS 32-bit Constants -II" => amcs_32_RF_page2;
"AMCS 16-bit Constants"

"Gyro Constants"
"Memory Dump"
"DKBS"

"Time Tag Command"
"Hold/Sp_n Mode"

end KF_Menu ;

=> AMCS_I6_RF;
=> RF_Gyro_Const_uts ;
=> RF_Memory_Dump_Form;
=> DRB_Menu;
=> RF Time Tag Command;
=> Hold_Sp[n_Mode_KF ;

Egen Translator

• Egen produces multiple work products

ASL
Translator

Com_k1_e
Program

Documentation

Test
Cases

Appti¢ltio=-Sp'_iR¢ Ll.lUl_m(29 N_mlx'r]_'93_ FoU I16

SEW Proceedings 272 SEL-93-003

STMM (Strip Merge and Manipulate)

• STMM programs describe operations to be per_ormecl on flight

design data files

- Create files from selected records of other files

- Omit, rename, reorder, or add additional fields to records

- join, concatenate, or merge files

- convert files from one format to another

• It replaces forty programs that perform specific operations on

given files

AppT _,tk_m-Sp_¢i6¢ Langley(29 No_mb_z _3_ F_I 1_

Example of a STMM Specification

merge "run1. cff"(cff) and "run2. cff"(cff)
glving "out.merge" (fcff) ;

record selection for "runl.cff"(cff) is

range : Temperature in 1.0e4 .. 2.0e4;
end;

key is Pressure;
end ;
run

Appli_Lg.i_e-Specinc La.xu_lies(29 NovemTl_r IgD3)Fe_[14

SEW Proceedings 273 SEL-93-003

