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1.0 INTRODUCTION AND SUMMARY

This user’s manual for the TETRA 2 program provides the requisite inputs and
description to perform a steady state response analysis of a turbine engine. In
addition, since TETRA 2 was developed with the dual capability of steady state
response and the transient analysis of the original program, inputs for both
options have been consolidated. This includes the common modeling procedures
(and basic inputs) and the separate inputs unique to each option. Hence TETRA 2
is a single program wherein the analytical and computational distinctions of the
two options are transparent to the user.

The transient option has all the capabilities of the original, including the
later modules:

(1) Flexible Bladed Disk

(2) Squeeze Film Bearing

In addition, the scope of the transient analysis has been increased so that it
now contains the following enhancements initially developed for the steady state
analysis: improved rub element (with the cubic nonlinear factor), structural
damping capability (applies for physical connecting element types 1, 2, 4, and
5), and new printout options.

Also, changes in the coding of TETRA 2 were made to improve the efficiency of
transient analyses. For most transient analysis runs, TETRA 2 is more than
three times as fast as the earlier TETRA program.

With the exception of the squeeze film bearing module, the added elements are
also available in the steady state analysis. This exception was made because
the squeeze film bearing is valid only for circular motion, whereas the steady
state analysis is generally for elliptical orbits - which can exhibit large
eccentricity or ellipticity.

The driving motivation for the development of the steady state analysis was the
need to calculate the steady unbalance response as a function of speed more
directly. At the same time, it was needed to overcome the axi-symmetric
Timitations of current critical speed computer programs, and provide a
computational method to calculate the realistic motions of actual engines. The
non-isotropy in turbine support structures, such as those inherent in engine
pylons and typical engine support hard points, require that the permissible
engine motions are also non-isotropic. In other words, engine orbital motions
are really elliptical, not circular.

Current methods have required two analyses of critical speeds or steady state
response - which are both axi-symmetric. In one, the structural stiffnesses
correspond to the vertical plane stiffness; in the other, the horizontal plane
stiffness. Additionally, this procedure does not truly represent the cross-axis
(cross-planar) coupling intrinsic to gyroscopic moments on rotating and
vibrating disks and rotors.

TETRA 2 therefore was developed to overcome the shortcomings of standard steady



state analysis programs, at the same time providing new capabilities. These of
course include the general nonlinear rub element (incorporating a deadband and a
hardening or softening spring), the flexible bladed disks, and the modular
design of the computer program. The latter allows the user to develop other
connecting element modules or extend the basic structural components to
accommodate more than four structural elements.

The consolidation of the transient and the steady state options provide one
computational method to perform most dynamic analyses of realistic turbine
engine structural systems. Even though emphasis is on turbine engines, TETRA 2
can also be used to perform dynamic analysis of non-turbine structures such as
aircraft, buildings, or other structures which can be modeled with component
structural components (and normal modes) connected by connecting elements.

The charts presented in figures 1-1 and 1-2 graphically summarize the
capabilities and operations of TETRA 2. The latter flow chart delineates TETRA
2 in its two modes or options. The basic structural modeling and input
information are common to both, including those for the connecting elements and
other modules. Branching to either option is governed by the natural differences
in the analyses: the transient option input/output include those that depend on
time, such as rotor speed history, blade loss onset, number of time intervals,
etc.; the steady state analysis input/output are in the frequency domain so that
this branch requires information dependent on excitation frequency such as:
frequency sweep, initial iteration solution trials, and others.

Finally, due to the voluminous output of the transient solution, and in the case
of critical speed calculations, of the steady state, a plot file output is
recommended. This avoids the extensive printed output, at the same time
providing quick and easily interpretable presentation of the results. Such a
plot file is especially indispensable for other types of output processing, such
as animation or FFT analysis of transient data, and the frequency response plot
presentation of the steady state output.

This volume contains the updated inputs for TETRA 2, combining the transient and
steady state options. In addition explanations of the input variables and
output are also included.
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FIGURE 1-2 TETRA 2 SCHEMATIC DIAGRAM
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2.0 TETRA 2 INPUT

2.1 Input Restart File

Transient analysis TETRA runs can be restarted using a restart file from an
earlier TETRA run. A transient analysis run starts at time = 0 and marches
forward in time. To begin a transient analysis run at a restart time (greater
than 0), generalized coordinates and other data is needed for the restart time,
and the generalized coordinates are also needed for the two time steps prior to
the restart time. The restart file is the means of communicating this data
calculated by the earlier TETRA run to the restarted TETRA run. For more
information on restarting TETRA transient analysis runs, see the discussion of
the type I-1 input sheet.

Steady state analysis runs cannot be restarted using a restart file from an
earlier TETRA run. Restarting is unnecessary for a steady state analysis run,
because steady state analyses can be started at any forcing frequency, and no
knowledge of previous forcing frequencies that may or may not have been run is
needed. The only possible exception to this is that the user might want to input
an initial guess for the rub element relative displacements (the unknowns in the
iterating equations) which was obtained from the printout at a given forcing
frequency of a previous TETRA run. However, if this is the case the user can
easily enter this initial guess in the primary input file (input sheet I-3).
Furthermore, an initial guess is not required. For more information regarding
an initial guess, see the discussion of the type I-3 input sheet.

The input restart file is read in using file code 22. Therefore, if the run is
a restart run, the user must include a line or two in his or her JCL (job
control language) identifying the restart file and associating it with file code
22.

The restart file is an unformatted sequential file. It is a short file and
takes up very little disk space.




2.2 Primary_input file

The primary TETRA input file consists of namelist input. The file code for the
primary input file is the standard 05 file. See section 2.3 for a discussion of
the namelist input sheets for this file.

As in the original TETRA program, the namelist input is divided into sections of
which there are four types named LIST1, LIST2, LIST3, and LIST4 (must be
arranged in that order in the input file). Each section must begin with a §
followed immediately by the section name (that is, $LIST1, $LIST2, $LIST3, or
$LIST4). Following this comes the input variable names and their values (which
may be entered in any order). On the Honeywell computer, each section must end
with a $. On the Cray computer, either a $ or a $END can be used to signal the
end of a section. The namelist input should begin in column 2 of each Tline.

The LIST1 namelist input is for the overall input and input for points not
Tocated on the modal subsystems. There must be one and only one LIST1 section.
Next come the LIST2 namelist sections. One LIST2 section is required for each
modal subsystem (there must be at least one modal subsystem and at most 13).
The LIST3 namelist sections (if any) come next. There is one LIST3 section for
each physical connecting element. There may be zero physical connecting
elements. The current upper limits are a maximum of 5 type 1 physical
connecting elements, 10 of type 2, 10 of type 3, 4 of type 4, 25 of type 5, and
5 of type 6. (Incidentally, the upper limits for the program variables may
change in the future as the program evolves. A listing of the current upper
limits is included in the printed output from a TETRA run just following the
listing of the input file, except when the short form of the printed output is
requested by entering IOUT = 0 on the type A input sheet). Finally, there must
be one and only one LIST4 section. The LIST4 section includes restart input,
time integration input, print and plot multiples, steady state nonlinear
analysis input, rotor speed and rate input, load input, and plot file input.

For a sample input file 1isting, see section 5.3.1. A listing of the input file
for the demonstrator model is imbedded near the beginning of the printed output
for the demonstrator model in this section.



2.3 TETRA 2 Input Sheets

The TETRA 2 program has 44 namelist input sheets. However, usually many

of the input sheets are not needed, and the user just includes those input
sheets that apply for his or her model. Unless otherwise stated on the input
sheet, the input data is common to both transient and steady state analyses. If
the input is specific to a transient or to a steady state analysis, this is so
noted on the input sheet.

Examining the TETRA 2 input sheets, one can see that about 80% of the TETRA
input (for instance, the usually lengthy modal subsystem input) is common to
both transient and steady state analysis runs. Another 10% of the TETRA 2 input
pertains specifically to a transient analysis run. Most of the input in these
two categories was present in the earlier TETRA program (see references 1 and
2). Finally, about 10% of the TETRA input is specific to a steady state
analysis run. This input is all new with TETRA 2, of course, since the earlier
TETRA program could only perform transient and not steady state analyses.

Three enhancements were added to the TETRA 2 input that were made to apply for
either transient or steady state analyses. These are: the rub element cubic
nonlinear factor AK (on type F input sheet), structural damping frequency option
ISF (on type A input sheet), and printout option IOUT (on type A input sheet).

The TETRA 2 input was set up such that so that the same input file could easily
be used for either a transient or steady state analysis. Simply include in this
input file both the input that is specific to a transient analysis and the input
that is specific to a steady state analysis. When a transient analysis is run,
TETRA 2 just ignores the input that is specific to a steady state analysis, and
likewise, when a steady state analysis is run, TETRA 2 ignores the input that is
specific to a transient analysis. Then you need only change the value of input
variable NTYPE (type A input sheet) to tell TETRA 2 whether the run is for a
transient or steady state analysis. A transient analysis is the default if
input variable NTYPE is not included.

It is emphasized that the input for TETRA 2 is entirely consistent with that of
the earlier TETRA program. In fact, if a user has an input file that he or she
ran on the original TETRA program, that input file, without any modifications,
will still work fine for TETRA 2, producing the same transient analysis run
results as were produced by the original TETRA program. If the user then wants
to use this input file for a steady state analysis run, he or she will have to
add the variable NTYPE = 1 (type A input sheet) to tell the program that the run
is for a steady state analysis and a small amount of additional input that is
needed for a steady state analysis.

Many of the input sheets to the earlier TETRA program remain the same for TETRA
2. However, several input sheets to the earlier TETRA program were modified,
and several others are new to TETRA 2. Although lots of this material is
redundant of the earlier TETRA manuals (references 1 and 2), it was decided to
discuss all the TETRA 2 input sheets in this manual, so that the user would only
have to refer to one manual regarding the input sheets. .



2.3.1 Overall Input (Type A Input Sheet)

Except for the possible presence of several lines of JCL (job control language),
the first line on the input file must be $LIST as shown on the type A input
sheet. This line signals the beginning of the LIST1 namelist input section,
which is comprised of type A and type B input sheets. Each input file must have
one LIST1 namelist section.

Next, the variables NAME, ADDRESS, IDENT1, and IDENT2 are used to enter the
user’s name, address (building, mail drop, bin number, etc.), and two lines of
description for the run. Up to 60 characters may be included between the
apostrophes for each of these variables. These variables are not required, so
one or more of them may be omitted if desired. If present, the information
entered via these variables is reproduced on the first page (title page) of the
printed output.

Following this, the analysis type flag is entered. If NTYPE = 0, or if this
variable is omitted, a transient analysis is performed. If NTYPE = 1, a steady
state analysis is performed.

Next comes the structural damping frequency option ISF. Structural damping is an
enhancement which was added to TETRA 2 and was not present in earlier versions
of TETRA. This feature can be used either for transient or steady state
analyses. Structural damping may be used for any of the linear (type 1, type 2,
type 4, or type 5) physical connecting elements, but is not available for the
nonlinear physical connecting elements (type 3 or type 6).

The presence or absence of the ISF input variable is not what determines whether
structural damping is present, so if the user does not want structural damping,
it does not matter whether this variable is entered or not or what value it is
given. Rather, the user signals that he or she wants structural damping for a
given physical connecting element by entering a non-zero value for QELEM
(Q-factor) and by omitting QFREQ (the selected frequency) on the input sheets
for that element (see the input sheets for the physical connecting elements,
types D-1 through H-3).

If the user has so indicated that structural damping is desired for a particular
element, the program then uses the entered Q-factor and the frequency defined by
the ISF value to calculate the damping. If ISF equals 1 or is omitted, then the
independent rotor speed is used regardless of whether the run is a transient or
a steady state analysis. (If you don’t know what is meant by the independent
rotor, read the discussion of the type J-1 and J-2 input sheets). However, if
the user enters ISF = 2, the independent rotor speed is still used if the run is
a transient analysis run, but the steady state forcing frequency is used if the
run is a steady state analysis run. (For steady state runs, the steady state
forcing frequency might be the same as the independent rotor speed, but is
different from the independent rotor speed when defined by the BW, FW, and SW
variables on input sheet L-2).



Page _ of

NAMELIS
Type A

TETRA
OVERALL INPUT

Enter the following name, address, and run identification input (maximum of 60
characters between apostrophes):

%4

$LIST1
NAME=’
ADDRES=’
IDENT1=’
IDENT2=’

D

v e e e

Enter the analysis type flag NTYPE:

NTYPE=__ , 0 = Transient analysis (assumed value)
1 = Steady state analysis

Enter the structural damping frequency option ISF, which defines the frequency
to be used along with the Q-factor to calculate the structural damping (if
present) for type 1, type 2, type 4, or type 5 physical connecting elements.
ISF applies for each physical connecting element for which the user inputs a
non-zero value for QELEM (Q-factor) and omits QFREQ (the selected frequency)
(see the input sheets for the physical connecting elements).

ISF=___, 1 = Independent rotor speed used for both steady state and transient
analyses (assumed value)
2 = Steady state forcing frequency used for steady state analyses and
independent rotor speed used for transient analyses

Enter the printout option IOUT, which determines what output is printed.
IOUT=__, 0 = Short form of the printout

1 = Standard form of the printout
2 = Long form of the printout



If the user inputs both QELEM (the Q-factor) and QFREQ (the selected frequency)
on the input sheets for the given physical connecting element, then the program
uses the entered Q-factor and entered frequency to calculate the damping for the
element (overriding the frequency defined by the ISF variable). If this is the
case, the damping is non-structural, since the constant frequency defined by
QFREQ is used regardless of variations in the independent rotor speed or the
steady state forcing frequency. The ability to enter non-structural damping in
this manner was present in the earlier versions of TETRA.

The final variable entered on the type A input sheet is the printout option
IOUT. Three possible values (0, 1, or 2) may be entered for this variable, but
the value of 1 (standard form of the printout) usually is best (1 is also the
default if this variable is omitted). A value of 1 provides a formatted listing
of the input (very useful in debugging one’s input) and provides all the
information that the user is normally interested in for the requested time steps
(for a transient analysis) or the requested forcing frequencies (for a steady
state analysis). This includes the physical displacements, physical forces, and
all other essential data. _

If the user enters IOUT = 0, the short form of the printout is used. The short
form of the printed output contains what the standard form of the output does
minus the verbatim listing of the input file, the 1isting of the current program
limits for various variables, and the formatted listing of the input as
interpreted by the program. With the short form of the output, the title page
is printed, followed by the same output for each time step (if a transient
analysis) or for each forcing frequency (if a steady state analysis) that is
printed for the standard output form.

If the TETRA program detects any input errors, it prints an error message
exactly at the point in the formatted listing of the program input that caused
the error. This is highly useful to the user in figuring out what was wrong.
If the user inputs IOUT = 0, the error message is still printed out, but since
the formatted listing of the program input has been suppressed, the user
sometimes is left scratching his head trying to figure out exactly where in the
input the error occurred. Thus, it is recommended that the user not enter IOUT
= 0 until after the program has been successfully run and the input thoroughly
verified. Once the user is sure that the input is okay, setting IOUT = 0 will
decrease the number of pages of output appreciably.

If the user enters IOUT = 2, the long form of the printout is used. The long
form of the output contains everything that the standard form of the output
contains plus additional information. Usually, however, the additional items
printed are of no interest to the user. Also, the long form of the output adds
appreciably to the number of pages of printed output, especially for a steady
state analysis run.

The following items are added to the standard printout for transient analysis
runs when the long form of the output is requested: more detailed
information about the flexible bladed disk(s) (if present) (including
printout of the mass matrix for the rotor that includes the flexible bladed
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disks and for the flexible bladed disks), the (mode,point,direction) trios that
contribute to the generalized forces, the generalized forces, generalized
velocities, generalized displacements, generalized accelerations, and a listing
of at least part of the output plot file (lists the first 11 time steps on the
plot file for a transient analysis run). The listing of the output plot file
would be helpful to someone writing a postprocessor program to plot the TETRA
results.

The following items are added to the standard printout for steady state analysis
runs when the long form of the output is requested: more detailed

information about the flexible bladed disk(s) (if present) (including the terms
of the global mass and global velocity matrices due to the flexible bladed
disks), the (mode,point,direction) trios that contribute to the generalized
forces, the difference in the mode shapes at the I and J ends for each rub (type
3) element, a listing of at least part of the output plot file (1ists the first
11 forcing frequencies on the plot file for a steady state analysis run),
several matrices that are calculated for each of the linear (type 1, 2, 4, or 5)
physical connecting element and each gyroscopic element, the global matrices,
various other matrices and vectors, the generalized forces, the generalized
displacements, the parameters used in the iterating equations, the sine and
cosine components of the physical displacements, the sine and cosine components
of the physical velocities, the sine and cosine components of the modal forces,
the sine and cosine components of the physical connecting element forces, and
the sine and cosine components of the gyroscopic element forces. Note that
while the standard form of the output omits the sine and cosine components of
the physical displacements, physical velocities, modal forces, physical
connecting element forces, and gyroscopic element forces, the standard form of
the output does print out the magnitudes and phase angles for these quantities.
The magnitudes and phase angles (not the sine cosine components) are also what
gets written to the plot file (usually the user is just interested in plotting
the magnitudes).

Two other input variables also have significant effect on the length of the
printed output. These are the print multiples (IPRMUL for a transient analysis
and JPRMUL for a steady state analysis). These variables are entered on input
sheet I-1. See the discussion of the type I-1 input sheet for details.

11



2.3.2 Physical Points Not Located On_Modal Subsystems
(Type B Input Sheet)

This input sheet defines the boundary conditions of the problem. The points
which the user desires to ground are defined here. If the code is specified as
fixed (code = 1), the point is fixed in all 6 directions. If the code is
specified as free (code = 0), the point is free to move all 6 directions. The
points defined on this sheet may not be located on the modal subsystems but can
o?1y be located at ground or at the junctions of link and engine support
elements.

12



Page ___ of
NAMELIST
Type B

TETRA

PHYSICAL POINTS NOT LOCATED ON MODAL SUBSYSTEMS

Z (vertical direction)

y (horizontal direction)

x (axial direction, positive forward)

v

ppP=

POINT NUMBER CODE COORDINATES RELATIVE
NOT ON MODAL 0=FREE TO GLOBAL SYSTEM
SUBSYSTEM * 1=FIXED X Y JA

* These points include ground points and points between link and engine
support elements. It will be noted that points on modal subsystems
cannot be attached directly to ground, but can be attached to ground
through physical connecting elements.

13



2.3.3 Modal Subsystem Input (Type C-1 through C-16)

Modal subsystem input is accomplished using the LIST2 namelist section. One
LIST2 namelist section is required for each modal subsystem. The number of
modal subsystems is counted by the program automatically.

First, a discussion of the input that is common for all the modal subsystems.
The user may input a title (this is optional) for each subsystem using the TITLE
input variable. Up to 60 characters may be enclosed within the apostrophes for
the title.

The subsystem number (ISUB input variable) is required for all modal subsystems.
The subsystem number must be an integer between 1 and 13. The subsystems are
not arbitrary - each subsystem number represents a different type of modal
subsystem with differing degrees of freedom (see table 2-1). The user chooses
which of the modal subsystems to use, and can arrange these modal subsystems in
any order. The user must have at least one modal subsystem.

Note that subsystems 1 through 3 represent "rotor 1" and subsystems 4 through 6
represent "rotor 2" (see table 2-1). Of course, the user’s model may have only
one rotor, in which case either rotor 1 (subsystems 1 through 3) or rotor 2
(subsystems 4 through 6) could be used. If the engine is a dual spool engine,
however, the user might want to use both "rotor 1" and "rotor 2" in his model.
In this instance, "rotor 1" might represent, say, the low pressure system (fan,
low pressure compressor, shaft, and low pressure turbine), and "rotor 2" might
represent the high pressure system (high pressure compressor, shaft, and high
pressure turbine). Or vice-versa - the choice is up to the user. The user has a
great deal of flexibility and with these subsystems can model virtually any jet
engine configuration.

Next, the input variables XREF, YREF, ZREF, and PTS are used for almost all of
the subsystems. Specifically, these variables are used for the rotor, case, and
pylon subsystems (subsystem numbers 1 through 11), but are not used for the
flexible bladed disk subsystems (subsystems 12 and 13). If the subsystem
reference point does not coincide with the global origin, the user must input
the coordinates of the subsystem reference point (XREF, YREF, AND ZREF) input
variables. Then, the user enters the points of the subsystems and their
coordinates with respect to the subsystem reference point via the PTS input
variable. Each subsystem must have at least one point. The current upper
Timits are 10 points for the rotor subsystems (subsystem numbers 1 through 6),
20 points for the case subsystems (subsystem numbers 7 through 10), and 10
points for the pylon subsystem (subsystem number 11).

The following sections detail the input that is specific to a particular type
of subsystem.

14



Table 2-1. Modal Subsystems.

NUMBER OF
SUBSYSTEM DEGREES OF
NUMBER DESCRIPTION EREEDOM
1 Rotor 1 Vertical Plane 2
2 Rotor 1 Horizontal Plane 2
3 Rotor 1 Rigid Body 5
4 Rotor 2 Vertical Plane 2
5 Rotor 2 Horizontal Plane 2
6 Rotor 2 Rigid Body 5
7 Case Vertical Plane 2
8 Case Horizontal Plane 2
9 Case Rigid Body 6
10 Case Torsional 1
11 Pylon 3
12 Flexible Bladed Disk Number 1 2
13 Flexible Bladed Disk Number 2 2

15



2.3.3.1 Vertical and Horizontal Plane Subsystems (Type C-1 through C-3)

Input sheets C-1 through C-3 apply for the vertical and horizontal plane
subsystems, that is, subsystem 1 (rotor 1 vertical plane), subsystem 2 (rotor 1l
horizontal plane), subsystem 4 (rotor 2 vertical plane), subsystem 5 (rotor 2
horizontal plane), subsystem 7 (case vertical plane), and subsystem 8 (case
horizontal plane). The first input variables for the vertical and horizontal
plane subsystems are TITLE, ISUB, XREF, YREF, ZREF, and PTS. These variables
were discussed in section 2.3.3.

Next, the frequency u, potential energy PE, Q-factor Qf, and mode type code are
entered for each mode using the XMODES input variable. There must be at least
one mode entered. The current upper limit is 15 modes for the rotor subsystems
(subsystem numbers 1 through 6), 30 modes for the case subsystems (subsystem
numbers 7 through 10), and 30 modes for the pylon subsystem (subsystem number
11).

The input frequency w» and input potential energy PE are used to calculate the
generalized mass ZM for the mode as follows:

2PE
2

M =

w

The Q-factor Qf determines the modal damping for the mode (provided that the
mode type code equals 0) and is defined as follows:

1
2(C/C¢)
where C is the damping coefficient and C. is the critical damping coefficient.

[f the user wishes to neglect damping, Q=0 should be inputted, which is a
signal to the computer to neglect damping.

Qr =

The input mode type code must be 0 (flexible) or 1 (rigid body). The code 1 is
used for "soft spring” rigid body modes, which are used to approximate the true
rigid body modes. If this code equals 0 (flexible), the modal stiffness ZK and
the modal damping ZC are calculated as follows:

K
IK = 2PE H C =

wa

However, if the mode type code equals 1 (rigid body), then the modal stiffness
and modal damping are both set to 0, regardless of what was input for PE and Q.

Finally, the mode shape input (translation, slope, shear, and moment) must be

entered using the VH input variable. Mode shapes must be entered for every mode
.that was included in the XMODES input.
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PAGE OF
TETRA NAMELIST
TYPE C-1

MODAL SUBSYSTEM INPUT FOR VERTICAL AKD
HORIZONTAL PLANE SUBSYSTEMS

THIS INPUT SHEET APPLIES FOR THE FCLLOWING }MODAL SUBSYSTEMS:

NUMBER 1 (ROTOR 1 VERTICAL PLANE)
NUMBER 2 (ROTOR 1 HORIZONTAL PLANE)
NUMBER 4 (ROTOR 2 VERTICAL PLANE)
NUMBER 5 (ROTOR 2 HORIZONTAL PLANE)
NUMBER 7 (CASE VERTICAL PLANE)

8 (CASE HORIZONTAL PLANE)

NUMBER

Z (VERTICAL DIRECTICN)

T,V L~

- SUBSYSTEM
REFERENCE ox .
FOINT ‘ (0,0,0) Mg (HORIZONTAL
GLOBAL DIRECTION)
| wc— VERTICAL PLANE X ORIGIN
MODAL (AXTAL DIRECTION
SUBSYSTEM POSITIVE FORWARD)

NOTE - THE PHYSICAL MODEL (MODAL SOURCE) FOR THE SUBSYSTEM IS ALWAYS &
VERTICAL PLANE MODEL.

SLIST2 | .
TITLE= ’
ISUB= , SUBSYSTEM NUMBER (1,2,4,5,7,0r 8)

ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT:

XREF= ,X COORDINATE (0 ASSLYED)

YREF= ,Y COORDINATE (0 ASSUMED)

ZREF= ,Z COORDINATE (0 ASSUMED)

Maximum of 60 characters enclosed within apostrophes for the title.

17



PAGE

NAMELIST

TETRA TYPE C-2

MODAL SUBSYSTEM INPUT FOR VERTICAL AND
HORIZONTAL PLANE SUBSYSTEMS (CONTINUED)

ENTER THE COORDINATES OF THE TETRA POINTS. MAXIMUM OF 10
POINTS FOR SUBSYSTEMS 1,2,4,AND 5. MAXIMUM OF 20 POINTS FOR
SUBSYSTEMS 7 AND 8. Y and 2 COORDINATES NORMALLY O.
n=NUMBER OF POINTS IX THE SUBSYSTEM.

TETRA | COORDINATES (INCHES) WITH RESPECT 10
POINT SUBSYSTEM REFERENCE POINT

NUMBER X | Y | Z
PIS=
1 ’ > s ’
:!.2 s ’ ’ ’
123 s s ’ ]
. .
=}
=z . .
2l I .
=
L) I .
Qo
=¥ Y .
,<.I- .
Ol - .
Q
w3 e .
n ’ ’ s s
ENTER THE VALUES BELOW FOR EACH VODE. MAXIMUM OF
30 MODES.
N=NUMBER OF SUBSYSTEM MODES.
MODE TYPE
FREQUENCY | POTENTIAL Q-FACTOR 0=FLEXIBLE
(RPM) ENERGY 1=RIGID BODY
XMODES =
il ’ ’ ’ ’
%2 ’ s ’ ’
23 ] 9 ] [
Lﬂ. .
Al .
Q
= | .
. .
<
Dl .
Q
-} .
N > ) ’ ’
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L5

TETRA

MODAL SUBSYSTEM INPUT FOR VERTICAL AND
HORIZONTAL PLANE SUBSYSTEMS (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW.
n=NUMBER OF POINTS IN THE SUBSYSTEM.
N=NUMBER OF SUBSYSTEM MODES.

TRANSLATION T | SLOPE 6 | SHEAR V | MOMENT M

LOCAL MODE 1

LOCAL POINT NUMBER

=]

LOCAL MODE 2
LOCAL POINT NUMBER

(R

LOCAL MODE N
LOCAL POINT NUMBER

INCHES RADIANS POUNDS IN-LB

VH(1,1,1)=

9 L] ?

’ ) ’
VH(1,1,2)=

’ s ’

s ’ s

9 L] )

] ’ b}
VH(1,1,N)=

19
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2.3.3.2 Rigid Body Subsystems (Type C-4 through C-6)

Input sheets C-4 through C-6 apply for the rigid body subsystems, that is,
subsystem 3 (rotor 1 rigid body), subsystem 6 (rotor 2 rigid body), and
subsystem 9 (case rigid body). The first input variables for the rigid body
subsystems are TITLE, ISUB, XREF, YREF, ZREF, and PTS. These input variables
were discussed in section 2.3.3. ,

Next, input variables XCG, YCG, and ZCG are used to input the coordinates of the
subsystem center of gravity with respect to the subsystem reference point (0 is
the assumed value for these quantities if not input).

In addition, the physical weight properties (WX, WY, WZ, WMIX, WMIY, and WMIZ)
should be input, but only for those directions for which rigid body motion is to
be considered. Generalized coordinates are assigned for each direction for
which the physical weight property is non-zero, but are not assigned if the
physical weight property was set to zero or omitted. Since the &, direction is
always neglected for subsystems 3 and 6, WMIX should be set to zero or omitted
for subsystems 3 and 6. At least one of the physical weight properties must be
non-zero.

Note that there are two ways of accounting for the rigid body modes, that is,
by entering the "soft spring" rigid body modes with the vertical and horizontal
plane subsystem input (setting the mode type code to 1) (input sheets C-1
through C-3), or entering the rigid body modes with the rigid body subsystem
input (input sheets C-4 through C-6). The user is cautioned not to enter these
modes both places to avoid doubling the effect of these modes. Both ways of
modeling the rigid body motion give equivalent results, as confirmed by test
cases. However, it has been found that TETRA runs faster (and thus saves money)
if the rigid body modes are included in the vertical and horizontal plane
subsystems rather than the rigid body subsystems. Thus, it is recommended that
the user use the vertical and horizontal plane subsystems in Tieu of the
rigid body subsystems for the rigid body modes. An exception to this guideline
is if the user needs to account for rigid body motion in the X (axial) or 9x
(torsional) direction, in which case the rigid body subsystem would be needed
éince the vertical and horizontal plane subsystems do not consider these
irections.

20



PAGE OF
TETRA NAMELIST
TYPE C-4

MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS

THIS INPUT SHEET APPLIES FOR MODAL SUBSYSTEM 3 (ROTOR 1 RIGID BODY), :ODAL
SUBSYSTEM 6 (ROTOR 2 RIGID BODY), AND MODAL SUBSYSTEM 9 (CASE RIGID BODY).

Z (VERTICAL DIRECTIOXN)
GLOBAL COORDINATE

z SYSTEM
Xi Y
SUBSYSTEM
_~-" X  REFERENCE 8 YO(H?RI
POINT 0,0,0) ZONTAL
- GLOBAL O DIRECTION)
i ORIGIN
0 X (AXIAL
MODAL SUBSYSTEM DIRECTION)

NOTE: MOTION IN THE gX DIRECTION IS NOT CONSIDERED FOR THE ROTOR SUBSYSTENMS
(3 AND 6). DMOTION IN THIS DIRECTION CAN BE CONSIDERED FOR THE CASE SUBSYSTEM

(9), HOWEVER,

&

$

$LIST2

TITLE= "' ,
1SUB= , SUBSYSTEM NUMBER (3,6, OR 9)

ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT:

XREF= , X COORDINATE (O ASSUMED)

YREF= , Y COCRDINATE (O ASSUMED)

ZREF= , 2 COORDINATE (O ASSUMED)

Maximum of 60 characters enclosed within apostrophes for the title.

21



PAGE OF

TETRA NAMELIST
TYPE C-5

MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS (CONTINUED)

—

ENTER COORDINATES OF TETRA POINTS, MAXIMUM OF 10 POINTS FOR
SUBSYSTEMS 3 AND 6 AND MAXIMUM OF 20 POINTS FOR SUBSYSTEM 9.
Y AND Z COORDINATES NORMALLY O.
n= NUMBER OF SUBSYSTEM POINTS.

TETRA | COORDINATES (INCHES) WITH RESPECT
POINT | TO SUBSYSTEM REFERENCE POINT

LOCAL POINT NUMBER

W N

NUMBER X | Y | Z
PTS =
___J — J -
- - > .
-J — J
L] _ 9 9 -7 3y

ENTER THE SUBSYSTEM CENTER OF GRAVITY COORDINATES (INCHES) WITH
RESPECT TO SUBSYSTEM REFERENCE POINT:

X COORDINATE (O ASSUMED)

Y COORDINATE (0 ASSUMED)

Z COORDINATE (0 ASSUMED)

XCG= y
YOG= y
ZCG= y

22



PHYSICAL
WEIGHT

PROPERTY

DIRECTION

p| @
NS -<]><

PAGE oF
TETRA NAMELIST
TYPE C-6

MODAL SUBSYSTEM INPUT FOR RIGID BODY SUBSYSTEMS (CONTINUED)

ENTER THE SUBSYSTEM PHYSICAL WEIGHT PROPERTIES FOR EACH OF THE SIX
DIRECTIONS. IF MOTION IN A PARTICULAR DIRECTION IS TO BE NEGLECTED,
ENTER ZERO FOR THE PHYSICAL WEIGHT PROPERTY IN THAT DIRECTION.
(SINCE THE 8X DIRECTION IS ALWAYS NEGLECTED FOR SUBSYSTEMS 3 AND 6,

WMIX SHOULD ALWAYS BE SET TO ZERO OR OMITTED FOR_SUBSYSTEMS 3 AND €).
@ LEAST ONE OF THE PHYSICAL WEIGHTS MUST BE NON-ZERO.

WEIGHT, POUNDS (0 ASSUMED)

WEIGHT, POUNDS (O ASSUMED)

WEIGHT, POUNDS (0 ASSUMED)

POLAR MOMENT OF INERTIA, LB-IN2 (0 ASSUMED)
MOMENT OF INERTIA ABOUT Y AXIS, LB-IN2 (0 ASSUMED)
MOMENT OF INERTIA ABOUT Z AXIS, LB-IN2 (0 ASSUMED)

W= y
WY= y
WZ= y
WMIX = y
WMIY= y
WMIZ= y

23



2.3.3.3 Case Torsional Subsystem (Type C-7 through C-9)

Input sheets C-7 through C-9 are used for the case torsional subsystem, which is
subsystem 10. The first input variables for this subsystem are TITLE, ISUB,
XREF, YREF, ZREF, and PTS. These input variables were discussed in section
2.3.3. Next comes input variable XMODES, which was discussed in section
2.3.3.1.

The final input variable for the torsional subsystem is variable TOR, which is
used to enter the mode shapes (twist and moment). Mode shapes must be entered
for every mode that was included in the XMODES input. There must be at least

one mode. The current upper limit for the case subsystems is 30 modes.

24



TETRA

MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10
(CASE TORSIONAL SUBSYSTEM)

PAGE OF
NAMELIST
TYPE C-7

Z (VERTICAL DIRECTiON)

A GLOBAL COORDINATE
z . SYSTEM
z
LA
Y
X 4[:138'{5'[‘22}1 -
REFERENCE -
POINT (¢,0,0) N 5 (HORIZONTAL
By GLOBAL Y DIRECTION)
ORIGIN
SUBSYSTEM
; X (AXIAL DIRECTION)

$
SLIST2
TITLE=" '
ISUB=10,
ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT:
XREF= ,X COORDINATE (O ASSUMED)
YREF= ,Y COORDINATE (O ASSUMED)
ZREF= ,Z COORDINATE (0 ASSUMED)

Maximum of 60 characters enclosed within apostrophes for the title.
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PAGE OF

NAMELIST
TETRA TYPE C-8

MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10
(CASE TORSIONAL SUBSYSTEM) (CONTINUED)

ENTER THE COORDINATES OF THE TETRA POINTS. MAXIMUM OF 20 POINTS.
X AND Y COORDINATES NORMALLY O
n=NUMBER OF POINTS IN THE SUBSYSTEM

TETRA
POINT

COORDINATES (INCHES) WITH RESPECT

NUMBER

TO SUBSYSTEM REFERENCE POINT
x| Y | z

\%

PIS =

w N

LOCAL POINT NUMBER

n ’ ’ ’ )
ENTER THE VALUES BELOW FOR EACH MODE. MAXIMUM OF 30 MODES.
N=NUMBER OF SUBSYSTEM MODES.

FREQUENCY POTENTIAL MODE TYPE
(RPM) ENERGY Q-FACTOR 0=FLEXIBLE
1=RIGID BODY
XMODES=
E}: 1 s D) s s
8|2 : : : ,
2: 3 ’ ) > s
20|
E; L] L]
é! . .
8 . .
4 |N ’ s ’ ’
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PAGE OF

NAMELIST
TYPE C-9

TETRA

MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 10
(CASE TORSIONAL SUBSYSTEM) (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW.
n=NUMBER OF POINTS IN THE SUBSYSTEM.
N=NUMBER OF SUBSYSTEM MODES.

TWIST 6 | MOMENT
RADIANS IN-LB

Y%zR(l,l,l)=

g1 , ,

.-ch ? ’

823 i ) s

i ! . .

= |Z

.JH .

2|8 .

5

n > ’

TOR(1,1,2)=

gl , ,

g12 ’ ,

213 , .

NP‘

=2 .

g2 .

wdied | » .

28 |- .
TOR(1,1,N)=

11 ’ s
: 2 1] ’

W

LOCAL POINT NUMBER

LOCAL MODE N
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2.3.3.4 Pylon Subsystem (Type C-10 through C-12)

Input sheets C-10 through C-12 are used for the pylon subsystem, which is
subsystem 11. The first input variables for this subsystem are TITLE, ISUB,
XREF, YREF, ZREF, and PTS. These input variables were discussed in section
2.3.3. Next comes input variable XMODES, which was discussed in section

2.3.3.1.

The final input variable for the pylon subsystem is variable PYL, which is used
to enter the mode shapes (translation in the X, Y, and Z directions). Mode
shapes must be entered for every mode that was included in the XMODES input.
There must be at least one mode. The current upper 1imit for the pylon

subsystem is 30 modes.
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TETRA

MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11

PYLON SUBSYSTEM

Z
Ty
Xi Y
_- SUBSYSTEM
- REFERENCE
POINT

Tx
MODAL SUBSYSTEM

PAGE ___ OF
NAMELIST
TYPE C-10

Z (VERTICAL DIRECTIOX)
AGLOBAL COORDINATE

SYSTEM
o= Y (HORIZONTAL
{0,0,0) DIRECTION)
GLOBAL
ORIGIN

X (AXIAL DIRECTION, POSITIVE FORWARD)

&

$

$LIST2

TITLE= '

ISUB=11,

ENTER THE COORDINATES (INCHES) OF THE SUBSYSTEM REFERENCE POINT:
XREF= , X COORDINATE (O ASSUMED)

YREF= Y COORDINATE (O ASSUMED)

ZREF= . Z COORDINATE (O ASSUMED)

Maximum of 60 characters enclosed within apostrophes for the title.
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MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11

TETRA

(PYLON SUBSYSTEM) (CONTINUED)

PAGE OF

NAMELIST
TYPE C-11

ENTER THE COORDINATES OF THE TETRA POINTS, MAXIMUM OF 10 POINTS.
n=NUMBER OF POINTS IN THE SUBSYSTEM

LOCAL POINT NUMBER

W=

TETRA COORDINATES (INCHES) WITH RESPECT
POINT TO SUBSYSTEM REFERENCE POINT
NUMBER X Y Z
) ) — )
— ) ) )
0 ) ) )
) 2 -2 )

ENTER THE VALUES BELOW FOR EACH MODE. MAXIMUM OF 30 MODES.

N=NUMBER OF SUBSYSTEM MODES.

LOCAL MODE NUMBER

FREQUENCY | POTENTIAL MODE TYPE
(RPM) ENERGY Q-FACTOR | _PLEXIBLE
1=RIGID BODY
XMODES =
— . -J ]
— ) I _y
9 N ] — 9
9 2 > __y

e



PAGE OF

NAMELIST
TYPE C-12

TETRA

MODAL SUBSYSTEM INPUT FOR SUBSYSTEM 11
PYLON SUBSYSTEM (CONTINUED)

ENTER THE REQUIRED MODE SHAPES BELOW,
n= NUMBER OF POINTS IN THE SUBSYSTEM.
N= NUMBER OF SUBSYSTEM MODES.

TRANSLATION | TRANSLATION | TRANSLATION

LOCAL MODE 1

LOCAL POINT NUMBER

LOCAL MODE 2
LOCAL POINT NUMBER

LOCAL MODE N

LOCAL POINT NUMBER

T.

T.

T

X Y A
INCHES INCHES INCHES

PYL(1,1,1)=

) ) )

’ -~ V]

. .J )

] J )
PYL(1,1,2)=

. J 3 S

J - -

o J —

—? ) =)
PYL(1,1,N)=

2 - 5

K 2D 2

2 5 .

) s s
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2.3.3.5 Flexible Bladed Disk Subsystems (Type C-13 through C-16)

Input sheets C-13 through C-16 are used for the flexible bladed disk subsystems,
that is, subsystem 12 (flexible bladed disk number 1) and subsystem 13 (flexible
bladed disk number 2). For more details pertaining to the flexible bladed
disks, see reference 2.

A TETRA run can have 0, 1, or 2 flexible bladed disks. If two flexible bladed
disks are present, they must be located on the same rotor. If the fliexible
bladed disks are located on rotor 1, then the rigid body modes for rotor 1 must
be included in subsystems 1 and 2, and subsystem 3 must be omitted. If the
flexible bladed disks are on rotor 2, then the rigid body modes for rotor 2 must
be included in subsystems 4 and 5, and subsystem 6 must be omitted. Both the
rotor vertical and horizontal plane subsystems should be included for the rotor
which includes the flexible bladed disk(s) to account for coupling between the
generalized coordinates. The physical weight and rigid moment of inertia
properties of the flexible bladed disk(s) must be included in the applicable
rotor vertical and horizontal plane subsystems. To account for gyroscopic
effects, the polar moment of inertia of the flexible bladed disk must be

entered on input sheet N at the flexible bladed disk center of gravity

point. Rotor speed (input sheets J-1 and J-2) must be included for the rotor on
which the flexible bladed disk(s) are located.

The first input variables are TITLE and ISUB. These input variables were
discussed in section 2.3.3. The next input variable is ICG, the TETRA point
number for the center of gravity of the flexible bladed disk. This point must
be: included in the applicable rotor vertical and horizontal plane input.

Next, several flexible bladed disk properties are input, namely WTF (one
diameter modal weight), QFAC (the modal Q-factor), WF (static frequency), XMU
(modal tangential shear coefficient), SV (modal moment coefficient), and BETA
(rpm-beta factor table). If damping is not desired, the modal Q-factor QFAC
should be set to O or omitted, which is a signal to the program to neglect
damping. The rpm-beta factor table must include at least 2 and a maximum of 10
lines, with the table entries in order of increasing rpm.

Following this comes the input for the local points on the flexible bladed disk.
This includes input variables FBDPTS (the radius and polar angle for each local
point), FBDMS (the static mode shapes, that is, tangential translation and axial
translation at the local points), and FBDS (the three modal stress components at
the local points). Displacements and stresses are output for each of the local
points. There may be zero local points if the user is not interested in
flexible bladed disk displacements and stresses. The maximum number of Tocal
points permitted is 200 for each flexible bladed disk.
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ORIGINAL PKGEB Page of
OF POOR QUALITY NAMELTST
Type C-13

MODAL SUBSYSTEM INPUT FOR FLEXIBLE BLADED DISK SUBSYSTEMS

Input sheets C-13 through C-16 apply for Subsystem 12 (Flexible Bladed
Disk Number 1) and Subsystem 13 (Flexible Bladed Disk Number 2).

If both FBD Number 1 and FBD Number 2 are present, they must be located

on the same rotor. If the FBD(s) are on Rotor 1, thenm the rigid body
modes for Rotor 1 must be included in modal Subsystems 1 and 2, and

modal Subsystem 3 must be omitted. If the FBD(s) lré on Rotor 2, then the
rigid body modes for Rotor 2 must be included in Subsystems 4 and 5, and
Subsystem 6 must be omitted. Both the rotor vertical plane and horizontal
plane subsystems should be included for the rotor which includes the
FBD(s) to account for coupling between the generalized coordinates. The
physical weight and rigid moment of inertia properties of the FBD(s) must
be included in the applicable rotor vertical and horizontal plane sub-
systems. Rotor speed input (Input Sheets J-1 and J-2) must be included
for the rotor on which the FBD(s) are located.

¥/

$END
$LIST2

TITLE=' ',
1SUB= »SUBSYSTEM NUMBER (12 or 13)
ICG= »TETRA Point number for the FBD center of gravity (This

point must be included in the applicable rotor vertical

and horizontal plane subsystem input)

Maximum of 60 characters enclosed within apostrophes for the title.
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NAMELIST
Type C-14

MODAL SUBSYSTEM INPUT FOR FLEXIBLE BLADED DISK SUBSYSTEMS

/

WIF= , one-~diameter modal weight WTg¢ (1b)

QFAC= , modal Q-factor (omit or set to 0 if no damping
desired)

WF= , static frequency wg (hertz)

XMU= , modal tangential shear coefficient, M, (1b)

SV= , modal moment coefficient, S, (in-1b)
Note: To account for gyroscopic effects for the FBD, the polar moment of
inertia of the FBD must be input on Sheet N at the FBD C.G. point.

Input the following table for beta factors. Include at least 2 and a

maximum of 10 lines. Entries must be in order of increasing rpm.

RPM FACTOR

¥/

BETA=
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NAMELIST
Type C-15

MODAL SUBSYSTEM INPUT FOR FLEXIBLE BLADED DISK SUBSYSTEMS (Continued)

Coordinste

Systen Fixed

to Rotor

(Forward lLooking Aft)

Z (Vertical Directiom)

{Local Point cn FRD)

Y'
8 (Angular Displacement of Rotor)
Y (Rorisontal Direction)

Pixed Global Coordinate Systas

Enter the r and & coordinates for each of the subsystem points other than the

center of gravity point.

Maximum of 200 points for subsystem 12 and 200

points for subsystem 13 other than the center of gravity points. u = number

of subsystem points other than the center of gravity point.

L1 -

Polar
Radius Angle
r £
inches degrees
FBDPTIS=

—
.

Local Point Number

r>0
0* ¢ ¢ ¢ 360°
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NAMELIST
Type C-16

MODAL SUBSYSTEM INPUT FOR FLEXIBLE BLADED DISK SUBSYSTEMS (Concluded)

For each of the subsystem points other than the C.G. point enter the

static (zero speed) mode shapes (assumed to be 0 if not entered):

FBD
Tangential

u (inches)

zrunnlation

FBD
Axial
Translation

v (inches)

4

FBDMS =

W N

Local Point Number

For each of the subsystem points other than the C.G. point enter the modal

stress components (assumed to be 0 if not entered):

9]
psi

92
psi

e3
psi

V

FBDS =
- 1 14 L4 »
é 2 » L L
z’ 3 ? 9 ’
: ¢ ? L] 9’
oo ||
a ? 9 b
’-.‘ . 9 9 b4
o
,3 . ? b ]
. ' » ’
n ] ? L]
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2.3.4. Physical Connecting Element Input (Type D-1 through H-3)

TETRA 2 has capability for 6 types of physical connecting elements. These types
are the general spring-damper element (type 1), the space Tink-damper element
(type 2), the rub element (type 3), the engine support-links element (type 4),
the uncoupled point spring-damper element (type 5), and the squeeze film damper
element (type 6). All of these types may be used for either transient or steady
state analysis runs with the exception of the squeeze film damper element, which
may be used only for transient analysis runs.

A new feature added to TETRA 2 is structural damping capability, which applies
for the linear (type 1, 2, 4, and 5) physical connecting elements. This feature
can be used either for transient or steady state analyses. As one can see from
the input sheets, the input variables QELEM (q-factor) and QFREQ (selected
frequency) may be used for any of the linear physical connecting elements. If
both QELEM and QFREQ are entered, then damping is calculated based on the
entered g-factor and entered selected frequency. This type of damping is
non-structural, and was present in the earlier versions of TETRA. However, if
QELEM is entered but not QFREQ, then damping is based on the entered Q-factor
and either the independent rotor speed or the steady state forcing frequency, as
determined by input variable ISF on the type A input sheet (see the discussion
of the type A input sheet). This type of damping, which varies as the
independent rotor speed or the steady state forcing frequency changes, is
structural damping, and was not present in the earlier versions of TETRA.

37



2.3.4.1 General Spring-Damper Element (Type D-1 and D-2)

This element is associated with two physical points located at arbitrary
locations in global space. Each of these points is assigned six degrees of
freedom, three translational displacements (or velocities), and three rotational
displacements (or velocities).

A full complement of stiffness and damping coefficients can be input to allow
the modeling of fully coupled load paths. The units of the stiffness matrix
coefficients are: 1b/in, 1b/rad, in-1b/in, and in-1b/rad. The units of the
damping matrix coefficients are 1b-sec/in, 1b-sec/rad, in-1b-sec/in, and
in-1b-sec/rad.

Damping, if present, can be specified directly via damping matrix definition
(non-structural damping), may be calculated from the input g-factor and selected

frequency (non-structural damping), or may be calculated based on the input

q-factor and either the independent rotor speed or the steady state forcing

frequency as determined by input variable ISF on the type A input sheet

éstructura] damping). See section 2.3.4 for further discussion of structural
amping.
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Page _  of

TETRA NAMELIST
Type D-2

TYPE 1 PHYSICAL CONNECTING ELEMENT
(GENERAL SPRING-DAMPER ELEMENT) (Cont inued)

‘@;7 1=damping

IDAMP= O=no damping

(0 assumed)

If IDAMP=1, complete the input for one of the following
two options:

Option 1: For damping based on Q-factor and selected
frequency, enter the following (if QELEM is entered
but not QFREQ, the frequency defined by the ISF

QELEM-= q-factor variable on type A input sheet is used).

frequency(hertz)
QFREQ= s

Option 2: For damping based on damping matrix definition,
enter the following:

DAMPING MATRIX DEFINITION

I-END J-END i
GLOBAL DIRECTION VELOCITY GLOBAL DIRECTION VELOCITY
1 2 3 4 5 6 1 2 3 4 5
A Qy Y 0, X 0, Z Gy Y 6, X Qx

Global Dir.Forces| DAMP=

1 F [} ’ ’ ’ s ’ ’ ’ s ’ ’

2 Fz ’ ’ ’ ’ ’ ’ [} ’ ’ ’ ’ ’
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2.3.4.2 Space Link-Damper Element (Type E)

This element is used to model load paths which have no local moment capability.
The load paths are associated with two physical points located at arbitrary
locations in global space. Each of these points is assigned three translational
degrees of freedom. The user inputs the cross sectional area and Young’s
modulus, and TETRA 2 uses this information along with the coordinates of the two
connecting points to calculate the stiffness matrix.

Damping, if present, can be specified by the translational damping coefficient
(non-structural damping), by the input q-factor and selected frequency
(non-structural damping), and by the input q-factor and either the independent
rotor speed or the steady state forcing frequency as determined by variable ISF
on the type A input sheet (structural damping). See section 2.3.4 for more
discussion about structural damping.

41



Page __ of

NAMELIST
TETRA Type E
TYPE 2 PHYSICAL CONNECTING ELEMENT
(SPACE LINK-DAMPER ELEMENT)
Z (vertical /OJ

:; direction)
$ 7
$LIST3 q/////// Space Link (Truss)
ITYPE=2,

element number I
ILEM= R Y (horizontal

I-end J-end direction)
point number point number

JT= R , X (axial direction, positive

Area(inz) forward)
TAREA= s

Young's Modulus (psi)

TYOUNG= ’

1=damping

0=no damping
IDAMP= , (0 assumed)

If IDAMP=1, complete the input for one of the following two options:

Option 1: For damping based on Q-factor and selected frequency, enter the
followin ?1f QELEM is entered but not QFREQ, the frequency defined
by the I%F variable on type A input sheet is used).

Q-factor

QELEM=__

frequency (hertz)
QFREQ= s

Option 2: For damping based on the translational damping coefficient c along
the axis of the link element, enter the following:

C (1b-sec/in)
TDRATE= s
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2.3.4.3 Rub ETement (Type F)

The rub element allows the mathematical modeling of the nonlinear tip rub, which
includes dead band displacement (input variable DBAND) and a cubic nonlinear
factor (input variable AK). The cubic nonlinear factor is a new feature that
has been added to TETRA 2. This element can be used to model rotor to case rubs
as well as rotor to rotor rubs. In the former case, the I end must be on the
rotor and the J end on the case. In the latter case, the I end must be on the
inner rotor and the J end on the outer rotor.
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TETRA Page of

NAMELIST
Type F

TYPE 3 PHYSICAL CONNECTING ELEMENT (RUB_ELEMENT)
J

eg (dead band)

oS

I

€
Keff = SK(l—T%T) [1+AK( | a]-gq) 2] where |A| = relative deflection between

line of centers

$

$LIST3

ITYPE=3,

ILEM= , element number

I end J end
point number point number
\JT= ’ ]

Note: If rotor-case rub, the I end must be on the rotor and the J end on the
case. If rotor-rotor rub, the I end must be on the inner rotor and the J
end on the outer rotor.

DBAND= , radial dead band ¢, (mils) between rotor and case (if
rotor-case rub) or between inner rotor and outer rotor (if
rotor-rotor rub) (0 assumed)

SK= , linear factor (1b/in) for radial spring constant Kqff (becomes
active on closure) (0 assumed)

AK= , nonlinear factor (in'z) for radial spring constant Kqgg (becomes
active on closure) (0 assumed)

CC= , damping coefficient C (1b-sec/in) (becomes active on closure)
(0 assumed)
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2.3.4.4 Engine Support-Links Element (Type G-1 through G-3)

The engine support element is a multipoint, multidirection variable geometry
element that provides the capability to model the complex load paths between the
engine case and the pylon or ground and thus allows for the direct modeling of
actual engine mount structures. In addition, this element couples the flexible
and rigid body centerline modal subsystem that represents the engine case to the
support links that comprise the mounting system through the case flexibility.
The case flexibility is described by the case distortion flexibility rates SKV,
SKH, and SKA for the vertical, horizontal, and axial directions respectively.

The flexibility rates are the reciprocals of the case spring rates that
represent local distortion of the engine case under mount reaction loads.
Multipliers, defined by the input variables AM, BM, CM, DM, EM, and FM, are used
to proportion these flexibility rates as per the diagram shown on the type G-2
input sheet. If it is desired to cut a load path at a case attach point J or K
in a given direction, then the applicable multiplier can be set equal to zero.
The Toad paths between the engine case and the pylon or grourid can be defined
with up to 8 Tink elements. In defining these load paths, no more than 4
distinct points can be specified on the pylon or ground side. This means that
more than a single link may be used to connect a case point to a pylon or ground
point. The coordinates for the points that correspond to the J and K points on
%hekcase are defined on the Type B input sheet if these points are connected to
inks.

The damping, if present, is defined by the input q-factor and input selected
frequency (non-structural damping), or is defined by the input g-factor

and either the independent rotor speed or the steady state forcing frequency as
determined by variable ISF on the type A input sheet (structural damping). For
more discussion on structural damping, see section 2.3.4. For more discussion
on the type 4 element, see reference 1.
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TETRA Page _ of __
NAMELIST
Type G-1

TYPE 4 PHYSICAL CONNECTING ELEMENT (ENGINE SUPPORT-LINKS ELEMENT)

Some example configurations that can be modeled with the type 4 element:

Case or Other side attached to

Link load path attach point subsystem or ground

(Forward looking aft)

N

$

$LIST3

ITYPE=4,

ILEM= , element number
I-end J-end K-end
point number point number point number
(engine centerline) (Case point) (Case point)

JT= s s s

Point I is attached to subsystem. Points J and K can connect to link load paths or
subsystems or ground.

SKV= , Vertical direction case distortion
flexibility rate (in/1b)

SKH= , Horizontal direction case distortion
flexibility rate (in/1b)

SKA= , Axial direction case distortion
flexibility rate (in/1b)
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TETRA

Page of
NAMELTST —

Type G-2

TYPE 4 PHYSICAL CONNECTING ELEMENTS (ENGINE SUPPORT-LINKS ELEMENT) (Continued)

Enter multipliers a, b, ¢, d, e, and f to proportion the spring rates:

\/

AM= .
BM= ’
CM= ,
DM= s
EM= .
FM= s
POINT
[ Rate | J | K
Kv a|c
KH bi{d
Ka e | f

Input one line for each link

omit this input.

a+tc=1.0
b+d=1.0
e+ f=1.0

This restraint must be followed
(zero values are permissible).

load path (maximum of 8).

If no Tink load paths,

Case side point
number (must
correspond to case
point J or K)

Other side point
number (no more
than 4 distinct
point numbers)

Area (inz)

Young's
Modulus
psi

TLP(1,1)=
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TETRA

Page of
NAMELTST
Type G-3

TYPE 4 PHYSICAL CONNECTING ELEMENT (ENGINE SUPPORT-LINKS ELEMENT) (Continued)

Enter the following only if you want damping based on Q-factor and selected

frequency. If no damping desired, omit this input. If QELEM is entered but not

QFREQ, the frequency defined by the ISF variable on type A input sheet is used.
Q-factor

QELEM= ,

frequency (hertz)
QFREQ= s
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2.3.4.5 Uncoupled Point Spring-Damper Element (Type H-1 and H-2)

This input allows the connection of two points with a set of uncoupled springs
and dampers. This element is typically used to connect the centerlines of
beam-1ike modal subsystems and provides load paths in three translational and
two rotational directions. Because of the lack of load path coupling, good

modeling practice infers that the points being connected by this element should
be coincident in space.

Damping, if present, can be specified by the coefficient input (non-structural
damping), by the input g-factor and selected frequency (non-structural damping),
or by the input g-factor and either the independent rotor speed or the steady
state forcing frequency as determined by variable ISF on the type A input sheet

(structural damping). For more discussion about structural damping, see section
2.3.4,
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Kx(lb/in)
Ky(lb/in)

K (1b/in)
z (in-lb)
9y rad

(in-lb)

8z rad

TYPE 5 PHYSICAL CONNECTING ELEMENT

TETRA

Page ___ of
NAMELIST
Type H-1

(UNCOUPLED POINT SPRING-DAMPER ELEMENT)

N2

$

SLIST3
ITYPE=5,
ILEM=

I-end

I and J points are
coincident.

i(vertical direction)

\~,"9 A

/>J—-£——y (horizontal

X

(axial direc-
tion, positive

forward)

o direction)
y

Z (vertical direction)

y (horizontal direction)

X . ,
(axial direction,
positive forward)

,element number

J-end

point number point number

JT=

’

9

Enter the following spring constants:

XS =
IS =
Z8 =
TYS =

————————— ¥

TZS =

, (0
, (0
(0
, (0

» (0

assumed)
assumed)
assumed)

assumed)

assumed)
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NAMELIST
Type H-2

TETRA

TYPE 5 PHYSICAL CONNECTING ELEMENT

UNCOUPLED POINT SPRING - DAMPER ELEMENT (CONTINUED)

V 1=damping
O=no damping
IDAMP= , (0 assumed)

If IDAMP=1, complete the input for one of the following two
options:

Option 1: For damping based on Q-factor and selected
frequency, enter the following (if QELEM is entered but not
QFdEQ, the frequency defined by the ISF variable on type A
Q-factor input sheet is used).
QELEM= ,
frequency (hertz)
QFREQ= s

Option 2: For damping based on damping coefficient definition,
enter the following:

, (0 assumed)

1b-sec
C, (—in—) XD

Cy (]b;iec) YD = , (0 assumed)
C, (19%235) D = , (0 assumed)
Cey(il.lr%s‘e-c) TYD= , (0 assumed)
Cez(iﬂ:%§ﬁ§924 TZD= , (0 assumed)
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2.3.4.6 Squeeze Film Damper Element (Type H-3)

This input provides the capability to model a squeeze film damper. Unlike the
other elements, which can be used for both transient and steady state analyses,
the squeeze film damper element can only be used for transient analysis runs.
If this input is present for a steady state analysis run, it is simply ignored.
For further details about the squeeze film damper element, see reference 3.
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TETRA Page _ of
NAMELIST
Type H-3

TYPE 6 PHYSICAL CONNECTING ELEMENT
(SQUEEZE FILM DAMPER ELEMENT)

Note: This input applies for transient analysis runs only. For steady state
analysis runs, the below input is ignored.

$
$LIST3
ITYPE=6,
ILEM= , element number
I end J end
point number point number
\JT= y ]

Note: The I end should correspond to the rotor or inner rotor. The J end
should correspond to the stator or outer rotor.

BD= , nominal damper annulus diameter (in)

BL= , nominal damper annulus length (in)

BC= , damper annulus radial clearance (in)

VISC= , damper lubricant viscosity (reyns)

PVAP= , film rupture (vaporization) pressure (psi)
PBl= , specified boundary pressure at port 1 (psi)
PB2= , specified boundary pressure at port 2 (psi)
TH1= , angular position of port 1 (degrees)

TH2= , angular position of port 2 (degrees)

NGRID= , number of finite difference grid points per damper arc
(should be odd)

NPORT= , number of lubricant ports (1 or 2)

NSOLN= , 1 = long bearing solution used
2 = short bearing solution used (parabolic)
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2.3.5. Restart, Time Inteqration, and Print/Plot Multiples (Type I-1)

First, the two lines $ and $LIST4 must be included regardless of whether the run
is for a transient or a steady state analysis. The $ is needed to signal to the
program the end of the previous namelist section, and $LIST4 signals the program
the beginning of the LIST4 namelist section.

The next few input variables on the type I-1 input sheet apply for transient
analysis runs only, and are ignored if the run is a steady state analysis run.
If the run is a restart run, the user must enter ISTART=1 and, if desired, enter
a restart time via the RTIME input variable. The restart time entered must
correspond to one of the times for which output was printed on the initial run.
If the run is a restart run and this variable is omitted, the program assumes
that the restart time is the final time for which output was printed on the
initial run (provided that the initial run did not terminate prematurely).
Restart capability applies for transient analysis runs only. For more details
about restart, see sections 2.1 and 3.1.

Next, for transient analysis runs the user must input the time step (DELTA input
variable). The time step should be made equal to about 1/40 of the smallest
period of oscillation. Making the time step much larger than this runs the

risk of numerical problems.

Transient analysis runs begin at time equal O (unless the run is a restart run,
in which case the run begins at the restart time), then time accumulates. The
final time (TFINAL input variable) must be inputted so that the program knows
when to stop. It is recommended that the user choose TFINAL such that the
program will do a small number of time steps until the user is sure that his or
her input is correct, so as to aveid possible costly garbage runs.

The next input variable is the transient analysis print multiple IPRMUL. This
variable governs the number of time steps for which output is printed and for
which data gets written onto the output restart file. If IPRMUL = 100, then one
out of every 100 time steps computed is printed out and written onto the restart
file. Similarly, the transient analysis plot multiple IPLMUL governs the number
of time steps that get written onto the output plot file. If IPLMUL = 10, then
one out of every 10 time steps is written onto the plot file.

Example: If DELTA=.0001 seconds, TFINAL=.5 seconds, IPRMUL=1000, and IPLMUL=20,
then computations are made for 5001 time steps (starting with time = 0 and
ending with time = .5). Output is printed for 6 time steps (0, .1, .2, .3, .4,
and .5). Output is written to the plot file for 251 time steps (again starting
at time = 0 and ending with time = .5).

It is recommended that the user pick IPRMUL such that no more than 10 time steps
are printed, in order to avoid being buried in printed output. Actually,
printout of about 3 time steps is normally sufficient. The printed output is
useful to verify that there are no problems, but it is the plots that are most
important. It is a good idea to check a couple of points on each plot produced
versus the printed output to be sure the plots are correct.
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The user should pick IPLMUL so that there are enough points (time steps) to
define a smooth curve when the data is plotted. Usually about 200 or 300 points
is enough to define a smooth curve. The user might need more points than this
for an orbit type plot, especially if TFINAL is large. However, only very
rarely would more than 1000 points be needed. The user is cautioned against
requesting too many points (time steps) to be written to the plot file. The
size of the output plot file is approximately proportional to the number of time
steps included, and requesting too many points can make for very large plot
files. Also, the more points on a plot file, the more time it takes for the
plotting program to do its stuff.

The final variable on the type I-1 input sheet is the steady state analysis
print multiple, JPRMUL. This variable only applies for steady state analysis
runs, and is ignored for transient analysis runs. This variable governs the
number of forcing frequencies for which output is printed for a steady state
analysis run, and is similar to the transient analysis print multiple IPRMUL.
If JPRMUL = 50, then output is printed for one out of every 50 of the forcing
frequencies for which a solution is computed.

Note that for steady state analysis runs, all forcing frequencies are written to
the plot file, so there is no steady state plot multiple analogous to the
transient analysis plot multiple IPLMUL. This is because, for a transient
analysis, one must find a solution for more time steps than are needed to
produce a smooth curve in order to avoid numerical difficulties. However, for
steady state runs there is no such restriction. For a steady state analysis,
there is no reason for solving for any more forcing frequencies than are needed
so that a smooth plot can later be obtained.
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TETRA Page __ of __
NAMELIST
Type I-1

Note: The following two lines must be included regardless of whether the run is
for a transient or a steady state analysis.

$
$LIST4

RESTART, TIME INTEGRATION, AND PRINT/PLOT MULTIPLES

Note: The below input applies for transient analysis runs only. For steady
state analysis runs, the below input is ignored (a steady state run
cannot be restarted).

O=new run
I=restart run
ISTART= , restart indicator (integer) (0 assumed)

If the run is a restart run (ISTART=1), enter (if desired) the restart time.
This time must correspond to one of the times for which output was printed on
the initial run. If the run is a restart run and this input variable is
omitted, the program assumes that the restart time is the final time for which
output was printed on the initial run (provided that the initial run did not
terminate prematurely).

RTIME= , restart time (seconds) for transient analysis runs
DELTA= , time step (seconds) for transient analysis runs
TFINAL= , final time (seconds) for transient analysis runs
IPRMUL= , print multiple for transient analysis runs (integer)
IPLMUL= , plot multiple for transient analysis runs (integer)

Note: The below input applies for steady state analysis runs only. For
transient analysis runs, the below input is ignored. (For steady
state analysis runs, all forcing frequencies are written to the plot
file, so there is no steady state plot multiple).

JPRMUL= , print multiple for steady state analysis runs (integer)

$ (Include if this is the last 1ine of the input file, otherwise omit).
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2.3.6 Steady State Nonlinear Analysis Input (Type I-2)

Input sheet I-2 applies only for a steady state analysis run in which at least
one nonlinear type 3 physical connecting element (rub element) is present. For
other runs, this input is ignored. Also, for each forcing frequency, the
program makes a quick check to see if a rub is present (that is, the rub element
dead band has been exceeded) for at least one of the rub elements. If no rub is
present for any of the rub elements, then iteration is not needed to find the
solution, and so this input is not used for that forcing frequency. See section
4.5.4 of volume 1 for further details.

First, the user may specify which subroutine from the IMSL library is to be used
to solve the nonlinear equations (by iteration). If the user enters IROUT = 1
or omits this variable, IMSL subroutine ZSCNT is used. If the user specifies
IROUT = 2 IMSL subroutine ZSPOW is used. ZSCNT is based on the secant method
for solving nonlinear simultaneous equations. ZSPOW is based on Powell’s hybrid
algorithm, which is a variation of Newton’s method. The authors’ experience has
been that both subroutines usually provide good results. Only for some cases
with very large deflections (one inch or higher) were convergence problems
encountered. For the few cases where convergence problems were encountered,
subroutine ZSCNT usually worked better than ZSPOW.

Next, input variables NSIG and ITMAX control how many iterations are performed.
Iteration ceases if two successive approximations to a given root agree in the
first NSIG digits. Assumed values are 3 for NSIG and 200 for ITMAX. Neither
input variable has much influence on program efficiency.

Finally, input variable GUESS can be used to input initial guesses for the rub
element relative displacements (the unknowns in the iterating equations). If
initial guesses are entered at all, they must be entered for all rub elements,
and must be entered in the order that the rub elements appear in the input file.
Of course, the initial guess input will only be used if the quick check that the
program makes determines that iteration is needed, as outlined in section 4.5.4
of volume 1. The initial guess input also only applies for the very first
solution (forced frequency). For a detailed discussion of how initial guesses
are arrived at for all forced frequencies, see section 4.5.5 of volume 1.

If not entered via input variable GUESS, the initial guesses for the rub element
relative displacements (if they are needed) will be those that would result
assuming that there are no rub element rub element forces for any of the rub
elements. This is usually the best place to start anyway, so the GUESS input
will usually not be needed. Sometimes, however, the user might decide to use
the GUESS input to enter starting values that he or she has found out about from
previous runs. More than one solution may be possible for a given forcing
frequency, and with knowledge gained from previous runs, the user might use the
GUESS input to steer the program to converge to the solution desired.
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NAMELIST
Type I-2

STEADY STATE NONLINEAR ANALYSIS INPUT

Note: The following input applies only for a steady state analysis in which at
least one nonlinear type 3 physical connecting element (rub element) is
present. Otherwise, the below input is ignored.

If desired, specify the subroutine to be used to solve the nonlinear equations.

IROUT= , 1
2

IMSL subroutine ZSCNT (assumed value)
IMSL subroutine ZSPOW

Enter the iteration stopping criteria below. Iteration stops (a root is
accepted) if either of the following criteria is satisfied.

NSIG= , A root is accepted if two successive approximations to a given root
agree in the first NSIG digits (3 assumed)

ITMAX= , Maximum number of iterations (200 assumed)

Enter, if desired, initial guesses for the rub element relative displacements
(the unknowns in the iterating equations). If initial guesses are entered at
all, they must be entered for all rub elements. Enter one line (four values)
for each rub element, in the same order that the rub elements appear in the
input file. If not entered, the initial guesses will be those that would result
assuming that there were no rub element forces for any of the rub elements.
These initial guesses apply to the first solution (forced frequency) only.

RELATIVE DISPLACEMENT COMPONENT (INCHES)

VERTICAL | HORIZONTAL | VERTICAL | HORIZONTAL
cos COS SIN SIN

GUESS=

v % W e e v e v e e
L " T "I
L I T "
L L T " T P

$ (Include if this is the last line of the input file, otherwise omit).

58



2.3.7 Rotor Speed and Rate Input (Type J-1 and J-2)

Input sheets J-1 and J-2 are used for the rotor speed and rate input. This
input is required if unbalance forces, gyroscopic forces, or nonstructural
damping which is tied to the independent rotor speed is present. If this is not
the case, the user can skip input sheets J-1 and J-2 altogether.

If rotor speed input is required, the user must specify which rotor is the
independent rotor by setting IROTI to 1 or 2. Rotor 1 corresponds to subsystems
1, 2, and 3 and rotor 2 corresponds to subsystems 4, 5, and 6. The

independent rotor is the rotor for which the BEGRPM, BEGTIM, and TRHIS input is
entered for a transient analysis run, or for which the BRPM, FRPM, and SRPM
input is entered for a steady state analysis run.

If rotor speed input is required and the run is a transient analysis run, the
beginning time BEGTIM, beginning rpm BEGRPM, and time/rate table TRHIS must then
be entered, which defines the speed and rate history for the independent rotor.
There must be at least one and no more than 10 speed segments in the time/rate
history table. However, if rotor speed input is required and the run is a
steady state analysis run, the beginning rpm BRPM, final rpm FRPM, and step rpm
SRPM must then be entered.

If rotor speed input is required and another rotor is also present, the other
rotor is referred to as the dependent rotor, because its speed is a function of
the independent rotor speed. For the dependent rotor, the user should enter the
coefficients A, B, C, and D relating the dependent rqtor sgeed Y (rpm) to that
of the independent rotor speed X (rpm), where Y = AX® + BX¢ + CX + D.
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NAMELIST
Type J-1

ROTOR SPEED AND RATE INPUT

Note: This input is required if unbalance forces, gyroscopic forces, or
nonstructural damping that is tied to the independent rotor speed is
present.

Enter the independent rotor number (rotor for which the following input defining
the speed applies). Permissible values are 0 (static case -unbalance forces,
gyroscopic forces, and nonstructural damping which is tied to the independent
rotor speed not considered), 1 (rotor corresponding to subsystems 1, 2, and 3),
and 2 (rotor corresponding to subsystems 4, 5, and 6). Must be integer.

N/

- IROTI= , (0 assumed)

Note: The remainder of this page applies for transient analysis runs only. For
steady state analyses, the below input is ignored.

If IROTI = 1 or IROTI = 2, enter the following:

BEGTIM= , beginning time for the first speed segment (applies to the
independent rotor)

BEGRPM= , beginning speed (rpm) for the first speed segment (applies to
the independent rotor)

If IROTI = 1 or IROTI = 2 enter the following table in chronological order
(applies to the independent rotor ) (maximum of 10 segments):

Ending Time Rate
(seconds) (rpm/sec)

TRHIS=
’ Segment
Segment
Segment
Segment
Segment
Segment
.Segment
Segment
Segment
Segment

D I T S P VI Y

=W OONOYO WA —

L R L I Y I )

0

$ (Include if this is the last 1ine of the input file, otherwise omit).
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TETRA Page _ of __
NAMELIST
Type J-2
ROTOR SPEED AND RATE INPUT (Continu
Note: The following input applies for steady state analysis runs only. For
transient analysis runs, the following input is ignored. Because (for
steady state analysis runs only) all unbalance points must lie on the
independent rotor, the exciting frequency will correspond to the
independent rotor speed if unbalance loads are present.
If IROTI = 1 or IROTI = 2, enter the following:
BRPM= , beginning rpm for the independent rotor
FRPM= , final rpm for the independent rotor

SRPM= , step rpm

Note: The following input applies both for transient analysis and steady state
analysis runs.

If IROTI = 1 or IROTI = 2 and a second rotor is present, input the following
coefficients relating the second (dependent) rotor speed Y (rpm) to the
independent rotor speed X (rpm), where Y=AX3 + BX» + CX + D:

A= » (0 assumed)

B= » (0 assumed)

C= » (0 assumed)

D= , (0 assumed)

$ (Include if this is the last line of the input file, otherwise omit).
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2.3.8 Applied Loads (Type K-1 through M-2)

2.3.8.1 \Unbalance Loads (Type K-1 and K-2)

Input sheets K-1 and K-2 are for unbalance load input. To have unbalance loads,
rotor speed input (type J-1 and J-2) is needed - otherwise, the unbalance load
input is ignored.

For transient analysis runs, the unbalance loads are entered via the UNBAL input
variable. For each transient analysis unbalance 1oad, four values must be
entered - the time of birth (when the unbalance load becomes active), the global
point number on the unbalanced rotor (the point must lie on rotor 1 or rotor 2),
the magnitude of the unbalance (gm-in), and the phase angle (degrees) (see the
figure on the type K-1 input sheet). For steady state analysis runs, on the
other hand, the unbalance loads are entered via the UBALSS input variable. Only
three values must be entered for each steady state unbalance load - the same
values as for a transient analysis except that the time of birth is omitted.
Whether the run is transient or steady state, there can be from 0 to a maximum
of 20 unbalance loads.

The unbalance load input is quite flexible. For transient analyses, the time of
birth can be the same for different birth events (time of birth does not apply
for steady state analyses). Also, for both transient and steady state runs the
same point can be referenced more than once if desired. If more than one
unbalance load is specified for the same point, the unbalance loads are added
together to get the total unbalance load. For example, the user could make a
transient analysis run where a nominal unbalance Toad is applied at the engine
fan location, then at a later time, after transient effects have died out,
introduce a much larger unbalance due to a fan blade loss.

For a transient analysis restart run (steady state runs do not have restart
capability), any unbalance loads that were present in the original run should be
left in for the restart run. (Otherwise, the unbalance loads would disappear
for the new run). Additional birth events that become active after the restart
time may be added to the UNBAL input for a restart run, however.
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Page of

NAMELTST
PA

TETPA Type K-1
APPLIED LOADS

UNBALANCE LOAD i i i

UNBALANCE LOADS 7 (vertical direction)

(Forward looking aft) 5} lﬂ(unbalance vector for

birth event i)

Coordinate system

9; (Phase angle for birth event i)
fixed to rotor ———— !

Y

@ (angular displacement of rotor)
;/L”r. Y {horizontal direction

Fixed global coordinate system

NOTE: To have unbalance loads, rotor speed input (type J-1 and J-2) is
required - otherwise, the unbalance load input is ignored.

NOTE: The following input applies for transient analysis runs only. For
steady state analysis runs, the following input is ignored.

If unbalance loads are desired, enter the following (maximum of 20 lines):

Time of Point number on Magnitude Phase Angle ¢
dbirth (seconds) | unbalanced rotor (gm-in) (degrees)
UNBAL =

1f ;estart run and the time of birth is less than the restart t?me. then the
unbalance load continues active for the restart run. T!me of birth can be
the same for different birth events. Also, the same point can be referenced

more than once if desired.

s (Include 1f this is the last line of the input file, otherwise omit).
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TETRA Page __ of
NAMELIST
Type K-2

APPLIED LOADS
UNBALANCE LOADS (Continued)

Note: The following applies for steady state analysis runs only. For transient
analysis runs, the following input is ignored. Note that the variable
name for steady state unbalance loads (UBALSS) is different than that for
transient unbalance loads (UNBAL). Also note that all unbalance points
must be located on the independent rotor (the independent rotor and its
speed are specified on input sheets J-1 and J-2). -

If unbalance loads are desired, enter the following (maximum of 20 lines):

Global Point

Number on

Unbalanced Phase

(Independent) | Magnitude | Angle ¢
Rotor gm-in degrees

N\

UBALSS=

R L I T S PR )
Y N W 9 e W W W e w
M M W e v W e W w e

$ (Include is this is the last 1ine of the input file, otherwise omit).
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2.3.8.2 P*cos(yt) and P*sin(wt) Loads (Type L-1)

The P*cos(wt) and P*sin(wt) load input applies for transient analysis runs only.
For steady state analysis runs, this input is ignored. If this type of input is
not desired, this input sheet can be skipped altogether. If these loads are
desired, the user must enter 5 values for each load via the CS input variable as
shown on input sheet L-1. As for the unbalance load input, the same point can
be referenced more than once, in which case the loads are added together to get
the total load. There can be from 0 to a maximum of 30 loads.

Definitions are as follows:
P = force amplitude, (1b or in-1b)
w = frequency (hertz)

t = time (seconds)
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APPLIED

P f
TETRA NAMELTET
Type L -1
CADS
Prcos (wt; and Prsin (wt) LOLDS
| Z (Vertical 6LOBAL
direction) DIRECTION
NUMBER DIRECTION
1 1
\.d’oz 2 ey
ex {: -+ Y (horizontal 2 ;Z
8y direction)
5 X
6 Ox
X (axial direction, positive forward)
The following applies for transient analysis runs only. For

NOTE:

steady state analysis runs, the following input is ignored.

If Pcos (.t) or P*sin (wt) loads are desired, enter the following
(maximum of 30 lines):

GLOBAL TYPE AMPLITUDE FREQUENCY GLOBAL
POINT (1=C0S P w DIRECTION
NUMBER 2=SIN) (1b or in-1b) (hertz) NUMBER
Cs=

s (Include if this is the last 1ine of the input file, otherwise omit).
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2.3.8.3 P*cos(wt+¢) Loads (Type L-2)

P*cos(wt+¢) loads apply for steady state analysis runs only. For transient
analysis runs, this input is ignored. If this type of loading is not desired,
the type L-2 input sheet can be skipped altogether. If this type of loading is
desired, 4 values are entered for each load via the COSSS input variable, as
shown on input sheet L-2. The same point may be referenced more than once, in
which case the loads are added together to get the total load. There can be
from 0 to a maximum of 30 loads.

Definitions are as follows:

P = force amplitude (1b or in-1b)
w = forcing frequency (hertz)

t = time (seconds)

¢ = phase angle (degrees)
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TETRA Page _ of
NAMELIST
Type L-2

APPLIED LOADS
P*cos(wt+s) LOADS

Note: The following input applies for steady state analysis runs only. For
transient analysis runs, the below input is ignored.

If P*cos(uwt+s) loads are desired, input the following (maximum of 30 lines):

Global Amplitude Phase Global

Point P Angle ¢ | Direction
Number | 1b or in-1b | degrees Number

COSSS=

W W W M W W W e v e
w W W M W e W W e ow
W M Y W W W v e e e
D . 2 T T R R S

If steady state analysis run and unbalance loads (input sheet K-2) are present
in addition to P*cos(wt+s) loads, the program will set the forcing frequency

for the P*cos(wt+s) loads equal to the speed of the unbalance (independent)
rotor, and the below input, if present, is overridden. If, however, P*cos(.t+2)
loads are present but not unbalance loads, you must enter the below input to
define the forcing frequency « for the P*cos(wt+¢) loads. A steady state
analysis will then be performed at each of the below frequencies for every rotor
speed defined on the type J-2 input sheet.

BW= , beginning forcing frequency (rpm)
FW= , final forcing frequency (rpm)
SW= , step foréing frequency (rpm)

$ (Include if this is the last line of the input file, otherwise omit).
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2.3.8.4 Time-Force History Loads (Type M-1 and M-2)

Input sheet M-1 and M-2 apply for transient analysis runs only. For steady
state analysis runs, this input is ignored. If time-force history loads are not
desired, input sheets M-1 and M-2 can be skipped altogether.

[f time-force history loads are desired, the user must specify the global point
number, global direction number, and table number for each time-force history
load via the NTF input variable on input sheet M-1 (values must be integers).
The table number must be a value between 1 and 10. There can be from 0 to a
maximum of 30 time-force history loads entered in the NTF array.

Then, for each table number referenced in the NTF array, the array table is
entered via TABLE(1,1,NT), where NT is the table number referenced in the NTF
array. Entries in each table must be in order of increasing time. If the first
time-force entry in the table is for a time other than zero, then the force is
assumed to be zero up to the time of the first table entry. If the last
time-force pair in the table is for a time less than the final time of the run,
then for times greater than that of the last table entry the force is assumed
constant and equal to the force for the last table entry. A table may have only
one time-force pair entry, in which case the force is zero till the entered time
and afterward equal to the entered force. There can be a maximum of 10 tables,
and a maximum of 10 time-force pairs in each table.
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APPLIED LOADS

TIME-FORCE HISTORY LOADS

Note:

]
2

Z (vertical direction)

8z
ex

ey

Y (horizontal
direction)

X (axial direction, positive forward)

Page _ of
NAMELIST
Type M-1

GLOBAL
DIRECTION
NUMBER DIRECTION

N WA ~
O
~

Sheets M-1 and M-2 are for transient analysis runs only. For steady
state analysis runs, this input is ignored.

If time-force history loads are desired, enter the following (values must be
integers) (maximum of 30 lines):

GLOBAL GLOBAL TABLE NUMBER
POINT DIRECTION NT (VALUE
NUMBER NUMBER BETWEEN 1 & 10)
NTF =
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TETRA Page _ of
NAMELIST
Type M-2

APPLIED LOADS
TIME-FORCE HISTORY LOADS (Continued)

For each time-force table, enter the following. Entries must be in order of
increasing time. Substitute the actual table number in place of the dimension
NT below. A maximum of 10 tables and 10 time-force pairs in each table is
permitted.

TIME FORCE
seconds 1b or in-1b

N

TABLE(1,1,NT)=

L N Y TV I VR

L I L L T SV SV A )

$ (Include if this is the Tast line of the input file, otherwise omit).
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2.3.9 Gyroscopic lLoads {Type N)

Input sheet N is for the gyroscopic load input.
transient and steady state analysis runs. For each gyroscgpic load, the point

number on the rotor and the polar moment of inertia (1b-in¢) is entered. There
can be a maximum of 30 gyroscopic loads. Since this input models the cross-axis
coupling forces associated with Coriolis acceleration, both the vertical and
horizontal subsystems must be included for the rotor(s).

This input applies for both
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TETRA Page of
NAMELIS
Type N

-

GYROSCOPIC LOADS

Note: To have gyroscopic loading, rotor speed input (type J-1 and J-2 input
sheets) must be included. Otherwise, the gyroscopic load input is
ignored.

Note: For gyroscopic loading, both the vertical and horizontal subsystems must
be included for the rotor(s).

If gyroscopic loads are desired, enter the following (maximum of 30 lines):

i POINT i POLAR MOMENT

| NUMBER | OF INERTIA I,
{ON ROTOR |  1b-in
GYRO=

R L " T VR PO VoY

D T T S P P P

$ (Include is this is the last Tine of the input file, otherwise omit).
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2.3.10 Data for Plot file (Type P-1 and P-2)

Input sheets P-1 and P-2 are used to control what data (if any) gets written to
the output plot file. These input sheets apply for both transient and steady
state analysis runs.

First comes input variable IPLOT. If no output plot file is wanted, the user
should set variable IPLOT to O and dispense with the rest of input sheets P-1
and P-2. If, however, the user sets IPLOT to 1 or omits this input variable,
then an output plot file will be produced, and the user should complete the rest
of input sheets P-1 and P-2.

The plot file size in many cases would be huge if all the data that conceivably
might be desired were written onto the plot file. For this reason, the NPD
(input sheet P-1) and NEPD (input sheet P-2) input variables were added. This
input allows the user to specify the data that he or she wants written to the
plot file. Be sure to include this input for all the data that you might want
to plot.

The NPD array allows the user to select the point and direction pairs for which
the coordinates, displacement magnitudes, velocity magnitudes, and modal force
magnitudes get written to the output plot file. For steady state analyses, the
displacement phase angles, velocity phase angles, and modal force phase angles
for these point and direction pairs are also written to the output plot file.
If the user doesn’t want to plot values for any point and direction pairs, then
the NPD array should be omitted. A maximum of 50 point and direction pairs may
be specified.

The NEPD array allows the user to select the physical connecting element number,
global point number, and global direction number trio for which the physical
connecting element force magnitudes are written to the output plot file. For
steady state analyses, the physical connecting element force phase angle for
these trios are also written to the output plot file. Again, if the user
doesn’t want to plot values for any element, point, and direction trios, he or
she should omit this array. A maximum of 50 element, point, and direction trios
may be specified.

In addition, certain other data is always automatically written to the output
plot file (provided that an output plot file is generated). This includes the
time (transient analysis only), forcing frequency (steady state analysis only),
independent and dependent rotor speed, independent and dependent rotor angular
displacement (transient analysis only), generalized displacement magnitudes

for the flexible bladed disk modes, phase angles for the flexible bladed disk
modes (steady state analysis only), data for the flexible bladed disk(s) (if any
were present in the TETRA run), and data for the rub elements (if any were
present in the TETRA run). For further details about the contents of the output
plot file, see section 3.2.
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TETRA Page of

NAMELTST
Type P-1
DATA_FOR PLOT FILE
Z (vertical direction) GLOBAL
DIRECTION
NUMBER DIRECTION
6z 1 z
, 2 8y
8y Y -— Y (horizontal 3 Y
6y direction) 4 87
5 X
6 8x

X (axial direction, positive forward)

N/

IPLOT= » 0 = no plot file
1 = output plot file produced (assumed value)

Enter the following (point,direction) pairs for which data is to be written to
the output plot file. For both transient and steady state analysis runs this
data_includes the coordinates, displacement magnitudes, velocity magnitudes, and
modal force magnitudes. For steady state analysis runs, this data also includes
the displacement phase angle, velocity phase angle, and modal force phase angle.
Values must be integers. Maximum of 50 lines.

GLOBAL GLOBAL
POINT DIRECTION
NUMBER NUMBER

NPD=

L I I "
DG L T T T R S Y

$ (Include is this is the last line of the input file, otherwise omit).
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TETRA Page _ of _
NAMELIST
Type P-2

DATA FOR PLOT FILE (Continued)

Enter the following (element,point,direction) trios (if any) for which data is
to be written to the output plot file. For both transient and steady state
analysis runs, the physical connecting element force magnitude is written to the
output plot file for these trios. For steady state analysis runs, the physical
connecting element force phase angle is also written to the output plot file for
these trios. Values must be integers. Maximum of 50 lines.

PHYSICAL
CONNECTING | GLOBAL GLOBAL
ELEMENT POINT | DIRECTION
NUMBER NUMBER NUMBER

N

NEPD=

L R . I I B V¥ S VY
R I R T TV S P VY
L I I . B T TV S P S )

$ (Include if this is the last line of the input file, otherwise omit).
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3.0 TETRA 2 QUTPUT

3.1 OQutput Restart File

If the run is for a transient analysis, an output restart file will be
generated. This file is written to file code 24, so for transient analysis runs
the user must have a line or two in his or her JCL (job control language) that
assigns a name to the output restart file and associates it with file code 24.
The output restart file thus produced may then subsequently be used as the input
restart file for a new transient analysis restart run.

For more information on the restart file, see section 2.1.
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3.2 OQUTPUT PLOT FILE

Usually the user requests a plot file to be written, so that a postprocessing
program can later be run to plot the results (plots are vital for interpreting
the results from this program). The input variable IPLOT on input sheet P-1
controls whether or not a plot file is produced (this default is to produce
one).

The plot file is an unformatted sequential file. This plot file is written to
file code 23. Therefore, if a plot file has been requested, the user must add a
1ine or two to his or her JCL (job control language) to assign a name to the
plot file and to associate the plot file with file code 23.

The plot file has the potential of being a very large file, depending on how
many time steps (for a transient analysis run) or how many forcing frequencies
(for a steady state analysis run) are written to it. One means by which the
size of the plot file is limited is that the user specifies (via input sheets
P-1 and P-2) what data is to be written to this file. For more details about
this, see the discussion of the type P-1 and P-2 input sheets.

For a transient analysis run, the user can also limit the size of the plot file
by controlling how many of the time steps analyzed are written to the plot file
via the input plot muitiple IPLMUL on the type I-1 input sheet. See the
discussion of the type I-1 input sheet for advice on what value to use for
IPLMUL. For a steady state analysis run, on the other hand, all of the forcing
frequencies analyzed are written to the plot file (provided, of course, that the
user requested a plot file). The reason that a plot multiple is provided for a
transient analysis only is that for a transient analysis the user must run more
time steps than needed for plotting to avoid numerical problems, whereas there
is no such requirement for a steady state analysis. In other words, for a
steady state analysis, there is no good reason for analyzing any more forcing
frequencies than needed for the plot file so that a smooth plot can be later
obtained.

The plot file contents may be divided into sections, of which there are three
types as follows. The first type of section is the plot file preface (see table
3-1), which comes first and contains information telling the plot program what
type of run (transient or steady state) and what information is present on the
plot file (which points, directions, forces, etc.). This section is present for
both transient and steady state analyses. This section occurs only once, and
every line is a record for this section.

The second section is for the transient analysis plot data (see table 3-2), and
is present only if the TETRA run that generated the plot file was a transient
analysis run. This section is repeated for each time step written to the plot
file. The whole section (that is, each time step) is a record.

Finally, the third section is for the steady state analysis plot data (see table

3-3), and is present only if the TETRA run that generated the plot file was a
steady state analysis run. This section is repeated for each forcing frequency
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that is written to the plot file. The whole section (that is, each forcing
frequency) is a record.

Definitions of the plot file variables contained in all three sections (arranged
alphabetically) are in table 3-4.

Note that the first two types of sections (the plot file preface and the
transient analysis plot data) are almost identical to what they were in the
original TETRA program (which could only perform transient analyses). The only
difference to the plot file preface is the addition of the variables NTYPE,
IFBDR, and TINT which are tacked onto the end of the first line of the plot file
preface. The only difference for the transient analysis plot file section is the
addition of the variables DVM and DHM (which are useful in making orbit type
plots). Thus, plot programs which were written for the original TETRA program
(which was for transient analyses only) will have to be modified only slightly
to work for transient analysis TETRA 2 runs, but will have to be modified much
more extensively if they are also to work for steady state analysis TETRA 2
runs.
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Table 3-1. Plot file preface

NP,NL1,NL2,NRE,NEL,NPLOTP,NTYPE,, IFBOR, TINT
IPPLOTY, IDPLOT},XPTy, YPTy,ZPT)

IPPLOTyp, IDPLOTyp, XPTyp, YPTNp> ZPTyp
LFBLy, NRFa01,,APED1

LFBD1yy 1,RFBDIN 1,AFBDIy |
LrBD2;, \Rtenz, Nedb2,

LFBD2y 2, RFBD2y 2,AFBD2
ILEWS], ?LEM31 \toia, -2

ILEM3\Re, ILEM3NRE > ILEM3NRE
ILEMl,IETl,ID Ry

ILEMyEL» IPThgL» IDIRNEL
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Table 3-2. Plot file data for a transient analysis run

TIME,RPMI,RPMD, THETAI, THETAD
PMAG1,(QMAG1, PMAG2,QMAG2
XMAGj , VMAG] , FMODM;

XMAGyp , VMAGyp , FMODMy
PSI1),UMAG1) | YMAG G1FBD1, S2FBD1{, S3FBD1

PSI1yy1,UMAGLyj 1,VMAGly 1,SIFBDIy; 1,S2FBD1y 1, S3FBDI
PSIZTE&MAGZI,VhAGZI,SIPbﬁzl,SZFBB%%,S3FBDZ¥L1 N

PSIéN 2,UMAG2y( 2, VMAG2y 2, S1FBD2y; 2, S2FBD2) 2, S3FBD2y| 2
RDq,CLy,Fy,DVM],DHM; .

RONRE » CLNRE » FNRE » DVMNRE » DHM
RONR £+ DVMNRE » DHMNRE

1

FMAéNEL
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Table 3-3. Plot file data for a steady state analysis run

WFF ,RPMI, RPMD

PMAG1, PPH1, QMAGI, QPH1
PMAG2, PPH2,, QMAG2 , QPH2

XMAG] , XPHASE ] , VMAGy , VPHASE | , FMODM1 , FMODPH

XMAGyp , XPHASEp , MAGyp , VPHASEyp , FMODMyp , FMODPHyp
UMAGP11 VMAGP1y,S1G1P1},SIG2P1},SIG3P1;

UMAGP1y 1, VMAGP1y 1,S1G1P1y| 1,SIG2P1y 1,SIG3P1y
UMAGQL, 6MAGQII,S&&IQII,SIG%611,5163Q&1

UMAGQ1y( 1, VMAGQ1y( 1,S161Q1yy1,5162Q1 1,S163Q1y
UMAGP21,VMAGP21,s&é1P21,5165L21,5163P51

UMAGP2y 2, VMAGP2y( 2, SIG1P2yy 2,S1G2P2y 2,S1G3P2y, 2
MAG21 GMAGQZI 5&51021 SIG%521,513305§

UMAéQZNL , VMAGQ2y 2,SIG1Q2N; 2,S1G2Q2y 2,SI1G3Q2N 2
RXI,RNI,EXI,CNI,F 1,FN1, DVMIi DVP1,DHM,DHPq :

RXN RE’RNNRE » CXNRE» CNNRE > FXNRE - FNNRE - DVMNRE » DVPNRE - DHMNRE » DHPNRE
FMAG FPHA

FMAGNEL » FPHASENEL
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Table 3-4 Plot file varijable definitions (alphabetical order)

VARIABLE DEFINITION

AFBD1; Axial coordinate for the i’th local point on flexible bladed disk
number 1. Applies for both transient and steady state analyses.

AFBD2; Axial coordinate for the i’th local point on flexible bladed disk
number 2. Applies for both transient and steady state analyses.

CL; Clearance (inches) for the i’th type 3 physical connecting element
(rub element). Applies for a transient analysis run only.

CN; Minimum clearance (inches) for the i’th type 3 physical connecting
element (rub element). Applies for a steady state analysis run only.

CX; Maximum clearance (inches) for the i’th type 3 physical connecting
element (rub element). Applies for a steady state analysis run only.

DHM; Magnitude (inches) of the difference between the horizontal direction

displacement at joint I minus that of joint J for the I’th rub
element. Applies for both transient and steady state analysis runs.

DHP; Phase angle (degrees) for the difference between the horizontal
direction displacement at joint I minus that of joint J for the i’th
rub element. Applies for steady state analysis runs only.

DVM; Magnitude (inches) of the difference between the vertical direction
displacement at joint I minus that of joint J for the i’th rub
element. Applies for both transient and steady state analysis runs.

DVP; Phase angle (degrees) for the difference between the vertical
direction displacement at joint I minus that of joint J for the i’th
rub element. Applies for steady state analysis runs only.

Fj Force magnitude (pounds) for the i-th type 3 physical connecting
element (rub element). Applies for a transient analysis run only.
FMAG Force magnitude (pounds) for the i’th (element,point,direction) trio.

Applies for both transient and steady state analysis runs.

FMODM; Modal force magnitude (1b or in-1b) for the i’th (point,direction)
pair. Applies for both transient and steady state analyses.

FMODPH; Modal force phase angle (degrees) for the i’th (point,direction)
pair. Applies for steady state analysis runs only.

FN; Minimum harmonically averaged force magnitude (pounds) for the i’th
type 3 physical connecting element. Applies for a steady state
analysis run only. :

FPHASE ; Phase angle (degrees) for the i’th (element,point,direction) trio.
Applies for steady state analysis runs only.

FX5 Maximum harmonically averaged force magnitude (pounds) for the i’th
type 3 physical connecting element. Applies for a steady state
analysis run only.

IDIR; Global direction number for the i’th (element,point,direction) trio
for which data is written to the plot file. Applies for both
transient and steady state analysis runs.

IDPLOT; Global direction number for the i’th (point,direction) pair for which
data is written to the plot file. Applies for both transient and
steady state analyses.
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IFBDR

TLEM;

TLEM3;
IPPLOT;

IPT;

LFBD1;
LFBD2;
NEL

NL1
NL2
NP

NPLOTP

NRE
NTYPE
PMAG1

PMAG2
PPH1

PPH2

Indicator telling which rotor contains the flexible bladed disks.
Permissible values are 0 (no flexible bladed disks), 1 (flexible
bladed disks are on the independent rotor), and 2 (flexible bladed
disks are on the dependent rotor).

Element number for the i’th (element,point,direction) trio for which
data is written to the plot file. Applies for both transient and
steady state analyses.

Element number for the i’th type 3 physical connecting element (rub
element). Applies for both transient and steady state analyses.
Global point number for the i’th (point,direction) pair for which
data is written to the plot file. Applies for both transient and
steady state analyses.

Global point number for the i’th (element,point,direction) trio for
which data is written to the plot file. Applies for both transient
and steady state analysis runs.

Local point number for the i’th local point on flexible bladed disk
number 1. Applies for both transient and steady state analyses.
Local point number for the i’th local point on flexible bladed disk
number 2. Applies for both transient and steady state analyses.
Number of (element,point,direction) trios for which data is written
to the plot file. Applicable for both transient and steady state
analysis runs.

Number of local points on flexible bladed disk number 1. Applicable
for both transient and steady state analysis runs.

Number of local points on flexible bladed disk number 2. Applicable
for both transient and steady state analysis runs.

Number of (point,direction) pairs for which data is written to the
plot file. Applicable for both transient and steady state analysis
runs.

Number of plot points that should have been written to the plot file.
For a transient analysis, this equals the number of time steps that
should have been written to the plot file. For a steady state
analysis, this equals the number of forcing frequencies that should
have been written to the plot file. If for any reason the TETRA run
terminated prematurely, the actual number of plot points might be
less than this number.

Number of type 3 physical connecting elements (rub elements).
Applicable for both transient and steady state analysis runms.
Analysis type code, where NTYPE=0 signifies a transient analysis run,
and NTYPE=1 signifies a steady state analysis run.

Generalized displacement magnitude for the horizontal nodal diameter
mode for flexible bladed disk number 1. Applies for both transient
and steady state analyses.

Generalized displacement magnitude for the horizontal nodal diameter
mode for flexible bladed disk number 2. Applies for both transient
and steady state analyses.

Phase angle (degrees) for the generalized displacement for the
horizontal nodal diameter mode for flexible bladed disk number 1.
Applies for a steady state analysis run only.

Phase angle (degrees) for the generalized displacement for the
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PSI1;
PSI2;
QMAG]

QMAG2
QPHI
QPH2
RD;

RFBD1;
RFBD2
RN;

RPMD
RPMI
RX;

S1FBDI1;
S1FBD2;
S2FBD1;
S2FBD2;
S3FBDI
S3FBD2;
SIG1P1;

horizontal nodal diameter mode for flexible bladed disk number 2.
Applies for a steady state analysis run only.
Angle psi (degrees) for the i’th local point on flexible bladed disk

number 1.

Applies for a transient analysis run

only.

Angle psi (degrees) for the i’th local point on flexible bladed disk

number 2.

Applies for a transient analysis run only.

Generalized displacement magnitude for the vertical nodal diameter

mode for flexible bladed disk number 1.

and steady state analyses.
Generalized displacement magnitude for the vertical nodal diameter

mode for flexible bladed disk number 2.

and steady state analyses.
Phase angle (degrees) for the generalized displacement for the
vertical nodal diameter mode for flexible bladed disk number 1.
Applies for a steady state analysis run only.
Phase angle (degrees) for the generalized displacement for the
vertical nodal diameter mode for flexible bladed disk number 2.
Applies for a steady state analysis run only.
Relative displacement magnitude for the i’th type 3 physical

connecting element (rub element).

run only.
Radial coordinate for the i’th Tocal point on flexible bladed disk

number 1.

Applies for both transient

Applies for both transient

Applies for a transient analysis

Applies for both transient and steady state analysis runs.

Radial coordinate for the i’th local point on flexible bladed disk

number 2.

Applies for both transient and steady state analysis runs.

Minimum relative displacement magnitude for the i’th type 3 physical

connecting element (rub element).

analysis run only.

Speed (rpm) of the dependent rotor.

Applicable

and steady state analyses.

Speed (rpm) of the independent rotor.

and steady state analyses.
Maximum relative displacement magnitude for the i’th type 3 physical

connecting element (rub element).

analysis run only.

SIGMA1
number
SIGMA]
number
SIGMA2
number
SIGMA2
number
SIGMA3
number
SIGMA3
number
SIGMA]

i’th Tocal point on flexible bladed disk number 1.

steady

stress (psi) for the i’th local point on
1. Applies for a transient analysis run
stress (psi) for the i’th local point on
2. Applies for a transient analysis run
stress (psi) for the i’th local point on
1. Applies for a transient analysis run
stress (psi) for the i’th local point on
2. Applies for a transient analysis run
stress (psi) for the i’th local point on
1. Applies for a transient analysis run
stress (psi) for the i’th local point on
2. Applies for a transient analysis run

Applies for a steady state

for both transient

Applicable for both transient

Applies for a steady state

flexible bladed disk
only.
flexible bladed disk
only.
flexible bladed disk
only.
flexible bladed disk
only.
flexible bladed disk
only.
flexible bladed disk
only.

stress (psi) for the horizontal nodal diameter mode for the

state analysis run only.
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SIG1P2;
SI61Q1;
$16102;
$162P1;
S162P2;
$162Q1;
$16202;
S163P1;
S163P2;
S163Q1;
$163Q2;

THETAD
THETAI

TIME
TINT

UMAGI ;
UMAG2;
UMAGP1 4

UMAGP2;

SIGMAl stress (psi) for the horizontal nodal diameter mode for the
i’th local point on flexible bladed disk number 2. Applies for a
steady state analysis run only.

SIGMA1 stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 1. Applies for a steady
state analysis run only.

SIGMAl stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 2. Applies for a steady
state analysis run only.

SIGMA2 stress (psi) for the horizontal nodal diameter mode for the
i’th local point on flexible bladed disk number 1. Applies for a
steady state analysis run only.

SIGMA2 stress (psi) for the horizontal nodal diameter mode for the
i’th local point on flexible bladed disk number 2. Applies for a
steady state analysis run only.

SIGMA2 stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 1. Applies for a steady
state analysis run only.

SIGMA2 stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 2. Applies for a steady
state analysis run only.

SIGMA3 stress (psi) for the horizontal nodal diameter mode for the
i’th local point on flexible bladed disk number 1. Applies for a
steady state analysis run only.

SIGMA3 stress (psi) for the horizontal nodal diameter mode for the
i’th local point on flexible bladed disk number 2. Applies for a
steady state analysis run only. ‘

SIGMA3 stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 1. Applies for a steady
state analysis run only.

SIGMA3 stress (psi) for the vertical nodal diameter mode for the i’th
local point on flexible bladed disk number 2. Applies for a steady
state analysis run only.

Angular displacement (revolutions) for the dependent rotor.
Applicable for transient analyses only.

Angular displacement (revolutions) for the independent rotor.
Applicable for transient analyses only.

Time (seconds). Applicable for a transient analysis only.

Time interval (seconds) between the time steps on the plot file.

This variable applies for a transient analysis run only. For a
stea?y state analysis, this variable is present on the plot file but
equals 0.

Displacement u (inches) for the i’th local point on flexible bladed
disk number 1. Applies for transient analysis runs only.
Displacement u (inches) for the i’th local point on flexible bladed
disk number 2. Applies for transient analysis runs only.
Displacement magnitude u (inches) for the horizontal nodal diameter
mode for the i’th point on flexible bladed disk number 1. Applies
for steady state analysis runs only.

Displacement magnitude u (inches) for the horizontal nodal diameter
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UMAGQI ;
UMAGQ2;

VMAG;
VMAG1;
VMAG2;
VMAGP1;

VMAGP2;
VMAGQ1 ;
VMAGQ2;

VPHASE ;
WFF
XMAG;

XPHASE
XPT;

YPT;

ZPT;

mode for the i’th point on flexible bladed disk number 2. Applies
for steady state analysis runs only.

Displacement magnitude u (inches) for the vertical nodal diameter
mode for the i’th point on flexible bladed disk number 1. Applies
for steady state analysis runs only.

Displacement magnitude u (inches) for the vertical nodal diameter
mode for the i’th point on flexible bladed disk number 2. Applies
for steady state analysis runs only.

Velocity magnitude (in/sec or rad/sec) for the i’th (point,direction)
pair. Applies for both transient and steady state analyses.
Displacement v (inches) for the i’th local point on flexible bladed
disk number 1. Applies for transient analysis runs only.
Displacement v (inches) for the i’th local point on flexible bladed
disk number 2. Applies for transient analysis runs only.
Displacement magnitude v (inches) for the horizontal nodal diameter
mode for the i’th point on flexible bladed disk number 1. Applies
for steady state analysis runs only.

Displacement magnitude v (inches) for the horizontal nodal diameter
mode for the i’th point on flexible bladed disk number 2. Applies
for steady state analysis runs only.

Displacement magnitude v (inches) for the vertical nodal diameter
mode for the i’th point on flexible bladed disk number 1. Applies
for steady state analysis runs only.

Displacement magnitude v (inches) for the vertical nodal diameter
mode for the i’th point on flexible bladed disk number 2. Applies
for steady state analysis runs only.

Velocity phase angle (degrees) for the i’th (point,direction) pair.
Applies for a steady state analysis only.

Steady state forcing frequency (rpm). Applicable for a steady state
analysis only.

Displacement magnitude (inches or radians) for the i’th
(point,direction) pair. Applies for both transient and steady state
analyses.

Displacement phase angle (degrees) for the i’th (point,direction)
pair. Applies for steady state analyses only.

X coordinate for the i’th (point,direction) pair for which data is
written to the plot file. Applies for both transient and steady
state analyses.

Y coordinate for the i’th (point,direction) pair for which data is
written to the plot file. Applies for both transient and steady
state analyses.

Z coordinate for the i’th (point,direction) pair for which data is
written to the plot file. Applies for both transient and steady
state analyses.
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3.3 Printed Output

For every TETRA run, printed output is produced. The file code for the printed
output is the standard 06 file.

The size of the printed output depends on the value inputted for the printout
option variable IOUT on type A input sheet. See the discussion of the type A
input for advice on what value to use for IOUT. For a transient analysis, the
size of the printed output also depends greatly on the value inputted for the
transient analysis print multiple IPRMUL on type I-1 input sheet. Likewise, for
a steady state analysis, the size of the printed output depends greatly on the
value inputted for the steady state analysis print multiple JPRMUL, also on type
I-1 input sheet. See the discussion of the type I-1 input sheet for advice on
what values to use for IPRMUL and JPRMUL.

For a sample printed output listing, see section 5.3.1. This section contains a

1isting of the printed output for the demonstator model with the standard form
of the printout (IOUT=1 on type A input sheet) requested.
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4.0 PROGRAM STRUCTURE AND_SUBROQUTINES

TETRA 2 represents a substantial growth in program size as well as program
capability. The previous version of TETRA (including flexible bladed disk
capability but with only transient analysis capability and not steady state
analysis capability) consisted of a main routine plus 36 subroutines. TETRA 2
consists of a main routine plus 87 subroutines. Not included in this total are
5 IMSL Tlibrary subroutines which are called directly from TETRA subroutines, and
several additional IMSL library subroutines which are not called directly from
TETRA subroutines, but rather from the other IMSL library subroutines in TETRA.
In terms of lines of coding, the previous version of TETRA had about 8000 Tines,
while TETRA 2 has about 30000 lines.

The large increase in program size is largely because the steady state analysis
portion of TETRA proved to be more complex and requiring more steps than the
transient analysis portion of TETRA. In particular, a large amount of coding
was needed for the assembly of the large global matrices, which are required for
steady state analyses but not for transient analyses. The coding for the
nonlinear rub element capability also proved to be much more extensive for the
steady state analysis portion than for the transient analysis portion, with a
Tot of coding needed to assemble the iterating equations and perform harmonic
averaging. Also contributing to the increase in program size was additional
capability added to TETRA 2, such as expanding the rub element to include a
nonlinear cubic factor, addition of structural damping capability, added
printout options, etc. Contributing to the large increase in the number of
lines is the fact that more extensive documentation for each subroutine is
included in the coding (primarily at the beginning of each subroutine).

TETRA 2 also requires appreciably more memory than the previous version of
TETRA. A major reason that it needs more memory is for the storage of the large
global matrices. These global matrices are needed for the steady state analysis
portion of TETRA 2, but were not needed in the previous version of TETRA which
was limited to transient analyses. However, the amount of memory required by
TETRA 2 (slightly over half a million words) is rather small compared to many
strgctura] analysis computer codes, such as those used for finite element
analysis.

The structure of the TETRA 2 computer program is shown in figures 4-1 through
4-7. As is seen from figure 4-1, the main routine of TETRA calls four different
subroutines: PROCES, TILOOP, FRLOOP, and LISTPF. Three of these subroutines,
PROCESS, TILOOP, and FRLOOP, are the control routines for the three major
branches of the program. The branch headed up by the PROCESS subroutine
processes the input data, which is largely common to both transient and steady
state analyses. The branch headed by the TILOOP subroutine is for the time
integration loop, which is the solution phase for transient analysis runs.
Finally, the branch headed up by the FRLOOP subroutine is for the frequency
response loop, which is the solution phase for steady state analysis runs.
Figures 4-2 through 4-7 show the branches of the program in detail. Included
are all the TETRA 2 subroutines and all the IMSL library subroutines that are
called directly from TETRA 2 subroutines. Omitted for clarity are those IMSL
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subroutines that are not called directly from TETRA 2 subroutines but rather
from the other IMSL library subroutines in TETRA 2.

Table 4-1 gives a brief description of each of the subroutines of TETRA 2,
arranged alphabetically. Included are all the TETRA 2 subroutines and all the
IMSL Tibrary subroutines that are called directly from TETRA 2 subroutines.
Again, those IMSL subroutines that are not called directly from TETRA 2
subroutines, but rather from the other IMSL library subroutines in TETRA 2 are

omitted.
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APFOR
APFORG
APFORP
BACKS

CHECK
CONEL

CURRT
CURRTS

EL1

EL2

EL4

ELS

ELEM]

ELEM2

ELEM3
ELEM4

ELEMS

Table 4-1. TETRA 2 Subroutines

Calculates the applied forces for transient analyses

Calculates the applied generalized forces for steady state analyses
Calculates the applied physical forces for steady state analyses

Back substitutes the relative displacement components found by
iteration into the iterating equations, to provide a measure of the
quality of the solution (steady state analyses only)

Checks if a rub is present for any of the physical connecting elements
and acts accordingly (steady state analyses only)

Control routine for the branch of the program which processes the input
data for the physical connecting elements (transient and steady state
analyses)

Calculates the magnitudes of the physical displacements, physical
velocities, and modal forces for transient analyses

Calculates the magnitudes and phase angles of the physical
displacements, physical velocities, and modal forces for steady state
analyses

Computes the contributions of the current type 1 physical connecting
element (general spring-damper element) to the global stiffness matrix,
the global velocity matrix, and the structural damping contributions
matrix (steady state analyses only)

Computes the contributions of the current type 2 physical connecting
element (space link-damper element) to the global stiffness matrix, the
global velocity matrix, and the structural damping contributions matrix
(steady state analyses only)

Computes the contributions of the current type 4 physical connecting
element (engine support-links element) to the global stiffness matrix,
the global velocity matrix, and the structural damping contributions
matrix (steady state analyses only)

Computes the contributions of the current type 5 physical connecting
element (uncoupled point spring-damper element) to the global stiffness
matrix, the global velocity matrix, and the structural damping
contributions matrix (steady state analyses only)

Processes the input data for the current type 1 physical connecting
element (general spring-damper element) (transient and steady state
analyses) .
Processes the input data for the current type 2 physical connecting
element (space link-damper element) (transient and steady state
analyses)

Processes the input data for the.current type 3 physical connecting
element (rub element) (transient and steady state analyses)

Processes the input data for the current type 4 physical connecting
element (engine support-links element) (transient and steady state
analyses)

Processes the input data for the current type 5 physical connecting
element (uncoupled point spring-damper element) (transient and steady
state analyses)
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ELEM6
ELEMV

ELG

FBD
FBDDS

FBDDSS

FBOL
FBDOMAS
FBOSS
FBOVEL

FCN
FLEX
FLEXSS
FORCE

FORCE1

FORCE2

FORCE3
FORCE4

FORCES

Processes the input data for the current type 6 physical connecting
element (squeeze film damper element) (transient analyses only)

Finds the contributions of the linear (types 1, 2, 4, and 5) physical
connecting elements (if any) and the gyroscopic elements (if any) to
the upper right quadrant of the global solution matrix (steady state
analyses only).

Computes the contribution of the current gyroscopic element to the
gyroscopic contributions matrix for the independent rotor (if the gyro
element 1ies on the independent rotor) or to the gyroscopic element
contributions matrix for the dependent rotor (if the gyro element Ties
on the dependent rotor) (steady state analyses only)

Processes data for the flexible bladed disks (if any) (transient and
steady state analyses)

Calculates the magnitudes of the physical displacements and stresses of
the local points on the flexible bladed disk(s) (if any) for transient
analyses

Calculates the magnitudes of the physical displacements and stresses of
the local points on the flexible bladed disk(s) (if any) for steady
state analyses

Processes the input data for the local points on the flexible bladed
disk(s) (if any) (transient and steady state analyses)

Computes the non-diagonal terms of the global mass matrix that result
from the flexible bladed disk(s) (steady state analyses)

Processes the input data for the flexible bladed disk subsystems (if
any) (transient and steady state analyses)

Computes the non-diagonal terms of the global velocity matrix that
re?u}t from the flexible bladed disk(s) (if any) (steady state analyses
only

Computes the values of the iterating equations for steady state
nonlinear analyses in which a rub has occurred

Processes the input mode shape data for flexible subsystems (transient
and steady state analyses)

Processes the input data for the flexible subsystems (transient and
steady state analyses)

Calculates the forces that the physical connecting elements and
gyroscopic elements exert on the subsystems or ground for transient
analyses

Calculates the forces that the type 1 physical connecting elements
(general spring-damper elements) exert on the subsystems or ground for
transient analyses

Calculates the forces that the type 2 physical connecting elements
(space link-damper elements) exert on the subsystems or ground for
transient analyses

Calculates the forces that the type 3 physical connecting elements (rub
elements) exert on the subsystems for transient analyses

Calculates the forces that the type 4 physical connecting elements
(engine support-links elements) exert on the subsystems or ground for
transient analyses

Calculates the forces that the type 5 physical connecting elements
(uncoupled point spring-damper elements) exert on the subsystems or

99



FORCE6

FORCEG
FORHIS
FORSS

FORSS1

FORSS2

FORSS3
FORSS4

FORSSS

FORSSG
FRLOOP

GEN

GENDIS

GLOB1

GLOB2

GYROE
INIT

LIMITS

ground for transient analyses

Calculates the forces that the type 6 physical connecting elements
(squeeze film damper elements) exert on the subsystems or ground for
transient analyses

Calculates the forces that the gyroscopic elements exert on the rotors
for transient analyses

Processes the input data for the time-force history loads (transient
analyses only)

Calculates the forces that the physical connecting elements or
gyroscopic elements exert on the modal subsystems or ground for steady
state analyses

Calculates the forces that the type 1 physical connecting elements
(general spring-damper elements) exert on the subsystems or ground for
steady state analyses

Calculates the forces that the type 2 physical connecting elements
(space link-damper elements) exert on the subsystems or ground for
steady state analyses

Calculates the forces that the type 3 physical connecting elements (rub
elements) exert on the subsystems for steady state analyses

Calculates the forces that the type 4 physical connecting elements
(engine support-links elements) exert on the subsystems or ground for
steady state analyses

Calculates the forces that the type 5 physical connecting elements
(uncoupled point spring-damper elements) exert on the subsystems or
ground for steady state analyses

Calculates the forces that the gyroscopic elements exert on the

rotors for steady state analyses

Loops over the forcing frequencies and finds the solution for each
forcing frequency in turn. This subroutine is the control routine for
the solution phase of steady state analyses.

Calculates the generalized forces for transient analyses

Calculates the generalized displacements for transient analyses

Prints out (provided that the user requested the long form of the
printout) the global stiffness matrix, the global velocity matrix, the
structural damping contributions matrix, the independent rotor
gyroscopic contributions matrix, and the dependent rotor gyroscopic
contributions matrix (steady state analyses only)

Completes the assembly of the global solution matrix, including the
terms that vary with rotor speed of forcing frequency (steady state
analyses only)

Processes the gyroscopic load input (transient and steady state
analyses)

Performs certain initial tasks, namely: initializing, then reading the
LISTI namelist input, printing out the title page, listing the input
file while at the same time counting the number of subsystems NSUB and
the number of physical connecting elements NELEK, listing the program
1imits, processing the data for points not on the modal subsystems, and
(for steady state analyses) initializing several matrices to 0
(transient and steady state analyses)

Prints the current program limits for the input variables (transient
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LINSOL

~ LIST4N
LISTPF

MASSM

MODES

NLDISG
NLFORG

NLFORP

NLSOL
PARAM1

PARAM2

PHYSP
PLOTD
PROCES
RBODSS
RBODY
ROPROP

SCAN

and steady state analyses)

Solves for the generalized displacements for a linear steady state
analysis (one for which there are no nonlinear physical connecting
elements)

Processes the LIST4 namelist input (miscellaneous input that comes
after the LISTI, LIST2, and LIST3 namelist input sections)

Lists at Teast a portion of the output plot file (provided that an
output plot file was produced and that the user requested the long form
of the printed output)

Computes the mass matrix for the rotor on which the flexible bladed
disk(s) are Tocated and for the flexible bladed disk(s) (transient
analyses only)

Finds the mode shape given the modal subsystem number, local mode
number, local point number, and local direction number (transient and
steady state analyses)

Calculates the generalized displacements for steady state analyses in
which at least one nonlinear (rub) element is present

Calculates the generalized forces for the type 3 physical connecting
elements (rub elements) for steady state nonlinear analyses in which a
rub has occurred

Calculates the physical forces at joint I for each type 3 physical
connecting element (rub element) for steady state analyses in which a
rub has occurred

Solves for the generalized displacements for steady state analyses that
include nonlinear type 3 physical connecting elements (rub elements)
Finds the S parameters for steady state analyses in which at least one
type 3 physical connecting element (rub element) is present. These
parameters are needed to check if a rub has occurred, and, if a rub has
occurred, then these parameters are also needed for use in the
iterating equations.

Finds the A, B, C, and D parameters for steady state analyses in which
a rub has occurred. These parameters are needed for use in the
iterating equations.

Processes input data for the physical points not located on the modal
subsystems (transient and steady state analyses)

Processes the input plot data and, if a plot file was requested, writes
the initial plot file data onto the output plot file (transient and
steady state analyses)

Processes the input data (transient and steady state analyses)
Processes the input data for the rigid body modal subsystems (transient
and steady state analyses)

Processes the mode shape input data for the rigid body modal subsystems
(transient and steady state analyses)

Calculates the rotor properties (rotor speed, acceleration, and angular
displacement for the independent and dependent rotors) (transient
analyses only)

Scans over the subsystems, points, directions, and modes and saves data
needed later to calculate the generalized forces (transient and steady
state analyses) and the physical displacements, physical velocities,
and modal forces (transient analyses only) .
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SINCOS
SOLVE
SPEED
SQUEEZ

STIFFE
STIFFT
SUBSYS
TILOOP

TMAT1

TMAT2

TMAT4

TMATS

TMATG
UBAL

Processes the input data for the transient analysis P*cos(wt) and
P*sin(wt) loads and the steady state analysis P*cos(wt+PHI) loads
Solves the nonlinear equations (via iteration) for steady state
analyses in which a rub has occurred

Processes the rotor speed and rate input (transient and steady state
analyses)

Calculates the forces that the current type 6 physical connecting
element (squeeze film damper element) exerts on the modal subsystems or
ground for transient analyses

Computes the engine support-links element stiffness matrix (transient
and steady state analyses)

Computes the truss (link) stiffness matrix for the trusses (1inks) that
are part of the engine support-links element

Processes the input data for the modal subsystems (transient and steady
state analyses)

Subroutine for the time integration Toop, which finds the solution for
each time step. This subroutine is the control loop for the solution
phase for transient analyses.

Finds the transformation matrix and associated variables for the
current type 1 physical connecting element (general spring-damper
element) (steady state analyses only)

Finds the transformation matrix and associated variables for the
current type 2 physical connecting element (space 1link-damper element)
(steady state analyses only)

Finds the transformation matrix and associated variables for the
current type 4 physical connecting element (engine support-1links
element) (steady state analyses only)

Finds the transformation matrix and associated variables for the
current type 5 physical connecting element (uncoupled point
spring-damper element) (steady state analyses only)

Finds the transformation matrix and associated variables for the
current gyroscopic element (steady state analyses only)

Processes the input unbalance loads (transient and steady state
analyses)
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5.0 STEADY STATE ANALYSIS VERIFICATION

Verification of the steady state option of TETRA 2 is achieved at different
levels of complexity. This is done partly to check the logic of the problem
formulation and partly to demonstrate the correctness of the coding.

The initial stage consisted of checking degenerate cases which have been
available in the literature for some time. These are usually linear single or
two degree-of-freedom systems. TETRA 2 results agreed exactly with the

closed form solutions for these cases (see section 5.1).

. Next, a solution of Duffing’s equation for the nonlinear hardening (or
softening) spring (rub element) is included (see section 5.2.1). Also, a more
complex system of a rigid beam with two nonlinear bearings (rub elements) was
analyzed (see section 5.2.2). For both of these cases, TETRA 2 produced the
same results as small computer programs which were independently programmed.

The final test cases use the two component demonstrator model consisting of a
casing and a rotor. These cases are numerical. Frequency sweep results for the
demonstator model without any nonlinear springs (rub elements) were compared to
the results of the NOVAS computer program (a GE program for engine vibrations
analysis) (see section 5.3.2).

The demonstrator model including a nonlinear spring (rub element) was also
analyzed. These results could not be checked against another computer program,
since we currently do not have any other computer program with this capability.
However, we did compare the results of the TETRA 2 transient analysis option
when taken to steady state conditions with the direct solution obtained in the
steady state option for these cases. This was done for each of the four
possible rub categories: no rub, continual rub with dead band equal to zero,
continual rub with dead band not equal to zero, and intermittent rub (see
section 5.3.3).

These test cases have verified the logic and the coding of TETRA 2, specifically

the steady state option. However, the transient analysis option was verified
also by comparing its results with the original TETRA program.
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5.1 Degenerate Cases: Closed Form Solutions
These cases are the classic spring-mass-dashpot systems in one and two degrees
of freedom. Formulae from references 4 and 5 were programmed independently and
compared to TETRA 2 results for the simplified models.

5.1.1 Single Degree-of-Freedom

A schematic of the physical model is shown in figure 5-1 and is self
explanatory. The closed form equations were programmed independently on an IBM
PC, and the resulting displacements tabulated in figure 5-1. The results using
TETRA 2 are shown in the displacement versus frequency plot (figure 5-2). As
can be seen by comparing the tabulated results in figure 5-1 with the plot of
figure 5-2, exact agreement between TETRA 2 and the closed form equations was
obtained.

5.1.2 Two Degree-of-Freedom

Figure 5-3 illustrates the other linear degenerate case, where again the
resulting displacements tabulated in figure 5-3 were obtained by programming
formulae obtained from references 4 and 5 on an IBM PC. TETRA 2 results for the
same case are given in figures 5-4 (displacement versus frequency plot for point
1) and in figure 5-5 (displacement versus frequency plot for point 2). Again,
as can be seen by comparing the tabulated results of figure 5-3 with the plots
of figures 5-4 and 5-5, exact agreement between TETRA 2 and the closed form
equations was obtained.
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C: \TETRA>CFORM1

ENTER FO (LB), K (LB/IN), C ((LB-SEC)/IN), AND M (LB)
1000, SES, 87. 8, 500

ENTER BEGINNING, FINAL, AND STEP W (RPM)
1000, 20000, 1000

FORCING DISPLACEMENT

FREQUENCY AMPL.ITUDE
© RPM Y INCHES
1000. . 00205805
2000. . 00225418 t
3000. . 00267875 Focosut | Y
4000. . 00363078 M #f
S000. . 00656400 .
6000. .01778637 L
7000. . 00486259
8000. .00241110 K c
9000. . 00152751
10000. .00108271 >
11000. .00081886
12000. . 00064627
13000. . 00052579
14000. . 00043765
15000. . 00037087
16000. .000318864
17000. . 00027744
18000. . 00024384
19000. .00021617
20000. . 00019307

Stop - Program terminated.

Figure 5-1. Closed Form Equation Results for 1 Degree-of-Freedom Linear
Test Case
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C: \TETRA>CFORM2
ENTER FO (LB), K1 (LB/IN), K2 (LB/IN), C2 ((LB-SEC)/IN),
M1 (LB), AND M2 (LB)

500, 4E%, SES, 90, 1000, 100

ENTER BEGINNING, FINAL, AND STEP W (RPM)
1000, 20000, 1000

FORCING DISPLACEMENT DISPLACEMENT

FREQUENCY AMPLITUDE AMPL ITUDE
o RPM Y1 INCHES Y2 INCHES M2
1000. -« 00087210 .00088411 ?
2000. « 00105294 00107736
3000. . 00157399 . 001465844
4000. « 00520835 « 00572521
S5000. « 00260335 « 00302909
6000. « 000920976 - 00113924
7000. « 00050937 « 00070014
8000. « 000334146 « 00051645
9000. « 00023725 « 00042497
10000. . 00017617 - 00038006
11000. . 00013451 « 00036573
12000. « 00010631 » 00037492
13000. « 000094246 - 00039070
14000. » 00009849 « 00035507
15000. -« 00009625 « 00025264
16000. « 000083509 -« 000146328
17000. « 00007359 00010792
18000. « 00006399 « 000074466
19000. « 00005619 « 00005384
20000. « 00004981

Stop - Program

Figure 5-3.

terminated.

- 00004017

Linear Test Case
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5.2 Nonlinear Systems: Simple Models

To assess the iterative procedure for obtaining numerical solutions as well as
check the logical method for determining the compatibility relations at the
nonlinear connections, small computer programs were written to analyze the
following two cases. Iterative subroutines from the IMSL library were initially
used in these small programs and subsequently employed in TETRA 2.

Another purpose of writing the small computer programs cases was to obtain an
independent check of the coding in TETRA 2. The people who programmed these
small computer programs were not involved in the development or coding of TETRA
2. When TETRA 2 was run for these test cases, however, the same results as for
the small computer programs were obtained. This provides confidence that both
the small computer programs and the very much larger TETRA 2 were coded
correctly.

The nonlinearity in the following cases is of the Duffing type, i.e. cubic
hardening or softening spring with a linear viscous damper. This type of
nonlinearity is discussed in references 4 and 5.

5.2.1 Single Degree-of-Freedom: Nonlinear Spring

This is the classic Duffing equation with a cubic hardening spring. A sketch
of the model and the governing equations for this case are shown on the top part
of figure 5-6.

A small computer program was written specifically to assess the IMSL library
subroutine ZSYSTM, which uses Brown’s iteration method. Results of this effort
were discussed in the monthly progress reports. The most salient conclusion is
that this subroutine (and also IMSL subroutines ZSCNT and ZSPOW) can yield
multiple solutions corresponding to the classic "jump" solution of Duffing’s
equation with large nonlinearity. However, to obtain the solutions in the
neighborhood (in frequency) of the "jumps", one must run the program twice, once
with increasing forcing frequency and once with decreasing forcing frequency.
This is illustrated by the plot of this case shown in figure 5-6.

This procedure indicates the sensitivity of the iteration routine to initial
trial solutions. In addition, the use of harmonic balance in the solution of
Duffing’s equation gives similar results as those obtained by perturbation o
direct iteration (without harmonic balance). .

TETRA 2 was also originally coded to include IMSL subroutine ZSYSTM. The
results produced by the small computer program and TETRA 2 were in excellent
agreement. Soon after this case was run, however, IMSL Incorporated deleted
subroutine ZSYSTM from their library and replaced it with two new subroutines,
ZSCNT and ZSPOW. The new iteration subroutines are based on the secant method
and Powell’s hybrid algorithm (a variation of Newton’s method) respectively.

Subsequent test cases that we ran confirmed that ZSCNT and ZSPOW both worked
better than subroutine ZSYSTM, so we also deleted ZSYSTM from TETRA 2 and
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instead included ZSCNT and ZSPOW. Subroutine ZSYSTM would frequently be unable

to converge due to a singularity in the Jacobian, which was a great nuisance.
This problem is not present in the ZSCNT or ZSPOW IMSL subroutines. A1l three

IMSL subroutines give the same results when they converge.
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5.2.2 Planar Riqid Beam with Two Nonlinear Bearings

This model is the simplest one that checks TETRA 2’s method for obtaining the
iterating equations, i.e., displacement compatibility at the nonlinear bearings
(rub elements). A sketch of this model is shown in figure 5-7.

The governing equations were obtained two different ways:
(1) In terms of translation and rotation of the center of gravity
(2) In terms of two rigid modes: the translation modal distribution
simulates the cases of pure translation and simple rotation about the
center of gravity.

Both formulations gave identical results. The responses that were compared to
the TETRA 2 output were the physical displacement amplitudes at the bearings
(rub elements). The first formulation is summarized here. Following volume 1
of this report, the generalized coordinate differential equations of motion are:

RO ) (R )y ¢ (e o Chely oKL )8 #(c,LC L)

: f"‘)' mK, ‘1? - ,“LK%E’:
Rotation about the center of gravity: . a\ - .
16 + KLk, 5)0 ¢ CCLirCaly) @ el Lokl)ya(Cl-C L)

. 3 3
: §@)- pklLy, + AWK
The symbols are defined in the sketch in figure 5-7.

These.differential equations are transformed to 4 simultaneous nonlinear
equations by the principle of harmonic balance following the theory of volume 1.
After some simplification, these become a matrix relating the generalized

coordinates of the center of gravity on the left hand side to the physical
displacements and external forces on the right. Thus,

r L - -,- A. l'b.z - -
l-v‘ ‘;. ZVS’ zvs’. Ta. ‘H, (A. i ) i F'q
. ¢£p,,A.‘(Al+88) ;,"t

o Pt -" . % P‘)‘.." (Al B?) fo

] P. 2vp '

) ? . ’ Jff::- tﬁfﬂﬁgféfgtfi? + ‘Eg
' 2 al —

Wiy e et - Jy b, %H’B'(A.: b.;) o

|| [

4 1"- bo (At’ b-‘j -

-Nﬂ" -Np!a ,"” AV 2P ke ! ) o
. dL 61.4 :z;hnsiuz'b:)d -




Figure 5-7. Planar Rigid Beam with 2 Nonlinear Bearings

S Y y 12
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y = a,coswt +6sinwt; @ = a4, Coswrt + b,sinwrt

y, * A coswt +Bsmwt; g =A coswt +Bsinut
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= o/ = Cy/Cc.
where: v /¥ 5, ’/ “

f = ”/U‘J 5. = COICCQ

%90 = Wy iy Yo = C,./ Cey
CREIR ™ Cn[Cy
(J; = K”/m “;.‘—' K“lm
wh= K/l Wh= Ky
K= KK | Kyy= Koty KL, = Ky,
Ke= KbL# KL, €= GL,oCl.= Gy,
Cy= 644G &= 2y
Co= CLieCily Coy=  2midy

Pu’ = Ptkt/m- #Ic’= PiKly/m |
Pig= P\KgL‘/I P“= fszLJI
f,  Bm 5, &h

The algebraic matrix equation is first transformed by matrix inversion to obtain
an explicit expression for the generalized coordinate vector. Letting:

E;j ® Coefficient of - ) 41,‘1
« = 4, u‘,G"Gz

‘ H; a Nonlinear Connecting Force Vector

ﬁ & External Force Vector

The matrix equation can be written more simply:

Egr B+ HlAB AR, By by y)
Solving for o(jgives:

o -
045 C E‘bj{ﬁ + }“,}
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The displacement (cosine and sine) components at the ends may now be expressed
in terms of @ and 5;, since:

A. ""“:"“zL ‘Bt =6‘ '-61-("‘

A, =4, ¢ 01,(.,. 'bz -'-6‘ t 6,,[.,_

Noting thataq,, dz,54 , and 61, are discrete values ofd'j, and that the Oﬂj.are
expressed as nonlinear functions of A, ®,, etc., and substituting these into
the physical displacement expressions gives the iterating equations, thus:

(- LEL) (R + HiABA,BY)
ECRIRACREN
B = Ezl’ LEDE +H)
(B, +LEF +H)

The foregoing follows the essential elements of the theory which proceed from
the formation of the connecting element forces to the formation of a global
generalized matrix differential equation and to its transformation by harmonic
balance. It demonstrates also the steps required to obtain the iterating
equations from the physical displacement relations at the bearings (rub
elements). Thus, the application of the theory can be checked, step by step.

Finally, a small computer program was written to calculate the beam ends’
response, and the results agreed.with the TETRA 2 solution. This case also
revealed potential convergence problems with the IMSL iteration subroutines.
Large amplitudes (which amplify the nonlinearities) occasionally led to a large
number of iterations that would not converge, especially in the regions of
resonances. However, displacement amplitudes and nonlinear forces more typical
of actual engine experience avoided the convergence problems.

For highly nonlinear connecting elements where a "jump" phenomenon is expected,
manual inputs of initial iteration values in TETRA 2 (see input sheet I-2) can
decrease the number of iterations and overcome non-convergence.

Figure 5-8 gives some response plots from TETRA 2 fbr this case.

116



oW “AJNIO I 4

e ope - o [ "
) ' S e——
” i : _ : T
b P
S | A .

-
SINm3

W e —— i e -
¢

uu\.cou .—g

HYINT INON p..- .zu. aioie

WORLW “ALOITRG~

— - - - -

L H
——— t . [JRNUR IO Y “
: ]
|
_ J. PRSI V (5 (DS M O
M 1
i : ]
PR -y R T (L
i 1
ISR N - SUPI SURIE SN [
: ! . v O
M [
i ; ! : 1
B B i
— - 0 . f N ve “
] i : .

T T Jrzu—.u _Uhﬁthﬂagmr’“

L1 i .:Sc

WOTN ! SO T

sbujaeag Jeauy |UON Z Y3iM weag

Wau ‘AMINOTNS

. e w___m_ e m_m
D
SR
S PR TR w N S "
w - 1]
S U ISV AN i
H - -
. : “
.- _ _ _ -

prm
i '
|

P16y aeue|d

*g-G a4nb4

b iiiRiziy 2!.....«.«-?9@% uq 3&

-“g

117



5.3 Demonstrator Model

The final set of test cases use the two component demonstrator model consisting
of a rotor and a casing. This is the exactly the same demonstator model that
was used back in 1981 to check out the original TETRA program (which was for
transient analyses only), as documented in reference 1. For more details about
this model, see reference 1 (especially volume 3, section 7.0). A sketch of the
model is shown in figure 5-9. -

This demonstrator model was also used in 1983 in modified form (two rotors,
instead of a rotor and a casing, and the stiffnesses changed) to check out the
flexible bladed disk option of TETRA (see reference 2). However, the test cases
made to check out the steady state analysis portion of TETRA conform to the
original version of the demonstator model (rotor and casing), rather than the
one that was modified to check out the flexible bladed disk option.

The earlier test cases for the demonstator model (both with and without flexible
bladed disk) were repeated, with the same results as before. This verifies that
the extensive modifications made for TETRA 2 did not mess up the transient
analysis portion of the program. The transient analysis portion of the program
was improved with TETRA 2 by making it more efficient, and by making the new
features developed for TETRA 2 (such as the improved rub element) applicable to
both steady state and transient analyses.

In the following sections, we only concern ourselves with the new test cases
that were made to verify the steady state analysis portion of TETRA 2.

Reference 1 (volume 3) and reference 2 give details about the earlier test cases
that verified the transient analysis portion of the program. To compare with
the steady state analysis results, some new transient analysis runs were made
which were taken to state analysis conditions (that is, run for a long enough
time for the transient analysis part to die out), as reported in section 5.3.3.

Section 5.3.1 discusses the input and output for a steady state analysis test
case for the demonstrator model. Then, in section 5.3.2 we compare frequency
sweep results for the demonstator without any nonlinear springs (rub elements)
to the results of the NOVAS computer program (GE program for engine vibrations
analysis). Finally, in section 5.3.3 we examine test cases for the demonstator
with one rub element, comparing steady state analysis results with transient
analysis runs which were taken to steady state conditions. As will be seen,
excellent results were obtained by these test cases, further verifying the new
steady state analysis capability of TETRA 2.
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5.3.1 Input and Output

TETRA 2 input and output follows for a steady state analysis run of the
demonstator model. The input listing is a part of the TETRA 2 output and
immediately follows the title page of the output. This run corresponds to the
run discussed in section 5.3.3.4 (intermittent rub at 3000 rpm). To produce
this output, the standard form of the printed output was requested (IOUT = 1 on
the type A input sheet).
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5.3.2 Frequency Sweep with No Rub Element Test Cases

TETRA 2 steady state analysis frequency sweep runs were made for the demonstator
model with no rub element. Two runs were made, one including gyroscopic
stiffening at the fan and turbine locations, and one without. For both runs, an
unbalance of 100 gram-inches was applied at the fan location on the rotor,

the beginning forcing frequency (rotor speed) was 150 rpm, the step forcing
frequency 50 rpm, and the final forcing frequency 15000 rpm (a solution
calculated for each of 298 forcing frequencies). The output for the 298 forcing
frequencies was written to the output plot file and subsequently plotted, as
shown in figures 5-10 through 5-13.

The TETRA 2 results are compared to those produced by the NOVAS computer program
(GE computer program for engine vibrations analysis), which are shown in figures
5-14 through 5-17. These figures are the same ones as figures 67 through

70 of reference 1, volume 3 (the original 1981 TETRA user’s manual). Figure
5-10 corresponds to figure 5-14 (fan displacement without gyroscopic stiffening
effects), figure 5-11 corresponds to figure 5-15 (middle of rotor displacement
without gyroscopic stiffening effects), figure 5-12 corresponds to figure 5-16
(fan displacement with gyroscopic stiffening), and figure 5-13 corresponds to
figure 5-17 (middle of rotor displacement with gyroscopic stiffening). As can
be seen by comparing these figures, excellent agreement between TETRA 2 and the
NOVAS program was obtained.
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5.3.3 Single Frequency with One Rub Element Test Cases

Several runs of the demonstrator model with one nonlinear spring (rub element)
located at the fan were made. One of the prime reasons for these runs was to
provide a comprehensive checkout of the rub element, including the dead band
feature of the rub element, which was not exercised in the simpler test cases
reported in the previous sections.

For each rub element, TETRA 2 recognizes four possible rub categories: no rub,
continual rub with dead equal to zero, continual rub with dead band not equal to
zero, and intermittent rub. For each forcing frequency, TETRA 2 compares the
minimum and maximum relative displacement magnitude and the dead band of each
rub element to determine which of the categories is present for each of the rub
elements. These four possible rub element categories are illustrated in

figure 5-18. Knowing which rub category applies is important, because a
different method is used to find the rub element physical forces for each of the
four rub element categories. For more details about the four rub categories and
the methods used for each category, see section 5.3 of volume 1 of this report.

To fully check out the rub element, demonstator model runs (one steady state run
and one transient analysis run) were made for each of the four possible rub
element categories. These runs were made with a rotor speed (forcing frequency)
of 3000 rpm, and an unbalance of 5000 gm-in applied at the fan location on the
rotor. The dead band and the spring rates were adjusted to produce a run for
each of the four rub categories.

The results when a rub occurs could not be checked against another computer
program, because we currently do not have any other computer program with this
capability. However, what we did do is compare the results of the TETRA 2
transient analysis option when taken to steady state conditions (that is, run
Tong enough for the transient analysis part to die out) with the direct steady
state solution. Since greatly different methods of solution are utilized in the
transient analysis and the steady state analysis options of TETRA 2, the fact
that the two methods agree so very well is most encouraging.
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direction

FIGURE 5-18. FOUR POSSIBLE RUB CATEGORIES
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5.3.3.1 No Rub

A steady state analysis test case was run where a rub element located at the
fan was present but no rub occurred because the dead band which was inputted
always exceeded the rub element relative displacement magnitude. Two methods
were used to verify the results of this test case.

First, since no rub occurred, the rub element was never activated, and the rub
element physical forces set to zero by the program. Thus, this case should
produce the same results as for a TETRA run with no rub element, and remember,
the demonstrator with no rub element was verified by comparing TETRA 2 results
with that of the NOVAS computer program (see section 5.3.2). A TETRA 2 run with
the same input except omitting the rub element confirmed that exactly the same
results are obtained either way.

The second way that this test case was verified was by comparing the results
of the steady state analysis run with the results of a transient analysis run
taken to steady state conditions. The transient analysis run results are shown
in figures 5-19 through 5-22. The transient analysis run was stopped at .5
seconds, by which time the transient effect had almost completely died out, as
can be seen from these plots.

These results are summarized in table 5-1 below. The steady state analysis
values in this table are exact numbers from the printout of the run. The
transient analysis run numbers, however, had to be estimated by reading the peak
values in the steady state region (.4 to .5 seconds) of figures 5-19 through
5-22. Although it is hard to read the figures very accurately, it is evident
that the steady state and transient analysis runs agree quite well.

Table 5-1. Demonstrator Mode] Results with No Rub

Transient
aximum Vertical Displacement (inches Analysis
Location Aeiyats B Anatyats Run Number
Rotor at fan station .0430 .043 5-19
Case at fan station .0287 .028 5-20
Rotor at midpoint station .0105 .0105 5-21

Case at midpoint station .00869 .087 5-22
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5.3.3.2 Continual Rub with Dead Band to_Zero

Next, a steady state analysis test case was run for the demonstrator model where
the rub element, which was located at the fan, had an input dead band equal to
zero. Since the input dead band was zero, a continual rub of course resulted.

A transient analysis run taken to steady state conditions was also run to verify
the results. The transient analysis run results are shown in figures 5-23
through 5-26. The transient analysis run was stopped at .5 seconds, by which
time the transient effect had almost completely died out, as can be seen from
these plots.

The results are summarized in table 5-2 below. The steady state analysis values
in this table are exact numbers from the printout of the run. The transient
analysis run numbers, however, had to be estimated by reading the peak values in
the steady state region (.4 to .5 seconds) of figures 5-23 through 5-26.
Although it is hard to read the figures very accurately, again it is evident
that the steady state and transient analysis runs agree quite well.

Table 5-2. Demonstrator Model Results for Continual Rub with Dead Band

ual ero
, Transient
Maximum Vertical Displacement (inches) Analysis
Rotor at fan station .0234 .023 5-23
Case at fan station .0195 .019 5-24
Rotor at midpoint station .00649 .0066 5-25
Case at midpoint station .60564 ' .0057 5-26
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5.3.3.3 (Continual Rub with Dead Band Not Equal to'Zerg

Next, a steady state analysis test case was run for the demonstrator model where
the rub element, which was located at the fan, had an input dead band not equal
to zero. The magnitude of the input dead band compared to the minimum and
maximum relative displacement magnitudes was such that a continual rub resulted
for this case. A transient analysis run taken to steady state conditions was
also run to verify the results. The transient analysis run results are shown in
figures 5-27 through 5-30. The transient analysis run was stopped at .56
seconds, by which time the transient effect had almost completely died out, as
can be seen from these plots.

The results are summarized in table 5-3 below. The steady state analysis values
in this table are exact numbers from the printout of the run. The transient
analysis run numbers, however, had to be estimated by reading the peak values in
the steady state region (.4 to .56 seconds) of figures 5-27 through 5-30.
Although it is hard to read the figures very accurately, again it is evident
that the agreement between the steady state and transient analysis runs is
superb.

Table 5-3. Demonstrator Model Results for Continual Rub with Dead Band

Not Egqual to Ze

Transient

Maximum Vertical Displacement (inches) Analysis

Steady State [ransient Fiqure

tio Analysis Run Analysis Run Number
Rotor at fan station .0303 .030 5-27
Case at fan station .0227 .022 5-28
Rotor at midpoint station .00789 .0079 5-29
Case at midpoint station .00672 .0067 5-30

Also shown are some orbit plots for this case, which are helpful in visualizing
what is happening. The first orbit plot, figure 5-31, shows the vertical versus
the horizontal displacement of the points located on the rotor and case at the
fan station (these points are also the joints of the rub element). This plot is
for the transient analysis run, and covers through .05 seconds of the run in
order to show clearly the early transient portion of the run. The displacements
are 0 at time = 0 (time = O represents the time of fan blade loss), then
displacements increase as is shown by the movement out from the center of the
plot. As can be seen from the plot, the rotor and case points move almost
parallel to one another, with the rotor displacement larger than the case
displacement.
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The next orbit plot, figure 5-32, shows only the point on the rotor at the fan
station, but for the full 0 through .56 seconds of the transient analysis run.
Likewise, figure 5-33 shows only the point on the case at the fan station for
the full O through .56 seconds of the transient analysis run. Displacements
start at 0 at time = 0 (the center of the plot), then there is an overshoot
where for just a revolution or two the displacements are appreciable higher than
the rest of the run, after which the motion settles into a steady state phase at
a constant radius. This is the same pattern exhibited by figures 5-27 through
5-30.

Next, figure 5-34, like figure 5-32, shows only the point on the rotor at the
fan station. Likewise, figure 5-35, 1ike figure 5-33, shows only the

point on the case at the fan station. However, figures 5-34 and 5-35 were
generated from the steady state analysis run, whereas figures 5-32 and 5-33 were
generated from the transient analysis run. Since figures 5-34 and 5-35 plot
steady state motion only, the transient effects of displacement build-up and
overshoot are gone, and what is left is a circular orbital path. By overlaying
figure 5-34 on top of figure 5-32, and figure 5-35 on top of figure 5-33, we can
see that the steady state analysis results agree very well with the transient
analysis results after the transient effect has died out.

Figure 5-36 shows a different type of orbit plot. This plot is for the
transient analysis run for the full 0 through .56 seconds. However, this plot
shows the relative displacement components for the rub element on the x and y
axes, whereas the earlier orbit plots showed the actual physical displacement
components of the two joints of the rub element on the x and y axes. (The
relative displacement for the rub element is defined as the displacement of
joint I of the rub element minus that of joint J). One thing that is neat about
this type of orbit plot is that we also show the clearance circie on this plot.
The radius of the clearance circle is the dead band which was inputted, in this
case .005 inches. As can be seen, the dead band is exceeded (it rubs) for alil
except the very early portion of the transient analysis run.

Finally, figure 5-37 gives the same type of orbit plot as figure 5-36, except
that figure 5-37 was generated from the steady state analysis run, whereas
figure 5-36 was generated from the transient analysis run. Again, by overlaying
figure 5-37 on top of figure 5-36, we can see that the steady state analysis
results agree very well with the transient analysis results after-the transient
effect has died out.

Note that this case produced circular orbital paths (at least after the
transient effect died out). The reason that circular orbital paths are produced
is that the input stiffnesses of the physical connecting elements are the same
in the vertical and horizontal directions, so neither direction has a tendency
to displace more than the other under the influence of the unbalance load.
Incidentally, the cases discussed in sections 5.3.3.1 and 5.3.3.2 also had input
stiffnesses that were the same in the vertical and horizontal directions, and
those cases would also produce circular orbital plots similar to the ones shown
in this section.
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5.3.3.4 Int jttent Rub

Finally, a steady state analysis test case was run where an intermittent rub
resulted. An intermittent rub occurs less frequently than no rub or a continual
rub, and the input had to be adjusted carefully to make it happen. The previous
demonstrator test cases had the same spring constants in the vertical and
horizontal directions. However, this results in circular orbital paths (see
figures 5-31 through 5-37). Circular orbital paths will not cause an
intermittent rub, because the clearance circle is also circular, and a circular
orbital path will either lie within the clearance circle (no rub) or outside the
clearance circle (continual rub).

To cause an intermittent rub, the mount springs for the casing (springs 1 and 2
in figure 5-9) were made 5 times more stiff in the vertical direction than in
the horizontal direction. Stiffer casing springs in the vertical direction than
the horizontal direction might result, for instance, from an engine attached to
a wing via a pylon. This discrepancy in spring rates in the two directions
forced the orbital path to take an elliptical shape. The input dead band was
then adjusted so that the orbital ellipse intersected the clearance circle at
four points, causing an intermittent rub, as illustrated in figure 5-18.

As for the previous test cases for the demonstrator model with one rub element,
a transient analysis run taken to steady state conditions was made for
comparison. The transient analysis results are shown in figures 5-38 through
5-45. The transient analysis run was stopped at .56 seconds, by which time the
transient analysis effect had almost died out, as can be seen from these plots.
Plots for the horizontal direction displacements are included a well as those
for the vertical. Only the vertical direction displacement plots were included
for the test cases described in sections 5.3.3.1, 5.3.3.2, and 5.3.3.3, because
the vertical and horizontal displacement plots were essentially the same for
those test cases due to the circular orbital paths.

The results are summarized in table 5-4 on page 191. For the test cases
described in sections 5.3.3.1, 5.3.3.2, and 5.3.3.3, the maximum horizontal
displacements and maximum vertical displacements were the same since the orbital
paths were circular. Therefore, only the maximum vertical displacement results
were tabulated for those test cases. However, for the intermittent rub test
case the orbital path is elliptical, and the maximum horizontal displacements
are much larger than the maximum vertical displacements. Therefore, both
vertical and the horizontal displacement results are summarized in table 5-4.
The steady state analysis values in this table are exact numbers from the
printout of the run. The transient analysis run numbers, however, had to be
estimated by reading the peak values in the steady state region (.4 to .56
seconds) of figures 5-38 through 5-45.

This test case provides the most difficult challenge for the steady state

analysis to meet. As is seen from table 5-4, agreement between the steady state
and transient analysis runs is very good for most point and directions. However,
agreement is not as good as for the test cases of sections 5.3.3.1, 5.3.3.2, and
5.3.3.3, and agreement is poor for one point and direction (midpoint of rotor in
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the vertical direction).

Table 5-4. Demonstrator Mode]l Results with Intermittent Rub

Transient
imum Displacement (inches Analysis
eady Stat Iransient Figure
Location Direction Analysis Run Analysis Run Number
Rotor at fan station Horizontal .03905 .039 5-38
Rotor at fan station Vertical .00479 .0045 5-39
Case at fan station Horizontal .02961 .030 5-40
Case at fan station Vertical .00149 .0017 5-41
Rotor at midpoint station Horizontal .00698 .0067 5-42
Rotor at midpoint station Vertical .00148 .0030 5-43
Case at midpoint station Horizontal .00596 .0060 5-44
Case at midpoint station Vertical .00076 .0008 5-45

The reason that this test case does not agree as well as the previous test cases
has to do with the interaction between the rotor and case resulting from the rub
element. For a transient analysis run, the rub element works as follows. For a
good portion of the orbit, the clearance circle is not exceeded, and the rub
element provides no force. However, twice during each orbit the clearance
circle is exceeded and a rub element force is exerted on the rotor and case.
This on/off rub force has a complex effect on the vibration of the rotor and the
case. Rather than just first harmonic vibration, involving the terms coswt and
sinzt, gigher order terms involving cos2ut, sin2wt, cos3wt, sin3wt, etc. may be
produced.

Looking at the transient analysis response plots for this case, figures 5-38,
5-39, 5-40, and 5-44 appear to involve only simple first harmonic vibration,
with a frequency of vibration w equalling the forcing frequency, which in this
case is the rotor speed (3000 rpm). However, in figures 5-41, 5-42, 5-43, and
5-45, two frequencies of vibration are observed - the forcing frequency of 3000
rpm and also three times that (9000 rpm). So, in addition to first harmonic
vibration, involving the terms coswt and sinwt, we have third harmenic
vibration, involving the terms cos3wt and sin3wt.

Steady state analyses are different. For steady state analyses, the technique

of harmonic averaging is used to find the rub element forces, as explained in
section 5.2 of volume 1. Rather than apply the rub force in an on/off manner,

c ,0) 191



for steady state analyses the rub force is smeared over the entire orbit. All
higher order terms are neglected as part of harmonic averaging, leaving only the
first harmonic terms. For this reason, for intermittent rubs the transient
analysis taken to steady state conditions provides a more accurate
representation of the true characteristics than does the steady analysis.

This is also the reason for the poor agreement between the steady state and
transient analyses for the rotor at the midpoint station in the vertical
direction. The transient analysis response plot for the rotor at the midpoint
station in the vertical direction (figure 5-43) shows that the 9000 rpm mode
(the third harmonic mode) is very active for this particular point and
direction. Herein lies the rub (pardon the pun), since this mode is completely
neglected in the steady state analysis. This was the only one of the eight
transient analysis response plots where this mode was so very strong compared to
the first harmonic mode, which explains why this point and direction was the
only one to have poor agreement. Note that this point and direction are of very
littie importance, since the vibration levels are small compared to the
vibration in the horizontal direction.

Orbit plots for this case are included in figures 5-46 through 5-52. These
orbit plots are similar to the ones in section 5.3.3.3, except that the orbital
paths are elliptical in shape rather than circular. Section 5.3.3.3 discusses
the characteristics of the orbit plots in detail.

The steady state analysis orbital paths for this case agree very well with the
transient analysis orbital paths after transient effects have died out, as can
be seen by comparing figure 5-49 with figure 5-47, figure 5-50 with figure 5-48,
and figure 5-52 with figure 5-51. One difference, however, is that the steady
state analysis orbital paths are true ellipses, whereas the transient analysis
orbital paths after the transient effect has died out are somewhat distorted
ellipses. This distortion results from the complex interaction between the
rotor and case transmitted through the rub element, with the rub element force
being activated when the orbit exceeds the clearance circle, and deactivated
when inside the clearance circle. The transient analysis orbit plots, of
course, are more representative of the true orbital paths, because the steady
state analysis is an idealization which does not account for the full complexity
of the rotor and case interaction.

In summary, excellent results were obtained in verifying the steady state
analysis option of the TETRA 2 computer program. Exact agreement between TETRA
2 and closed form equations was obtained for simple linear one and two
degree-of-freedom cases. Also, for simple nonlinear one and two
degree-of-freedom test cases (with one and two rub elements, respectively),
excellent agreement was obtained between TETRA 2 and small computer programs
which were written independently. Using the demonstratar model, very good
agreement was obtained between TETRA 2 and the NOVAS computer program for a
frequency sweep with no rub elements. Finally, for the demonstrator model with
one rub element, very good agreement between the steady state and transient
analysis options of TETRA 2 was obtained for each of four possible rub
categories.
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