
Introduction to JSR 168—The Java Portlet Specification

Whitepaper Introduction to JSR 168—The Java Portlet Specification On the Web http://developer.sun.com

Introduction to JSR 168—The Portlet Specification ..1

Introduction ..1

Advantages of The Portlet Specification ..1

What is The Portlet Specification? ..2

Container Contract ..2

Portlet Mode and Window State ..3

Portlet Preferences ..3

User Information ..3

Packaging and Deployment ..3

Security ..4

JSP Tag Library ..4

The Weather Portlet ..5

Figure 1. The Weather Portlet ..5

Figure 2. Editing Preferences ..5

The init() Method ..6

The doView() Method ..7

The doEdit() Method ..9

The doHelp() Method ..10

The processAction() Method ..11

The WeatherPreferencesValidator Class ..12

The portlet.xml Deployment Descriptor ..13

The web.xml Deployment Descriptor ..14

What The Portlet Specification

Does Not Address ..14

Portlet Aggregators ..14

Pre-built Portlets ..14

Administration and Portlet Deployment ..14

Common Portlet Functionality ..15

Miscellaneous ..15

Portlet Specification Adoption ..15

Porting Existing Portal Server Integrations ..15

Sun ONE Portal Server Adoption ..15

Table of Contents

Introduction to JSR 168—The Java Portlet Specification P1

Introduction to JSR 168—The Java Portlet Specification

Introduction

The Java™ Specification Request 168 Portlet Specification (JSR 168) standardizes how components for portal servers are
to be developed. This standard has industry backing from major portal server vendors.

An example, the Weather Portlet, is provided to demonstrate the key functionality offered by the Portlet API:
action request handling, render request handling, render parameters, dispatching to JavaServer Pages™ (JSP™) technology,
portlet tag library, portlet URLs, portlet modes, portlet cache and portlet preferences.

This white paper is intended for the following audiences:

• Developers who write applications for portal servers.

• Employees of companies that deliver portal components or add-ons (i.e. portal tool vendors).

• Information Technology managers who use or are evaluating portal servers.

Advantages of The Portlet Specification

The specification defines a common Portlet API and infrastructure that provides facilities for personalization, presentation,
and security. Portlets using this API and adhering to the specification will be product agnostic, and may be deployed
to any portal product that conforms to the specification.

IT Managers benefit from the ability to support multiple portal products, thus accommodating the unique busi-
ness needs of various departments and audiences. The compliant portlets can be deployed to all compliant portal
frameworks without extensive engineering changes.

For developers, the specification offers code reusability. Developers who want to portal enable their applications
can create and maintain one set of JSR 168 compliant portlets. These portlets can be run on any JSR 168 Portlet
Specification compliant portal server with few, if any, modifications.

Because this API is specifically designed for portlet creation, developers will benefit from extra functionality
beyond the standard servlet functionality. The next section, “What is the Portlet Specification,” discusses these bene-
fits in detail.

This standard also creates a market opportunity for portal tools: IDE’s, test tools, performance measurement tools
and reporting interfaces can be marketed to a wider audience. Portal tool companies can support all compliant portal
servers without additional engineering and support costs.

P2 What is The Portlet Specification? ©2003 Sun Microsystems, Inc.

What is The Portlet Specification?

The Portlet Specification addresses the following topics, all covered in this section:

• The portlet container contract and portlet life cycle management

• The definition of window states and portlet modes

• Portlet preferences management

• User information

• Packaging and deployment

• Security

• JSP tags to aid portlet development

Container Contract

Much like Java™ Servlet extensions run inside a servlet container, The Portlet Specification defines a portlet container
that manages portlets. A contract is defined for the container to call methods during a portlet’s life cycle. The portlet
developer can implement these methods to provide the desired functionality.

The life cycle methods called directly by the container are:

init() Called when the portlet is instantiated by the container. Intended to contain logic that prepares
the portlet to serve requests.

destroy() Called when the container destroys the portlet. Intended to contain logic that cleans up when
portlet is no longer needed or the server shuts down.

processAction() Called after the user submits changes to a portlet. Intended to process input from a user action.

render() Called whenever the portlet is redrawn by the desktop.

In addition to the methods above, which are called directly by the container, a GenericPortlet class is provided
that implements the render() method and delegates the call to more specific methods to display the portlet based
on its mode. Developers can extend GenericPortlet and implement as many of these specialized render methods as
are necessary for their portlet. These methods are:

doView() Called by render() when the portlet is in View mode. Intended to contain logic that displays the
View page for the portlet.

doEdit() Called by render() when the portlet is in Edit mode. Intended to contain logic that displays the
edit page for the portlet.

doHelp() Called by render() when the portlet is in Help mode. Intended to contain logic that displays the
help page for the portlet.

Introduction to JSR 168—The Java Portlet Specification P3©2003 Sun Microsystems, Inc.

The processAction(), render(), and specialized methods called by render() accept portlet requests and
response objects similar to those passed to the Servlet service() method. Using these objects, the portlet class
can do the following:

• Maintain state and communicate with other portlets, servlets, and JSP’s using the portlet session facilities.

• Receive user input from forms displayed in the portlet.

• Create the content for display by the Portal desktop that is sent back to the client via the response object.

• Query portal and portlet state information.

Portlet Mode and Window State

There are two main state items managed by the container for each portlet: portlet mode and window state. This is one
of the differences between portlets and servlets.

Each portlet has a current mode, which indicates the function the portlet is performing. As implied by the methods
mentioned above, the modes defined in The Portlet Specification are View, Edit, and Help. These modes are used by the
default render method to decide which lower level display method to call. The mode can also be queried anywhere in
the portlet code using the Portlet API to conditionally behave in a manner that is dependent on the current mode.

Window state indicates the amount of portal page space that will be assigned to a portlet. The portlet can use
this information to decide how much information to render. The three window states for each portlet are minimized,
maximized, or normal.

Portlet Preferences

Portlets are often configured to provide a custom view or behavior for different users. These configurations are represented
as a persistent set of name-value pairs and are referred to as portlet preferences. In The Portlet Specification, the portlet
container is responsible for retrieving and storing these preferences through the PortletPreferences interface via
the getValues() and setValues() methods respectively.

Portlets have access to the PortletPreferences object when processing requests, but may only modify prefer-
ence attributes during a processAction invocation. Prior to the end of the processAction method, the store()
method must be invoked for changes to be permanent.

To validate preference values, implement the PreferencesValidator class. During runtime, the store()
method invokes the validate method of the validator before writing changes to the data store.

User Information

The Portlet Specification provides a mechanism for portlets to access user information—such as name, email, phone,
and address—in the portlet application’s deployment descriptor, and then access them through an unmodifiable Map
object. The Map object can be retrieved through the USER_INFO constant defined in the Request interface. When the
Java standard for user information is defined, this mechanism will be discontinued in favor of it.

Packaging and Deployment

The Portlet Specification specifies the packaging and deployment of portlets as part of standard Web Application
Archive (WAR) files that may contain other web components, such as JSPs and servlets.

In addition to the web.xml deployment descriptor now found in WAR files, there is an additional portlet.xml
descriptor that defines all portlets and portlet-related configurations. An XML schema included in The Portlet Specification
defines the standard elements for portlet configuration stored in the portlet.xml file.

P4 User Information ©2003 Sun Microsystems, Inc.

It is up to each portal server vendor to provide a tool that parses the portlet descriptor file and deploys the
portlet. It is likely that these tools will exist in GUI form as well as in command line form. Developers will be able
to integrate the command line deployment tools with the Apache Ant tool. This opens up additional development
environment possibilities as most development tools provide an interface for Apache Ant. Sun plans to include a
deployment tool with Sun™ ONE Portal Server that automatically creates a display file in the portal directory and shows
the portlet in the administration application.

Security

The Portlet Specification includes several features to help developers create secure portlets.

In the portlet deployment descriptor, a flag can be set to restrict the portlet to running only over HTTPS. This is
appropriate for portlets that contain confidential information that should be encrypted when sent over the network.

In addition, the Portlet API includes authentication facilities for querying user and role information. This allows
developers to programmatically control security by introducing business logic based on a user’s information and role.
Similar to other Java 2™ Platform, Enterprise Edition (J2EE™) technologies, The Portlet Specification does not address how
users and roles are implemented, leaving it to each vendor to apply its own solution. It is likely that the implementations
will range from simple file-based user configuration to robust solutions leveraging enterprise directory servers.

The security features addressed by the first version of The Portlet Specification are adequate to ensure that
portlets can be used for any purpose, regardless of data sensitivity. Nevertheless, future versions will likely have
expanded security and authentication features.

JSP Tag Library

A JSP Tag library is included to help display portlet pages with JSP technology. For example, a custom JSP tag
automatically declares the portlet request and response objects so they can be used within the JSP. Another JSP tag
helps construct URL’s that refer back to the portlet.

Introduction to JSR 168—The Java Portlet Specification P5©2003 Sun Microsystems, Inc.

The Weather Portlet

The Weather Portlet is a sample portlet for displaying the temperature on a portal page. This section includes detailed
examination of the code, to demonstrate the key Portlet API functionality.

Figure 1. The Weather Portlet

The Weather portlet displays temperature information for a given zip code. Users may also query temperatures for
alternate zip codes without any customization.

Figure 2. Editing Preferences

Users may customize their default zip code and the units for displaying the temperature.

P6 The Weather Portlet ©2003 Sun Microsystems, Inc.

This sample portlet retrieves weather information from a Web Service using JAX-RPC. For brevity, the example focuses
on the portlet code; the JAX-RPC classes are not fully described.

The init() Method

The first method of the portlet that is called is the init() method. The init() method is called to initialize the portlet
before the portal sends any request to it.

File: WeatherPortlet.java

public class WeatherPortlet extends GenericPortlet {

private WeatherForecasterService _weatherService;

public void init(PortletConfig config)

throws PortletException, UnavailableException {

super.init(config);

String weatherWSURL = config.getInitParameter("weather.url");

if (weatherWSURL==null) {

throw new UnavailableException(

"Weather Web Service URL not found",-1);

}

try {

Context ctx = new InitialContext();

_weatherService = (WeatherForecasterService)

ctx.lookup("java:/comp/env/WeatherForecaster");

}

catch (Exception ex) {

throw new UnavailableException(

"Weather Service can not be initialized");

}

}

...

}

In the init() method, the Weather Portlet obtains the weather Web Service URL from an init parameter and initial-
izes the JAX-RPC service object to it. If the init parameter is missing, or the JAX-RPC service cannot be initialized, the
method throws an UnavailableException and the portlet is not available to serve requests.

Introduction to JSR 168—The Java Portlet Specification P7©2003 Sun Microsystems, Inc.

The doView() Method

Assuming the portlet initializes successfully, when users go to the portal (and have the Weather portlet in their page)
the doView() method is invoked to render the content of the portlet. This method is called when the portlet is in
View mode.

File: WeatherPortlet.java

public class WeatherPortlet extends GenericPortlet {

...

public void doView(RenderRequest rReq, RenderResponse rRes)

throws PortletException, IOException {

rRes.setContentType("text/html");

PortletPreferences prefs = rReq.getPreferences();

String zip = rReq.getParameter("zip");

if (zip==null) {

zip = prefs.getValue("zip","10000");

}

String unit = prefs.getValue("unit","F");

try {

WeatherForecaster weatherForecaster =

_weatherService.getWeatherForecasterPort();

Weather weather =

weatherForecaster.getWeather(zip,unit.charAt(0));

weatherForecaster = null;

rReq.setAttribute("weather",weather);

PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(

"/weather/weatherView.jsp");

rd.include(rReq,rRes);

}

catch (Exception ex) {

rRes.setProperty("expiration-cache","0");

PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(

"/weather/weatherServiceUnavailable.html");

rd.include(rReq,rRes);

}

...

}

First, the doView method sets the content type for the response. It then checks for any render parameters with a zip
code to be used. If zip is not supplied as a parameter, then the value stored in the Portlet Preferences is used. Unit is
retrieved from the portlet preference. Once the zip code and the unit have been determined, it invokes the Weather
Web service. The Weather object is then stored in the request attributes under the key “weather”. A request

P8 The Weather Portlet ©2003 Sun Microsystems, Inc.

dispatcher to /weather/weatherView.jsp is obtained and the request is dispatched to it. If the invocation of the
Weather Web service fails, the portlet renders an error page through the request dispatcher. Before invoking the dis-
patch, the cache is set to 0 (no cache) to ensure that, upon the next render request, the portlet will invoke the
Weather Web service again.

File: weatherView.jsp

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<h3>Weather Information</h3>

<p>

City: <jsp:getProperty name="weather" property="city"/>

<p>

Zip Code: <jsp:getProperty name="weather" property="zip"/>

<p>

Time: <jsp:getProperty name="weather" property="time"/>

<p>

Temperature unit: <jsp:getProperty name="weather" property="unit"/>

<p>

Current Temperature: <jsp:getProperty name="weather" property="currentTemp"/>

<p>

Low: <jsp:getProperty name="weather" property="minTemp"/>

<p>

High: <jsp:getProperty name="weather" property="maxTemp"/>

<p>

<form method="post" action="<portlet:actionURL/>">

Enter Zip Code:

<input type="text" name="zip" value="">

<input type="submit" name="submit" value="Search">

</form>

<p>

weatherView.jsp first defines the portlet tag library. Then, using the JSP native tag library, it creates content with
weather information by querying the Weather object stored in the request attributes. Finally, it creates a form that
allows users to enter a zip code other than the default. This form uses the actionURL tag from the portlet tag library.
Portlets must use PortletURL’s actionURL portlet tag or renderURL portlet tag, to create links targeted to them.
This is required because portlets are not bound to a URL, but rather invoked through the portal.

Introduction to JSR 168—The Java Portlet Specification P9©2003 Sun Microsystems, Inc.

The doEdit() Method

When the user clicks on the portlet title bar’s “edit” button, it changes the portlet mode to EDIT and invokes the
doEdit() method.

File: WeatherPortlet.java

public class WeatherPortlet extends GenericPortlet {

...

public void doEdit(RenderRequest rReq,RenderResponse rRes)

throws PortletException, IOException {

rRes.setContentType("text/html");

PortletPreferences prefs = rReq.getPreferences();

String zip = prefs.getValue("zip","1000");

String unit = prefs.getValue("unit","F");

rReq.setAttribute("zip",zip);

rReq.setAttribute("unit",unit);

String error = rReq.getParameter("error");

if (error!=null) {

error = "ERROR: "

+error+"</error>";

}

else {

error = "";

}

rReq.setAttribute("error",error);

PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(

"/weather/weatherEdit.jsp");

rd.include(rReq,rRes);

}

...

}

P10 The Weather Portlet ©2003 Sun Microsystems, Inc.

First, the doEdit() method sets the content type for the response. It then retrieves the current zip code and unit
stored in the Portlet Preferences and stores them in the request attributes. It also checks if there is an error message
from a previous request and stores it in the request attributes. A request dispatcher to /weather/weatherEdit.jsp is
obtained and the request is dispatched to it.

File: weatherEdit.jsp

<%@ page import="javax.portlet.RenderRequest" %>

<%@ page import="javax.portlet.RenderResponse" %>

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<portlet:defineObjects/>

<h3>Edit Weather Preferences</h3>

<p>

<%=renderRequest.getAttribute("error")%>

<p>

<form method="post" action="<portlet:actionURL/>">

ZIP: <input type="text" name="zip" value="<%=renderRequest.getAttribute("zip")%>">

<p>

UNIT: <input type="text" name="unit" value="<%=renderRequest.getAttribute("unit")%>">

<p>

<input type="submit"> <input type="reset">

</form>

Using scriptlets, weatherEdit.jsp creates a form to edit the zip and unit portlet preferences with the current values
pre-populated. It also displays any error messages. As in the weatherView.jsp, the URL for the action of the form is
created with the actionURL tag of the portlet tag library.

The doHelp() Method

When the user clicks the “help” button on the portlet titlebar, it changes the portlet’s mode to HELP and invokes the
doHelp() method.

File: WeatherPortlet.java

public class WeatherPortlet extends GenericPortlet {

...

public void doHelp(RenderRequest rReq, RenderResponse rRes)

throws PortletException, IOException {

rRes.setContentType("text/html");

PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(

"/weather/weatherHelp.html");

rd.include(rReq,rRes);

}

...

}

This method sets the content type and uses a request dispatcher to display the portlet’s Help page.

Introduction to JSR 168—The Java Portlet Specification P11©2003 Sun Microsystems, Inc.

The processAction() Method

The processAction() method is invoked when the user submits one of the forms rendered by the portlet (by the
doView() or the doEdit() method.)

File: WeatherPortlet.java

public class WeatherPortlet extends GenericPortlet {

...

public void processAction(ActionRequest aReq, ActionResponse aRes)

throws PortletException, IOException {

PortletPreferences prefs = aReq.getPreferences();

String zip = aReq.getParameter("zip");

if (aReq.getPortletMode().equals(PortletMode.VIEW)) {

if (zip==null) {

zip = prefs.getValue("zip","10000");

}

aRes.setRenderParameter("zip",zip);

}

else

if (aReq.getPortletMode().equals(PortletMode.EDIT)) {

boolean editOK;

String errorMsg = null;

String unit = aReq.getParameter("unit");

prefs.setValue("zip",zip);

prefs.setValue("unit",unit);

try {

prefs.store();

editOK = true;

}

catch (ValidatorException ex) {

editOK = false;

errorMsg = ex.getMessage();

}

if (editOK) {

aRes.setPortletMode(PortletMode.VIEW);

}

else {

aRes.setRenderParameter("error",

URLEncoder.encode(errorMsg));

}

}

...

}

First, it obtains the PortletPreferences object. If the portlet is in VIEW mode, it checks if the zip code and units
parameters are missing. If so, it sets the local variable to the default value. Finally, it sets the zip code as the render
parameter, which will be received by subsequent invocations of the doView() method.

P12 The Weather Portlet ©2003 Sun Microsystems, Inc.

If the portlet is in EDIT mode, the new values are set into the Portlet Preferences object. The store() method of
the preferences object stores the new values. The store() method invocation will fail if the values for zip code and
units are invalid (this is explained below). If the store fails, an error flag is set and the error message is stored in the
errorMsg local variable. If the EDIT action is successful, the portlet mode is changed to VIEW in the ActionResponse.
Otherwise, the error message is set in the request attributes and the portlet remains in EDIT mode.

The WeatherPreferencesValidator Class

A portlet may define a validator class in its deployment descriptor. This object is invoked by the container when the
store() method of the portlet preferences is called. If the validator throws an exception, the store() method is
cancelled. If not, the new portlet preferences are saved to the persistent store.

File: WeatherPreferencesValidator.java

public class WeatherPreferencesValidator implements PreferencesValidator {

public void validate(PortletPreferences preferences)

throws ValidatorException {

String zip = preferences.getValue("zip",null);

String unit = preferences.getValue("unit",null);

if (zip==null || unit==null) {

Set set = new HashSet();

set.add("zip");

set.add("unit");

throw new ValidatorException(

"preferences must contain zip and unit keys",set);

}

try {

int i = Integer.parseInt(zip);

if (i<0 || i>99999) {

throw new Exception();

}

}

catch (Exception ex) {

Set set = new HashSet();

set.add("zip");

throw new ValidatorException(

"zip must be a valid Zip code",set);

}

if (!unit.equals("F") && !unit.equals("C")) {

Set set = new HashSet();

set.add("unit");

throw new ValidatorException(

"unit must be 'F' (Fahrenheit) or 'C' (Celsius)",set);

}

}

}

This validator ensures that the zip code entered is a valid US zip code and that the units are Fahrenheit or Celsius.

Introduction to JSR 168—The Java Portlet Specification P13©2003 Sun Microsystems, Inc.

The portlet.xml Deployment Descriptor

The portlet.xml deployment descriptor defines the meta information the portlet container needs to run the portlet.
For each portlet definition in the portlet.xml deployment descriptor, the portlet container will instantiate a single
object of that class to serve all the requests targeted to that portlet. This is identical to a servlet container’s behavior.

File: portlet.xml

<portlet-app>

<portlet>

<portlet-name>WeatherPortlet</portlet-name>

<portlet-class>sample.portlet.WeatherPortlet</portlet-class>

<init-param>

<name>weather.url</name>

<value>java:/comp/env/WeatherProvider</value>

</init-param>

<expiration-cache>3600</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>EDIT</portlet-mode>

<portlet-mode>HELP</portlet-mode>

</supports>

<portlet-info>

<title>WeatherPortlet</title>

</portlet-info>

<portlet-preferences>

<preference>

<name>zip</name>

<value>95054</value>

</preference>

<preference>

<name>unit</name>

<value>F</value>

</preference>

<preferences-validator>

sample.portlet.WeatherPreferencesValidator

</preferences-validator>

</portlet-preferences>

</portlet>

</portlet-app>

The portlet-name, portlet-class and init-param elements define the name, class and initial parameters for
the portlet.

The expiration-cache element defines how long (one hour in this example) the portal/portlet-container
should cache content created by the portlet. If the portlet does not set the expiration-cache property during a
render request, the value specified in the deployment descriptor will be used.

The supports element defines what content types the portlet supports and the modes supported for that con-
tent type. The portal/portlet-container will not invoke a portlet in modes the portlet has not defined as supported.

The portlet-info element defines information such as the default title for the portlet.

P14 The Weather Portlet ©2003 Sun Microsystems, Inc.

The portlet-preferences element defines the default values for the Portlet Preferences (zip and unit in this
example), as well as the validator class to use when invoking the store method on the PortletPreferences object.

The web.xml Deployment Descriptor

As portlet applications are extended web applications, they must include a web.xml file.

File: web.xml

<web-app>

<display-name>PortletApp Sample</display-name>

</web-app>

The web.xml file in this example simply defines the name of the web application.

What The Portlet Specification Does Not Address

The Portlet Specification is rather complete in addressing needs for developing individual portlets. However, it is
important to remember that portal servers usually offer additional functionality that is not addressed by The Portlet
Specification. It is also important for enterprises and service providers to consider such add-ons when deciding on a
specific portal server product.

Portlet Aggregators

Many developers want to format their portlets on the desktop in a specific way—as tables or tabs on the desktop, for
example. Sun™ Open Net Environment (Sun ONE) Portal Server software users are familiar with the Container Provider
that provides this display flexibility.

Each portal server vendor will implement its own aggregation and desktop customization features. The Portlet
Specification reference implementation provides a basic aggregation framework, which is simpler than those offered
by most commercial portal servers.

Pre-built Portlets

Many portal server products come with existing portlets that can be deployed and used without any customization.
However, besides the GenericPortlet, which is a convenience class for developers, The Portlet Specification does
not define any portlets that should be shipped with portal servers.

Administration and Portlet Deployment

Most portal server products provide an administrative interface to configure users, groups, security, and other infor-
mation. These administration interfaces may include facilities for portlet deployment. If not, a separate deployment
tool is required for deploying portlets.

Though the specification does stipulate a standard for packaging portlets in a WAR file, each portal server software
vendor must provide a mechanism for deploying the WAR files and administering the Portal. Tool vendors that wish to
distribute portlets that work with any compliant product should be aware that they must document any product-specific
steps to portlet deployment.

Introduction to JSR 168—The Java Portlet Specification P15©2003 Sun Microsystems, Inc.

Common Portlet Functionality

Portlet developers are accustomed to implementing certain functionality across a wide range of portlets—enabling
several portlets to identify the user from one login screen, for example. The Portlet Specification and the Portlet API do
not address this, but developers can still implement that functionality, using the portal’s user principal object.

Miscellaneous

Besides those already listed, portal server software vendors will continually attempt to differentiate themselves with
new features and product additions. For example, the Sun ONE Portal Server, Secure Remote Access product includes
the Netlet, patented secure remote access technology that allows users to access applications running inside a corporate
firewall from any browser, without compromising security. Another example is the Sun ONE Portal Server, Mobile Access
product that enables portlets such as email, calendar, address book and other enterprise content to be delivered to
mobile clients. The Portlet Specification, at least in its first iteration, will not address these specialized features.

Portlet Specification Adoption

As with any new standard, wide industry adoption of The Portlet Specification is key. Since all the major portal
vendors are actively participating in the Java Community ProcessSM forum for developing JSR 168, the specification is
positioned to become ubiquitous among portal server vendors. It also indicates that the portal server market is matur-
ing, similar to the application server marketplace after the J2EE Specification.

Key tasks for adopting the standard include:

• Transitioning from proprietary portlet API’s

• Ensuring proper product adoption

• Providing a well-defined timeline for specification release.

Porting Existing Portal Server Integrations

Before The Portlet Specification, each portal server product provided its own API for creating portlets. Portal server vendors,
and developers who have built portlets with these proprietary API’s, must continue to support their existing customers as
The Portlet Specification gains acceptance. Fortunately, the migration of proprietary portlets to specification-compliant
portlets does not necessarily mean completely rewriting existing code.

The reusability of existing code depends on the portlet’s modularity. With the Sun ONE Portal Server, if the code
using the Provider API is separate from the business logic, porting will be simpler, as it will be easy to locate the code
that needs to be modified. Otherwise, transitioning to the new specification will require more effort, since each call to
the Provider API will need to be located and modified throughout the code.

Though the existing Provider API does not provide all the functions of The Portlet Specification, it provides most of
them. Therefore, modifications around those functions will be mostly syntax changes. Portlets that make extensive
use of Provider API functions not included in The Portlet Specification will require more effort to port. Fortunately, Sun
will continue to support the Provider API, so the porting can be done gradually.

Sun ONE Portal Server Adoption

Sun Microsystems remains committed to the adoption of open standards, and has adopted The Portlet Specification.
Sun Microsystems will continue to support their existing Provider API (PAPI) for the next releases of the Sun ONE Portal
Server, to provide a comfortable migration path to The Portlet Specification for existing developers. The company will
solicit input from the developer community to make sure that transition issues are addressed.

P16 Additional Information ©2003 Sun Microsystems, Inc.

Additional Information

Java Specification Request 168 Web Site

http://www.jcp.org/en/jsr/detail?id=168

Sun ONE Portal Server Product Page

http://www.sun.com/software/products/portal_srvr/home_portal.html

Send email to

jsr168-interest@sun.com with questions about:

• The Sun ONE Portal Server Early Access Program

• Partnership opportunities

• Questions about The Portlet Specification.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 800 786-7638 or +1 512 434-1577 Web sun.com

Sun Worldwide Sales Offices: Argentina: +5411-4317-5600, Australia: +61-2-9844-5000, Austria: +43-1-60563-0, Belgium: +32-2-704-8000, Brazil: +55-11-5187-2100, Canada: +905-477-6745, Chile: +56-2-3724500, Colombia: +571-
629-2323 Commonwealth of Independent States: +7-502-935-8411, Czech Republic: +420-2-3300-9311, Denmark: +45 4556 5000, Egypt +202-570-9442, Estonia: +372-6-308-900, Finland: +358-9-525-561, France: +33-134-03-00-00,
Germany: +49-89-46008-0 Greece: +30-1-618-8111, Hungary: +36-1-489-8900, Iceland: +354-563-3010, India–Bangalore: +91-80-2298989/2295454; New Delhi: +91-11-6106000; Mumbai : +91-22-697-8111, Ireland: +353-1-8055-666,
Israel: +972-9-9710500 Italy: +39-02-641511, Japan: +81-3-5717-5000, Kazakhstan: +7-3272-466774, Korea: +822-2193-5114, Latvia: +371-750-3700, Lithuania: +370-729-8468, Luxembourg: +352-49 11 33 1, Malaysia: +603-21161888,
Mexico: +52-5-258-6100 The Netherlands: +00-31-33-45-15-000, New Zealand–Auckland: +64-9-976-6800; Wellington: +64-4-462-0780, Norway: +47 23 36 96 00, People’s Republic of China–Beijing: +86-10-6803-5588; Chengdu:
+86-28-619-9333 Guangzhou: +86-20-8755-5900; Shanghai: +86-21-6466-1228; Hong Kong: +852-2202-6688, Poland: +48-22-8747800, Portugal: +351-21-4134000, Russia: +7-502-935-8411, Saudi Arabia: +9661 273 4567, Singapore:
+65-6438-1888 Slovak Republic: +421-2-4342-94-85, South Africa: +27 11 256-6300, Spain: +34-91-596-9900, Sweden: +46-8-631-10-00, Switzerland–German: 41-1-908-90-00; French: 41-22-999-0444, Taiwan: +886-2-8732-9933, Thailand:
+662-344-6888 Turkey: +90-212-335-22-00, United Arab Emirates: +9714-3366333, United Kingdom: +44 (0)1252 420000, United States: +1-800-555-9SUN OR +1-650-960-1300, Venezuela: +58-2-905-3800, Or Online at
sun.com/store

SUN™ THE NETWORK IS THE C OMPUTER ©2003 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsytems, the Sun logo, Java, J2EE, and JSP, are trademarks, registered trademarks or servicemarks of

Sun Microsystems,Inc. in the

United States and other

countries. UNIX is a registered

trademark in the United States

and other countries, exclusively

licensed through X/Open

Company, Ltd. Printed in USA

7/03 FE2026-0/1K

