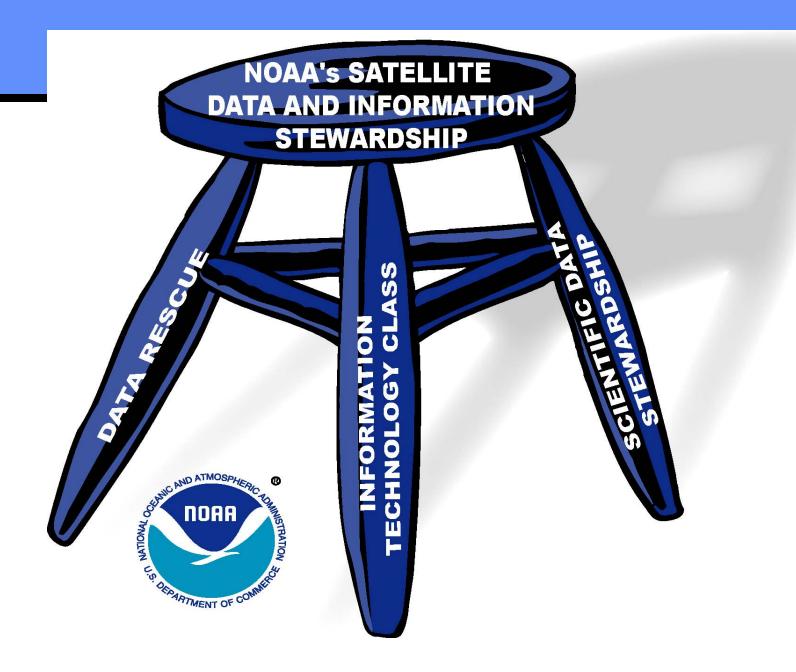
Comprehensive Large Array-data Stewardship System (CLASS) An Element of NOAA's Stewardship Enterprise

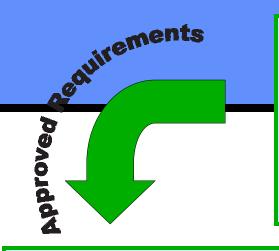
John J. Bates


And

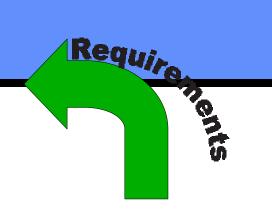
Richard G. Reynolds

NOAA

Agenda


- NOAA's Stewardship Enterprise
- Project Management
- CLASS System Overview
- Accomplishments to Date
- Current Hardware Architecture
- FY04 Goals
- "Final" Architecture

Scientific Data Stewardship Generic Guiding Principles


- Careful monitoring of observing system performance for long-term applications
- Generation of authoritative long-term records through validation of the calibration process, reprocessing, product generation and the blending of in situ and satellite measurements
- Provide state of the environment information for decision makers and place the current state in its historical context
- 4. Archive and access to fundamental measurements, products and metadata (supported by CLASS)
- 5. Data archaeology and improved use (supported by CDMP)

NOAA's Satellite, Data, and Information Stewardship FY03												
Data Sets and Observations		Data Rescue Stewardship		Information Technology Stewardship (CLASS)				Scientific Data Stewardship (SDS)				
								Observing System Performance Monitoring (Near Real-Time)		Climate Data Records (Long-Term Processing)		Assessing State of the Environment (Ongoing)
		Planning	Rescue	Ingest	Store	Access	Migrate	Bias Monitoring	Products, Assimilation, Metadata	Data Characterization	Sentinel Blended Products	Information for Decision Makers
Historical	In-Situ Research											
	Land											
	Ocean											
Current	DMSP											
	POES											
	ASOS											
	NEXRAD											
	GOES											
Future	MODEL OUTPUT											
	New In-Situ Land & Ocean											
	NPP											
	NPOESS											
	EOS											

Data Archive Board

(Tom Karl/NCDC)

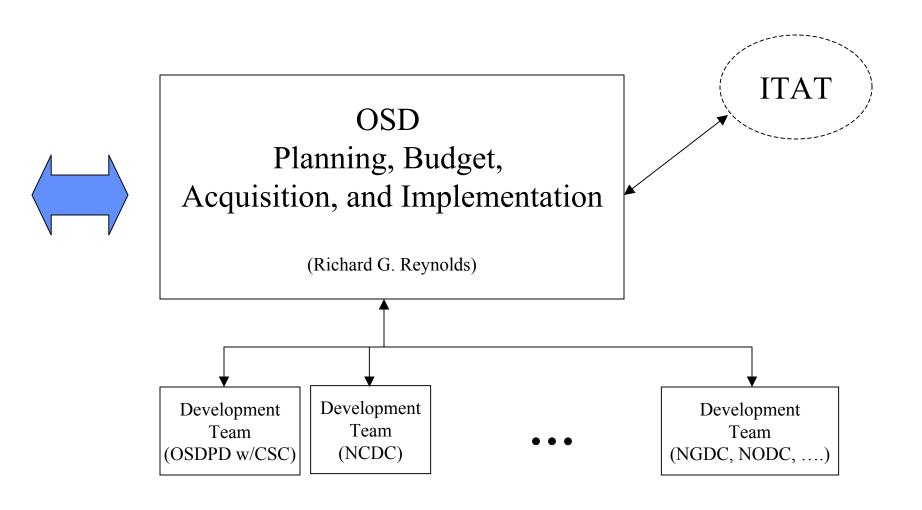
CLASS

(NVDS) (EOS)

(Richard G. Reynolds/OSD)

Archive Requirements Council (ARC)

(John Bates/NCDC)



OSDPD & Data Centers

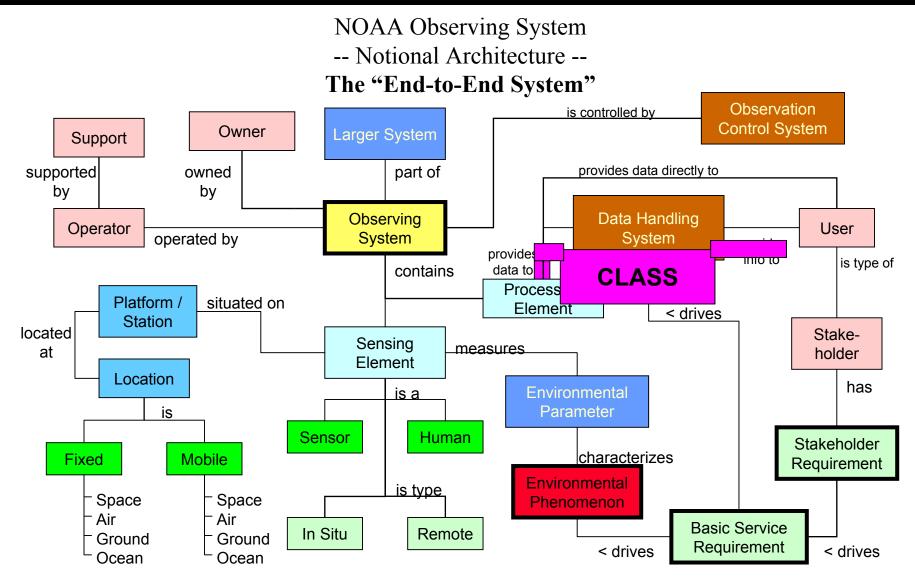
(w/ Contractors)

Project Management

Project Management (Continued)

Richard G. Reynolds (OSD) **Charles Bryant (OSD), Chung Wu (OSD)** Boulder **COAST Suitland Team West Virginia Team Team** Chung Wu (OSD) **Alex Kidd (OSDPD) Eric Kihn (NGDC) Tino Cremidis (CSC)** Scott McCormack (TMC) • E-commerce SABR **David Bowman (NCDC)** Order GOES Lead Integration Management Support Asheville DMSP Baseline system **System** operations Data Mining Central software repository •Ted Habermann (NGDC) System Architecture System integration Geospatial System testing databases Processes/policies Geotiff images

Metadata


Support Suitland

operations **operations**

CLASS Overview

- CLASS is a web-based data archive and distribution system for NOAA/NESDIS environmental data
- Archive ... ingest, storage, metadate management, and data quality assurance
- Distribution ... access, visualization, and data delivery
- Reprocessing for Scientific Data Stewardship
- CLASS is an extension of an 1995 operational system ... SAA (Satellite Active Archive)
 - Transition to the CLASS architecture began in 2001
- CLASS currently supports POES and DMSP data sets
 - GOES "campaign" is undergoing pre-release testing
- CLASS will support additional campaigns, broader user base, new functionality currently being defined
 - CLASS must concurrently support ongoing operations and new requirements implementation

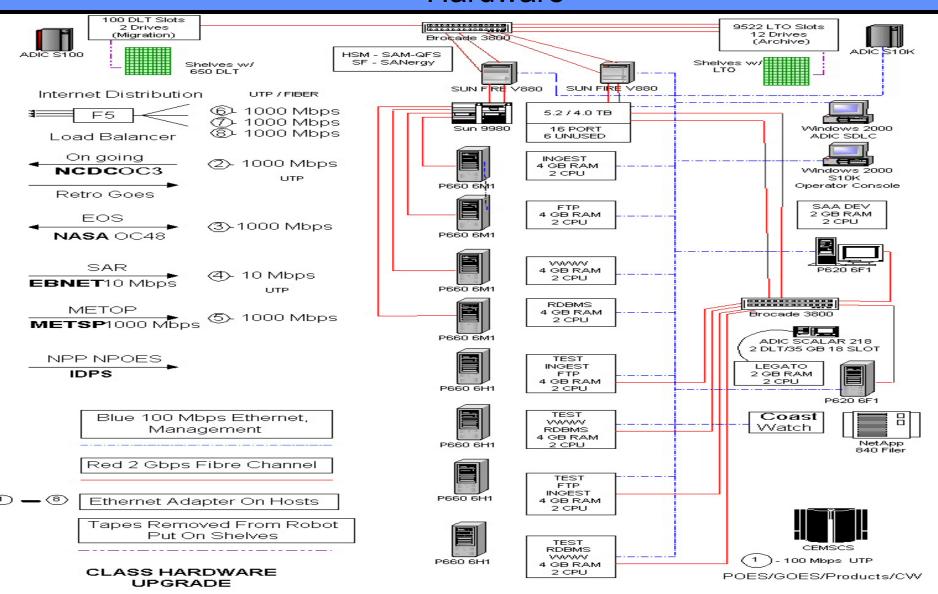
CLASS Overview (Continued)

CLASS Accomplishments through FY03

- Completed overall design of CLASS top-level architecture
- Prepared key system documentation
 - Requirements
 - ICDs
 - CONOPS
 - Management Plans and Procedures
- Established operational, integration and test, and development environments in Suitland
- Completed migration from SAA to CLASS
- Consolidated three web sites in one web-based user interface
- Enhanced ingest system to be independent of file type

CLASS Accomplishments through FY03 (Continued)

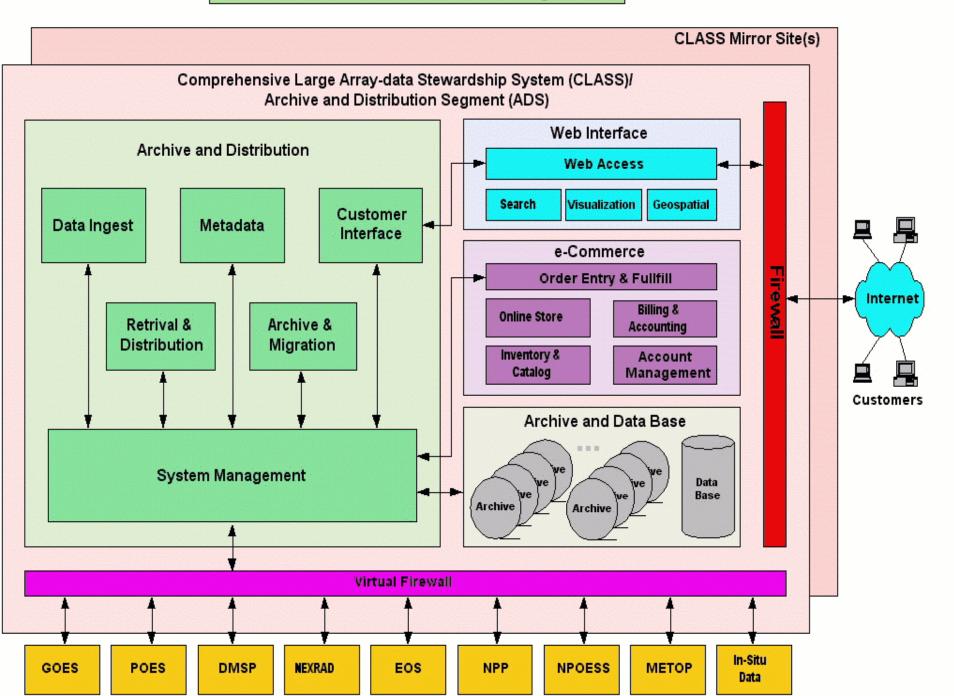
- Delivered baseline systems to Suitland and Asheville
- Migrated about 30TB of data from old tape archive system
- Added more than 50 new derived products to the archive
- Suitland CLASS Operational with POES and DMSP data sets
- Completed IJPS/Metop Archive and Access Segment Preliminary Design Review
- Coordinated with NPP/NPOESS for defining the IDPS to CLASS Interface Control Document (draft)
- Worked with NASA personnel to define requirements to archive EOS/MODIS Level-0 data.

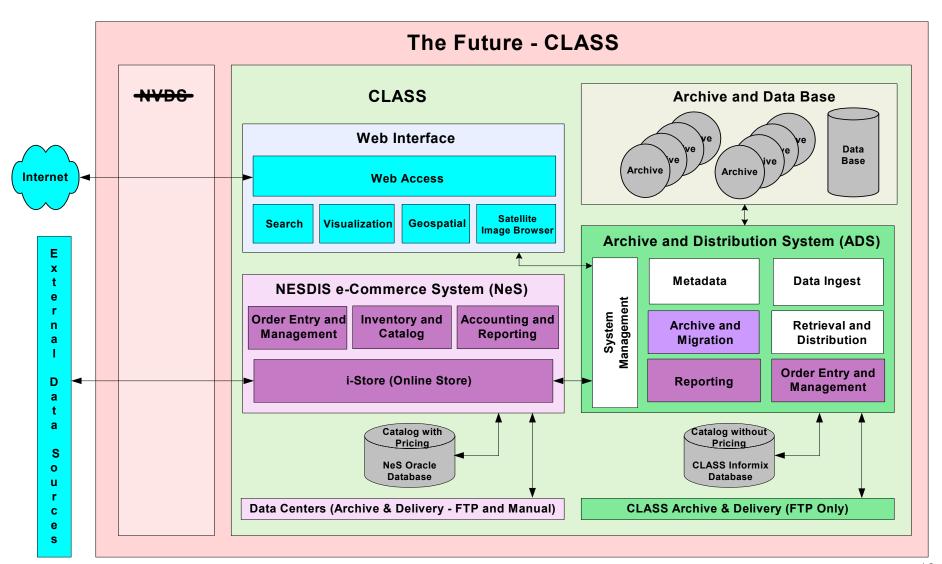

CLASS Accomplishments through FY03 (Continued)

- Established the CLASS Operations Team (COT)
 - Includes OSDPD and NCDC personnel
 - In preparation for Baseline Dual-Site Operations
- Suitland CSC Development Team Certified
 - SEI-CMM Level-3
- Completed documentation of business case for CLASS
- Established a project wide risk management program
- OSDPD-CSC worked with IBM-China for implementation of CLASS for National Satellite Meteorological Center (NSMC)
 - NSMC evaluating CLASS vs enhance portions of their existing system

Current CLASS Hardware Architecture

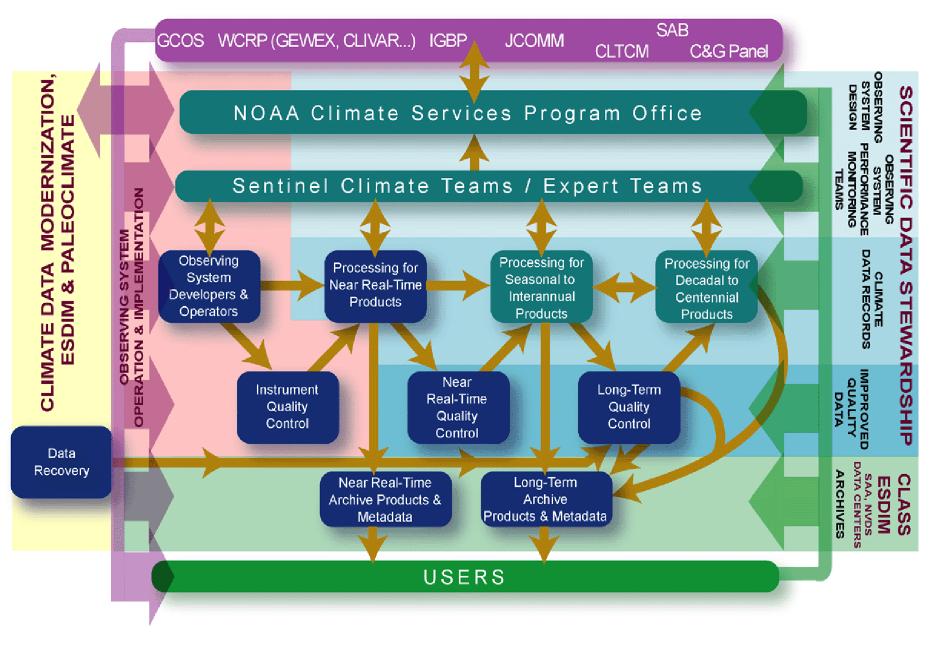
- CLASS hardware for Suitland and Asheville sites:
 - Operational Servers, 4 at each site
 - IBM P660, 4GB RAM 2CPUs
 - Integration and Test Servers, 2 at each site
 - IBM P660
 - Development Servers, 2 at Suitland
 - IBM P660
 - Storage Area Network (SAN)
 - SUN 9980, 5.2TB
 - Tape Archive System & Hierarchical Storage Manager (HSM)
 - 9522 LTO Tape Slots, 12 Drives, 8PB capacity @ LTO-3


Suitland System Hardware


FY04 CLASS Goals

- Prepare a "5-Year" Budget and Program Plan for CLASS
- Focus CLASS resources on CLASS Activities
- Initial test of CLASS enhancements for IJPS ... NOAA-N (October 2003)
- Configure and Test CLASS at NCDC and transition to Operations (December 2003)
- Complete IJPS/Metop Critical Design Review (February 2004)
- Complete testing and transition to operations of CLASS dual site capabilities (March 2004)
- Complete testing and transition to operations of the GOES Campaign (March 2004)
- Configure and Test CLASS for support of IJPS/Metop, and transition to Operations (September 2004)

CLASS/ADS Functional Block Diagram


The Future CLASS

Issues/Risks

- CLASS Funding Inadequate for "Promises" being made
- Reduction in CLASS funding will force cuts in development team, and delay requirements and interface definitions, software enhancements or hardware upgrades
- CLASS Detailed Designs not complete
 - Integrated CLASS-NVDS System
 - Metadata Management
 - Data Discovery
 - E-Commerce
 - NPP/NPOESS
 - EOS
 - GOES-R

NOAA CLIMATE OBSERVATIONS AND MONITORING

