
Advanced Topics in MPI

William Gropp and Rajeev Thakur

Mathematics and Computer Science Division

2

Outline

MPI review

MPI performance issues and tuning

Advanced topics (datatypes etc)

Parallel I/O and MPI-IO

High-level I/O libraries (PnetCDF, HDF-5)

3

The Message-Passing Model

A process is (traditionally) a program counter and address space.

Processes may have multiple threads (program counters and associated
stacks) sharing a single address space. MPI is for communication among
processes, which have separate address spaces.

Interprocess communication consists of

– Synchronization

– Movement of data from one process’s address space to another’s.

4

MPI Basic Send/Receive

We need to fill in the details in

Things that need specifying:

– How will “data” be described?

– How will processes be identified?

– How will the receiver recognize/screen messages?

– What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

5

Some Basic Concepts

Processes can be collected into groups.

Each message is sent in a context, and must be received in the same
context.

A group and context together form a communicator.

A process is identified by its rank in the group associated with a
communicator.

There is a default communicator whose group contains all initial
processes, called MPI_COMM_WORLD.

6

Datatypes and Tags

The data in a message to sent or received is described by a triple
(address, count, datatype)
The datatype describes the type of data to be sent (INT, FLOAT, or more
complex noncontiguous types)
Messages are sent with an accompanying user-defined integer tag, to
assist the receiving process in identifying the message.
Messages can be screened at the receiving end by specifying a specific
tag, or not screened by specifying MPI_ANY_TAG as the tag in a receive.

7

MPI Basic (Blocking) Send

MPI_SEND (buf, count, datatype, dest, tag, comm)

The message buffer is described by (buf, count, datatype).
The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm.

When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

8

MPI Basic (Blocking) Receive

MPI_RECV(buf, count, datatype, source, tag, comm, status)

Waits until a matching (on source and tag) message is received from

the system, and the buffer can be used.

source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.

status contains further information

receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

9

MPI is Simple

Many parallel programs can be written using just these six functions, only
two of which are non-trivial:

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

But, for performance, you need to use other features

10

Collective Communication

Collective operations are called by all processes in a communicator.
MPI_BCAST distributes data from one process (the root) to all others in a
communicator.
MPI_REDUCE combines data from all processes in communicator and
returns it to one process.
In many numerical algorithms, SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

11

Example: Calculating Pi

1

1

12

Example: PI in C

#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

13

Example: PI in C

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();

return 0;

}

14

Buffering

When you send data, where does it go? One possibility is:

Process 0 Process 1
User data

Local buffer

the network

User data

Local buffer

15

Avoiding Buffering

It is better to avoid copies:

This requires that MPI_Send wait on delivery, or that MPI_Send return
before transfer is complete, and we wait later.

Process 0 Process 1

User data

User data

the network

16

Blocking and Non-blocking Communication

So far we have been using blocking communication:
– MPI_Recv does not complete until the buffer is full (available for use).

– MPI_Send does not complete until the buffer is empty (available for
use).

Completion depends on size of message and amount of system buffering.

17

Send a large message from process 0 to process 1

– If there is insufficient storage at the destination, the send must wait
for the user to provide the memory space (through a receive)

What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

This is called “unsafe” because it depends on the availability of system buffers

18

Solutions to the “safety” Problem

Order the operations more carefully
Supply receive buffer at same time as send (MPI_Sendrecv)

Supply own buffer space (MPI_Bsend)

Use non-blocking operations

– safe

– not necessarily asynchronous

– not necessarily concurrent

– not necessarily faster

19

MPI’s Non-blocking Operations

Non-blocking operations return (immediately) “request handles” that can
be tested and waited on.

MPI_Isend(start, count, datatype,
dest, tag, comm, request)

MPI_Irecv(start, count, datatype,
dest, tag, comm, request)

MPI_Wait(&request, &status)

One can also test without waiting:

MPI_Test(&request, &flag, status)

20

Multiple Completions

It is sometimes desirable to wait on multiple requests:

MPI_Waitall(count, array_of_requests,
array_of_statuses)

MPI_Waitany(count, array_of_requests,
&index, &status)

MPI_Waitsome(count, array_of_requests,
array_of indices, array_of_statuses)

There are corresponding versions of Test for each of these.

21

Communication Modes

MPI provides multiple modes for sending messages:
– Synchronous mode (MPI_Ssend): the send does not complete until

a matching receive has begun. (Unsafe programs deadlock.)
– Buffered mode (MPI_Bsend): the user supplies a buffer to the

system for its use. (User allocates enough memory to make an
unsafe program safe.

– Ready mode (MPI_Rsend): user guarantees that a matching receive
has been posted.

• Allows access to fast protocols

• undefined behavior if matching receive not posted
Non-blocking versions (MPI_Issend, etc.)

MPI_Recv receives messages sent in any mode.

Timing MPI Programs

The elapsed (wall-clock) time between two points in an MPI program can
be computed using MPI_Wtime:

double t1, t2;
t1 = MPI_Wtime();
...
t2 = MPI_Wtime();
printf(“time is %d\n”, t2 - t1);

The value returned by a single call to MPI_Wtime has little value.

Times in general are local, but an implementation might offer
synchronized times. See attribute MPI_WTIME_IS_GLOBAL.

Measuring Performance

Using MPI_Wtime

– timers are not continuous — MPI_Wtick

MPI_Wtime is local unless the MPI_WTIME_IS_GLOBAL attribute is true

MPI Profiling interface provides a way to easily instrument the MPI calls in
an application

Performance measurement tools for MPI

Sample Timing Harness

Average times, make several trials

for (k<nloop) {
t1 = MPI_Wtime();
for (I<maxloop) {

<operation to be timed>
}
time = MPI_Wtime() - t1;
if (time < tfinal) tfinal = time;

}

Use MPI_Wtick to discover clock resolution

Use getrusage to get other effects (e.g., context switches, paging)

Pitfalls in timing

Time too short:
t = MPI_Wtime();
MPI_Send(…);
time = MPI_Wtime() - t;

Underestimates by MPI_Wtick, over by cost of calling MPI_Wtime
“Correcting” MPI_Wtime by subtracting average of MPI_Wtime calls
overestimates MPI_Wtime
Code not paged in (always run at least twice)
Minimums not what users see
Tests with 2 processors may not be representative
– T3D had processors in pairs, pingpong gave 130 MB/sec for 2 but

75 MB/sec for 4 (for MPI_Ssend)

26

Example of Paging Problem

Black area is identical setup computation

27

Exercise: Timing MPI Operations

Estimate the latency and bandwidth for some MPI operation (e.g.,
Send/Recv, Bcast, Ssend/Irecv-Wait)

– Make sure all processes are ready before starting the test

– How repeatable are your measurements?

– How does the performance compare to the performance of other
operations (e.g., memcpy, floating multiply)?

28

MPI’s Profiling Interface

Every MPI function also exists in the library under the name PMPI_

PMPI allows selective replacement of MPI routines at link time (no need
to recompile)

This feature can be used by profiling tools to instrument MPI calls

29

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

30

Using the Profiling Interface

static int nsend = 0;

int MPI_Send(void *start, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

{

nsend++;

return PMPI_send(start, count, datatype,
dest, tag, comm);

}

31

MPI Performance Tools on Jazz

These softenv keys will give you access to MPI performance tools on
Jazz:

– +fpmpi-2.0 MPI profiling library that provides summary
information about the use of MPI within an application

– +jumpshot Jumpshot is a performance visualization
tool that gives you a detailed picture of the MPI operations within an
application.

– +jumpshot-1.2 jumpshot -- jumpshot-1.2

– +jumpshot-1.2b jumpshot -- jumpshot-1.2b

– +jumpshot-4 jumpshot -- jumpshot-4

These require that the application be relinked but not recompiled. They
are developed in MCS, so you can expect quick feedback on problems
and feature requests

Synchronization Delays

Message passing is a cooperative method — if the partner doesn’t react
quickly, a delay results

There is a performance tradeoff caused by reacting quickly — it requires
devoting resources to checking for things to do

Observing Synchronization Delays

Three processors sending data, with one sending a short message and another
sending a long message to the same process:

Eager

Rendezvous

Contention

Point-to-point analysis ignores fact that communication links (usually) are
shared

Easiest model is to equally share bandwidth (if K can shared at one time,
give each 1/K of the bandwidth).

“Topology doesn’t matter anymore” is not true, but there is less you can
do about it (just like cache memory)

MPI has processor topology routines, though these are only useful on
some MPI implementation. It is good to use them for best portability (e.g.,
they won’t make any difference on Jazz but can be inportant on BG/L).

35

Scheduling for Contention

Many programs alternate between communication and computation phases

Contention can reduce effective bandwidth

Consider restructuring program so that some nodes communicate while others
compute:

0

1

2

3

Comm

Comm
Compute

Compute

Compute

Compute

Effect of Contention

IBM SP2 has a multistage switch. This test shows the point-to-point bandwidth
with half the nodes sending and half receiving

Processors Bandw idth
(M B/sec)

2 34
4 34
8 34

16 31
32 25
64 22

37

Unexpected Hot Spots

Even simple operations can give surprising performance behavior.

Examples arise even in common grid exchange patterns

Message passing illustrates problems present even in shared memory

– Blocking operations may cause unavoidable stalls

38

Mesh Exchange

Exchange data on a mesh

39

Sample Code

Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,comm, ierr)

Enddo

Do i=1,n_neighbors
Call MPI_Recv(edge(1,i), len, MPI_REAL, nbr(i), tag, comm, status,

ierr)
Enddo

40

Deadlocks!

All of the sends may block, waiting for a matching receive (will for large
enough messages)
The variation of
if (has down nbr) then

Call MPI_Send(… down …)
endif
if (has up nbr) then

Call MPI_Recv(… up …)
endif
…
sequentializes (all except the bottom process blocks)

41

Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

42

Fix 1: Use Irecv

Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

Does not perform well in practice. Why?

43

Understanding the Behavior: Timing Model

Sends interleave

Sends block (data larger than buffering will allow)

Sends control timing

Receives do not interfere with Sends

Exchange can be done in 4 steps (down, right, up, left)

44

Mesh Exchange - Step 1

Exchange data on a mesh

45

Mesh Exchange - Step 2

Exchange data on a mesh

46

Mesh Exchange - Step 3

Exchange data on a mesh

47

Mesh Exchange - Step 4

Exchange data on a mesh

48

Mesh Exchange - Step 5

Exchange data on a mesh

49

Mesh Exchange - Step 6

Exchange data on a mesh

50

Timeline from IBM SP

• Note that process 1 finishes last, as predicted

51

Distribution of Sends

52

Why Six Steps?

Ordering of Sends introduces delays when there is contention at the
receiver

Takes roughly twice as long as it should

Bandwidth is being wasted

Same thing would happen if using memcpy and shared memory

53

Fix 2: Use Isend and Irecv

Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

54

Mesh Exchange - Steps 1-4

Four interleaved steps

55

Timeline from IBM SP

Note processes 5 and 6 are the only interior processors; these
perform more communication than the other processors

56

Lesson: Defer Synchronization

Send-receive accomplishes two things:

– Data transfer

– Synchronization

In many cases, there is more synchronization than required

Use nonblocking operations and MPI_Waitall to defer synchronization

57

Logging and Visualization Tools

Jumpshot and MPE tools
– http://www.mcs.anl.gov/perfvis

TAU
– http://www.cs.uoregon.edu/research/tau/home.php

Intel Trace Analyzer and Collector (formerly Pallas Vampir)
– http://www.intel.com/cd/software/products/asmo-na/eng/cluster/tanalyzer/index.htm

Paradyn
– http://www.cs.wisc.edu/~paradyn

Pablo
– http://www.renci.org/software/

Many other vendor tools exist
– e.g., xmpi (SGI and HP)

58

Viewing at Multiple Scales with Jumpshot

Each line represents 1000’s of
messages

Detailed view shows opportunities for
optimization

1000 x

59

MPI Datatypes

The data in a message to sent or received is described by a triple
(address, count, datatype), where

An MPI datatype is recursively defined as:

– predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE_PRECISION)

– a contiguous array of MPI datatypes

– a strided block of datatypes

– an indexed array of blocks of datatypes

– an arbitrary structure of datatypes

There are MPI functions to construct custom datatypes, such an array of
(int, float) pairs, or a row of a matrix stored columnwise.

60

Why Datatypes?

Since all data is labeled by type, an MPI implementation can support
communication between processes on machines with very different
memory representations and lengths of elementary datatypes
(heterogeneous communication).

Specifying application-oriented layout of data in memory

– can reduce memory-to-memory copies in the implementation

– allows the use of special hardware (scatter/gather) when available

Specifying application-oriented layout of data on a file

– can reduce system calls and physical disk I/O

61

Non-contiguous Datatypes

Provided to allow MPI implementations to avoid copy

Network
Extra copy

– Not widely optimized yet

Some MPI implementations can handle important special cases

– Constant stride

– Contiguous structures

62

Potential Performance Advantage in MPI Datatypes

Handling non-contiguous data

Assume must pack/unpack on each end

– cn + (s + r n) + cn = s + (2c + r)n

Can move directly

– s + r’ n

– r’ probably > r but < (2c+r)

MPI implementation must copy data anyway (into network buffer or
shared memory); having the datatype permits removing 2 copies

63

Derived Datatype Performance

(without memory copying optimizations)

Test Manual (MB/sec) MPICH2 (%) MPICH (%) LAM (%)
Contig 1,156.40 97.2 98.3 86.7

Struct Array 1,055.00 107.0 107.0 48.6
Vector 754.37 99.9 98.7 65.1

Struct Vector 746.04 100.0 4.9 19.0
Indexed 654.35 61.3 12.7 18.8

3D Face, XY 1,807.91 99.5 97.0 63.0
3D Face, XZ 1,244.52 99.5 97.3 79.8
3D Face, YZ 111.85 100.0 100.0 57.4

64

Memory Copy Optimizations for Derived Datatypes

Experiments by Surendra Byna, IIT Chicago
Matrix transpose example on SGI Origin 2000
Using MPICH 1.2.5 code base
Not yet integrated into MPICH2

Communication bandwidth

0

5

10

15

20

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

b
an

d
w

id
th

 (
M

B
/s

)

original MPICH manual packing optimized MPICH

65

Working With MPI Datatypes

An MPI datatype defines a type signature:

– sequence of pairs: (basic type,offset)

– An integer at offset 0, followed by another integer at offset 8, followed
by a double at offset 16 is

• (integer,0), (integer,4), (double,16)

– Offsets need not be increasing:

• (integer,64),(double,0)

An MPI datatype has an extent and a size

– size is the number of bytes of the datatype

– extent controls how a datatype is used with the count field in a send
and similar MPI operations

– extent is a misleading name

66

What does extent do?

Consider MPI_Send(buf, count, datatype, …)

What actually gets sent?

MPI defines this as
do i=0,count-1

MPI_Send(buf(1+i*extent(datatype)),1,
datatype,…)

(buf is a byte type like integer*1)

extent is used to decide where to send from (or where to receive to in
MPI_Recv) for count > 1

Normally, this is right after the last byte used for (i-1)

67

Changing the extent

MPI-1 provides two special types, MPI_LB and MPI_UB, for changing the
extent of a datatype

– This doesn’t change the size, just how MPI decides what addresses
in memory to use in offseting one datatype from another.

Use MPI_Type_struct to create a new datatype from an old one with a
different extent

– Use MPI_Type_create_resized in MPI-2

68

Sending Rows of a Matrix

From Fortran, assume you want to send a row of the matrix
A(n,m),

that is, A(row,j), for j=1,…, m

A(row,j) is not adjacent in memory to A(row,j+1)

One solution: send each element separately:
Do j=1,m

Call MPI_Send(A(row,j), 1, MPI_DOUBLE_PRECISION, …)

Why not?

69

MPI Type vector

Create a single datatype representing elements separated by a constant
distance (stride) in memory

– m items, separated by a stride of n:

– call MPI_Type_vector(m, 1, n, &
MPI_DOUBLE_PRECISION, newtype, ierr)

call MPI_Type_commit(newtype, ierr)

– Type_commit required before using a type in an MPI communication
operation.

Then send one instance of this type
MPI_Send(a(row,1), 1, newtype, ….)

70

Test your understanding of Extent

How do you send 2 rows of the matrix? Can you do this:
MPI_Send(a(row,1),2,newtype,…)

Hint: Extent(newtype) is distance from the first to last byte of the type

– Last byte is a(row,m)

Hint: What is the first location of A that is sent after the first row?

71

Sending with MPI_Vector

Extent(newtype) is ((m-1)*n+1)*sizeof(double)

– Last element sent is A(row,m)

do i=0,1
call MPI_Send(buf(1+i*extent(datatype)),1, datatype,…)

becomes

call MPI_Send(A(row,1:m),…) (i=0)
call MPI_Send(A(row+1,m:2m-1),…) (i=1)

The second step is not
call MPI_Send(A(row+1,1:m),…)

Note: Do not use A(row,1:m) in MPI programs; it is used here as a
shorthand for A(row,k) for k=1,m

72

Solutions for Vectors

MPI_Type_vector is for very specific uses

– rarely makes sense to use count other than 1

Two send two rows, simply change the blockcount:
call MPI_Type_vector(m, 2, n, &

MPI_DOUBLE_PRECISION, newtype, ierr)

Stride is still relative to basic type

73

Top MPI Errors

Fortran: missing ierr argument

Fortran: missing MPI_STATUS_SIZE on status

All: MPI_Bcast not called collectively (e.g., sender bcasts, receivers use
MPI_Recv)

All: Failure to wait on MPI_Request

All: Reusing buffers on nonblocking operations

All: Using a single process for all file I/O

All: Using MPI_Pack/Unpack instead of Datatypes

All: Unsafe use of blocking sends/receives

All: Using MPI_COMM_WORLD instead of comm in libraries

All: Not understanding implementation performance settings

All: Failing to install and use the MPI implementation according to its
documentation.

74

I/O

75

I/O for Computational Science

Break up support into multiple layers with distinct roles:

– High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)

– Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)

– Parallel file system maintains logical space, provides efficient access
to data (e.g. PVFS, GPFS, Lustre)

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File SystemParallel File System

I/O HardwareI/O Hardware

ApplicationApplication

ApplicationApplication

Parallel File SystemParallel File System

I/O HardwareI/O Hardware

76

High Level Libraries

Provide an appropriate
abstraction for domain

– Multidimensional datasets

– Typed variables

– Attributes

Self-describing, structured file format

Map to middleware interface

– Encourage collective I/O

Provide optimizations that middleware cannot

– e.g. caching attributes of variables

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File SystemParallel File System

I/O HardwareI/O Hardware

ApplicationApplication

77

I/O Middleware

Facilitate concurrent access
by groups of processes

– Collective I/O

– Atomicity rules

Expose a generic interface

– Good building block for high-level libraries

Match the underlying programming model (e.g. MPI)

Efficiently map middleware operations into PFS ones

– Leverage any rich PFS access constructs

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File SystemParallel File System

I/O HardwareI/O Hardware

ApplicationApplication

78

Parallel File System

Manage storage hardware

– Present single view

– Focus on concurrent,
independent access

– Knowledge of collective I/O
usually very limited

In the context of computational science, publish an interface that
middleware can use effectively

– Rich I/O language

– Relaxed but sufficient semantics

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File SystemParallel File System

I/O HardwareI/O Hardware

ApplicationApplication

79

Common Ways of Doing I/O in Parallel Programs

Sequential I/O:
– All processes send data to rank 0, and 0 writes it to the file

80

Pros and Cons of Sequential I/O

Pros:

– parallel machine may support I/O from only one process (e.g., no
common file system)

– Old versions of some I/O libraries (e.g. HDF-4, NetCDF) not parallel
– resulting single file is handy for ftp, mv

– big blocks improve performance

– short distance from original, serial code

Cons:

– lack of parallelism limits scalability, performance (single node bottleneck)

81

Another Way

Each process writes to a separate file

Pros:

– parallelism, high performance

Cons:

– lots of small files to manage

– difficult to read back data from different number of processes

82

What is Parallel I/O?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file

FILE

P0 P1 P2 P(n-1)

83

Why Parallel I/O?

Non-parallel I/O is simple but

– Poor performance (single process writes to one file) or

– Awkward and not interoperable with other tools (each process writes
a separate file)

Parallel I/O

– Provides high performance

– Can provide a single file that can be used with other tools (such as
visualization programs)

84

Why is MPI a Good Setting for Parallel I/O?

Writing is like sending a message and reading is like receiving

Any parallel I/O system will need a mechanism to

– define collective operations (MPI communicators)

– define noncontiguous data layout in memory and file (MPI datatypes)

– Test completion of nonblocking operations (MPI request objects)

i.e., lots of MPI-like machinery

85

Using MPI for Simple I/O

FILE

P0 P1 P2 P(n-1)

Each process needs to read a chunk of data from a common file

86

Using Individual File Pointers

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

87

Using Explicit Offsets

include 'mpif.h'

integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

C in F77, see implementation notes (might be integer*8)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE_READ_AT(fh, offset, buf, nints,

MPI_INTEGER, status, ierr)
call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI_FILE_CLOSE(fh, ierr)

88

Writing to a File

Use MPI_File_write or MPI_File_write_at

Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the flags to
MPI_File_open

If the file doesn’t exist previously, the flag MPI_MODE_CREATE must also
be passed to MPI_File_open

We can pass multiple flags by using bitwise-or ‘|’ in C, or addition ‘+” in
Fortran

89

Using File Views

Processes write to shared file

MPI_File_set_view assigns regions of the file to separate processes

90

File Views

Specified by a triplet (displacement, etype, and filetype) passed to
MPI_File_set_view

displacement = number of bytes to be skipped from the start of the file

etype = basic unit of data access (can be any basic or derived datatype)

filetype = specifies which portion of the file is visible to the process

91

File View Example

MPI_File thefile;

for (i=0; i<BUFSIZE; i++)
buf[i] = myrank * BUFSIZE + i;

MPI_File_open(MPI_COMM_WORLD, "testfile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &thefile);

MPI_File_set_view(thefile, myrank * BUFSIZE * sizeof(int),
MPI_INT, MPI_INT, "native",

MPI_INFO_NULL);
MPI_File_write(thefile, buf, BUFSIZE, MPI_INT,

MPI_STATUS_IGNORE);
MPI_File_close(&thefile);

92

MPI_File_set_view

Describes that part of the file accessed by a single MPI process.
Arguments to MPI_File_set_view:

– MPI_File file

– MPI_Offset disp

– MPI_Datatype etype

– MPI_Datatype filetype

– char *datarep

– MPI_Info info

93

Fortran Version

PROGRAM main

use mpi

integer ierr, i, myrank, BUFSIZE, thefile
parameter (BUFSIZE=100)
integer buf(BUFSIZE)
integer(kind=MPI_OFFSET_KIND) disp

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
do i = 0, BUFSIZE

buf(i) = myrank * BUFSIZE + i
enddo

* in F77, see implementation notes (might be integer*8)

94

Fortran Version contd.

call MPI_FILE_OPEN(MPI_COMM_WORLD, 'testfile', &
MPI_MODE_WRONLY + MPI_MODE_CREATE, &
MPI_INFO_NULL, thefile, ierr)

call MPI_TYPE_SIZE(MPI_INTEGER, intsize)
disp = myrank * BUFSIZE * intsize
call MPI_FILE_SET_VIEW(thefile, disp, MPI_INTEGER, &

MPI_INTEGER, 'native', &
MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE(thefile, buf, BUFSIZE, MPI_INTEGER, &
MPI_STATUS_IGNORE, ierr)

call MPI_FILE_CLOSE(thefile, ierr)
call MPI_FINALIZE(ierr)

END PROGRAM main

95

Noncontiguous I/O

Contiguous I/O moves data from a single block in memory into a single
region of storage

Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous
in both

Structured data leads naturally to noncontiguous I/O

p0 p0 p0p0

Contiguous Noncontiguous Noncontiguous Noncontiguous
in Memory in File in Both

96

Example:
Distributed Array Access

File containing the global array in row-major order

P3P2

P1P0

2D array distributed among four processes

97

A Simple Noncontiguous File View Example

etype = MPI_INT

filetype = two MPI_INTs followed by
a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

98

File View Code

MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0; extent = 6 * sizeof(int);
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);
disp = 5 * sizeof(int); etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",
MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

99

Collective I/O (1)

Many applications have phases of computation and I/O

During I/O phases, all processes read/write data

– We can say they are collectively accessing storage
Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions must be called by all processes participating
in I/O

– Allows I/O layers to know more about access as a whole
Independent I/O is not organized in this way

No apparent order or structure to accesses

n0 n1 n2 n3 n4 n5 n6n0 n1 n2 n3 n4 n5 n6

Independent I/O Collective I/O

100

Collective I/O (2)

MPI_File_read_all, MPI_File_read_at_all, etc

_all indicates that all processes in the group specified by the
communicator passed to MPI_File_open will call this function

Each process specifies only its own access information -- the argument
list is the same as for the non-collective functions

101

Under the Covers of MPI-IO

MPI-IO implementation is given a lot of information in this case:

– Collection of processes reading data

– Structured description of the regions

Implementation has some options for how to obtain this data

– Noncontiguous data access optimizations

– Collective I/O optimizations

102

Accessing Arrays Stored in Files

P0

P5P4

P2P1

P3

coords = (0,0)

coords = (1,0)

coords = (0,1)

coords = (1,1) coords = (1,2)

coords = (0,2)

m

n columns

nproc(1) = 2, nproc(2) = 3

rows

103

Using the Subarray Datatype

gsizes[0] = m; /* no. of rows in global array */
gsizes[1] = n; /* no. of columns in global array*/

psizes[0] = 2; /* no. of procs. in vertical dimension */
psizes[1] = 3; /* no. of procs. in horizontal dimension */

lsizes[0] = m/psizes[0]; /* no. of rows in local array */
lsizes[1] = n/psizes[1]; /* no. of columns in local array */

dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);

104

Subarray Datatype contd.

/* global indices of first element of local array */
start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI_INFO_NULL);

local_array_size = lsizes[0] * lsizes[1];
MPI_File_write_all(fh, local_array, local_array_size,

MPI_FLOAT, &status);

105

MPI-IO Hints

MPI-IO hints may be passed via:

– MPI_File_open

– MPI_File_set_info

– MPI_File_set_view

Hints are optional - implementations are guaranteed to ignore ones they
do not understand

– Different implementations, even different underlying file systems,
support different hints

MPI_File_get_info used to get list of hints

Next few slides cover only some hints

106

Examples of Hints
(used in ROMIO)

striping_unit

striping_factor

cb_buffer_size

cb_nodes

ind_rd_buffer_size

ind_wr_buffer_size

start_iodevice

pfs_svr_buf

direct_read

direct_write

MPI-2 predefined hints

New Algorithm Parameters

Platform-specific hints

107

Passing Hints to the Implementation

MPI_Info info;

MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);

108

General Guidelines for Achieving High I/O Performance

Buy sufficient I/O hardware for the machine

Use fast parallel file systems, such as PVFS, not NFS-mounted home
directories

Do not perform I/O from one process only

Make large requests wherever possible

For noncontiguous requests, use derived datatypes and a single
collective I/O call

109

Optimizations

Given complete access information, an implementation can perform
optimizations such as:

– Data Sieving: Read large chunks and extract what is really needed

– Collective I/O: Merge requests of different processes into larger
requests

– Improved prefetching and caching

110

Distributed Array Access:
Read Bandwidth

0

100

200

300

400

500

600

M
b

yt
e

s/
se

c

HP Exemplar IBM SP Intel Paragon NEC SX4 SGI Origin2000

Unix-style
Data sieving
Collective I/O

64 procs 64 procs 8 procs 32 procs256 procs

Array size: 512 x 512 x 512

111

MPI-IO Wrap-Up

MPI-IO provides a rich interface allowing us to describe

– Noncontiguous accesses in memory, file, or both

– Collective I/O

This allows implementations to perform many transformations in order to
get better I/O performance

Also forms solid basis for high-level I/O libraries

– But they must take advantage of these features!

112

Higher Level I/O Interfaces

Provide structure to files

– Well-defined, portable formats

– Self-describing

– Organization of data

– Interfaces for discovering contents

Present APIs more appropriate for comp. science

– Typed data

– Noncontiguous regions in memory and file

– Multidimensional arrays

Both implemented on top of MPI-IO

113

Parallel netCDF (PnetCDF)

Based on original “Network Common Data Format” (netCDF) work from
Unidata

Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables
Features:

– C and Fortran interfaces

– Portable data format (same as netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using subarrays

– Collective I/O

114

netCDF/PnetCDF Files

PnetCDF files consist of three regions

– Header

– Non-record variables (all dimensions specified)

– Record variables (ones with an unlimited
dimension)

Record variables are interleaved, so using more
than one in a file is likely to result in poor
performance due to noncontiguous accesses

Data is written in a big-endian format

115

Storing Data in PnetCDF

Create a dataset (file)

– Puts dataset in define mode

– Allows us to describe the contents

• Define dimensions for variables

• Define variables using dimensions

• Store attributes if desired (for variable or dataset)

Switch from define mode to data mode to write variables

Store variable data

Close the dataset

116

Simple PnetCDF Examples

Simplest possible PnetCDF version of “Hello World”

First program creates a dataset with a single attribute

Second program reads the attribute and prints it

Shows very basic API use and error checking

117

Simple PnetCDF: Writing (1)

#include <mpi.h>

#include <pnetcdf.h>

int main(int argc, char **argv)

{

int ncfile, ret, count;

char buf[13] = "Hello World\n";

MPI_Init(&argc, &argv);

ret = ncmpi_create(MPI_COMM_WORLD, "myfile.nc",
NC_CLOBBER, MPI_INFO_NULL, &ncfile);

if (ret != NC_NOERR) return 1;

/* continues on next slide */

Integers used for references
to datasets, variables, etc.

118

Simple PnetCDF: Writing (2)

ret = ncmpi_put_att_text(ncfile, NC_GLOBAL,
"string", 13, buf);

if (ret != NC_NOERR) return 1;

ncmpi_enddef(ncfile);

/* entered data mode – but nothing to do */

/* ncmpi_put_vara_double_all(…); */

ncmpi_close(ncfile);

MPI_Finalize();

return 0;

}

Storing value while
in define mode
as an attribute

119

Retrieving Data in PnetCDF

Open a dataset in read-only mode (NC_NOWRITE)

Obtain identifiers for dimensions

Obtain identifiers for variables

Read variable data

Close the dataset

120

Simple PnetCDF: Reading (1)

#include <mpi.h>

#include <pnetcdf.h>

int main(int argc, char **argv)

{

int ncfile, ret, count;

char buf[13];

MPI_Init(&argc, &argv);

ret = ncmpi_open(MPI_COMM_WORLD, "myfile.nc",
NC_NOWRITE, MPI_INFO_NULL, &ncfile);

if (ret != NC_NOERR) return 1;

/* continues on next slide */

121

Simple PnetCDF: Reading (2)

/* verify attribute exists and is expected size */

ret = ncmpi_inq_attlen(ncfile, NC_GLOBAL, "string",
&count);

if (ret != NC_NOERR || count != 13) return 1;

/* retrieve stored attribute */

ret = ncmpi_get_att_text(ncfile, NC_GLOBAL, "string", buf);

if (ret != NC_NOERR) return 1;

printf("%s", buf);

ncmpi_close(ncfile);

MPI_Finalize();

return 0;

}

122

Compiling and Running

;mpicc pnetcdf-hello-write.c -I /usr/local/pnetcdf/include/ -L
/usr/local/pnetcdf/lib -lpnetcdf -o pnetcdf-hello-write

;mpicc pnetcdf-hello-read.c -I /usr/local/pnetcdf/include/ -L
/usr/local/pnetcdf/lib -lpnetcdf -o pnetcdf-hello-read

;mpiexec -n 1 pnetcdf-hello-write

;mpiexec -n 1 pnetcdf-hello-read

Hello World

;ls -l myfile.nc

-rw-r--r-- 1 rross rross 68 Mar 26 10:00 myfile.nc

;strings myfile.nc

string

Hello World
File size is 68 bytes; extra
data (the header) in file.

123

HDF5

Hierarchical Data Format, from NCSA

Data Model:

– Hierarchical data organization in single file

– Typed, multidimensional array storage

– Attributes on dataset, data

Features:

– C, C++, and Fortran interfaces

– Portable data format

– Optional compression (not in parallel I/O mode)

– Data reordering (chunking)

– Noncontiguous I/O (memory and file) with hyperslabs

124

HDF5 Files

HDF5 files consist of groups,
datasets, and attributes

– Groups are like directories,
holding other groups and
datasets

– Datasets hold array of
typed data

• A datatype describes the type
• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another
dataset

• Also have a datatype and dataspace
• Can only be accessed as a unit

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

125

HDF5 Data Chunking

Apps often read subsets of arrays (subarrays)
Performance of subarray access depends in part on how data is laid out
in the file
– e.g. column vs. row major

Apps also sometimes store sparse data sets
Chunking describes a reordering of array data
– Subarray placement in file determined lazily
– Can reduce worst-case performance for subarray access
– Can lead to efficient storage of sparse data

Coordination cost in this dynamic ordering

126

“Simple” HDF5 Examples

HDF5 version of “Hello World”

First program creates a character array, writes text into it

Second program reads back the array and prints the contents

Shows basic API use

127

“Simple” HDF5: Writing (1 of 3)

#include <mpi.h>

#include <hdf5.h>

int main(int argc, char **argv)

{

hid_t file, string_dtype,
string_dspace, string_dset;

hsize_t dim = 13;

herr_t status;

char buf[13] = "Hello World\n";

MPI_Init(&argc, &argv);

file = H5Fcreate("myfile.h5", H5F_ACC_TRUNC,
H5P_DEFAULT, H5P_DEFAULT);

/* continued on next slide */

hid_t type used for
references to files,

datatypes, etc.

the “F” in H5Fcreate means
that this a file operation

128

“Simple” HDF5: Writing (2 of 3)

/* To create the dataset we:

* - make a simple, 1-D dataspace to describe shape of set

* - get a copy of the “native” char type that we can use

* - combine these two to create a dataset in the file

*/

string_dspace = H5Screate_simple(1, &dim, NULL);

string_dtype = H5Tcopy(H5T_NATIVE_CHAR);

string_dset = H5Dcreate(file, "string",
string_dtype, string_dspace, H5P_DEFAULT);

status = H5Dwrite(string_dset,
H5T_NATIVE_CHAR,
H5S_ALL,
H5S_ALL,
H5P_DEFAULT,
buf);

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

memory datatype and dataspace

dataset to write into (target)

file dataspace (for subarray access)

pointer to buffer in memory

129

“Simple” HDF5: Writing (3 of 3)

/* call appropriate close functions on all references */

H5Sclose(string_dataspace);

H5Tclose(string_datatype);

H5Dclose(string_dataset);

H5Fclose(file);

MPI_Finalize();

return 0;

}

130

Simple HDF5: Reading

#include <hdf5.h>
#include <stdio.h>
int main(int argc, char **argv) {

hid_t file, string_dset;
char buf[13];

file = H5Fopen("myfile.h5", H5F_ACC_RDONLY,
H5P_DEFAULT);

string_dset = H5Dopen(file, "string");
H5Dread(string_dset,

H5T_NATIVE_CHAR, H5S_ALL,
H5S_ALL,
H5P_DEFAULT,
buf);

printf("%s", buf);
H5Dclose(string_dset); H5Fclose(file);
return 0;

}

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

131

Compiling and Running

;mpicc hdf5-hello-write.c -I /usr/local/hdf5/include -L
/usr/local/hdf5/lib/ -lhdf5 -o hdf5-hello-write

;mpicc hdf5-hello-read.c -I /usr/local/hdf5/include -L
/usr/local/hdf5/lib/ -lhdf5 -o hdf5-hello-read

;mpiexec -n 1 hdf5-hello-write
;mpiexec -n 1 hdf5-hello-read
Hello World
;ls -l myfile.h5
-rw-r--r-- 1 rross rross 2061 Mar 27 23:06

myfile.h5
;strings myfile.h5
HEAP
string
TREE
P]f@
SNOD
Hello World

File size is 2061 bytes;
bigger header.

132

How do I choose an API?

Your programming model will limit choices.

– Domain might too (e.g. Climate, existing netCDF data)

Find something that matches your data model.

Avoid APIs with lots of features you won't use.

– Potential for overhead costing performance is high.

Maybe the right API isn't available?

– Get I/O people interested, consider designing a new library

133

Summary of API Capabilities

YesHierarchical File

YesYesSelf-Describing

YesChunking

YesYesAttributes

YesYesYesColl. I/O

Yes

Yes

Yes

HDF5

Yes

Yes

Yes

PnetCDF

Yes

Yes

Yes

MPI-IO

YesNoncontig. Memory

Sort-ofNoncontig. File

Portable Format

POSIX

134

Tuning Application I/O (1 of 2)

Have realistic goals:

– What is peak I/O rate?

– What other testing has been done?

Describe as much as possible to the I/O system:

– Open with appropriate mode.

– Use collective calls when available.

– Describe data movement with fewest possible operations.

Match file organization to process partitioning if possible

– Order dimensions so relatively large blocks are contiguous with
respect to data decomposition

135

Tuning Application I/O (2 of 2)

Know what you can control:

– What I/O components are in use?

– What hints are accepted?

Consider system architecture as a whole:

– Is storage network faster than comm. network?

– Do some nodes have better storage access than others?

These guide our selection of hints

136

References

137

MPI Sources

The Standard itself:
– at http://www.mpi-forum.org
– All MPI official releases, in both postscript and HTML

Books:
– Using MPI: Portable Parallel Programming with the Message-Passing

Interface, 2nd Edition, by Gropp, Lusk, and Skjellum, MIT Press,
1999. Also Using MPI-2, w. R. Thakur

– MPI: The Complete Reference, 2 vols, MIT Press, 1999.
– Designing and Building Parallel Programs, by Ian Foster, Addison-

Wesley, 1995.
– Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.
Other information on Web:
– at http://www.mcs.anl.gov/mpi
– pointers to lots of stuff, including other talks and tutorials, a FAQ,

other MPI pages

138

The MPI Standard (1 & 2)

139

Tutorial Material on MPI, MPI-2

http://www.mcs.anl.gov/mpi/{usingmpi,usingmpi2}

140

Books on Programming with MPI

Designing and Building Parallel Programs, by Ian Foster
Parallel Programming with MPI, by Peter Pacheco
Using MPI, by William Gropp, Ewing Lusk, Anthony Skjellum
Practical MPI Programming, by Yukiya Aoyama and Jun Nakano (http://www.redbooks.com)

141

I/O References

John May, Parallel I/O for High Performance Computing, Morgan
Kaufmann, October 9, 2000.

– Good coverage of basic concepts, some MPI-IO, HDF5, and serial
netCDF

netCDF

http://www.unidata.ucar.edu/packages/netcdf/

PnetCDF

http://www.mcs.anl.gov/parallel-netcdf/

ROMIO MPI-IO

http://www.mcs.anl.gov/romio/

HDF5 and HDF5 Tutorial

http://hdf.ncsa.uiuc.edu/HDF5/

http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

