
May 1991 v - _" UILU-ENG-91-2229
CRHC-91-19

i ?= ,__;_
=

Center for Reliable and High-Performance Computing

//v'.--_ I- :'_...--

====

: =L,=,# _ -- -'_;

w

A USER-ORIENTED
SYNTHETIC WORKLOAD

GENERATOR

Wei-lun Kao

v

.H -_m-.
Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.
! ==-Z_--

w

_J

mum

N1

m_

m

J

nmi

=

.j,

iiJ

.J

_ _7_U_7_ =_= _= =_ _

mi

w-i

I Formako_

REPORT DOCUMENTATION PAGE j OMmN,LOTO_-OtBm
,,a

_a. IEPORT SECURITY CLASSIFICATION -=Unc |a:ss i f led

4. SECURITY CLA$SJFIC_ATION AUTHORITY
{-

b. DECLA$$IFICA TION / OOWNGICADING SCHEDULE

,"PERFORMINGORGAN_.J_TIONREPORTNUMeER(S]

UILU-ENG-91-2229

4. NAME OFPERFORMING ORGANIZATION

_ Coordinated Science Lab

University of [_llnols
-_ AOOgESS(C./_,SMm,,md_aCo¢le)

ii01 W. Springfield Ave.

Urbana, [L 61801

CRHC-91- 19

....6b.OFF<'ESYMBOl.
(If *Opil(,bie)

N/A
I

L NAME OF FUNDING/SPONSORING
_ ORGANIZATION

NASA
I

c. ADDRESS (Oty, State, and ZJPCode)

I-- NASA Langley Research Center

Hampton, VA 23665

1. TITLE (ItKlude ._Kutr_ Oa,_ficatiOn)

A User-Oriented Synthetic
mlm

z. PE_NaL AUTHOR(S)
-- Wei-lun Kao

134. TYPE OF REPORT 1]b. TIME COVERED

Technical FROM TO
I

--6. SUPPLEMENTARY NOTATION

8b. OFFICE SYMBOL
(1# a_lMiCaDie)

Workload Generator

lb. RESTRICTIVE MARKINGS

None
is im

3 LDISTRltluTIoN /AVAILABILITY OF REPORT

Approved for public release;

dis=rlbucion unlimited

i MONITORING ORGANIZATION REPORT NUMBER(S)

71. NAME OF MONITORING ORGANIZATION

NASA

7b. ADDRESS (City. Scace. an_ ZIP CodeJ

NASA langley Research Center

Hampton, VA 23665

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NASA NAG-I-613

I'0 SOURCE OF FUNDING NUMBERS

PROG_M PROJECT T_K
ELEMENT NO. NO, NO,

I

WORK UNIT
ACCESSION NO.

14. DATE OF RE.O_3RT(YHclW_,D_y) 15. PAGE COUNT

Ma_/ 1991 39

7" COSATI CODES

FIELD GROUP SUB-GROUI)

lB. SUBJECT TERMS (COnUnue ¢wt revenm ne(es_ary and _r_lfy by bkx/x' numl_rj

workload, user-oriented, model, measurement, file system

iii

-C9. AtiSTRACT (Conr/nue on mveem if nece_ and k_mvfy by bkxk numaed

A user-oriented synthetic workload generator that simulates users' file azeess b,_hxv-

ior based on real workload characterization is described. The model for this workload

generator is (i) user-oriented and job-unspecific, (ii) represents file [/tO operations at the

system call level, (iii) allows gener,-d distributions for the usage measures, _nd (iv) as-

sumes independence in the file I/O operation stream. The workload generator consists of

three parts which handle specification of distributions, creation of an initial file system,

J.nd _election and execution of file [/0 operations. Experiments on SUN NFS axe shown

tu demonstrate the usage of the workload generator.

O DiSTRiBUTION IAVAH..:,e,LiT'FOF ABST_CT 2 _ ._aSTRACT ECWRITY C_._SSIFIC._kTION

.-. F_]UNCLa_SSIFIEO/UNLIMITED [] SAME AS RPT ["70TIC USERS Unclassified
|

22a NAME OF RESPONSIBLE ;NDIVIDUAL Z2b TELEPMON U/_e eod) 22c. OFF(_ SYMBOL

___Form 1473, JUN tl_ _'ewous editiollu; &re ol;_lol4tte, SECURITY CLASSIFICATION OF THIS_pAGE

UNCLASSIFIED

\

-r o

t

|

l

|

|

d

J

|

J

d

J

it

_j
IB

I

v

=

w

L_

v__
w

A USER-ORIENTED SYNTHETIC WORKLOAD GENERATOR

BY

WEI-LUN KAO

B.S., National Taiwan University, 1985

--4

-- q
w

F=

w

.= •

w

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

--o

t

l
I

z
!
I

mm

qpP

B

m

W

IB

R
mm

U

_m

m_

g

I

.m
m

i

I

m

I

II

m
m

m

N_

I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

_J_kY__!99!

WE HEREBY RECOMMEND TItAT THE THESIS BY

WEI-LUN KAO

ENTITI.f-I) . A USER- OR[ENTED_SY_I_TBE_TLC.._WDJTd__I]AD__RAT0R

BE ACCEI-_TED IN PARTIAL FULFILLMENT OF THE RE(JUIREMENTS

"F}ll.i I)EGRI:_I._ OF

FOR

'" ' // ' " _ Thesis Research

Y
Head of Department

Committee on Final Examination}-

Chairpcr_,n

t Required for doctor's dcgrce but not for master's.

{}-517

J

m
I

g

mm_

m

m_
m
I

il

m

B

m

m

|
_u/m
Im

J

mm
lib

I

B

ii

g

lib

J

II

g

? :

E =

,.,

111

ABSTRACT

v

A user-oriented synthetic workload generator that simulates users' file access behav-

ior based on real workload characterization is described. The model for this workload

generator is (i) user-oriented and job-unspecific, (ii) represents file I/O operations at the

system call level, (iii) allows general distributions for the usage measures, and (iv) as-

sumes independence in the file I/O operation stream. The workload generator consists of

three parts which handle specification of distributions, creation of an initial file system,

and selection and execution of file I/O operations. Experiments on SUN NFS are shown

to demonstrate the usage of the workload generator.

w

J

Im
!

ml

Em

m
l

m

g

m
up

lg

I

I

l
l

_J
m

II

g

iw

U

W

z

g

iv

w

v

w

w

= :

w

_2

w

__°

w

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Professor Ravi Iyer, for his excellent guidance

and encouragement. Thanks are also due to Dr. Rene Llames for many useful discussions.

I would also like to thanks all my friends, especially those in CRHC for their help. Finally

but not least, I would like to thank my parents, brother and sister for their support and

encouragement.

This research was performed at the Illinois Computer Laboratory for Aerospace Sys-

tems and Software (ICLASS).

r •

L_

w

=

i

up

g

I

m

jm
i

_m

W

um

g

m

I

[]
M

m
im

l

m

ii

J

D

i

m

J

2
u

= V

=

w

w

_=

°

2.

.

4.

5.

6.

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND

2.1 Related Research

2.2 Objectives of the Work

WORKLOAD MODELING

3.1 Modeling Choices

3.1.1 Granularity

3.1.2 Level of description

3.1.3 Measure of variability

3.1.4 Dependence in the operation stream

3.2 Summary

DESIGN AND IMPLEMENTATION

4.1 Structure of the Workload Generator :

4.1.1 Graphic Distribution Specifier (GDS)

4.1.2 File System Creator (FSC)

4.1.3 User Simulator (USIM)

4.2 Properties and Problems

4.3 Summary

USAGE AND APPLICATION

5.1 Usage of the Workload Generator :

5.2 Measuring the SUN NFS

5.3 Comparing Different File Systems

5.4 Summary

CONCLUSION

6.1 Summary

6.2 Future Work

8

8

9

I0

Ii

ii

12

13

13

14

16

16

17

18

19

19

28

33

35

36

36

36

m
g

m
i

riLm
m

g

im
g

im

II

m

m

m

g

I

u

R
J

Q

m

i

D

ml

J

m

l

l

ID

J

L

w

vi

REFERENCES 38

__I

w

J

g

M_
J

m

I

I

I
ml

i

m

W

m

l

i

u

m
J

mw

m

J

D

l

r_

m

=,

ul

U

J

vii

t ,
__=

LIST OF TABLES

=

i:=ir. Table

5.1: File characterization by file category

5.2: User characterization by file category

5.3: Mean and standard deviation of access size (byte) and response time (mi-

croseconds) of file access system calls

5.4: Types of users simulated in experiments

Page

23

24

28

29

= =
w

_4

_=

W

_D

nm
mm

m

g

i
Em
m

W

J

I

m

i

I
g

l
m
g

.m

u

g

gram
tl

N

mid

ID

MB

W

W

=

viii

w

= ,

! ,

w

w

W

W

Figure

4.1:

5.1:

5.2:

5.3:

5.4:

5.5:

5.6:

5.7:

5.8:

5.9:

5.10:

5.11:

5.12:

LIST OF FIGURES

Block diagram of the synthetic workload generator

Examples of phase-type exponential distributions

Examples of multi-stage gamma distributions

Average access-per-byte

Average file size (bytes)

Average number of files referenced

Average response time per byte under all extremely heavy I/O users.

Average response hme per byte under 100% heavy I/O users

Average response time per byte under 80% heavy and 20% light I/O users.

Average response hme per byte under 50% heavy and 50% light I/O users.

Average response hme per byte under 20% heavy and 80% light I/O users.

Average response hme per byte under 100% light I/O users

Average access time per byte under different access sizes of file I/O system

calls

Page

15

21

22

25

26

27

30

30

31

31

32

32

33

w

u

g

L_

D

I

I

B

tm
I

l

m

_j

I

m
g

!
m
I

g

mm
mm

J

D

m

m

iw

im

m_

m

II

v

L

u

w

w

w

w

r -

1. INTRODUCTION

Experiments and simulations are useful in designing and comparing computer sys-

tems. To generate workload for such experiments or simulations, trace data, benchmarks,

and synthetic programs are usually used. Trace data reproduces the actual workload,

but provides an inflexible description and requires much memory. Therefore, it may

not be suitable for every study. Benchmarks and synthetic programs generate artificial

workload, but require careful interpretation of the results.

This thesis introduces a user-oriented synthetic work|oad generator that simulates

typical users accessing files and performing computations. The generator is designed for

experiments and simulations related to file systems, such as measuring the performance of

a particular file system or comparing several file systems. Because the generator simulates

user behavior, it is machine-independent. Therefore, user behavior in a centralized and

distributed system, consisting of possible different types of machines, can be simulated.

Also, different load intensities (i.e., the number of users using a computer concurrently)

can be simulated. The workload generator takes as input a set of distributions of various

2
g

file usage parameters, rather than only their mean values, and can therefore generate more

realistic workload than benchmarks, and more representative measurement or simulation

results.

Unlike previous studies, the workload generator models file access operations at the

system-call level. The generator reproduces many aspects of resource usage, including file

access operation types, number of files, file size, amount access per operation and think

time. These characteristics reflect primarily the behavior of applications, rather than of

operating systems or machine architectures. Hence, the workload generator provides a

portable description of resource usage behavior.

The workload generator consists of three parts. The first part is an interactive graphic

interface for users to specify or modify the distributions of various parameters. The

distributions may be phase-type exponential or multi-stage gamma distributions and

may be specified in the form of tables of probability density or cumulative distribution

values. The second part is a file system creator that builds a file system according to

user-specified parameters. The third part of the generator simulates a number of users.

The current version of the workload generator is written in C++, uses the Xll win-

dow system to display distributions graphically, and assumes a UNIX operating system

environment.

The rest of the thesis is organized as follows. The related research and the objective

are discussed in Chapter 2. In Chapter 3, the workload model is presented. Chapter

4 describes the design and implementation of the workload generator. Chapter 5 gives

i

g

D

m

m

m

N

g

m

J

m
I

t_

7_

g

w

m

m

= -

= =

w

w

_A

--i
w

W

W

m

g

several examples for the usage and application of the workload generator.

chapter summarizes the thesis and suggests future work.

The last

KiD

4
g

i
J

m

D

2. BACKGROUND

I

g

2.1 Related Research

Experiments and simulations to improve existing systems or to design new systems

require workload generators to drive them. Previous research on workload generators

can be divided into three types: trace data, benchmarks, and synthetic programs.

Trace data is collected from a system under certain workloads. For instance, Ouster-

hout, et al., traced the file usage in a UNIX 4.2 BSD file system and used the trace

data in experiments on file system cache sizes [ODCH+85]. Hunt, et al., measured the

resource usage of batch jobs in a university computer center, grouped the jobs into four

clusters, and performed statistical analysis [ttDG71]. The advantage of using trace data

is that the data represents the workload exactly. However, there are several disadvan-

tages. First, the amount of data is very large. Secondly, it is necessary to remember

the initial state of the file system. Third, the trace data, in general, is specific to the

particular configuration of the system from which it was collected and cannot therefore

I

m

I

i

l

I

!

g

i

m

i
I

m

Im

L_

J

W

7

4

E2

H

w

Li

w

z

5

be used to simulate a different configuration. Also, it is not usually possible to arbitrarily

modify the data to produce other kinds of workloads, such as one representing a different

number of users. In other words, the method of using trace data has low flexibility and

is restricted to experiments on existing systems.

Benchmarks are programs or jobs which are selected or designed to simulate real

workload. For example, Cabrera used compilation and execution of a CPU-bound pro-

gram, a command "man man," and a script as benchmark to measure three computer

systems running UNIX [Ser86]. Howard, et al., used a script, consisting of makedir, copy,

scandir, readall and make, to compare Sun NFS with Andrew file system [HKM+88].

Benchmarks are useful in comparing CPU and I/O speed among different computers or

systems. However, not all of the users perform the same tasks, so statistical analysis

is needed to demonstrate the representativeness of benchmarks. Generally, benchmarks

cannot exactly represent the real workload.

Synthetic programs are artificia.1 programs with parameters which can be adjusted

such that the behavior similar to that of real workloads is exhibited. For example, Buch-

holz proposed a synthetic yardstick job which simulated a general file update process

[Buc69], and Wood and Forman showed that it was a practical tool [WF71]. However,

the job was designed for batch systems and needed modification for interactive systems.

Sreenivasan and Kleinman generated workload by using a collection of individual syn-

thetic programs consisting of Buchholz's synthetic programs with six parameters (e.g.

the number of master and detail records, the blocksize, and the size of records) [SK74].

,==

w

m

i
J

Babaoglu modeled virtual memory references and used parameters to produce the refer-

ence pattern [Bab81]. He also considered overhead, and tried to minimize it to increase

the validity of the synthetic program. Hughes clustered many real jobs into several

groups, and used a Markov process to model the workload. The transition matrix was

used to produce workloads [Hug84]. Barrington wrote a synthetic workload generator

based on a user-oriented analysis of file usage [Bar86]. His analysis considered user files

and notes files, but ignored system files, CPU usage and interarrival time of I/O opera-

tions. Synthetic programs combine trace data and benchmarks, so it is more flexible and

realistic, although certain independence assumptions are made.

2.2 Objective of this Research

In this section, we discuss desirable properties for a workload generator. Doman-

ski presented a comprehensive survey and suggested several criteria: portability, main-

tainability, adaptability, comprehensibility, and credibility [Dom82]. A good workload

should:

• be portable, i.e., it should be machine-independent, and operating system indepen-

dent;

• be flexible, i.e., it should be able to produce different kinds of workload, from that

generated by a single user to hundreds of users;

• consider the variation user behavior; that is, not all the users do the same things;

w

m

W

J

lid

-@l

- !

r7

W

• include different resource usages, such as CPU, I/O, and so on;

• be aa-nenable to statistical tests of similarity to the real workload; and,

• be easy to maintain.

This thesis describes a user-oriented synthetic workload generator to meet these cri-

teria. Our method analyzes trace data to obtain the distributions of resource usage of

users and then uses the distributions during the simulation phase. Thus, the workload

generator is based on real workload, can produce single-user as well as multi-user work-

load, and is capable of representing different user behaviors. It is machine-independent

and operating system independent. It is written in C++, and the graphic facility runs

on the Xll window system.

U

m

g

W

l
g

i
3. WORKLOAD MODELING

I

m

m

This chapter describes the workload model used in generating file I/O. In particular,

we discuss the various degrees of freedom in building a model and state the reasons for

our specific modeling decisions. In general, our decisions were guided by the intended

application of the workload generator, namely, to drive experiments and simulations

related to file systems. Specifically, the generator should be able to simulate the behavior

of different user populations, where a population is characterized by the number of user

types and the number of users of each type. The generator should have little or no

language or machine dependence.

3.1 Modeling Choices

Workload models can be classified according to

• Granularity (user-oriented or user-unspecific; job-oriented or job-unspecific)

• Level of description (language, kernel or physical level)

w

g

I

g

m

g

I

J

-W

w

w

6.,-"

U

w

H

w

u

U

• Measure of variability (mean values or distributions)

• Dependence in the operation stream (independent, Markov, or time-series).

The following four sections will discuss each of the above dimensions, and explain the

reasons for our design choices.

3.1.1 Granularity

The first decision to be made in designing Our workload model concerns the granularity

of the description, i.e., whether the model should be user-oriented or user-unspecific

(system-wide). A user-oriented model classifies users into several types and provides a

description of the behavior of each type (Section 4.2.3).

unspecific model describes the workload due to all users.

On the other hand, a user-

That is, it is concerned only

with the aggregate effect of all users. A user-unspecific model is simpler than a user-

oriented model because it consists of fewer parameters; a user-oriented model is more

flexible because it allows us to describe the behavior of different user populations. We

choose a user-oriented model for its flexibility.

Another decision to be made is whether the model should be job-oriented or job-

unspecific. A job-oriented model classifies jobs into several groups and provides a de-

scription of the behavior of each group. A job-unspecific model describes the workload

due to all jobs. A job-oriented model greatly complicates the workload generator and in-

creases its space requirements, but does not provide any more information which would be

useful for the generator's intended purpose. Therefore, we chose a job-unspecific model.

ID

10
I

3.1.2 Level of description

File I/O can be described at several levels, namely, language, kernel, or physical level.

A language-level characterization describes usage of the various I/O operation avail-

able in a particular high-level language. For example, the C language provides such

functions as getc, fprintf, etc. For better performance, some language libraries, such as

that for C, maintain a buffer for each file and manage it themselves. A characterization

at this level is obviously language-specific.

In operating systems such as UNIX, which prevent users from accessing devices di-

rectly but instead provide indirect interfaces, file I/O can also be studied at the kernel

level. The interface in UNIX systems appears in the form of system calls, e.g., open, read,

and ioctl.

U

I

g

f

u

I

U

N

At the lowest, or physical level, system calls to perform file I/O operations appear as

disk controller commands. The operations at this level are hardware-specific.

The appropriate choice of level depends on the purpose of the workload generator.

For example, we would choose the language level to improve the performance of a par-

ticular language, the kernel level to tune an operating system, or the physical level to

compare disk drivers. We chose kernel level (or system call level in UNIX systems) as

the appropriate level at which to model the workload because our purpose in designing

a workload generator is to use it in experiments on file systems.

I

I

W

qll

J

w

m

r .

W

11

3.1.3 Measure of variability

Workload can be quantified in terms of total (or mean) values of the usage measures,

or in terms of their distributions. If we assume the distributions are exponential, mean

values are sufficient to represent behavior, but previous studies have shown that the

distributions are not necessarily exponential [D[86, Dev88]. Our model uses distributions

to represent the variability in the usage measures, but does not assume the distributions to

be exponential. Distributions can be specified in tabular form or in parametric functional

form. This generality enables the workload generator to produce more realistic output.

_-=::=

w

n

w

3.1.4 Dependence in the operation stream

A model for the stream of file I/O operations associated with a user can assume that

each operation is independent of previous ones. Alternatively, a model can allow an

operation to depend on the n previous operations. The dependence is usually expressed

in the form of a Markov model (for n = 1) or a time-series model (for n > 1). For

simplicity, we assume independence, subject to obvious logical constraints; for example,

an open must precede any read or write. For file I/O operations at the system call level,

it is not clear whether the added complexity of modeling dependence in the operation

stream is justified. This is an open research question.

w

12 []
R

3.2 Summary
W

The decisions made in building the file usage were discussed. The model is user-

oriented and job-unspecific, represents file I/O operations at the system call level, allows

general distributions for the usage measures, and assumes independence in the I/O op-

eration stream.

m
m
R

t

I

J

I

g

i

J

m
m

U

m

I

m

D

F

w

13

w

= ,

w

-- f

K
w

4. DESIGN AND IMPLEMENTATION

w

This chapter describes the design and implementation of our workload generator, and

discusses its properties and problems.

F=

w
4.1 Structure of the Workload Generator

EJ

=

W

!

The workload generator simulates users accessing files by generating file I/O oper-

ations using specified distributions. The generator can drive a real or simulated file

system. When used to drive a real file system, the file I/O operations "generated" are

actually executed and, to avoid modifying or destroying existing files, a new file system

is created to which file I/O is directed. In this new file system, only those files which

may be accessed need to be created. In the remainder of this thesis, we assume that the

generator is used to drive a real, rather than simulated, file system.

The block diagram of the workload generator is shown in Figure 4.1. First, file

distributions and usage distributions must be specified. These are used to compute tables

of cumulative distribution function (CDF) values for use in random number generation.

14 u

li

An interactive graphic interface is provided for input, display, and modification of the

distributions. Users can fit a phase-type exponential or multi-stage gamma distribution

to an empirical distribution, or supply the probability density function (PDF) values or

CDF values directly. Second, a new file system is created. Files are created based on the

CDF tables of file distributions computed in the first part. Finally, file I/O operations

are executed to simulate users using the computer. The operations are selected based

on the CDF tables of usage distributions computed in the first part. The details are

described next.

The workload generator is composed of three parts. The Graphic Distribution Spec-

ifier (GDS) allows users to input, fit and modify distributions. The File System Creator

(FSC) creates a new file system. And the User Simulator (USIM) executes file I/O

operations to simulate users.

m
D

n

2

J

I

N

i

m
EJl

g

I
l

D

l

I

4.1.1 Graphic Distribution Specifier (GDS)

The GDS is an interactive graphic interface that allows users to input, fit and modify

distributions. It uses the XII window system to display distributions. If the Xll win-

dow system is not supported, the GDS can still be used to specify distributions, but no

graphical display will be available. Since actual file and usage distributions have been

shown to be well approximated by multi-stage gamma distributions [DI86], the CDS

supports multi-stage gamma distributions. Fitting of phase-type exponential distribu-

tions is also supported because these can represent any type of distribution. Thus, users

can use either of these two distribution families to represent the empirical file and usage

l

I

W

J

=-

lIB

IB

D

L-
U

15

= :

_J

__=

w

w

w

w

_=

teracdvely

[input and

I _y
dismbuuons.

Graphic

ois_b,_o, _ /
Speci_er _.. ___

Generate

CDF tables

Section 4.2.1

File System
Creator

Create initial]

files using [

file distr. /

\- / u=
Section 4.2.2 Simulator

F..xecute

file I/O

operations.

w
I

I

I

J %

I %

' UsageI

' log file I
% I

Section 4.2.3

Figure 4.1: Block diagram of the synthetic workload generator.

16

w

B

distributions, or supply the PDF or CDF values directly. Finally, the GDS creates CDF

tables for the FSC and the USIM. To compute CDF values from PDF values, Sympson's

method for numerical integration is used.

4.1.2 File System Creator (FSC)

The FSC builds a new file system according to the file distributions for each file

category. Note that many files are not referenced. For the file distributions, we only

need to consider those files which were accessed during the measurement. By this, we

greatly reduce the size of the new file system.

We classify files into two basic types: system files and user files. Directories are

treated as special files. However, users can define other types of files for their particular

file system. Each type of file is associated with a size distribution.

In the new file system, we create a directory for system files, and several directories,

one for each virtual user. Files in the system directory and a user's directory are created

according to the file distributions.

4.i.3 User Simulator (USIM)

M

I

=

I

I

U

l

m

m

w

m

W

The USIM simulates workload on a terminal or workstation, i.e., a series of users

logging in and using the computer. In particular, users' file accessing behavior is simu-

lated. The USIM takes as input the following specifications: the number of users, the

number of user types, the fraction of all users belonging to each user type, and for each

J

m

a

w
U

==

J

=
L

L

=

z -

= =

w

w

17

combination of user type and file type, distributions of number of files accessed, file size

and size accessed per operation.

Based on these specifications, the USIM repeatedly randomly selects a file access

operation to be performed, the file on which to perform the operation, the amount of

this file to access, and the time delay to the next operation.

4.2 Properties and Problems

In this section, we point out some properties and problems in the design of our

workload generator.

• The workload generator creates a new file system, which requires disk space. This

is done to avoid changing the state of the existing file system.

w • Disk I/O due to swapping is not considered.

• The amount of memory required to store the CDF values for the distributions is

the product of the number of user types, number of file types, and the number

of sample values per distribution. This amount can quickly become prohibitively

large for more than a small number of user types and file types.

• Variation in the behavior of a user over time is not considered. That is, the distri-

butions are not time-dependent.

w

• Only sequential file access is simulated. This is not unrealistic considering that

previous work has shown that in a university laboratory environment, for a majority

=

zg

18 m

(86%) of the files accessed, the contents are either equally accessed or accessed at

most once [DI86]. However, in other environments, such as a commercial database

system, nonsequential (or random) file access may be the predominant behavior,

• The new file system is assumed to reside completely within a single machine. A

distributed file system cannot be currently created automatically. Users have to

specify the locations of the files for a distributed file system environment.

• While the workload generator is portable across different computer systems, the file

and usage distributions obtained from one system are not necessarily representative

of other systems.

g

W

B

g

m
I

J

I

4.3 Summary

The workload generator consists of three parts, namely, the Graphic Distribution

Specifier (GDS), the File System Creator (FSC) and the User Simulator (USIM).

The GDS is an interactive graphic interface for input, display and modification of

distributions. The FSC creates a new file system to avoid changing the state of

existing file systems. The USIM simulates users by executing file i/O operations.

Some properties and problems in the workload generator were discussed. In Section

6.2, we discuss some future work which addresses some of these problems.

m

m

m

U

!

m

I

g

m

L

m

i

-W

[]

J

19

v _

qtkmP

1Iron*

5. USAGE AND APPLICATION

W

w

--=

F_

To illustrate the usage and application of the Workload Generator, several examples

are shown in this chapter. Section 5.1 demonstrates the use of the Workload Generator.

Section 5.2 shows the measurement of Sun NFS using the Workload Generator as load

control. Section 5.3 suggests a procedure of comparing different file systems.

5.1 Usage of the Workload Generator

The Workload Generator consists of three part. TheCIraphic Distribution Specifier

(GDS) is a,n interactive graphic interface which allows users to specify arbitrary distribu-

tions and to display their density functions interactively. To fit an empirical distribution,

usei's can specify phase-type exponential or multi-stage gamma distributions. A phase-

type exponential probability density function is

N

f(x) - _ _v, exp(O;, x -s,)
i=1

=

7

g

2O

where wi is the weight, si is the offset of the ith phase, N is the number of phases, the

wi's sum to unity, and

1

ezKO, y) = -_e-_ 0 <_y <

A multi-stage gamma probability function is

N

i=l

where wi is the weight, si is the offset of the ith phase, N is the number of phases, the

wi's sum to unity, and

i
g(c_ 0, y) = y"-le-_ 0 < y <

F(a)O _

Figures 5.1 and 5.2 show examples of phase-type exponential and multi-stage gamma

distributions.

In the rest of this section, we would like to use an example which takes data in [DIS6]

and [Dev88] to show how to use the workload generator and visualize the results.

Before executing the User Simulator (USIM), a new file system must be created. An

example characterization of the new file system is shown in Table 5.1. Since only the mean

values of the characterizing measures are specified, as opposed to their distributions, it

is necessary to assume some form of distribution for the measures to generate files for

the new file system. We assume that the measures are exponentially distributed. These

exponential distributions are specified to the GDS to created tables of cdf values. The

File System Creator is then involved and supplied with these tables to generate a new

file system.

m

m

l

i

g

l

g

l

g

J

I

i

J

m

m

D

I

m

=__

m

- W

W

21

--7

--==--

=

W

0.04 -

0.03 -

f(×) 0.02

0.01

0.025 -

0.02 -

f(x) 0.015-
0.01 -

0.005 -

0

\ f(x) = exp(22.1,x)
\

I 1 I I

0 20 40 60 80
I

I00

X

I I I I

0 20 40 60 80 100

X

L

w

f(x)

0.03 -

0.02 -

0.01 -

0

f(x) = 0.4exp(12.7,x)

\ + 0.3exp(18.2,x-18)

t I I I I

20 40 60 80 100

X

=
Figure 5.1: Examples of phase-type exponential distributions.

22
l

m

i

f(x)

f(×)

0.02 -

0.015 -

0.01 -

0.005 -

___ =

0

, =

i i i I i

20 40 60 80 i00

X

0.015 -

0.01

0.005

0

0

f(x) = g(1.5,25.4,x-12)

i i I I i

20 40 60 80 100

X

m

t

J

J

m

J

m

I

I

f(×)

Figure 5.2:

0.03 -

0.02 -

0.01 -

0

0

('_ f(x) = 0.7g(1.a,12.a,x)

+ 0.2g(1.Sr12.4,x-23)

._.3,x-41)

I I t I t

20 40 60 80 100

X

Examples of multi-stage gamma distributions.

m

L
w

= =

:=
L_

w

m

ql

==

w

23

P

= z

Y :
w

=_

w

w

[]

.=

w

Table 5.1: File characterization by file category.

file category

file type owner type of use file size

DIR USER RDONLY 714

OTHER RDONLY 779

REG USER

NOTES

OTHER

RDONLY

NEW

RD-WRT

TEMP

RDONLY

RD-WRT

RDONLY

5794

11164

17431

12431

31347

18771

15072

percent of files

in category

7.7

3.4

21.8

9.7

4.6

38.2

6.4

3.2

5.0

To run the USIM, the usage distributions must be specified. The file usage character-

ization of typical users is shown in Table 5.2. As in the characterization of the new file

system, the usage measures are specified in terms of mean values only; the measures are

assumed to be exponentially distributed. For the access sizes of file access system calls,

we assume they are exponentially distributed with a mean of 1024 bytes. Think time

(inter-I/O-request time) is also assumed to be exponentially distributed with a mean of

5,000 microseconds. These exponential distributions are specified to the GDS to create

tables of CDF values. The USIM is then involved and supplied with these tables to

simulate the file accessing behavior of users.

After simulating 600 Iogin sessions, the system-wide file usage distributions are shown

in Figures 5.3-5.5. These graphs show the distributions of average access-per-byte, av-

erage file size and average number of files referenced as in [DI86] and [DevS8]. For each

24

Table 5.2: User characterization by file category.

file category
file type " owner type of use

DIR USER RDONLY
OTHER RDONLY

REG USER

NOTES

OTHER

RDONLY

NEW

RD-WRT

TEMP

characterizing measures

accesses file size files

3128 808 2.9

percent of Users

accessing category

69

2.28 1198 2.5 70

1.42 TM 2608 6.0

2.36 11438 "4.0

3.50 19860 2.2

2.00 9233 9.7

RDONLY 0.75 53965 11.3

RD-WRT 1.77 20383 5.7 38

RDONL'_ 2.11 13578 3.1 55

100

40

46

59

53

graph, we show the empirical distributions before and after smoothing. There is also a

program, Usage Analyzer, for users to analyze the results and display them graphically.

In evaluating the performance of file systems, one popular performance index is re-

sponse time. In this example, the response time of each file I/O system call was measured

by getting the difference of before and after calling a system call. The example simulation

in this chapter was performed on a SUN 3/50 workstation with a local disk, but all the

files accessed were stored in a SUN 4/490 file server. The network file system used was

the SUN Network File System (NFS). The mean and standard deviation of the access

size and response time for file-access-related system calls are shown in Table 5.3. If we

change number of users or usage distribution of users, we can obtain different response

times, and then compare the results to tune the file system or to decide to change file

systems.

I

S

g

n

m

l

g

_J

II

I

W

IB

lip

w

U

J

r =
i= 25

; z

kJ

z

L .

=

count

50-

40-

30-

20-

i0-

0

0 2 4 6

access-per-byte

I

10

w

(a) Before smoothing

z

= :
w

_2

= =

L_

40-

30

count 20

I0

0

0

A

I I I

2 4 6

access-per-byte

(b) After smoothing

Figure 5.3: Average access-per-byte.

_=

E

mqP

26
g

m

D

1

i
g

count

count

15-

I0-

5-

I 1

0 2O0OO 40000

filesize

60000

(a) Before smoothing

10-

a

1 I 1
20000 40000 60000

file size

(b) After smoothing

Figure 5.4: Average file size (bytes).

g

u

m
g

IP

=
W

w

w

im

27

r _

count

20-

15-

10-

5-

0

0
i i i I

20 40 60 80

number of files

(a) Before smoothing

I
100

W

i=

m_

count

15-

10-

, __ i
0 100

I t i . i
20 40 60 8O

number of files

(b) After smoothing

Figure 5.5: Average number of files referenced.

m

=

J

28

Table 5.3: Mean and standard deviation of access size (byte) and response time (mi-

croseconds) of file access system calls.

number of users

using computer

access size

mea*n(std) mean(std)

946.71(956.76)

response time

1

2 936.06(945.16) 1716.26(7026.62)

3 932.80(946.87) 2120.99(13308.12)

4 956.12(965.49) 2447.55(16834.38)

5 947.98(948.53) 2960.32(16197.86)

6 928.66(935.09). 3494.30(30059.28)

1284.83(4201.52),

I

J

I

I
I

mp

5.2 Measuring the SUN NFS
!
=

J

To understand the effects of the different number of users and the different usage

distributions, we use the file distribution and usage distribution in the previous section

and change some usage distributions to determine the effects on response time.

To understand the effects of the different number of users with different think times,

a series of experiments were performed, and the response times were measured. In these

experiments, three types of users were simulated and they.are determined by think time

(Table 5.4). The computer was used by one user, two users, up to six users simultaneously.

The results are shown in Figures 5.6-5.11. On these figures, each response time is the

mean value during 50 login sessions. Figure 5.6 shows the response time under extremely

heavy I/O users. From the curve, we can find that the response time has a linear

relation to the number of users. This linear relationship is because all the users compete

for resources all the time. Figures 5.7-5.1t show the response times from simulating

different populations of users, with each population composed of a specified proportion

U

.,...
=

m

H

l

uI

W

I

-T

N

29

t ,w

w

i ,

El

F

Li
i==_l

6

Table 5.4: Types of users simulated in experiments.

user type think time

extremely heavy I/O 0

heavy I/0 5000

light I/O 20000

of heavy and light I/O users. We simulated populations with 0%, 20%, 50%, 80%, and

100% heavy I/O users. The slopes in these figures are not as large as that in Figure 5.6

because the competition for resources is not as heavy. One interesting observation is that

the average response times in these figures are similar; that means a 5000-microsecond

think time is not much different from a 20000-microsecond think time. This phenomenon

may be due to the large standard deviation in response time (Table 5.3).

To know the effects of the different access sizes of file I/O system calls, a series of

experiments were performed, and the response time was measured under different access

sizes, from a mean of 128 bytes to 2048 bytes. The load in these experiment was an

extremely heavy I/O user. The results are shown on Figure. 5.12 and the response time is

also the mean value during 50 login sessions. The results suggest that it is better to have

large access sizes for file I/O system calls, which is why most language libraries want to

keep a buffer for each file and manage it themselves. However, this mechanism requires

extra space for these extra buffers.

L,

W

3O I

I

response time

(microseconds)

15-

10-

m

0

0

I I I

2 4

number of users using

the computer simultaneously

Figure 5.6: Average response time per byte under all extremely heavy I/O users.

I

N

m

I

m

l
B

N

I

I

response time

(microseconds)

3-

2-

I-

0

0
I 1 I

2 4

number of users using

the computer simultaneously

6

g

U

u

Figure 5.7: Average response time per byte under 100% heavy I/O users.
W

U

D

- W

l

31

z

response time

(microseconds)

3-

2-

I-

0

0
I 1 1

2 4 6

number of users using

the computer simultaneously

Figure 5.8: Average response time per byte under 80% heavy and 20% light I/O users.

2 :

E •

IL-:_

response time

(microseconds)

3-

2-

1-

0

0
1 I I

2 4 6

number of users using

the computer simultaneously

Figure 5.9: Average response time per byte under 50% heavy and 50% light I/O users.

w

W

32 I

m

m

response time

(microseconds)

3-

2-

I-

0

0

'I I I

2 4

number of users using

the computer simultaneously

Figure 5.10: Average response time per byte under 20% heavy and 800/0 light [/O users.

J

I

H
I

m

I

W

g

u

response time

(microseconds)

m

3-

2-

1-

0

0
I I I

2 4

number of users using

the computer simultaneously

6

Figure 5.11: Average response time per byte under 100% light I/O users.

m

M

w

w

= _

w

w

=

m
gig

33

. =.
response time

(microseconds)

m

4-

3-

2-

l-

0

0

I I I I

500 1000 1500 2000

average access size

per file I/O system call

Figure 5.12: Average access time per byte under different access sizes of file I/O system
calls.

5.3 Comparing Different File Systems

L

_aJ

F.

L

E=i

The previous section discussed measuring a file system. To compare two or more

different file systems, we need to do a similar measurement for each file system and com-

pare the results by different workload environments. One file system may be better under

some particular environment, and others may be superior under different environments.

To evaluate which file system is the best, we need to determine the environment first.

For example, a laboratory may want to install a new computer system and faces several

choices for the file system in addition to specifying the hardware and operating system.

Then, they, need to compare the performance of candidate file systems. The existing

comparison and information about the performance of them may not be useful for the

laboratory due to different workloads, such as number of users, type of users, etc. [n this

case, benchmarks are too artificial, and real data will be useless if they want to change

_q
W

J

34
m
m

g

the number of users in the laboratory. The Workload Generator is based on the existing

file usage and it is user-oriented, so it is useful when the number of users changes but

the usage of the computer system keeps the same; that is, the types of users keep the

same. Therefore, this workload generator can be used to compare the file systems based

on their particular file usage, and then the best choice can be made.

A procedure for using our simulation tool in a file system comparison study is as

follows.

1. Measure the detailed usage distributions by modifying the kernel.

J

m
m

g

m
I

I

i

D

N

D

2. Execute the GDS with the distribution obtained from the previous step and gen-

erate all the required CDF tables.

3. Execute the FSC to build an artificial file system for the USIM.

4. Set up the computer system with one candidate file system, then execute the USIM

as many copies as the number of users in the lab. Measure response times and

average file I/O speed by a method similar to the one used in step 1.

5. Change the file system to another candidate, and keep the rest the same. Repeat

the previous step to measure this file system. Repeat this step for all the rest of

the candidate file systems.

6. Compare the results.

If there are several choices for hardware or operating systems, then all combinations

should be considered and more experiments are needed.

J

J

J

W

W

m
L_

_3

g

= =

5.4 Summary

35

The Workload Generator is designed for experiments and simulations related to file

systems, such as measuring the performance of a particular file system or comparing

several file systems. This chapter first mentioned about the usage of the Workload

Generator, then used the Workload Generator to measure the performance of the SUN

NFS, and then suggested a procedure to compare different file systems and demonstrates

an example of application.

U

36

M
W

g

I

i

i

I

6. CONCLUSION
i

U

m

6.1 Summary

In this thesis, we developed a user-oriented synthetic workload generator based on a

user-oriented model. The model was job-unspecific, represented file I/O operations at

the system call level, allowed general distributions for the usage measures, and assumed

independence in the I/O operation stream. The workload generator was logically parti-

tioned into three parts which handle specification of distributions, creation of an initial

file system, and selection and execution of file I/O operations.

6.2 Future Work

In Section 4.2, we discussed some problems with this type of workload generators.

Some of these cannot be easily solved. Some possible improvements are as follows.

=

J

i

g

U

l

J

i

m
J

Im

? 37

= • The file types could include indexed files and direct-access files. To support simu-

lation of accessing of such files, the location of data in a file should also be logged

during measurement.

• To simulate time-varying user behavior, such as transitions between CPU-bound

and I/O-bound phases, a Markov process model can be used. For example, from

a previous study [CS85], we know that the distribution of inter-login times varies

depending on time of day. A more realistic model would therefore allow for time-

dependent distributions.

L--4

--4

EN

--=

• Our assumption of independence in the file operation stream needs to be examined

in greater detail.

• Considering the increasing popularity of window systems, the implications for user

behavior should be considered. Under a window system, a user may have several

simultaneous logins and may run several commands simultaneously (perhaps back-

ground jobs). Currently, our analysis associates a user with a single interactive

session initiated by a login and terminated by a logout. The analysis must be

extended to account for simultaneous togin sessions initiated by a single user.

E

_2

38
g

g

REFERENCES
E

[Bab81]

[Bar86]

[Buc69]

[cs8]

[Dev88]

[D186]

[Dom82]

[HDG71]

[HKM+88]

[Hug84]

O. Babaoglu. On construction synthetic programs for virtual memory en-

vironments. In D. Ferrari and M. Spadoni, editors, Experimental Computer

Performance Evaluation, pages 195-204. North-Holland, 1981.

T. Barrington. A synthetic workload generator based on the user-oriented

analysis of file usage. EE 441 project report, University of Illinois at Urbana-

Champaign, 1986.

W. Buchholz. A synthetic job for measuring system performance. IBM

Syst. J., 8(4):309-318, 1969.

M. Calzarossa and G. Serazzi. A characterization of the variation in time

of workload arrival patterns. IEEE Tran. on Computers, C-34(2):156-162,

February 1985.

M. V. Devarakonda. File Usage Analysis and Resource Usage Prediction:

.4 3,[easurement-Based Study. Ph.D. thesis, University of Illinois at Urbana-

Champaign, 1988.

M. V. Devarakonda and R. K. Iyer. A user-oriented analysis of file usage in

UNIX. In Proc. COMSAC-86, pages 21-27, 1986.

B. Domanski. Load driving a system. Computer Performance, 3(4):195-

200, 1982.

E. Hunt, G. Diehr, and D. Garnatz. Who are the users? An analysis

of computer use in a university computer center. In AF[P5 Conf. Proc.

SJCC, volume 38, pages 231-23S, 1971.

J. It. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,

R. N. Sidebotham, and M. J. West. Scale and performance in a dist!'ibuted

file system. ACM Tran. Computer Systems, 6(1):51-S1, February I988.

H. D. Hughes. Generating a drive workload from clustered data. Computer

Performance, 2(1):31-37, 1984.

=

I

I

m

m

U

II

I

u

i

m

J

i

? 7

w

L=

39

[ODCH+85] J. Ousterhout, D. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, and

J. G. Thompson. A trace-driven analysis of the UNIX 4.2 bsd file system.

In Proc. o/the 10th A CM Symposium on Operating System Principles, pages

15-24, 1985.

[Ser86] G. Serazzi. Workload characterization of computer systems and computer

networks. North-Holland, 1986.

[SK74] K Sreenivasan and. A. J. Kleinman. On the construction of a representative

synthetic workload. CACM, 17(3):127-133, March 1974.

[WF71] D. C. Wood and E. H. Forman. Throughput measurement using a synthetic

job stream. In AFIPS Conf. Proc. FJCC, volume 39, pages 51-56, 1971.

h .

z_

w

m

mi

m
I

!

w

m_

iw

w

W

m

m
IB

I

[]

g

l

mUD

E_

g

R

i

_g

_J

hw

