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Abstract

Generating finite-element meshes is a serious bottleneck for large
parallel simulations. When mesh generation is limited to serial ma-
chines and element counts approach a billion, this bottleneck becomes
a roadblock. pamgen is a parallel mesh generation library that allows
on-the-fly scalable generation of hexahedral and quadrilateral finite
element meshes for several simple geometries. It has been used to
generate more that 1.1 billion elements on 17,576 processors.

pamgen generates an unstructured finite element mesh on each
processor at the start of a simulation. The mesh is specified by com-
mands passed to the library as a ”C”-programming language string.
The resulting mesh geometry, topology, and communication informa-
tion can then be queried through an API. pamgen allows specifica-
tion of boundary condition application regions using sidesets (element
faces) and nodesets (collections of nodes). It supports several sim-
ple geometry types. It has multiple alternatives for mesh grading. It
has several alternatives for the initial domain decompositon. pamgen
makes it easy to change details of the finite element mesh and is very
usesful for performance studies and scoping calculations.
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1 Introduction

To overcome the challenge of producing multi-million finite element meshes
for simulations using more than 1000 processors a library has been developed
(pamgen) that for several simple geometries produces each processor’s mesh
as an early step of the analysis execution. The specification for these meshes
is provided by a block of terse instructions that may be placed in an input file.
These instructions are passed to the library as a ”C”-programming language
character array. pamgen is also referred to as an “in line” mesh generator
because the meshing instructions may be included in one of the analysis input
decks.

The simple input format allows analysts to change the resolution of a
simulation by altering a few parameters. It also allows them to execute
their simulations on different numbers of processors without requiring any
pre-processing.

The mesh generation proceeds through steps of decomposition, local ele-
ment creation, and communication information generation. The final product
of the library is a data structure that can be queried using an API (Applica-
tion Programming Interface) that is based on the NEMESIS and EXODUS
APIs. Currently the library is limited to generating meshes of domains with
cylindrical, tubular, and block shapes. Substantial control is allowed over the
element density within these shapes. Boundary condition application regions
can be specified on the surfaces and interior of the mesh .

Development of this capability revealed that the parallel mesh generation
process can be reduced to answering a series of questions: What elements are
on this processor? What nodes are on this processor? What is the connec-
tivity of this element? What elements border this element? What processor
does this element reside on?... Resolving these questions inductively, without
resolution to communication, is essential for preserving scalability. Once a
framework for posing and answering these questions for a particular geome-
try is established, expanding the capability to support additional geometries
is straightforward.
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2 Capabilities

The capabilities of pamgen are best understood by studying Section 5,
which documents in detail the instructions available for specifying a mesh.
This section provides a brief overview of the library’s capabilities. pamgen
will be distributed as part of the Trilinos package of matrix and finite
element tools.

2.1 Dimensions

pamgen can create both two and three dimensional meshes. It creates
quadrilateral finite element meshes if two dimensions are specified, and it
creates hexahedral finite element meshes if three dimensions are specified.
For two dimensional quadrilateral meshes the Z component of nodal coordi-
nates is not supplied.

2.2 Mesh Geometries

The pamgen library handles the mesh geometries shown below:

• Bricks

• Partial hollow cylinders

• Complete hollow cylinders

• Partial solid cylinders

• Complete solid cylinders

Figure 1: The mesh geometry zoo in 3D.
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2.3 Boundary Conditions

Boundary conditions application regions in the form of node sets and side
sets can be applied to the face, edge, or corner of any element block in the
finite element mesh. They may also be applied to any face, edge, or corner
of the entire mesh.

2.4 Decomposition

There are several mesh decomposition strategies available in pamgen:

• A default decomposition based on a constrained optimized solution that
slices through the entire mesh in its three (or two in 2D) topological
dimensions.

• A user defined slicing strategy that specifies the number of slices
through the mesh in each topological direction.

• A sequential strategy that distributes elements beetween processors
based on their element ids with the first n elements going to processor
0 ...

• A random strategy that assigns element to processors randomly.

2.5 Geometry Transformation

Any mesh can be modified by re-evaluating the nodal coordinate values using
a user-supplied function. This function has the original nodal coordinates as
input values. Its output values define the new nodal coordinates.

Figure 2: Examples of geometry transformation.
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2.6 Element Density

Several of the geometry types allow specification of first and last element
sizes within a block in a particular cartesian direction. In addition the user
may control node distribution over any geometry by providing a user defined
distribution function. This function is evaluated so that nodes are shifted
towards areas where the function has its highest values.
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3 Approach

pamgen operates on the premise that mesh generation is deterministic. This
means that every execution of code compiled with compiler A and run on
processor B under operating system C reading mesh instructions file D will
produce an identical mesh. The mesh will have the same topology and the
nodes will have the same coordinate locations. On a multi-processor machine
of identical nodes an arbitrary number of processors executing identical in-
structions produce an identical mesh. Use of pamgen on heterogeneous
machines may produce unexpected results.

With one significant exception, pamgen operates in the same way as
these identical processors producing identical mesh. The exception is that
each processor only allocates for a subset of the nodes and elements, and
each processor performs topology and geometry calculations only for the
entities and dependencies present on that processor. pamgen exploits the
fact that each processor is capable of producing the entire mesh in order to
allow each processor to produce its own mesh. The deterministic nature of
the meshing process is essential to allow correspondence in topologies and
geometries produced on adjacent processors.

The implementation of the mesh generation in pamgen is as much as
possible implicit. Quantities are not allocated until they are ready for out-
put, and they are not calculated until they can be stored, or until they are
required by a dependent calculation. This approach can result in duplica-
tion of intermediate calculations, but it avoids the severe limitations on total
problem size that occur if attempts are made to allocate any quantity with
a size related to the total mesh size.

15



4 Usage

For the few simple geometries and element types it supports, the pamgen
library is a substitute for pre-processed finite element mesh files. Successful
usage of the library requires some modification of the analysis code.

The pamgen library must be linked into the analysis executable to allow
access to the mesh creation, query and deletion functions.

The modules in the analysis code that read finite element mesh data from
a file must be adapted to:

• Read in a “C”-progamming language string that specifices the geome-
try, topology, and boundary conditions of a mesh.

• Pass that string to the pamgen Create Pamgen Mesh(...) function
along with the rank of the mesh requested and the total number of
processors across which the mesh is spread.

• Handle message and possibly error strings available after calling Cre-
ate Pamgen Mesh(...).

• Call the pamgen query functions to populate the analysis code’s mesh
and communication data structures.

• Call the pamgen Delete Pamgen Mesh() function release memory al-
located within the library.

The source code for a stand-alone executable called “pamgen lt c” is dis-
tributed with the pamgen library. This example code is an excellent starting
point for adapting an analysis code to use the pamgen library.
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5 Specifying a Mesh

The “C”-programming language string passed to pamgen is the complete
definition of the mesh’s geometry, topology, node sets, side sets, and par-
allel decomposition. It must begin with a MESH keyword, and it must end
with an END keyword. The MESH -- END keyword pair must surround a
RECTILINEAR -- END, SPHERICAL -- END, BRICK -- END, RADIAL -- END,
RADIAL TRISECTION -- END, or CYLINDRICAL -- END keyword pair and
may have additional SET ASSIGN -- END, DECOMPOSITION STRATEGY --

END, USER DEFINED ELEMENT DENSITY -- END, or USER DEFINED GEOMETRY

TRANSFORMATION -- END keyword pairs.

MESH

{RECTILINEAR | SPHERICAL | BRICK | RADIAL | RADIAL TRISECTION | CYLINDRICAL}

[subkeyword-list]

END

[SET ASSIGN]

[END]

[DECOMPOSITION STRATEGY]

[END]

[USER DEFINED GEOMETRY TRANSFORMATION]

[END]

[USER DEFINED ELEMENT DENSITY]

[END]

END

5.1 Dimensionality

The dimensionality of the mesh is not specified in the “C” programming lan-
guage string. It is passed to the pamgen library at execution time through
the pamgen API. In general a 2D mesh can be specified by removing 3D spe-
cific keywords and values (those referencing a third coordinate [for example
Z or k]) from a 3D mesh description.
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5.2 Block IDs

The finite elements created using pamgen are grouped into blocks. Each
block has a positive non-zero id. These ids are automatically assigned by
pamgen and are not under the control of the user. If there is a single block
then its id is 1. When there are more than one block, the ids are assigned
beginning with the block in the lowest topological position in i, j, k space.
Subsequent blocks are incrementally numbered first in the i topological di-
rection, next in the j topological direction, and finally in the k topological
direction. In the case of BRICK and RECTILINEAR meshes i, j, and k corre-
spond to the coordinate directions x, y, and z. In the case of CYLINDRICAL,
RADIAL, and RADIAL TRISECTION meshes i, j, and k correspond to r, θ, and
z.
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5.3 Geometry and Topology

5.3.1 Rectilinear

RECTILINEAR

[subkeyword-list]

END

The RECTILINEAR -- END block pair surrounds the description of the
geometry of a rectilinear mesh. The extent of the domain is given by a
pair of vectors (gmin and gmax). The number of blocks in each coordinate
direction and the number of elements in each block are given by additional
keywords. The total number of elements specified in this type of mesh is the
product of the total number of blocks BX × BY × BZ and the total number
of elements per block NX × NY × NZ. For a 2D mesh NZ and BZ must be
omitted. The keywords associated with the RECTILINEAR keyword are given
in Table 1.

Table 1: Keywords for RECTILINEAR -- END.

Sub-Keyword Input Description

NX int Number of cells in x-direction.
NY int Number of cells in y-direction.
NZ int Number of cells in z-direction.
BX int Number of blocks in the x-direction.
BY int Number of blocks in the y-direction.
BZ int Number of blocks in the z-direction.
GMIN vector Minimum domain coordinates (x,y,z).
GMAX vector Maximum domain coordinates (x,y,z).

An example of a mesh specification with the RECTILINEAR option is illus-
trated in Figure 3.
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mesh

rectilinear

nx = 10

ny = 10

nz = 10

bx = 4

by = 7

bz = 5

gmin = 1.0 1.0 1.0

gmax = 4.0 7.0 5.0

end

set assign

nodeset,ihi,2

nodeset,jhi,1

end

end

Figure 3: Definition of a three-dimensional RECTILINEAR mesh.
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5.3.2 Spherical

SPHERICAL

[subkeyword-list]

END

The SPHERICAL -- END block pair allows the description of a curvilin-
ear spherical mesh centered at the origin and described by an inner and
outer radius, and the extent of revolution in θ and φ directions. Angle θ is
measured counter-clockwise about the z-axis from the x-axis, and angle φ is
measured counter-clockwise from the y-axis about the x-axis. The number
of elements and blocks in each curvilinear coordinate direction are specified
by the keywords in Table 2. The parameters PHI, NPHI, and BPHI are only
appropriate for 3D problems. When used in 2D simulations, CYLINDRICAL
and SPHERICAL keywords produce identical meshes.

Table 2: Keywords for SPHERICAL -- END.

Sub-Keyword Input Description

NR int Number of cells in r-direction.
NTHETA int Number of cells in θ-direction.
NPHI int Number of cells in φ-direction.
BR int Number of blocks in the r-direction.
BTHETA int Number of blocks in θ-direction.
BPHI int Number of blocks in φ-direction.
RI real Inner radius
RO real Outer radius
THETA real Angular extent in θ (degrees,0.-180. in 3D, 0.-360.

in 2D)
PHI real Angular extent in φ (0.-360)

An example of a mesh definition syntax with the SPHERICAL option is
illustrated in Figure 4 for a 2D simulation. An example of 3D spherical mesh
generation follows in Figure 5.
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mesh

spherical

ri = 0.0

ro = 0.5

theta = 45

ntheta = 10

nr = 20

br = 2

btheta = 2

end

end

Figure 4: Definition of a two-dimensional spherical mesh.

mesh

spherical

ri = 0.5

ro = 1.0

theta = 180.0

ntheta = 10

nr = 10

br = 2

btheta = 2

bphi = 2

nphi = 10

phi = 90

end

end

Figure 5: Definition of a three-dimensional spherical mesh.
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5.3.3 Cylindrical

CYLINDRICAL

[subkeyword-list]

END

The CYLINDRICAL -- END block pair allows the description of a curvilin-
ear cylindrical mesh centered at the origin in x and y, and aligned along the
z-axis. It is described by an inner and outer radius, the extent of revolution
in angle θ about the z-axis, and its start and end in the z-direction. Angle θ
is measured counter-clockwise about the z-axis from the x-axis. The number
of elements and blocks in each indicial direction are specified by the keywords
in Table 3. The parameters ZMIN, ZMAX, NZ, and BZ are only appropriate
for 3D problems. When used in 2D solutions, CYLINDRICAL and SPHERICAL

produce identical meshes.

Table 3: Keywords for CYLINDRICAL -- END.

Sub-Keyword Input Description

NR int Number of cells in r-direction.
NTHETA int Number of cells in θ-direction.
NZ int Number of cells in z-direction.
BR int Number of blocks in the r-direction.
BTHETA int Number of blocks in θ-direction.
BZ int Number of blocks in z-direction.
RI real Inner radius
RO real Outer radius
THETA real Angular extent in θ degrees, 0.-360.
ZMIN real Start of mesh in z-direction
ZMAX real End of mesh in z-direction

An example of a pamgen mesh definition with the CYLINDRICAL option
is illustrated in Figure 6.
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mesh

cylindrical

ri = 0.5

ro = 1.0

theta = 90.0

ntheta = 10

nr = 10

br = 2

zmin = 1.0

zmax = 2.0

nz = 10

bz = 2

end

end

Figure 6: Three dimensional CYLINDRICAL mesh.
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5.3.4 Radial and Radial Trisection

{RADIAL | RADIAL TRISECTION }

[ENFORCE PERIODICITY]

[TRISECTION BLOCKS, int]

[TRANSITION RADIUS, int]

[ZMIN real]

NUMZ int

ZBLOCK int real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

{NUMR | NUMX} int INITIAL RADIUS real

RBLOCK int real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

{NUMA | NUMY} int

ABLOCK int real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

END

The RADIAL and RADIAL TRISECTION block pairs allow the description of
a curvilinear cylindrical mesh centered at the origin in x and y, and aligned
along the z-axis. The RADIAL TRISECTION -- END block pair fills in the
center of the cylindrical mesh with transition elements. These options are
similar to the CYLINDRICAL but they have a different set of controls on ele-
ment distribution. The successful creation of these meshes requires sequential
specification of the information for the number of elements blocks and their
sizes in each coordinate direction.

The ENFORCE PERIODICITY keyword applies only to RADIAL and RADIAL

TRISECTION mesh descriptions that meet certain requirements:

• The meshes must have azimuthal angles of 90, 180, or 360 degrees.

• The meshes must have a single block of elements in the azimuthal
direction.

• The meshes must have an even number of elements in each 90 degree
segment of the mesh.

• For RADIAL TRISECTION meshes, one transition zone is required for
each 90 degrees of azimuth.

This keyword causes the mesh generation to perform all node coordinate
calculations in the first 45 degrees of the azimuthal domain. Coordinate
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locations of nodes ouside of 45 degrees are formed by permuting the sign and
oder of the components of periodically corresponding nodes’ locations. This
guarantees that there will be no differences between the absolute floating
point values of periodically corresponding nodes’ coordinates.

The NUMZ | NUMR | NUMA keywords are followed by an integer specifying
the number of element blocks in that coordinate direction. The NUMR line
includes an additional real parameter that specifies the inner radius of the
cylindrical mesh. Specification of an inner radius of 0.0 will result in degen-
erate elements with co-located nodes along the Z axis. The innner radius
specification is ignored for RADIAL TRISECTION meshes.

Immediately following the NUMZ int | NUMR int INITIAL RADIUS real

| NUMA int lines, there must be a ZBLOCK | RBLOCK | ABLOCK line for each
of the blocks in that direction. These lines specify the spatial extent of the
particular block and the distribution of elements in the block in that direc-
tion. The INTERVAL int keyword specifies a fixed number of elements in
the block. A FIRST SIZE real LAST SIZE real pair specifies the absolute
size of the first and last elements in the block. When the FIRST SIZE real

LAST SIZE real specification is used, the element sizing will be linear be-
tween the first and last elements. The sizes of the first and last elements
may be adjusted slightly to provide linear sizing. The approximate number
of elements that will be generated using FIRST SIZE and LAST SIZE sizing
controls is given by truncating to an integer, the length of the mesh segment
divided by the average of the FIRST SIZE and LAST SIZE values. There is
a slight chance that this calculation will result in a different number of ele-
ments on different computer platforms. Omission of the LAST real keyword
is equivalent to setting the element size to that given by the FIRST SIZE

real keyword.

The RADIAL TRISECTION -- END block pair requires the additional in-
put of TRISECTION BLOCKS, int and it accepts the optional TRANSITION
RADIUS, real keyword value pair. The TRISECTION BLOCKS keyword spec-
ifies the number of transition zones that will be used in the central region
of the mesh. This number must be supplied. One transition zone is rec-
ommended for each 90 degrees of azimuth. The TRANSITION RADIUS is the
distance from the origin to the corners of the transition zones of mesh. With-
out this parameter the transition radius is chosen to be one half of the ra-
dial thickness of the first block. When RADIAL TRISECTION is selected, any
INITIAL RADIUS supplied is ignored.
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The ZMIN real keyword value pair is available to specify an offset for the
entire mesh in the Z direction.

If the cumulative values of the sizes of the azimuthal blocks, given by
the second argument of ABLOCK int real is equal to 360.0 degrees, then the
mesh will form an single closed ring of elements.

An example of pamgen mesh definition with the RADIAL option is illus-
trated in Figure 7.

mesh

radial

numz 2

zblock 1 10.0 first size 1 last size 2

zblock 2 10.0 first size 2 last size 1

numr 2 initial radius 1.

rblock 1 10. first size 1. last size 2.

rblock 2 10. first size 2. last size 1.

numa 1

ablock 1 120. interval 10

end

end

Figure 7: Three dimensional RADIAL mesh.

A second example of pamgen mesh definition with the RADIAL option is
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illustrated in Figure 8. In this case the sum of the azimuthal blocks is 360.0
and the mesh is a complete cylinder.

mesh

radial

numz 1

zblock 1 10.0 interval 6

numr 3

rblock 1 2. interval 12

rblock 2 5. interval 6

rblock 3 5. interval 12

numa 1

ablock 1 360. interval 36

end

end

Figure 8: Three dimensional RADIAL mesh with azimuthal angle of 360 de-
grees.

An example of a pamgen mesh definition with the RADIAL TRISECTION

option is illustrated in Figure 9. This figure is annotated to show the corre-
spondence between input parameters and the resulting mesh. This mesh uses
a TRISECTION BLOCKS setting of 3. In this case the azimuthal angle is 90.
degrees and the FIRST SIZE, LAST SIZE, and TRANSITION RADIUS directives
are used.

An second example of a pamgen mesh definition with the RADIAL

TRISECTION option is illustrated in Figure 10.

A third example of a pamgen mesh definition with the RADIAL TRISECTION

option is illustrated in Figure 11. In this case the azimuthal angle is 360.
degrees and the mesh is a complete circular disk.
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Rblock 1 Radius = 8.0

Tra
nsit

ion R
adius =

 6.5

Width = 4.0
Width = 3.0

mesh

radial trisection

trisection blocks, 3

transition radius, 6.5

numz 1

zblock 1 1. interval 1

numr 3

rblock 1 8.0 interval 4

rblock 2 3.0 first size 0.05 last size 0.5

rblock 3 4.0 first size 0.5 last size 0.05

numa 1

ablock 1 90. interval 12

end

end

Figure 9: A RADIAL TRISECTION mesh with azimuthal angle of 90 degrees
and three trisection blocks. FIRST SIZE and LAST SIZE commands are used
to specify element density.
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mesh

radial trisection

trisection blocks, 2

zmin -0.00075

numz 1

zblock 1 1. interval 4

numr 3

rblock 1 2.0 interval 4

rblock 2 3.0 interval 4

rblock 3 4.0 interval 4

numa 1

ablock 1 90. interval 12

end

end

Figure 10: Three dimensional RADIAL TRISECTION mesh with azimuthal an-
gle of 90 degrees and two trisection blocks.
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mesh

radial trisection

trisection blocks, 4

zmin -0.00075

numz 1

zblock 1 4. interval 4

numr 3

rblock 1 2.0 interval 4

rblock 2 3.0 interval 4

rblock 3 5.0 interval 4

numa 1

ablock 1 360. interval 32

end

end

Figure 11: Three dimensional RADIAL TRISECTION mesh with azimuthal an-
gle of 360 degrees and four trisection blocks.
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5.3.5 Brick

BRICK

NUMZ int (l)

ZBLOCK 1 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

ZBLOCK 2 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

...

...

ZBLOCK l real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

NUMX int (m)

XBLOCK 1 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

XBLOCK 2 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

...

...

XBLOCK m real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

NUMY int (n)

YBLOCK 1 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

YBLOCK 2 real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

...

...

YBLOCK n real {INTERVAL int | FIRST SIZE real [LAST SIZE real]}

END

The BRICK mesh topology type is a more flexible version of the RECTILINEAR
type in that it allows different numbers of elements in each element block in
each coordinate direction. The creation of a BRICK mesh is analogous to the
RADIAL mesh option and successful creation of these meshes requires sequen-
tial specification of the information for the number of elements blocks and
their sizes in each coordinate direction.

The NUMX | NUMY | NUMZ keywords are followed by an integer specifying
the number of element blocks in that coordinate direction. The

Immediately following the NUMX int | NUMY int | NUMZ int lines, there
must be a XBLOCK | YBLOCK | ZBLOCK line for each of the blocks in that di-
rection. The first integer on this line corresponds to the ordinal (beginning
with 1) of the line. These lines specify the spatial extent of the particular
block and the distribution of elements in the block in that direction. The
INTERVAL int keyword specifies a fixed number of elements in the block.
A FIRST SIZE real LAST SIZE real pair specifies the absolute size of the

32



first and last elements in the block. When the FIRST SIZE real LAST SIZE

real specification is used, the element sizing will be linear between the first
and last elements. The sizes of the first and last elements may be adjusted
slightly to provide linear sizing. Omission of the LAST real keyword is equiv-
alent to setting the element size to that given by the FIRST SIZE real key-
word.

An example of a pamgen mesh definition with the BRICK option is illus-
trated in Figure 12.

mesh

brick

numz 2

zblock 1 2. interval 5

zblock 2 8. interval 4

numx 2

xblock 1 5.0 interval 5

xblock 2 5.0 interval 5

numy 2

yblock 1 10. first size 1. last size .1

yblock 2 10. first size .1 last size 1.

end

end

Figure 12: Three dimensional BRICK mesh.

33



5.4 Boundary Conditions (Nodesets and Sidesets)

SET ASSIGN
[{NODESET | SIDESET},{IHI | JHI | ... | V00 | V01 | ... | E00 |
E01 | ... }, int]
[{BLOCK SIDESET | BLOCK NODESET},{IHI | JHI | ... | V00 | V01 |
... | E00 | E01 | ... }, int, int]
...

END

The SET ASSIGN -- END keyword pair allows the specification of nodesets
and sidesets on the exterior of meshes. These nodesets and sidesets can be
used for specifying boundary conditions on the domain. The nodeset or
sideset is applied to the topological face, edge, or vertex associated with the
prescribed topological direction. The mesh domain topology and associated
labels are shown in Figure 13.This specification applies to the entire domain
and cannot be used to specifiy individual blocks.

The most commonly used sub-domains are the exterior faces of the do-
main. They can be prescribed using IHI, JHI, KHI, ILO, JLO, or KLO.
For RECTILINEAR meshes I,J, and K correspond to the coordinate direc-
tions x, y, and z. For SPHERICAL meshes I,J, and K correspond to the
coordinate directions r, θ, and φ. For CYLINDRICAL meshes I,J, and K
correspond to the coordinate directions r, θ, and z. The KHI, KLO options
do not exist in two dimension simulations.

Specifying a nodeset on the ILO face of a RADIAL TRISECTION mesh
refers to the edge aligned with the Z axis (see Figure 14). Sidesets may not
be specified on the ILO face of RADIAL TRISECTION meshes.

BLOCK NODESETS and BLOCK SIDESETS are only available to the
BRICK, RADIAL, and RADIAL TRISECTION geometry mesh types.

The [BLOCK SIDESET | BLOCK NODESET, IHI | JHI | KHI | ILO |

JLO | KLO , int, int] command allows specification of nodesets and
sidesets on the topological faces of blocks that may be within the finite ele-
ment mesh. The first integer specifies the id that the sideset or nodeset will
have, the second integer specifies the block on which the sideset or nodeset
is applied.

An example of BLOCK SIDESET applied to a mesh definition with the
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Side: 0-4-7-3 - ILO k 7---------6 Edge: 0-1 - E00
Side: 1-2-6-5 - IHI | /| j /| Edge: 1-2 - E01
Side: 0-1-5-4 - JLO |/ | / / | Edge: 3-2 - E02
Side: 3-7-6-2 - JHI 4---------5 | Edge: 0-3 - E03
Side: 0-3-2-1 - KLO | 3------|--2 Edge: 0-4 - E04
Side: 4-5-6-7 - KHI | / | / Edge: 1-5 - E05

|/ |/ Edge: 2-6 - E06
Vertex: 0 - V00 0---------1 --i Edge: 3-7 - E07
Vertex: 1 - V01 Edge: 4-5 - E08
Vertex: 2 - V02 Edge: 5-6 - E09
Vertex: 3 - V03 Edge: 7-6 - E10
Vertex: 4 - V04 Edge: 4-7 - E11
Vertex: 5 - V05
Vertex: 6 - V06
Vertex: 7 - V07

Figure 13: Block topology and labels.

RADIAL TRISECTION option is illustrated in Figure 14. In this example a
sidet is applied to the IHI face of block 2. The sideset applied to block 2 will
have sideset id 45. The faces called out in these sidesets will have outward
normals facing in the IHI direction.

35



mesh

radial trisection

trisection blocks, 2

zmin -0.00075

numz 1

zblock 1 1. interval 4

numr 3

rblock 1 2.0 interval 4

rblock 2 3.0 interval 4

rblock 3 4.0 interval 4

numa 1

ablock 1 90. interval 12

end

set assign

nodeset, ilo, 100

block sideset, ihi, 45, 2

end

end

Figure 14: Three dimensional RADIAL TRISECTION mesh with azimuthal an-
gle of 90 degrees and two trisection blocks having sidesets specified on the
radially outward directed faces of blocks 1 and 2. A nodeset is specified on
the ILO face of this mesh and marks the edge corresponding to the z axis
(blue circles).
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5.5 User Defined Geometry Transformation

USER DEFINED GEOMETRY TRANSFORMATION
"

user supplied ‘C’ language instructions;
"

END

The USER DEFINED GEOMETRY TRANSFORMATION -- END keyword pair
provides a powerful way to modify the coordinats of any node of a mesh.
The keyword-end pair must surround a double quote surrounded block of ‘C’
code. This code will be called with coordinates of every node in the mesh. It
may modify the the coordinats by setting the output variables outxcoord,
outycoord, and outzcoord. The unmodified values of the node’s coordinates
are available in the input variables inxcoord, inycoord, and inzcoord. The
coordinates will remain unchanged if the output variables are not modified.
A presentation of the capabilities and limitations of runtime compiled ’C’
functions is included in Appendix A.

Examples of meshes produced using this capability feature of pamgen
are shown below in Figure 15 and Figure 16. In the first example the nodes
with positive Z coordinate values are rotated about the Z axis an angle prop-
portional to their distance from the Z=0 plane. In the second example nodes
a distance of 0.5 from the origin are rotated about the origin in proportion
to their distance from the origin.
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mesh

rectilinear

nx = 4

ny = 4

nz = 4

bx = 3

by = 3

bz = 3

gmin = -1.0 -1.0 -1.0

gmax = 1.0 1.0 1.0

end

user defined geometry transformation

"

double r = sqrt(inxcoord*inxcoord+inycoord*inycoord);

double theta = atan2(inycoord,inxcoord);

if(inzcoord > 0.0)

{

theta = theta + (3.14159 / 4.0)*(inzcoord/1.0);

r = r*(1.0-inzcoord/1.1);

outxcoord = r*cos(theta);

outycoord = r*sin(theta);

}

"

end

end

Figure 15: 3D mesh illustrating the ability to modify nodal coordinates using
USER DEFINED GEOMETRY TRANSFORMATION.
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mesh

rectilinear

nx = 10

ny = 10

bx = 3

by = 3

gmin = -1.0 -1.0

gmax = 1.0 1.0

end

user defined geometry transformation

"

double r = sqrt(inxcoord*inxcoord+inycoord*inycoord);

double theta = atan2(inycoord,inxcoord);

if(r > 0.5)

{

theta = theta + (3.14159 / 4.0)*((r-0.5)/0.5);

outxcoord = r*cos(theta);

outycoord = r*sin(theta);

}

"

end

end

Figure 16: 2D mesh illustrating the ability to modify nodal coordinates using
USER DEFINED GEOMETRY TRANSFORMATION.
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5.6 User Defined Element Density

USER DEFINED ELEMENT DENSITY, {I|J|K}
"

user supplied ‘C’ language instructions;
"

END

The USER DEFINED ELEMENT DENSITY -- END keyword pair provides a
flexible way to bias RECTILINEAR, SPHERICAL, and CYLINDRICAL meshes.
The keyword-end pair must surround a double quote surrounded block of ‘C’
code that evaluates on the input variable coord and sets the return value
field. The return value field must be set to a positive value across the
range of the mesh in the selected topological direction. A presentation of the
capabilities and limitations of runtime compiled ’C’ functions is included in
Appendix A.

The mesh biasing adjusts the nodal coordinates such that the density of
the elements in a region of the mesh in the selected coordinate direction is
proportional to the value of field relative to the integral of field across
the mesh domain. This is implemented by numerically solving the equation
given below. In this equation xi is the coordinate of node i, n is the total
number of nodes in the coordinate direction, and f(u) is the user supplied
function.

∫ xi

0
f(u)du∫ xn

0
f(u)du

=
i

n
(5.1)

When these functions are applied to a two dimensional RECTILINEAR mesh
spanning from (0.0, 0.0) to (1.0, 1.0) and having two blocks and 10 elements
in both the ’I’, and ’J’ directions, the resulting mesh is graded as shown
in Figure 17. The grading is a continuous exponential function in the ’I’
direction and is a discontinuous function in the ’J’ direction. In the ’J’
direction the domain stretching from 0.0 to 0.5 has twice the element density
as the range from 0.5 to 1.0.

Diagnostic information for the user provided functions is included in the
runid.out file. This information includes the total integrated value of the
function, the minimum and maximum value of the function, and a plot of
the function’s values across the range of evaluation.
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user defined element density, i

"

field = 1.*exp(-5.*(coord));

"

end

user defined element density, j

"

field = 1;

if(coord < 0.5) { field = 2;}

if(coord >= 0.5) { field = 1;}

"

end

Figure 17: 2D mesh created with a USER DEFINED ELEMENT DENSITY.
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5.7 Decomposition Strategy

DECOMPOSITION STRATEGY

{BISECTION}

{PROCESSOR LAYOUT}

{NUMPROCS, I, int (1)}

{NUMPROCS, J, int (1)}

{NUMPROCS, K, int (1)}

{END}

{SEQUENTIAL}

{RANDOM}

END

An optional DECOMPOSITION STRATEGY -- END block pair surrounds the
description of the decomposition method used for parallel simulations.
The default strategy is BISECTION. The keywords associated with the
DECOMPOSITION STRATEGY keyword are given in Table 4.

The BISECTION decomposition strategy is the default for parallel calcu-
lations. This is because it is robust in providing decompositions and the re-
sulting regions have satisfactory surface area to volume ratios. This strategy
attempts to automatically determine the number of slices to make through
the entire mesh domain to provide an equal number of elements to each pro-
cessor. This strategy will be most successful when the number of processors,
and the number of elements in each direction are a power of 2 or a product
of several prime numbers.

The PROCESSOR LAYOUT decomposition strategy offers the user improved
control of the distribution of elements to each processor in a parallel simu-
lation. The strategy divides the mesh into the number of segments specified
by the keyword-value pair for each coordinate direction. The number of pro-
cessors must equal the product of the values given for each of the NUMPROCS

directions. The default value for a coordinate direction is one.

When using a RADIAL TRISECTION mesh the number of processors in the
I (radial) direction is fixed at 1, and the total number of processors must be
equal to the product of the values given for the J and K NUMPROCS directions.
For this mesh type the decomposition assigns elements from the inner tran-
sition blocks to the processor that owns the adjacent elements in the outer
cylinderical blocks. An example of the PROCESSOR LAYOUT decomposition
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option applied to a RADIAL TRISECTION mesh is shown in Figure 20.

Examples of BISECTION and PROCESSOR LAYOUT decomposition options
applied to a mesh definition with the RADIAL option are shown below in
Figures 18 and 19. The total number of elements in this problem was 204,
17 in the radial or I direction and 12 in the azimuthal or J direction.

For the BISECTION decomposition the recursive cuts made on the 17x12x1
array of elements results in three processors with 3x12x1 elements, four pro-
cessors with 2x12x1 elements and a single processor 6x8x1 elements.

For the PROCESSOR LAYOUT decomposition the 17 elements in the I or
radial direction are divided by 4 to set the size of segments produced in that
direction at 4. The first segment’s size is increased by one to handle the
remainder of dividing 14 by 4. This decomposition would equally distribute
elements to each processor if the I direction had a number of elements evenly
divisible by 4.

mesh

radial

numz 1

zblock 1 10.0 interval 1

numr 4 initial radius 1.

rblock 1 2. interval 3

rblock 2 4. interval 3

rblock 3 6. interval 5

rblock 4 8. interval 6

numa 1

ablock 1 60. interval 12

end

decomposition strategy

bisection

end

end

Figure 18: Three dimensional RADIAL mesh with azimuthal angle of 60 de-
grees run on 7 processors using BISECTION decomposition.
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mesh

radial

numz 1

zblock 1 10.0 interval 1

numr 4 initial radius 1.

rblock 1 2. interval 3

rblock 2 4. interval 3

rblock 3 6. interval 5

rblock 4 8. interval 6

numa 1

ablock 1 60. interval 12

end

decomposition strategy

numprocs i, 4

numprocs j, 2

end

end

Figure 19: Three dimensional RADIAL mesh with azimuthal angle of 60 de-
grees run on 8 processors using PROCESSOR LAYOUT decomposition.

mesh

radial trisection

trisection blocks, 4

numz 1

zblock 1 4.0 interval 1

numr 3

rblock 1 2. interval 4

rblock 2 3. interval 4

rblock 3 5. interval 4

numa 1

ablock 1 360. interval 32

end

decomposition strategy

numprocs j, 8

end

end

Figure 20: Three dimensional RADIAL TRISECTION mesh run on 8 processors
using PROCESSOR LAYOUT decomposition.
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Table 4: Keywords for DECOMPOSITION STRATEGY -- END.

Sub-Keyword Input Description

BISECTION
Recursively bisect domain
making slices calculated to
assign nearly equal numbers
of elements to each processor.
This option is the default.

PROCESSOR LAYOUT

NUMPROCS {I|J|K}, int (1)
END

int (1) Invokes a decomposition strat-
egy that slices up the mesh in
accordance with the request of
the user. The integer value
value is number of segments
into which the mesh should be
divided in the given direction.
The product of the number of
segments requested in each di-
rection must equal the number
of processors.

SEQUENTIAL
Invokes a decomposition strat-
egy that distributes the ele-
ments between processors in
sequential order. If there are
k elements and n processors an
average of k/n elements will
go to each processor. This
decomposition strategy is not
for large simulations and is in-
tended mainly for testing and
verification purposes.

RANDOM
Invokes a decomposition strat-
egy that randomly distributes
the elements between proces-
sors. It results in tremendous
communications overhead.
This decomposition strategy
is not for production simula-
tions and is intended mainly
for testing and verification
purposes.
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6 Library Interface

6.1 Creating a Mesh

Mesh creation proceeds through a single function call. Additional functions
are available to access messages generated during the mesh creation.

6.1.1 Create Pamgen Mesh

int Create_Pamgen_Mesh( char * file_char_array,

int dimension,

int rank,

int num_procs);

This function creates a representation of the mesh for the processor of
the specified rank out of the total num procs. It returns an enumerated
value. A return value of ERROR FREE CREATION signifies success.
A return value of ERROR CREATING IMD significes an error in the
specification of the mesh geometry, topology, or boundary conditions. A
return value of ERROR CREATING MS significes an error in allocating
and populating the arrays that store the mesh geometry and topology. A
return value of ERROR PARSING DEFINITION significes an error
occurred while parsing the string passed in file char array. The details of the
syntax error are recoverable by subsequent calls.

char *file char array This input variable points to a null terminated string
that holds a terse description of the desired mesh. This form of this descrip-
tion is given in a later section.

int dimension This input variable indicates the dimension of the desired
mesh. Acceptable values are 2 (quadrilaterals created in x,y plane) and 3
(hexahedral elements created in 3 space).

int rank This input variable may range from 0 to one less than num procs.
It specifies for which processor the mesh is being generated.

int num procs This input variable must be greater than 0. It specifes the
total number of processors across which the mesh is decomposed.
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6.1.2 getPamgenEchoStreamSize

int getPamgenEchoStreamSize(void);

This function returns the size of the string (not counting termination
character) that contains an echo of the char * file char array string previ-
ously passed to Create Pamgen Mesh. If a parsing error occurred, this string
will be annotated with a summary of the error. Use of this function and sub-
sequent access and display of this string is highly recommended if the value
pointed to by int * parse error count is non-zero on return.

6.1.3 getPamgenEchoStream

char * getPamgenEchoStream(char * echo_stream_pointer);

This function takes a character pointer and returns that same pointer
after it has been filled.

char *echo stream pointer This input variable must point to allocated
memory big enough to hold the the results of “getEchoStreamSize(void)”
plus a termination character.

6.1.4 getPamgenErrorStreamSize

int getPamgenErrorStreamSize(void);

This function returns the size of an error string associated with a return
value of ERROR CREATING MS from Create Pamgen Mesh.

6.1.5 getPamgenErrorStream

char * getPamgenErrorStream(char * error_stream_pointer);

This function takes a character pointer and returns that same pointer
after it has been filled.
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char *error stream pointer This input variable must point to allocated
memory big enough to hold the the results of getErrorStreamSize plus a
termination character.

6.1.6 getPamgenWarningStreamSize

int getPamgenWarningStreamSize(void);

This function returns the size of a string containing warnings generated
within the Create Pamgen Mesh function.

6.1.7 getPamgenWarningStream

char * getPamgenWarningStream(char * warning_stream_pointer);

This function takes a character pointer and returns that same pointer
after it has been filled.

char *warning stream pointer This input variable must point to allo-
cated memory big enough to hold the the results of getWarningStreamSize
plus a termination character.

6.1.8 getPamgenInfoStreamSize

int getPamgenInfoStreamSize(void);

This function returns the size of a string containing information messages
generated within the Create Pamgen Mesh function. These messages include
information such as the total number of elements in the mesh, the total num-
ber of nodes in the mesh, and the mesh distribution based on decomposition.

6.1.9 getPamgenInfoStream

char * getPamgenInfoStream(char * info_stream_pointer);
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This function takes a character pointer and returns that same pointer
after it has been filled.

char *info stream pointer This input variable must point to allocated
memory big enough to hold the the results of getInfoStreamSize plus a ter-
mination character.
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6.2 Querying a Mesh

All of the mesh query and access functions are based on the EXODUS II [2]
and NEMESIS [1] APIs. These APIs were written to standardize a platform
independent interface for writing and reading binary mesh specification files.
NEMESIS is a parallel extension of the serial EXODUS II API. The pamgen
function names are formed by prefixing the EXODUS II or NEMESIS function
name with im . The remainder of the function signature and functionality
remains unchanged. It may help to note that the original EXODUS II func-
tions begin with ex , and the original NEMESIS functions begin with ne .

Querying a mesh database to build up a complete representation in ac-
cessible memory is a straightforward process. Typically a query function is
used to ascertain the number of items in an array, then memory is allocated
and passed in through an access function which fills the memory with the re-
quested information. The query and access functions will be presented in the
same order they appear in the example function “read mesh to memory()”
shown in Appendix B.

6.2.1 im ex get init

int im_ex_get_init( int exoid,

char *title,

int *num_dim,

int *num_nodes,

int *num_elem,

int *num_elem_blk,

int *num_node_sets,

int *num_side_sets);

This function is based on the EXODUS II API and is concerned only with
serial information. The number of nodes, elements, element blocks is limited
to those entities local to the rank processor for which the mesh was created.
It returns a non-zero value if an error occurs.

int exoid An unused input variable.

char *title A title string containing “PAMGEN Inline Mesh”.
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char *num dim On return points to the number of coordinates per node
(2 or 3).

char *num nodes On return points to the number of nodes.

char *num elem On return points to the number of elements.

char *num elem blk On return points to the number of element blocks.

char *num node sets On return points to the number of node sets.

char *num side sets On return points to the number of side sets.

6.2.2 im ex inquire

int im_ex_inquire( int exoid,

int query_value,

int *int_value,

float *float_value,

char * char_array_value);

This function is based on the EXODUS II API and is concerned only
with serial information. This is a general purpose query function that takes
an enumerated query value and changes the value pointed to by int value,
float value, or char array value depending on the data requested by the
query value. It returns a non-zero value in case of error. Im ex inquire
supports the following query values:

IM EX INQ NS NODE LEN The length of the concatenated node-
set list is returned in int value.

IM EX INQ NS DF LEN The length of the concatenated nodeset
distribution list is returned in int value.

IM EX INQ SS ELEM LEN The length of the concatenated sidesets
element list is returned in int value.

IM EX INQ SS NODE LEN The aggregate length of the sideset
nodes is returned in int value.

IM EX INQ SS DF LEN The length of the concatenated side sets
distribution factor is returned in int alue.

IM EX INQ API VERS The API version is returned in float value.
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IM EX INQ EB PROP The number of element block properties is
returned in int value.

IM EX INQ NS PROP The number of node sets properties is re-
turned in int value.

IM EX INQ SS PROP The number of side set properties is re-
turned in int value.

IM EX INQ QA The number of QA records is returned in int value.

IM EX INQ INFO The number of INFO records is returned in
int value.

6.2.3 im ex get coord

int im_ex_get_coord( int exoid,

double* x_coors,

double* y_coors,

double* z_coors);

This function is based on the EXODUS II API and is concerned only with
serial information. This function takes pointers to memory allocated to a
length equal to the number of nodes local to the processor and fills in the
nodal coordinate values. A non-zero return value indicates an error.

int exoid Unused input variable.

double * x coors Returned X coordinates of the nodes.

double * y coors Returned Y coordinates of the nodes.

double * z coors Returned Z coordinates of the nodes (if num dim = 3).

6.2.4 im ex get coord names

int im_ex_get_coord_names( int exoid,

char ** coord_names);

This function is based on the EXODUS II API and is concerned only with
serial information. It returns the names of the coordinates. A non-zero
return indicates an error.
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int exoid Unused input variable.

char ** coord names Returned vector pointing to num dim coord names.
coord names can be declared and allocated as shown below.

char* coord_names[3];

for(int i = 0; i < num_dim; i++)

coord_names[i] = (char*)calloc((MAX_STR_LENGTH+1),sizeof(char));

6.2.5 im ex get map

int im_ex_get_map( int exoid,

int * element_map);

This function is based on the EXODUS II API and is concerned only with
serial information. It loads the global element numbers into the provided
storage. A non-zero return value indicates an error.

int exoid Unused input variable.

int * element map On return this array holds the global element ids of the
elements local to this processor. For a serial problem this runs sequentially
from 1 to num elem. Memory sized to num elem must be allocated prior to
making this call.

6.2.6 im ex get elem num map

int im_ex_get_elem_num_map( int exoid,

int * element_num_map);

For pamgen this function is identical to “im ex get map”.

int exoid Unused input variable.

int * element num map On return this array holds the global element
ids of the elements local to this processor. For a serial problem these values
run sequentially from 1 to num elem. Memory sized to num elem must be
allocated prior to making this call.
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6.2.7 im ex get node num map

int im_ex_get_node_num_map( int exoid,

int * node_num_map);

This function is based on the EXODUS II API and is concerned only with
serial information. It loads the global node numbers into the provided stor-
age. A non-zero return indicates an error.

int exoid Unused input variable.

int * node num map On return this array holds the global node ids of
the nodes local to this processor. For a serial problem this runs from 1 to
num nodes. Memory sized to num nodes must be allocated prior to making
this call.

6.2.8 im ex get elem blk ids

int im_ex_get_elem_blk_ids( int exoid,

int * elem_blk_ids);

This function is based on the EXODUS II API and is concerned only with
serial information. It loads the element block ids into the provided storage.
A non-zero return value indicates an error.

int exoid Unused input variable.

int * elem blk ids On return this array holds the ids of the element blocks
on this processor. For pamgen meshes the element block ids across the entire
problem will run sequentially from 1 to num elem blk. On any particular
processor of a parallel mesh any set of the global element blocks may be
present. Storage sized to num elem blk must be allocated prior to making
this call.

6.2.9 im ex get elem block

int im_ex_get_elem_block( int exoid,

int elem_blk_id,
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char * elem_type,

int * num_elem_this_blk,

int * num_nodes_per_elem,

int * num_attr);

This function is based on the EXODUS II API and is concerned only
with serial information. It provides information about the requested element
block. Review of the conventions documented in the EXODUS II manual is
the most effective way to understand the mesh storage and retrieval. Under
the EXODUS II convention, a finite element mesh is composed of one or more
blocks of elements. Each block contains elements of the same type. Within a
block, all elements have the same number of nodes and the same connectivity
convention. The number of nodes is stored explicitly, and the connectivity
convention is called out by a string. This string corresponds to a table of
conventional element connectivities in the EXODUS II manual. A non-zero
return value indicates an error.

int exoid Unused input variable.

int elem blk id Input variable specifying the id of the block for which
information is requested. This id must be one of the values in the elem blk ids
array.

char * elem type On return this variable holds one of the standard EXODUS

II element types as a string. The element type pointer must be allocated
as length MAX STR LENGTH+1. For pamgen the stored value will be
QUAD in 2D or HEX in 3D.

int * num elem this blk On return this variable holds the number of ele-
ments in this block.

int * num nodes per elem On return this variable holds the number of
nodes per element for the elements in this block.

int * num attr On return this variable holds the number of attributes for
this block for pamgen this is always 0.

6.2.10 im ex get elem conn

int im_ex_get_elem_conn( int exoid,

55



int elem_blk_id,

int * connect);

This function is based on the EXODUS II API and is concerned only with
serial information. It fills the storage pointed to by connect with the con-
nectivity of the elements in the block referred to by elem blk id. A non-zero
return value indicates an error.

int exoid Unused input variable.

int elem blk id Input variable specifying the id of the block for which
information is requested. This id must be one of the values in the elem blk ids
array.

int * connect On return the storage pointed to by connect holds the
connectivity for the requested block. Connect must point to storage sized
to num elem this block*num nodes per elem. Connect holds (in the order
specified by the EXODUS II convention) the nodes of each element in the spec-
ified block. The first element’s connectivity begins at an offset of 0 and the
nth element’s connectivity begins at an offset of n*num nodes per element.
The EXODUS II standard specifies that the indices of the connectivity are
numbered from 1 so that in order to retrieve the coordinates of an element’s
nodes the indices given in connect must be decrimented by 1.

6.2.11 im ex get node set ids

int im_ex_get_node_set_ids( int exoid,

int * node_set_ids);

This function is based on the EXODUS II API and is concerned only with
serial information. It loads the node set ids into the provided storage. Node
set ids are specified in the string passed to the Create Pamgen Mesh function.
By convention they must be non-zero and positive. A non-zero return value
indicates an error.

int exoid Unused input variable.

int * node set ids On return this array holds the ids of the node sets on
this processor. Storage sized to num node sets must be allocated prior to
making this call.
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6.2.12 im ex get node set param

int im_ex_get_node_set_param( int exoid,

int node_set_id,

int * num_nodes_in_node_set,

int * num_df_in_node_set);

This function is based on the EXODUS II API and is concerned only with
serial information. It function provides sizing information for node set data.
A non-zero return value indicates an error.

int exoid Unused input variable.

int node set id Input variable specifying the id of the node set for which
information is requested. This id must be one of the values in the node set ids
array.

int * num nodes in node set On return this variable is set to the number
of nodes in the specified node set.

int * num df in node set On return this variable is set to the number
of df in the specified node set. Distribution factors are scalar values linked
to the members of node sets or side sets. pamgen does not produce any
distribution factors on node sets or side sets. For pamgen this will be 0.

6.2.13 im ex get node set

int im_ex_get_node_set( int exoid,

int node_set_id,

int * node_set_node_list);

This function is based on the EXODUS II API and is concerned only with
serial information. On return the provided storage is populated with the
local nodes of the node set.

int exoid Unused input variable.

int node set id Input variable specifying the id of the node set for which
information is requested. This id must be one of the values in the node set ids
array.
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int * node set node list On return this array holds the local ids of the
nodes in the node set. The ids are numbered from 1. Storage must be sized
for num nodes in nodeset.

6.2.14 im ex get side set ids

int im_ex_get_side_set_ids( int exoid,

int * side_set_ids);

This function is based on the EXODUS II API and is concerned only with
serial information. It loads the side set ids into the provided storage. Side set
ids are specified in the string passed to the Create Pamgen Mesh function.
By convention they must be non-zero and positive. A non-zero return value
indicates an error.

int exoid Unused input variable.

int * side set ids On return this array holds the ids of the side sets on this
processor. Storage sized to num side sets must be allocated prior to making
this call.

6.2.15 im ex get side set param

int im_ex_get_side_set_param( int exoid,

int side_set_id,

int * num_sides_in_side_set,

int * num_df_in_side_set);

This function is based on the EXODUS II API and is concerned only with
serial information. It provides sizing information for side set data. A non-
zero return value indicates an error.

int exoid Unused input variable.

int side set id Input variable specifying the id of the side set for which
information is requested. This id must be one of the values in the side set ids
array.
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int * num sides in side set On return this variable is set to the number
of sides in the specified side set.

int * num df in side set On return this variable is set to the number of df
in the specified side set. Distribution factors are scalar values linked to the
members of node sets or side sets. pamgen does not produce any distribution
factors on node sets or side sets. For pamgen this will be 0.

6.2.16 im ex get side set

int im_ex_get_side_set( int exoid,

int side_set_id,

int * side_set_element_list,

int * side_set_side_list);

This function is based on the EXODUS II API and is concerned only with
serial information. It populates storage that specifies the sides of elements
that are in a particular side set. The EXODUS II convention specifies a side by
listing an element id and the side of that element that is in the sideset. This
information is provided in two corresponding arrays of equal length. The
sides specify a set of nodes on the element by reference to element topology
tables in the EXODUS II manual. A non-zero return value indicates an error.

int exoid Unused input variable.

int side set id Input variable specifying the id of the side set for which
information is requested. This id must be one of the values in the side set ids
array.

int * side set element list On return this array holds the local ids of
the elements having sides in the side set. Storage must be sized for
num sides in sideset.

int * side set side list On return this array holds the sides that are in the
side set. Storage must be sized for num sides in sideset.

6.2.17 im ex get qa

int im_ex_get_qa( int exoid,
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char * qa_record[][4]);

This function is based on the EXODUS II API and is concerned only with
serial information. It populates previously allocated qa record storage with
Quality Assurance (QA) information. By convention the four components of
each record are:

1. The analysis code name

2. The analysis code QA descriptor

3. The analysis time

4. The analysis date

pamgen will return “PAMGEN”, “Parallel Mesh Generator” and then two
copies of the date and time. A non-zero return value indicates an error.

int exoid Unused input variable.

char * qa record[][4] Previously allocated storage that is filled with QA
records. The memory may be allocated as shown below.

char * qa_record[10][4];

for(int i = 0; i < 10; i++)

for(int j=0; j<4; j++) qa_record[i][j] = (char*)malloc(MAX_STR_LENGTH+1);

6.2.18 im ex get info

int im_ex_get_info( int exoid,

char ** info_record);

This function is based on the EXODUS II API and is concerned only with
serial information. It populates previously allocated info record storage. A
non-zero return value indicates an error.

int exoid Unused input variable.

char ** info record Previously allocated storage into which info records
are copied. At present for pamgen num info records is zero. Memory should
would be allocated as shown below.
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char ** info_record;

info_record = (char**)malloc(num_info_records*sizeof(char*));

for(int i = 0; i < num_info_records; i++)

info_record[i] = (char*)malloc(MAX_STR_LENGTH+1);

6.2.19 im ne get init global

This function is adapted from the NEMESIS API. It is typically the first func-
tion called when gathering information about the parallel nature of the mesh.
It retrieves the mesh sizing information for the complete mesh. A non-zero
return value indicates an error.

int im_ne_get_init_global( int neid,

int *num_nodes_global,

int *num_elems_global,

int *num_elem_blks_global,

int *num_node_sets_global,

int *num_side_sets_global );

int neid Unused input variable.

int * num nodes global On return this variable is set to the total number
of nodes in the mesh.

int * num elems global On return this variable is set to the total number
of elements in the mesh.

int * num elem blks global On return this variable is set to the total
number of element blocks in the mesh.

int * num node sets global On return this variable is set to the total
number of node sets in the mesh.

int * num side sets global On return this variable is set to the total num-
ber of side sets in the mesh.
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6.2.20 im ne get init info

This function is adapted from the NEMESIS API. It retrieves information
about the decomposition of the mesh. A non-zero return value indicates an
error.

int im_ne_get_init_info( int neid,

int *num_proc,

int *num_proc_in_file,

char *file_type);

int neid Unused input variable.

int *num proc On return this variable is filled with the total number of
processors over which the mesh is spread.

int *num proc in file On return this variable is filled with the number of
processors for which mesh is available via query. This value will always be 1
when using pamgen.

char *file type Unused variable should be sized as shown below.

char file_type [2];

6.2.21 im ne get eb info global

int im_ne_get_eb_info_global( int neid,

int *el_blk_ids_global,

int *el_blk_cnts_global);

This function is adapted from the NEMESIS API. It retrieves the element
block ids from the entire mesh as well as the sizes of each of these element
blocks. A non-zero return value indicates an error.

int neid Unused input variable.

int *el blk ids global On return this array holds the element block ids for
the entire mesh. It must be sized to hold num elem blks global integers.
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int *el blk cnts global On return this array holds the number of ele-
ments in each element block of the entire mesh. It must be sized to hold
num elem blks global integers.

6.2.22 im ne get ns param global

int im_ne_get_ns_param_global(int neid,

int *ns_ids_global,

int *ns_n_cnt_global,

int *ns_df_cnt_global);

This function is adapted from the NEMESIS API. It retrieves node set
information for the entire mesh. A non-zero return value indicates an error.

int neid Unused input variable.

int *ns ids global On return this array holds the node set ids for the entire
mesh. It must be sized to hold num node sets global integers.

int *ns n cnt global On return this array holds the number of nodes in each
node set for the entire mesh. It must be sized to hold num node sets global
integers.

int *ns df cnt global On return this array holds the number of node
set distribution factors for the entire mesh. It must be sized to hold
num node sets global integers. For pamgen the number of distribution fac-
tors for each node set will be 0.

6.2.23 im ne get ss param global

int im_ne_get_ss_param_global(int neid,

int *ss_ids_global,

int *ss_s_cnt_global,

int *ss_df_cnt_global);

This function is adapted from the NEMESIS API. It retrieves side set
information for the entire mesh. A non-zero return value indicates an error.

int neid Unused input variable.
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int *ss ids global On return this array holds the side set ids for the entire
mesh. It must be sized to hold num side sets global integers.

int *ss s cnt global On return this array holds the number of sides in each
side set for the entire mesh. It must be sized to hold num side sets global
integers.

int *ss df cnt global On return this array holds the number of side
set distribution factors for the entire mesh. It must be sized to hold
num side sets global integers. For pamgen the number of distribution fac-
tors for each side set will be 0.

6.2.24 im ne get loadbal param

int im_ne_get_loadbal_param( int neid,

int *num_internal_nodes,

int num_border_nodes,

int *num_external_nodes,

int *num_internal_elems,

int *num_border_elems,

int *num_node_cmaps,

int *num_elem_cmaps,

int proc);

This function is adapted from the NEMESIS API. On return its argu-
ments are filled with sizing information for processor communication data.
This information is the first step in gathering all the information required to
construct communication protocols between adjacent regions of decomposed
mesh. A non-zero return value indicates an error.

int neid Unused input variable.

int * num internal nodes On return this variable is filled with the number
of nodes that are local to the mesh on this processor.

int * num border nodes On return this variable is filled with the number
of nodes that are common to the mesh on this processor and to adjacent
processors.

int * num external nodes On return this variable is filled with the number
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of nodes that are not local to this processor but are common to elements that
share nodes with this processor.

int * num internal elems On return this variable is filled with the number
of elements that are local to this processor.

int * num border elems On return this variable is filled with the number
of elements that are not local to this processor but do share nodes with
elements local to this processor.

int * num node cmaps On return this variable is filled with the number
of node communication maps.

int * num elem cmaps On return this variable is filled with the number
of element communication maps.

int proc Unused input variable.

6.2.25 im ne get elem map

int im_ne_get_elem_map( int neid,

int *elem_mapi,

int *elem_mapb,

int proc);

This function is adapted from the NEMESIS API. On return the the argu-
ments of this function are populated with the internal and boundary element
maps.

int neid Unused input variable.

int * elem mapi On return this variable is filled with the internal element
ids. Storage sized to num internal elems must be supplied.

int * elem mapb On return this variable is filled with the border element
ids. Storage sized to num border elems must be supplied.

int proc Unused input variable.
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6.2.26 im ne get node map

int im_ne_get_node_map( int neid,

int *node_mapi,

int *node_mapb,

int *node_mape,

int proc);

This function is adapted from the NEMESIS API. On return the the argu-
ments of this function are populated with the internal and boundary node
maps.

int neid Unused input variable.

int * node mapi On return this variable is filled with the internal node ids.
Storage sized to num internal nodes must be supplied.

int * node mapb On return this variable is filled with the border node ids.
Storage sized to num border nodes must be supplied.

int * node mape On return this variable is filled with the external node
ids. Storage sized to num external nodes must be supplied.

int proc Unused input variable.

6.2.27 im ne get cmap params

int im_ne_get_cmap_params( int neid,

int *node_cmap_ids,

int *node_cmap_node_cnts,

int *elem_cmap_ids,

int *elem_cmap_elem_cnts,

int processor);

This function is adapted from the NEMESIS API. On return the storage
passed in its arguments is filled with the communication map ids and counts.
A non-zero return value indicates an error.

int neid Unused input variable.
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int * node cmap ids On return this storage is filled with the ids for each
node communication map. Storage sized to num node cmap must be pro-
vided.For pamgen these values will run from 0 to num node cmaps-1.

int * node cmap cnts On return this storage is filled with the number of
nodes in each node communication map. Storage sized to num node cmap
must be provided.

int * elem cmap ids On return this storage is filled with the ids for each
element communication map. Storage sized to num elem cmap must be pro-
vided. For pamgen these values will run from 0 to num elem cmaps-1.

int * elem cmap elem cnts On return this storage is filled with the num-
ber of elements in each element communication map. Storage sized to
num elem cmap must be provided.

int proc Unused input variable.

6.2.28 im ne get node cmap

int im_ne_get_node_cmap( int neid,

int map_id,

int *node_ids,

int *proc_ids,

int processor);

This function is adapted from the NEMESIS API. On return the storage
passed in its arguments is filled with the node communication maps. A non-
zero return value indicates an error.

int neid Unused input variable.

int map ids The id of the node communication map that is being queried.
This must be one of the entries in node cmap ids.

int * node ids On return this storage is filled with the ids of nodes in the
map. Storage must be sized to node cmap cnts[map id].

int * proc ids The processor id onto which the associated node in node ids
maps. Storage must be sized to node cmap cnts[map id].
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int proc Unused input variable.

6.2.29 im ne get elem cmap

int im_ne_get_elem_cmap( int neid,

int map_id,

int *elem_ids,

int *side_ids,

int *proc_ids,

int processor);

This function is adapted from the NEMESIS API. On return the storage
passed in its arguments is filled with the element communication maps. A
non-zero return value indicates an error.

int neid Unused input variable.

int map ids The id of the element communication map that is being
queried.This must be one of the entries in elem cmap ids.

int * elem ids On return this storage is filled with the ids of elements in
the map. Storage must be sized to elem cmap cnts[map id].

int * side ids On return this storage is filled with the ids sides of elements
in the map. Storage must be sized to elem cmap cnts[map id].

int * proc ids The processor id onto which the associated element in
elem ids maps. Storage must be sized to elem cmap cnts[map id].

int proc Unused input variable.
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6.3 Deleting a Mesh

6.3.1 Delete Pamgen Mesh

int Delete_Pamgen_Mesh(void);

This function clears and deletes the memory used to store mesh data
created with the “Create Pamgen Mesh(...)” function. After this function is
called “Create Pamgen Mesh(...)” may be called again to create a different
mesh.
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A Runtime Compiler Functionality

The runtime compiler allows inclusion of double quoted (“ “) ’C’ language
style functions within unformatted input files. The functions are evaluated
during program setup or execution to calculate independent solution vari-
ables.

This provides the user with an endlessly flexible method for describing
boundary conditions, initial conditions, source terms, material properties, or
any other independent variable.

The specific variable names expected within runtime compiled functions
depends on the host code and the context of the function use. In general
it should be remembered that the runtime functions return quantities by
modifying variables that are passed in by reference.

A.1 The RTC language

The RTC language can be thought of as a small subset of the C language
with a couple minor modifications.

A.1.1 Operators

The RTC language has the following operators that work exactly as they do
in C and have the same precedence as they do in C:

• + Addition

• − Subtration

• − Negation

• ∗ Multiplication

• / Division

• == Equality

• > Greater than
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• < Less than

• >= Greater than or equal to

• <= Less than or equal to

• = Assignment

• || Logical or

• && Logical and

• ! = Inequality

• % Modulo

• ! Logical not

The following operators do not occur in the C language, but were added to
the RTC language for convenience:

• ^ Exponentiation

A.1.2 Control flow

The RTC language has the following control flow statements:

• for( expr ; expr ; expr ) { ... }

• while( expr ) { ... }

• if (expr) {...}

• else if (expr) {...}

• else {...}

These control flow statements work exactly as they do in C except that the
code blocks following a control flow statement MUST be enclosed within
braces even if the block only consists of one line.
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A.1.3 Line Structure

The line structure in the RTC language is the same as that of C. Expressions
end with a semicolon unless they are inside a control flow statement.

A.1.4 Variables

Declaring scalar variables in RTC is done exactly as it is done in C except
that only the following types are supported:

• int

• float

• double

• char

For scalars, variables can be declared and assigned all at once. Both of the
following approaches will work:

int myVar = 9;

OR

int myVar;

myVar = 9;

Arrays work a little differently in RTC than they do in C. There are no new
or malloc operators, instead the user may declare dynamically sized arrays
in the same manner as statically sized arrays. Also, in C all the values of an
array may be initialized at once by putting the values within braces. This
is not supported in the RTC language. Users will have to loop through the
array and assign the values one by one. For example:

LEGAL:

int ia[x*y]; //Note: in C this would not be legal for non-const x,y
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int ia2[3];

NOT LEGAL:

int ia[3] = {1, 2, 3};

Indexing arrays can be done using the index operator: array[expr] = ...;

Bounds checking is done at run time. If the bounds of an array are exceeded,
it will dump an error to stdout.

A.1.5 Math

The following math.h functions are available in RTC:

• asin(arg) : returns the arc sine of arg

• acos(arg) : returns the arc cosine of arg

• atan(arg) : returns the arc tangent of arg

• atan2(y, x): returns the arc tangent of y/x

• sin(arg) : returns the sine of arg

• cos(arg) : returns the cosine of arg

• tan(arg) : returns the tangent of arg

• sqrt(arg) : returns the square root of arg

• exp(arg) : returns the natural logarithm base e raised to the arg power

• sinh(arg) : returns the hyperbolic sine of arg

• cosh(arg) : returns the hyperbolic cosine of arg

• tanh(arg) : returns the hyperbolic tangent of arg

• log(arg) : returns the natural logarithm for arg

• log10(arg) : returns the base 10 logarithm for arg
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• rand(arg) : returns a system-generated random integer between 0 and
RAND MAX using seed arg

• fabs(arg) : returns the absolute value of arg

• pow(b, e) : returns b to the e power (Note: the Exponentiation operator
is available)

• j0(arg) : Bessel function of order zero

• j1(arg) : Bessel function of order one

• i0(arg) : Modified Bessel function of order zero

• i1(arg) : Modified Bessel function of order one

• erf(arg) : Error function

• erfc(arg) : Complementary error function (1.0 - erf(x))

• gamma(arg) : returns Γ(arg)

A.1.6 Strings

The user may pass quoted strings as arguments to functions. Note: it may
be necessary to escape-out the double quotes so that they do not confuse the
input-file parser. See printf section below for an example.

A.1.7 Printf

The RTC printf method is called just like its C counterpart. The first ar-
gument is a quoted character string. This string will contain the % symbol
which will tell RTC to output the corresponding argument. The only differ-
ence between RTC’s printf and C’s printf is that in RTC’s version, a type
character after the % is unnecessary. For example, inside an RTC method
the following is appropriate:

printf(\"One:% Two:% Three:% \", 5-4, 2.0e0, ’c’);\n\

Which would generate this output: One:1 Two:2 Three:c
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A.1.8 Comments

The traditional C-comment mechanism may be used inside RTC functions.
Use /* to begin a comment and */ to end the comment.

A.1.9 Unsupported Features

Implementing the entire C-language was well beyond the intent of RTC.
Features that were too difficult or did not add enough value have been left
out. The following is a list of common C features that are unsupported in
RTC:

• There are no ++ or −− operators. Use i = i + 1 instead of + + i

• Structs

• Pointers

• Instant array initialization: int array[5] = 1,2,3,4,5;

• Case statements

• Casting

• Labels and gotos

• Function definition/declaration

• stdio

• Keywords: break, continue, const, enum, register, return, sizeof, type-
def, union, volatile, static.
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B read mesh to memory

This appendix lists an example of the “C” source code that an application
linked to pamgen would use to read a finite element mesh description from
pamgen.

/*****************************************************************************/
void read_mesh_to_memory()
/*****************************************************************************/
{

int im_exoid = 0;
int idum = 0;
float fdum;

mss.bptr[0] = mss.buffer[0];
mss.bptr[1] = mss.buffer[1];
mss.bptr[2] = mss.buffer[2];

for(int i = 0; i < 100; i++)
for(int j=0; j<4; j++) mss.qaRecord[i][j] = (char*)malloc(MAX_STR_LENGTH+1) ;

char * cdum = NULL;
int error = 0;
int id = 0;
error += im_ex_get_init ( id,

mss.title,
&mss.num_dim,
&(mss.num_nodes),
&mss.num_elem,
&mss.num_elem_blk,
&mss.num_node_sets,
&mss.num_side_sets);

error += im_ex_inquire(id, IM_EX_INQ_NS_NODE_LEN, (int*)&mss.num_node_set_nodes,
&fdum, cdum);

error += im_ex_inquire(id, IM_EX_INQ_NS_DF_LEN, (int*)&mss.num_node_set_dfs,
&fdum, cdum);

error += im_ex_inquire(id, IM_EX_INQ_SS_ELEM_LEN, (int*)&mss.num_side_set_elements,
&fdum, cdum);

error += im_ex_inquire(id, IM_EX_INQ_SS_NODE_LEN, (int*)&mss.num_side_set_nodes,
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&fdum, cdum);
error += im_ex_inquire(id, IM_EX_INQ_SS_DF_LEN, (int*)&mss.num_side_set_dfs,

&fdum, cdum);

// // get version number

error += im_ex_inquire(id, IM_EX_INQ_API_VERS, &idum, &fdum, cdum);

mss.version_number = (double) fdum;

mss.version = (int) mss.version_number;

// // get genesis-II parameters

error += im_ex_inquire(id, IM_EX_INQ_EB_PROP,
(int*)&mss.num_block_properties,
&fdum, cdum);

error += im_ex_inquire(id, IM_EX_INQ_NS_PROP,
(int*)&mss.num_node_set_properties,
&fdum, cdum);

error += im_ex_inquire(id, IM_EX_INQ_SS_PROP,
(int*)&mss.num_side_set_properties,
&fdum, cdum);

mss.coord = (double *)malloc(mss.num_nodes*mss.num_dim*sizeof(double));

error += im_ex_get_coord(id,
mss.coord,
mss.coord+mss.num_nodes,
mss.coord+2*mss.num_nodes);

error += im_ex_get_coord_names (id, mss.bptr);

if (mss.num_elem){
mss.element_order_map = (int *)malloc(mss.num_elem * sizeof(int));
error += im_ex_get_map(id, mss.element_order_map);

if (mss.num_elem){
mss.global_element_numbers = (int *)malloc(mss.num_elem*sizeof(int));
error += im_ex_get_elem_num_map(id, mss.global_element_numbers);
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}

if (mss.num_nodes){
mss.global_node_numbers = (int *)malloc(mss.num_nodes * sizeof(int));
error += im_ex_get_node_num_map(id, mss.global_node_numbers);

}

//block info

mss.block_id = (int *)malloc(mss.num_elem_blk*sizeof(int));
mss.nodes_per_element = (int *)malloc(mss.num_elem_blk*sizeof(int));
mss.element_attributes = (int *)malloc(mss.num_elem_blk*sizeof(int));
mss.elements = (int *)malloc(mss.num_elem_blk*sizeof(int));
mss.element_types = (char **)malloc(mss.num_elem_blk*sizeof(char *));
mss.elmt_node_linkage = (int **)malloc(mss.num_elem_blk*sizeof(int*));

error += im_ex_get_elem_blk_ids(id, mss.block_id);

for(int i = 0; i < mss.num_elem_blk; i ++){
mss.element_types[i] = (char *)malloc((MAX_STR_LENGTH + 1)*sizeof(char));
error += im_ex_get_elem_block(id,

mss.block_id[i],
mss.element_types[i],
(int*)&(mss.elements[i]),
(int*)&(mss.nodes_per_element[i]),
(int*)&(mss.element_attributes[i]));

}

//connectivity
for(int b = 0; b < mss.num_elem_blk; b++){

mss.elmt_node_linkage[b] = (int*)malloc(mss.nodes_per_element[b]*
mss.elements[b]*sizeof(int));

error += im_ex_get_elem_conn(id,mss.block_id[b],mss.elmt_node_linkage[b]);
}

if(mss.num_node_sets){
mss.node_set_id = (int *) malloc(mss.num_node_sets*sizeof(int));
mss.num_nodes_in_node_set = (int *) malloc(mss.num_node_sets*sizeof(int));
mss.node_set_nodes = (int **)malloc(mss.num_node_sets*sizeof(int*));
mss.num_df_in_node_set = (int *) malloc(mss.num_node_sets*sizeof(int*));
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error += im_ex_get_node_set_ids(id, mss.node_set_id);

for(int i = 0; i < mss.num_node_sets; i ++){
error += im_ex_get_node_set_param(id, mss.node_set_id[i],

(int*)&mss.num_nodes_in_node_set[i],
(int*)&mss.num_df_in_node_set[i]);

mss.node_set_nodes[i] = NULL;

if(mss.num_nodes_in_node_set[i]) {
mss.node_set_nodes[i] =
(int *)malloc(mss.num_nodes_in_node_set[i]*sizeof(int));
error += im_ex_get_node_set(id,

mss.node_set_id[i],
mss.node_set_nodes[i]);

}
}

}

//side sets
if(mss.num_side_sets){
mss.side_set_id = (int*)malloc(mss.num_side_sets*sizeof(int));
mss.num_elements_in_side_set = (int*)malloc(mss.num_side_sets*sizeof(int));
mss.num_df_in_side_set = (int*)malloc(mss.num_side_sets*sizeof(int));
mss.side_set_elements = (int**)malloc(mss.num_side_sets*sizeof(int *));
mss.side_set_faces = (int **)malloc(mss.num_side_sets*sizeof(int*));

error += im_ex_get_side_set_ids(id, mss.side_set_id);
for(int i = 0; i < mss.num_side_sets; i ++){

error += im_ex_get_side_set_param(id, mss.side_set_id[i],
(int*)&mss.num_elements_in_side_set[i],
(int*)&mss.num_df_in_side_set[i]);

int ne = mss.num_elements_in_side_set[i];
mss.side_set_elements[i] = (int*)malloc(ne*sizeof(int));
mss.side_set_faces[i] = (int*)malloc(ne*sizeof(int));
if(ne){
error += im_ex_get_side_set(id, mss.side_set_id[i],

mss.side_set_elements[i],
mss.side_set_faces[i]);
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}
}

}

error += im_ex_inquire(id, IM_EX_INQ_QA, (int*)&mss.num_qa_records, &fdum, cdum);

if(mss.num_qa_records)error += im_ex_get_qa(id,mss.qaRecord);

error += im_ex_inquire(id, IM_EX_INQ_INFO, (int*)&mss.num_info_records, &fdum, cdum);
if(mss.num_info_records) {

mss.info_records = (char **)malloc(mss.num_info_records*sizeof(char *));
for(int i = 0; i < mss.num_info_records; i ++){

mss.info_records[i] = (char *)malloc(MAX_STR_LENGTH+1);
}
error += im_ex_get_info(id, mss.info_records);

}

//nemesis data
// global info
if ( im_ne_get_init_global(id, &mss.num_nodes_global, &mss.num_elems_global,

&mss.num_elm_blks_global, &mss.num_node_sets_global,
&mss.num_side_sets_global) < 0 )

++error;

if ( im_ne_get_init_info(id,
&mss.num_total_proc,
&mss.num_proc_in_file, mss.type) < 0 )

++error;

mss.elem_blk_ids_global = (int*)malloc(mss.num_elm_blks_global*sizeof(int));
mss.elem_blk_cnts_global = (int*)malloc(mss.num_elm_blks_global*sizeof(int));

if ( im_ne_get_eb_info_global(id,
mss.elem_blk_ids_global,
mss.elem_blk_cnts_global) < 0 )

++error;

mss.ns_ids_global = (int *)malloc(mss.num_node_sets_global*sizeof(int));
mss.ns_cnts_global = (int *)malloc(mss.num_node_sets_global*sizeof(int));

80



mss.ns_df_cnts_global = (int *)malloc(mss.num_node_sets_global*sizeof(int));
mss.ss_ids_global = (int *)malloc(mss.num_side_sets_global*sizeof(int));
mss.ss_cnts_global = (int *)malloc(mss.num_side_sets_global*sizeof(int));
mss.ss_df_cnts_global = (int *)malloc(mss.num_side_sets_global*sizeof(int));

if ( mss.num_node_sets_global > 0 ) {
if ( im_ne_get_ns_param_global(id,mss.ns_ids_global,mss.ns_cnts_global,

mss.ns_df_cnts_global) < 0 )++error;
}

if ( mss.num_side_sets_global > 0 ) {
if ( im_ne_get_ss_param_global(id,mss.ss_ids_global,mss.ss_cnts_global,

mss.ss_df_cnts_global) < 0 ) ++error;
}

//parallel info
if ( im_ne_get_loadbal_param( id,

&mss.num_internal_nodes,
&mss.num_border_nodes,
&mss.num_external_nodes,
&mss.num_internal_elems,
&mss.num_border_elems,
&mss.num_node_comm_maps,
&mss.num_elem_comm_maps,
0/*unused*/ ) < 0 )++error;

mss.internal_elements = (int *)malloc(mss.num_internal_elems*sizeof(int));
mss.border_elements = (int *)malloc(mss.num_border_elems*sizeof(int));
mss.internal_nodes = (int *)malloc(mss.num_internal_nodes*sizeof(int));
mss.border_nodes = (int *)malloc(mss.num_border_nodes*sizeof(int));
mss.external_nodes = (int *)malloc(mss.num_external_nodes*sizeof(int));

if ( im_ne_get_elem_map( id,
mss.internal_elements,
mss.border_elements,
0/* not used proc_id*/ ) < 0 )++error;

if ( im_ne_get_node_map( id,
mss.internal_nodes,
mss.border_nodes,
mss.external_nodes,
0/* not used proc_id*/ ) < 0 )++error;
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if(mss.num_node_comm_maps > 0){

mss.node_cmap_node_cnts = (int*) malloc(mss.num_node_comm_maps*sizeof(int));
mss.node_cmap_ids = (int*) malloc(mss.num_node_comm_maps*sizeof(int));
mss.comm_node_ids = (int**)malloc(mss.num_node_comm_maps*sizeof(int*));
mss.comm_node_proc_ids = (int**)malloc(mss.num_node_comm_maps*sizeof(int*));

mss.elem_cmap_elem_cnts = (int*) malloc(mss.num_elem_comm_maps*sizeof(int));
mss.elem_cmap_ids = (int*) malloc(mss.num_elem_comm_maps*sizeof(int));
mss.comm_elem_ids = (int**)malloc(mss.num_elem_comm_maps*sizeof(int*));
mss.comm_side_ids = (int**)malloc(mss.num_elem_comm_maps*sizeof(int*));
mss.comm_elem_proc_ids = (int**)malloc(mss.num_elem_comm_maps*sizeof(int*));

if ( im_ne_get_cmap_params( id,
mss.node_cmap_ids,
(int*)mss.node_cmap_node_cnts,
mss.elem_cmap_ids,
(int*)mss.elem_cmap_elem_cnts,
0/*not used proc_id*/ ) < 0 )++error;

for(int j = 0; j < mss.num_node_comm_maps; j++) {
mss.comm_node_ids[j] = (int *)malloc(mss.node_cmap_node_cnts[j]*sizeof(int));
mss.comm_node_proc_ids[j] = (int *)malloc(mss.node_cmap_node_cnts[j]*sizeof(int));
if ( im_ne_get_node_cmap( id,

mss.node_cmap_ids[j],
mss.comm_node_ids[j],
mss.comm_node_proc_ids[j],
0/*not used proc_id*/ ) < 0 )++error;

}

for(int j = 0; j < mss.num_elem_comm_maps; j++) {
mss.comm_elem_ids[j] = (int *)malloc(mss.elem_cmap_elem_cnts[j]*sizeof(int));
mss.comm_side_ids[j] = (int *)malloc(mss.elem_cmap_elem_cnts[j]*sizeof(int));
mss.comm_elem_proc_ids[j] = (int *)malloc(mss.elem_cmap_elem_cnts[j]*sizeof(int));
if ( im_ne_get_elem_cmap( id,

mss.elem_cmap_ids[j],
mss.comm_elem_ids[j],
mss.comm_side_ids[j],
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mss.comm_elem_proc_ids[j],
0 /*not used proc_id*/ ) < 0 )++error;

}//loop over num_elem_co
}

}
}

83



References

[1] G. L. Hennigan, M. St. John, and J. N. Shadid. NEMESIS I: A set
of functions for describing unstructured finite-element data on parallel
computers. Technical report, Sandia National Laboratories, Albuquerque,
NM, May 1998.

[2] L. A. Schoof and V. R. Yarberry. EXODUS II: A Finite Element Data
Model. Technical report SAND92-2137, Sandia National Laboratories,
Albuquerque, NM, November 1995.

84



Index

Block IDs, 18
Boundary Conditions, 34
Brick, 32

Cylindrical, 23

Decomposition Strategy, 42
Dimensionality, 17

Geometry and Topology, 19

Nodesets, 34

Radial, 25
Radial Trisection, 25
Rectilinear, 19

Set Assign, 34
Sidesets, 34
Spherical, 21

Trisection, 25

User Defined Element Density, 40
User Defined Geometry Transformation, 37

85



DISTRIBUTION:

1 MS 0321
J. Peery, 1400

1 MS 0384
A. C. Ratzl, 1500

1 MS 0826
D. K. Gartling, 1500

1 MS 1318
D. E. Womble, 1410

1 MS 0321
J. L. Mitchiner, 1410

1 MS 0380
H. S. Morgan, 1540

1 MS 0380
G. D. Sjaardema, 1541

1 MS 0382
M. W. Glass, 1541

1 MS 0836
R. E. Hogan, 1514

1 MS 0370
J. H. Strickland, 1434

1 MS 1322
J. B. Aidun, 1435

1 MS 1318
S. S. Collis, 1416

1 MS 1416
M. A. Heroux, 1416

1 MS 1318
K. D. Devine, 1416

1 MS 0378
R. M. Summers, 1431

1 MS 0378
S. Carroll, 1431

1 MS 0378
D. M. Hensinger, 1431

1 MS 0378
A. C. Robinson, 1431

1 MS 0378
R. R. Drake, 1431

1 MS 0378
O. E. Strack, 1431

1 MS 0378
D. A. Labreche, 1431

1 MS 0378
C. B. Luchini, 1431

1 MS 0378
S. J. Mosso, 1431

1 MS 0378
S. V. Petney, 1431

1 MS 0378
M. K. Wong, 1431

1 MS 0975
J. M. Foucar, 5522

1 MS 1318
T. A. Gardiner, 9326

1 MS 0899
Technical Library, 9536

86


	Introduction
	Capabilities
	Dimensions
	Mesh Geometries
	Boundary Conditions
	Decomposition
	Geometry Transformation
	Element Density

	Approach
	Usage
	Specifying a Mesh
	Dimensionality
	Block IDs
	Geometry and Topology
	Rectilinear
	Spherical
	Cylindrical
	Radial and Radial Trisection
	Brick

	Boundary Conditions (Nodesets and Sidesets)
	User Defined Geometry Transformation
	User Defined Element Density
	Decomposition Strategy

	Library Interface
	Creating a Mesh
	Create_Pamgen_Mesh
	getPamgenEchoStreamSize
	getPamgenEchoStream
	getPamgenErrorStreamSize
	getPamgenErrorStream
	getPamgenWarningStreamSize
	getPamgenWarningStream
	getPamgenInfoStreamSize
	getPamgenInfoStream

	Querying a Mesh
	im_ex_get_init
	im_ex_inquire
	im_ex_get_coord
	im_ex_get_coord_names
	im_ex_get_map
	im_ex_get_elem_num_map
	im_ex_get_node_num_map
	im_ex_get_elem_blk_ids
	im_ex_get_elem_block
	im_ex_get_elem_conn
	im_ex_get_node_set_ids
	im_ex_get_node_set_param
	im_ex_get_node_set
	im_ex_get_side_set_ids
	im_ex_get_side_set_param
	im_ex_get_side_set
	im_ex_get_qa
	im_ex_get_info
	im_ne_get_init_global
	im_ne_get_init_info
	im_ne_get_eb_info_global
	im_ne_get_ns_param_global
	im_ne_get_ss_param_global
	im_ne_get_loadbal_param
	im_ne_get_elem_map
	im_ne_get_node_map
	im_ne_get_cmap_params
	im_ne_get_node_cmap
	im_ne_get_elem_cmap

	Deleting a Mesh
	Delete_Pamgen_Mesh


	Runtime Compiler Functionality
	The RTC language
	Operators
	Control flow
	Line Structure
	Variables
	Math
	Strings
	Printf
	Comments
	Unsupported Features


	read_mesh_to_memory
	References
	Index

