
N 8 8 - 1 9 1 1 4 i /_5-Jsq

INTEGRATION OF GEOMETRIC MODELING AND

ADVANCED FINITE ELEMENT PREPROCESSING

By

Mark S. Shephard

Rensselaer Polytechnic Institute

and

Peter M. Finnigan

General Electric Corporate Research and Development Center
q



ABSTRACT

The structure to a geometry-based finite element preprocessing system is

presented. The key features of the system are the use of geometric operators

to support all geometric calculations required for analysis model generation,
and the use of a hierarchic boundary-based data structure for the major data

sets within the system. The approach presented can support the finite element

modeling (FEM) procedures used today as well as the fully automated procedures

under development.

i. INTRODUCTION

The generation of numerical analysis models is one of the major steps in the

computer-aided engineering (CAE) process. Of primary concern is the dispro-

portionate amount of the entire design/analysis process that is currently
dedicated to this task. If significant productivity gains are to be achieved

in CAE, this bottleneck must be reduced. In the long term, this means the

automation of the entire finite element process, which would include such

things as adaptive analysis and optimization techniques. In the short term,

this means improving the basic model generation tools and developing prepro-

cessing systems that employ advanced geometric modeling and more powerful data

structures. This paper presents the overall design of a geometry-based FEM

system that will address today's needs, as well as provide a foundation for

the fully automated systems of tomorrow.

The most obvious reason for a better integration of finite element and

geometric modeling is to avoid the need to redefine the geometry during finite

element modeling. The second is to make more direct use of the functionality

present in advanced geometric modeling systems. The third reason is the crea-
tion of a more unified design/analysis environment that employs a geometry-

based (object) problem description. This includes geometry-based analysis

attribute specification, which is not only a necessary part of an object-based

problem definition, but is the most efficient method of prescribing this

information. Finally, it is only with the close integration of geometric and

finite element modeling procedures, that FEM can be fully automated.

In addition to the requirements placed on a preprocessing system by the above

needs, it must give the analyst all the model generation functions needed to

efficiently create controlled element meshes. At this time, that requires the

system to support bottom-up, mapped, and fully automatic mesh generators such

that they can be used in various combinations in a consistent manner. This

also means that flexible, geometry-based mesh control specification techniques



be used.

The majority of the current finite element preprocessing systems have been

developed in an evolutionary manner, independent of geometric modeling sys-

tems. Interfacing, not integration, results between the two systems. With

the recent advances in geometric modeling procedures, there is a desire to

make more direct use of the geometry available for the generation of the fin-

ite element model. To date, there has been limited success in integrating

geometric and finite element modeling. The major factors deterring this

integration are:

. Generally, finite element preprocessing systems are designed to con-

struct a finite element model by directly building the object's

description in terms of topologically simple shapes (i.e., triangles,

quadrilaterals, tetrahedrons, hexahedrons, etc.). This approach is

not well suited for general geometric manipulation.

. The data structures within a finite element preprocessor are designed

to house little more than the most basic of mesh construction infor-

mation and the mesh data (i.e., node point coordinates and element

definitions). They do not possess a general geometric data structure

to house the original geometric definition of the object, nor do they

maintain relationship information which explicitly couples the finite

elements themselves to the geometry from which they came.

. The geometric modeling systems do not make their intrinsic geometric

manipulation capabilities readily available to other applications on

the system which require such functionality.

The majority of effort that has been expended on improving the level of

integration between finite element and geometric modeling has been aimed at

particular modeling systems. The finite element preprocessing developers have

added their own geometric modeling capabilities, or the geometric modeling

developers have extended their systems to include finite element model genera-

tion. Although these approaches represent improvements, they tend to lack

generality and represent a large duplication of software development effort.

In addition, they typically lead to systems that have lopsided strengths; such

as geometric modeling systems that are well suited for developing finite ele-

ment models but poor for other applications. The position taken in this paper

is that the developers of geometric modeling systems should concentrate on

providing advanced geometric modeling functionality, FEM developers should

concentrate on the advancement of finite element modeling, and that these two

groups work together to integrate their respective capabilities in a cohesive

manner.

A general integration of geometric and finite element modeling requires not

only the transfer of data but also the transfer of functionality from the

geometric modeling system to the finite element modeler. This paper presents

a methodology that addresses this need. It must be noted that the implementa-

tion of these methodologies requires a major expansion of the data structures

underlying the finite element modeling system, the strict adherence to

prespecified operators to interact with a geometric modeling system, and the

construction of those Operators. The successful implementation of such a



system depends on:

I. Finite element modeling developers recognizing the need for change.

. Finite element modeling developers working closely with geometric

modeling developers to better understand each others requirements and
limitations.

3. Geometric modeling developers providing the requisite modeling func-

tionality for FEM.

Section 2 indicates an approach to the modular integration of geometric and

finite element modeling. Section 3 indicates the type of data structures

required in a geometry-based finite element modeling system. Section 4 gives

a more specific indication of how the various finite element model generation

procedures would operate within such a system. Section 5 addresses the

remaining open questions of the development of a geometry-based finite element

modeling system.

2. APPROACH TO MODULAR INTEGRATION WITH GEOMETRIC MODELING

The first key to the development of a finite element modeling system that can

be efficiently integrated with various geometric modeling systems is the use

of a general data structure that can support various geometric forms. The

second key aspect of this integration is the use of a general set of geometric

communication operators [I]. A geometric communication operator is a pro-

cedure designed to perform a geometric function, given specific information

about the operation and the geometry involved. The operator would return the

result of the operation and/or modify the geometric representation to reflect

the invocation of the operation.

The information passed directly to the geometric communication operator has a

general structure. Any data, specific to a particular geometric modeling sys-

tem, would be extracted directly from its geometric database by a geometric

communication operator. Therefore, it is only necessary to provide a set of

geometric communication operators for each new geometric modeling system that

the finite element modeler is to be interfaced. No changes within the finite

element modeling system need be applied. The approach discussed in this sec-

tion is consistent with the CAM-I work on an applications interface for

geometric modeling [2,3]. The advantage of this approach is obvious; it

avoids the need to reproduce all the geometric modeling functionality within

the finite element modeling system. This advantage is absolutely necessary if

finite element modeling systems are to be interfaced with the various forms of

geometric modelers being developed. Once a set of geometric communication

operators are agreed on, the operators can be constructed by the developers of

a geometric modeling system. Hopefully, the majority of them can be extracted

directly from the modeling capabilities already present in the system.

The geometric communication operators needed for finite element modeling can

be grouped into the following five categories:



I. BASIC QUERY- A request for geometric information that is intrinsi-
cally a part of the geometric modeling database.

. DERIVED DATA QUERY - A request for geometric information not directly

stored in its database. The determination of the requested data

requires the performance of geometric calculations. A DERIVED DATA

QUERY will not alter the contents of the geometric modeler's data-
base.

. GEOMETRIC MODELING OPERATION - A request is made that invokes one or

more geometric modeling operations such that the geometric model is

altered in the process.

4. ATTRIBUTE SPECIFICATION - The geometry-based specification, modifica-

tion, or deletion of the model's attributes.

5. GENERAL UTILITY - These would contain the operators that request gen-

eral, geometry independent information on a model.

A large number of geometric communication operators are needed for finite ele-

ment modeling. They will most likely be built in two levels. The low level

operators will represent atomic geometric operations such as Euler operators

[A] or specific Boolean operations [5]. The higher level operators, those

oriented toward finite element modeling, would be constructed primarily from

the low level operators. This approach has the advantage of insulating the

FEM system from changes in the geometric modeling system because only the

internals of the higher level layer would be affected. Thus, the FEM system

could be interfaced to a new geometric modeling system with relative ease

assuming it provided, in some form, the low level operators. It should be

noted, that since the type and amount of information stored in a geometric

modeler's database is a function of modeling approach and implementation, an

operator that is a BASIC QUERY in one system may be DERIVED DATA QUERY in

another. A few example operators are listed below:

BASIC QUERY

. RETURN GEOMETRY COEFFICIENTS return the coefficients used in the

definition of a-geometric entity.

. RETURN TOPOLOGICAL ENTITY

topological entity_

return the definition of the requested

. RETURN ENTITY ASSOCIATIVITY
4

ties for a topological entity.

return a specific set of associativi-

DERIVED DATA QUERY

i. DETERMINE DISTANCE BETWEEN

two geometric entities.

calculate the minimum distance between

. POINT_CLASSIFY determine if a given point is inside the object,

outside the object, or on the surface of the object.



3. DETERMINEINTERSECTIONS calculate the intersections
geometric entities.

between two

GEOMETRICMODELINGOPERATION

i. ADDENTITY- add a given entity to the geometric model.

2. SPLIT ENTITY - break a given entity into multiple entities in a
prescribed manner.

. PERFORM_BOOLEAN - carry out a Boolean operation between two specified
entities.

ATTRIBUTE SPECIFICATION

i. PLACE_ATTRIBUTE - apply an attribute to a given entity.

2. MODIFY ATTRIBUTE - modify a given attribute on a given entity.

GENERAL UTILITY

I. GET MODEL - retrieve a given model form the database.

2. SAVE MODEL - store the current model in the database.

Although the concept of geometric communication operators represents the most

general method to tie the functionality of geometric modeling systems to

geometry-based applications, the geometric modeling systems available today do

not fully support this concept. This is expected to change over the next few

years. The move to more open architectures, the increased pressures from

applications, a maturing of geometric modeling systems, and specific research

on the creation of such operators are contributing to this change. Developers

of application software should expect the availability of specific sets of low

level operators in the near future.

3. DATA STRUCTURES IN A GEOMETRY-BASED PREPROCESSOR

This section first provides an overview of the data structures required in a

truly geometry-based preprocessor before discussing the details of a particu-

lar implementation. It is important to understand, in very general terms, the

data structures themselves and how they interact.

There are a number of possible ways to group the requisite preprocessing data.
The one listed below was selected because it uses the minimal number of data

sets that provide a logical separation of information needed for finite ele-

ment modeling. The data sets include:

• The MODEL data set

• The ATTRIBUTE data set

• The MESH data set

The MODEL data set contains the geometric and topological data that defines



the domain to be meshed. The ATTRIBUTEdata set contains both the analysis
attribute data (e.g., material properties, boundary conditions, etc.) and the
mesh control data. The MESHdata set contains the finite element mesh gen_
erated for the model. Each data set has its own structure tailored to meet
its special requirements. The data structures are related through a well
defined set of pointers which provide the mechanisms through which all non-
MODELdata is tied to the MODELdata. The information content of these data
structures and their relationships are described in more detail in the sec-
tions which follow.

3.1. Model Data Structure

The most fundamental data to the preprocessor is the geometry. The work

described in this paper uses the concept of a non-manifold geometric modeling

topology representation [4]. In a manifold representation, the area surround-

ing any point on a surface (in the limit) is "flat." In a non-manifold

representation, the "flatness" criterion is not a requirement.

Historically, solid modeling systems have employed manifold representations.

However, this has caused problems when non-manifold results would occur as a

natural part of the model building process. One major benefit of a non-

manifold representation is that it permits wire frame, surface, and solid

models to coexist in the same system concurrently. Relative to finite element

modeling, it appears that the developers have not appreciated the importance

of a well defined topological model and that the topology which does exist in

these systems has been evolutionary. Not unexpectedly, they are inadequate to
support major advances in automation.

There is a close parallelism between finite element modeling and geometric

modeling with the three representations. That is, because of the abstractions

associated with FEM, all three geometric representations may be necessary

simultaneously. For example, many "real world" models are typically comprised

of a combination of solid, shell, and beam elements. Although not

exclusively, these element types lend themselves to being modeled with the

"corresponding" geometric representations. That is, the shell portion of the

model with a surface representation, the beam portions with a wire frame

representation, and of course, the solid elements with a solid representation.

The logical conclusion is that a non-manifold data structure that can support

the three forms of geometric modeling, can also support the geometric aspects

of finite element modeling. A single representation opens the possibility for

the finite element modeling system to make direct use of geometric operators

developed in support of the geometric modeling system.

The non-manifold geometry/topology hierarchical model used is depicted in Fig-

ure I. In addition, the relationships between geometry and topology are
shown.

3.1.1. Model Data Definitions

This section provides a set of working definitions for the various geometric

and topological entities used for geometric modeling. In addition to the

basic definition being stored in the data structure, its origin or purpose

will also be stored. That is, if an entity originates from the geometric



modeler, or if an entity is added for the purpose of controlling the mesh or
applying a boundary condition, it will be so identified.

.i.I.i. Geometric Entities

There are four geometric entities which the system will support as defined
below:

• POINT -- A point is a geometric entity specified by a triple of numbers

representing its position in space.

• CURVE -- A curve is a geometric entity representing the trajectory of a

point through space_ Curves can be infinite in extent.

• SURFACE -- A surface is a geometric entity representing a two-

dimensional locus of points. Surfaces can be infinite in extent.

• VOLUME -- A volume is a geometric entity representing a three-

dimensional locus of points.

It should be noted that in most geometric modeling systems, volumes in space

are defined in terms of a set of surfaces that enclose it. It is, however,

desirable to support the possibility of a specific volume geometric entity

which adds the ability to house volumes with internal definitions in the sys-

tem [i0,ii].

3.1.1.2. Geometric Modeling Topological Entities

The topological entiti6s form a hierarchy which, when coupled with geometry,

provide a complete definition of the part. A brief description of each of the

geometric modeling topological entities to be used in the model data is given
below.

• VERTEX -- A vertex is the topological equivalent of a three-dimensional

point in space. It is typically used to bound an edge. There is

always a vertex at the joining of edges. Vertices may also be used as

a boundary of a face or shell.

• EDGE -- An edge is the topological equivalent of a geometric curve

(i.e., line, arc, spline). It is bounded by two vertices. An edge may

be closed, in which case the starting and ending vertices are the same.

• LOOP -- A loop consists of an ordered, closed, connected, set of edges.

A loop bounds a face.

• FACE -- A face consists of a portion of a shell. A face is bounded by

at least one loop, and may be internally bounded by further interior

loops (i.e., holes).

• SHELL -- A shell consists of a set of faces which bound a region. A

shell may consist of a connected set of faces which form a closed

volume or may be an open set of adjacent faces, a wire frame, a combi-

nation of these, or even a single point. In the case of a solid model,



one shell is required to define the external boundary and additional
shells are required to define voids within the solid.

• REGION-- A region is a volume of space. A region has one exterior
shell and one interior shell for each void contained within it.

• MODEL-- A model is a collection of regions. Regions within a model
may be distinct because of physical separation in space, or simply
because a user wishes to keep them logically distinct.

3.2. Attribute Data Set

Any form of numerical analysis, requires the following information:

i. A complete specification of the physics of the problem to be

analyzed.

2. Specification of the desired level of domain discretization.

3. The specification of the required analysis control parameters.

In general terms, this information is referred to as the attribute data for
the model.

The attribute data structure will contain all of the information, past the

geometric definition of the object, that is needed to complete the description

of the problem. Attribute data includes both geometric and non-geometric

information. Data which is geometric in nature must be tied to the original
geometric definition of the object.

A number of different modeling attribute types are needed for finite element

analysis. A partial list of these includes:

.

2

3

4

5

6

7

8

Analysis program control data.
Case information.

Finite element type declaration information.

Nodal (skewed) coordinate system data.

Material property data.

Physical property data.
Mesh control data

Essential boundary condition data

.

- e.g., displacements in a stress problem or temperatures

heat conduction problem.

Natural boundary condition data

in a

i0.

- e.g., pressures in a stress problem or fluxes in a heat conduc-
tion problem.

Initial condition data.

3.2.1. Classes of Attributes



Finite element modeling attributes can be categorized by class, depending on
how they interact with geometry. Three distinct classes of attribute data
have been identified, and are described below:

CLASS#I:

Attribute data in class #I is characterized by data which is required for the
analysis to be performed but which it totally independent of the geometric
definition of the model.

CLASS#2"

Attribute data in class #2 is characterized as data which is attached directly
to geometric entity data, and which can be described completely in terms of
that geometric entity.

CLASS #3:

Attribute data in class #3 is characterized by data which is attached directly

to geometric entity data but which needs auxiliary geometric data (henceforth

known as attribute specification geometry) to help define the attribute. That

is, the attribute may not be conveniently described in terms of the geometric

entity to which it is attached, and thus two pieces of geometric entity data
are required; a piece of geometry data and a piece of attribute specification

geometry data.

The basic distinction between class #2 and class #3 data is that class #2 data

needs a single geometric entity to define both (a) the associativity of the
attribute with the model and (b) the attribute's definition. Class #3 data,

on the other hand, requires a piece of geometric data to define its associa-

tivity with the model, and in addition, requires attribute specification

geometry to define the attribute.

As an aid to understanding class #3 data, consider the case of an arbitrarily

complex flat plate in the xy-plane. Suppose that the structure was subjected

to a normal pressure load which was linearly varying as a function of y. If

one attempted to describe this pressure solely in terms of pressure values

along the edges, one would not have a uniquely defined pressure surface, and

thus the pressures on individual elements could be evaluated incorrectly.

Alternatively, the pressure could very simply be specified by defining an aux-

iliary piece of geometry; in this case a rectangular face which covered the

entire 2-D domain and four pressure values, one at each of the corners. Pres-

sure on individual elements could then be evaluated in a totally unambiguous

manner.

3.2.2. Attribute Specification Geometry

Attribute specification geometry is simply geometry plus topology which is

used to help define the physics of certain attributes. It can be thought of

as being auxiliary to the part definition. It has no direct links to the

part's geometric data structure. The attribute specification geometry will be

an intrinsic part of the definition of the attributes. It is stored in the

MODEL data structure but is referenced through the attributes. The attribute



specification geometry maintains the samehierarchic structure as the models
geometry/topology.

The purpose of attribute specification geometry is twofold. First, it pro-
vides a mechanism for allowing simpler and more efficient specification of
attribute data. Secondly, it provides a means for evaluating attribute data
directly and unambiguously.

3.2.3. Attribute Data. Structure

The relationships between attribute data and geometry are as follows. The
model's topological entities point to attributes. An attribute contains its
definition along with two pointers. One pointer points back to the geometric
entity to which it is "tied." The other pointer points to the attribute
specification geometry which is used to help define the attribute. If this
geometry is, in fact, the same as the model's geometry, then the attribute
specification geometry pointer is a null pointer. Figure 2 shows the general
data structure for a generic attribute data type. It indicates how attributes

are specified and associated with geometry/topology. The dimensionality of

the attribute topology can be the same or lower order as the model's topology

to which it points; it can never be of higher order. That is, an edge is a

one-dimensional entity. The permissible associated attribute's topological

entities are "vertex" and "edge."

3.3. Mesh Data Structures

In addition to the hierarchy of geometric modeling entities discussed earlier,

there will also be a hierarchy of finite element entities, the MESH data

structure (Figure 3), which will be used to define the elements themselves.

This is a departure from the way in which finite elements have historically

been defined (i.e., an element of a specific type with a list of nodes which

define the connectivity).

The finite element entities have two types of data associated with them. The

first is the modeling topology data, and the second is the finite element

attribute data (i.e., material properties, physical properties, etc.). Each

finite element entity points to the lowest order modeling topology entity
which it is inherently a part. For example, a fe-edge which is on the surface

of a region would point to the face on which it lies, rather than the region

itself. It is this relationship that permits attribute data which is tied to

the geometry to be evaluated on an element by element or node by node basis.

Pointers from the geometry to individual element components (i.e., fe-nodes,

re-edges, fe-faces, etc.) are also desirable for efficient postprocessing

activities. The storage penalties for maintaining these relationships are

easily offset by the performance gains which can be achieved.

3.3.1. Finite Element Entity Definitions

What follows is a set of working definitions for the various finite element
entities.

I0



• FE-NODE-- A fe-node is a three-dimensional point in space. Typically,
it is used to define a fe-edge; however, it can also be used to help
define a finite element. For example, the mid-face node used in a
Lagrange parabolic element is not associated with a fe-edge, but rather
with the fe-face itself. In addition, a reference node used to define
the center of curvature or the plane in which a beam element lies would
point to the element rather than the edge of that element. Finally, a
fe-node could be used to define the element explicitly such as the con-
centrated mass element. A fe-node may lie on a vertex, an edge, a
face, or be completely contained within a region.

• FE-EDGE -- A fe-edge is a combination of topology plus implied
geometry. That is, the nodes used in the definition of an edge are
used to bound the geometric curve, and at the same time can be used to
define the geometry (i.e., straight line, parabola, or cubic) for the
element itself. A fe-edge can be used to define a fe-face, as with
planar or solid elements, or can be used to define the finite element
directly, as is the case with truss and beam elements. It may lie on
an edge, a face, or be completely contained within a region.

• FE-FACE-- A fe-face is bounded by fe-edges. It is either used to
define the surface of a "planar" finite element or is used in combina-
tion with other fe-faces to bound a solid finite element. Topologi-
cally, a fe-face will be either triangular or quadrilateral in nature.
It may lie on a face, or be completely contained within a region.

• FINITE ELEMENT-- Depending on the type, a finite element can be a fe-
node, a fe-edge, or a collection of fe-faces. It may be completely
contained within a region. However, it is true only for solid finite
elements that the entity "finite element" can point to a region because

other finite element types will have lower order entities which point

to various geometric entities.

3.3.2. Advantages of a Finite Element Entity Hierarchy

At first glance, the MESH data structure, with its hierarchy of finite element

entities, may seem too elaborate, perhaps even wasteful of valuable storage.

However, on closer inspection some distinct advantages emerge. The most

powerful advantages come from the links to the other data structures. These

relationships are discussed in the next section. Independent of the benefits

which accrue due to these links, a number of other benefits surface as

enumerated below:

• It provides an organization for handling any type of finite element in
a uniform manner.

• It provides direct access paths to higher order entities from lower

order entities which make it very convenient to do such things as

bandwidth minimization, postprocess the results of elements associated

with a given set of nodes, etc.

• It makes it possible to interrogate the finite element model using a

geometric entity as a key word for searching.

ii



• It provides a mechanismwhich supports mesh generation on the basis of
topologically simple cells (i.e., quadrilaterals, triangles, hex-
ahedrons, etc.) which corresponds to linear finite elements, providing
a direct path to upgrade to higher order elements without going back to

the mesh generator. All higher order fe-nodes can easily be placed

precisely on the appropriate associated geometric entity.

3.4. Relationships of the Three Data Structures

The power of the implementation is derived from two sources; the data struc-

tures themselves and the relationships between the structures. Figure 4 shows

the relationships which exist amongst the three data structures. It is, in

fact, these links that provide the necessary structure for claiming to be a

geometry-based system. These links provide a bond between the data structures

which permit the system to respond in a cohesive manner.

The links are automatically established during the model generation process.

The natural progression of events is something like this:

I. The part is generated via a geometric modeling session.

geometric entities are loaded into the MODEL data structure.

The

. Model attributes are defined and loaded into the attribute data

structure. Since the attributes are associated with the model's

geometry, two-way pointers are established between the MODEL data and

the ATTRIBUTE data. In addition, any necessary attribute specifica-

tion geometry is generated and stored in the MODEL data structure.
Links are also established between the ATTRIBUTE data structure and

the attribute specification geometry.

. One of the attributes is mesh control data. Having this information,

mesh generation can proceed, and the resulting node and element data

is stored in the MESH data structure. During the mesh generation

process, the associations which exist between the finite element mesh

data and the part definition are known, and thus pointers between the

MESH data structure and the MODEL data structure can be generated.

4. Since both the MESH data and the ATTRIBUTE data point to the MODEL

data, the attribute data can then be evaluated on a node by node or

element by element basis. The links between the MESH data and the

ATTRIBUTE data structures are established at this point.

This completes the model building process. It accomplishes what it was

intended for; to use a completely geometry-based approach to produce an
analysis model.

4. DESIGN OF A GEOMETRY-BASED PREPROCESSOR

The approaches and data structures outlined above form the basis on which an

advanced geometry-based preprocessing system can be built. The remaining

capabilities needed are the actual finite element model definition procedures
and the user interface.

12



The best form of user interface for this system is an interactive graphics
front end. This is obviously the most convenient form of interface for the
specification of geometry and geometry-based information. Even for those
cases where the geometry to be meshed is identical to that obtained from the
geometric modeler, and an automatic mesh generator is used, there is still the
need for the specification of the analysis attribute information in terms of
the geometric model. Until fully automatic, adaptive procedures are avail-
able, the system must support the entire range of finite element mesh genera-
tion procedures. These are most efficiently operated in an interactive graph-
ics mode.

Geometric operations within the system will be carried out making heavy use of
the capabilities of the geometric modeling systems to which it is interfaced.
It is important that geometric modeling functions be presented in a form
appropriate for finite element modeling. This may be different than the way
they are presented in the geometric modeling system. In addition, it must be
recognized that different geometric modeling systems will not provide the same
sets of geometric modeling functions. The two level approach to the implemen-
tation of the geometric communication operators provides a method to deal with
both of these concerns. The high level geometric communication operators for
finite element modeling would be designed to fit directly into the modules of
the preprocessing system. Since they are constructed by the combination of
the low level geometric communication operators, which represent the actual
tie to the geometric modeler, they need not necessarily be altered when a new

modeler is interfaced to the system. If a particular geometric modeler does

not provide specific low level operators used by a high level operator, it may

be possible to reconstruct the high level finite element operators by a dif-

ferent combination of low level operators.

The geometric modeling functions needed by a complete finite element prepro-

cessing system are extensive. They include a full set of high level opera-
tors, such as the Boolean operators, for the construction and modification of

geometry, as well as for use by automatic mesh generators to decompose the

geometry into a valid finite element mesh. A full range of geometric interro-

gation operators will be required for use by the mesh generation algorithms,

the mesh checking procedures, the geometric construction operations, and the

attribute specification procedures. Finally, a full range of bottom-up

geometric modeling functions are needed to allow the analyst to define all or

part of a geometry.

The attribute specification procedures in a geometry-based preprocessor must

give the analyst a high level of flexibility in the specification of the vari-

ous types of finite element attributes. The geometric specification pro-

cedures for defining analysis attributes, such as distributed loads, must

allow for the convenient description of the distribution of the loads, as well

as for defining the portions of the object on which they act.

Flexible procedures must be available to group attributes of the same type

into sets for simple manipulation during the specification of the actual load

cases to be analyzed. The reason for allowing the grouping of attributes is

partly to provide convenience to the analyst, but is mainly for the purpose of

allowing a greater degree of automatic validity checking in the system. By

only allowing the combination of attributes of one type into sets, automatic

13



validity checks on attribute combinations, which are based on attribute type,
can easily be done. The combination of attribute sets into analysis cases
allows the application of an additional set of checks which can only be made
after the analysis process control information has been indicated. Thus, the
user maintains a high degree of flexibility while affording the system a means
of performing validity checks at the appropriate levels.

A difficulty in the implementation of the mesh control attributes in a system
that allows a variety of mesh generation approaches is devising a procedure
that can operate from a single internal representation of mesh control infor-
mation. Since all attributes, including mesh control information, are
directly tied to entities in the geometric model, the most direct method of

dealing with this specification is to tie mesh control parameters to each of

the topological entities that define the object. The analyst can be given a

set of procedures that allow for geometry-based specification of the mesh con-

trol information and have it properly associated with the topological enti-

ties. Since it is possible to introduce geometric entities for the sole pur-

pose of attribute specification, this approach maintains the desired level of

flexibility. The remaining question is the selection of mesh control parame-

ters for the various topological entities that can always be meaningfully con-

verted to the specific parameters needed by the various mesh generators. The

simplest solution is to assign a single element size parameter to all enti-

ties. Although seeming simplistic, this tends to be acceptable for all enti-

ties except the edge. The reason for this is simply that most mesh generators

base all their mesh control on edge information, and those that use additional

parameters, typically use a single parameter per entity. The mesh control

information appropriate for edges should allow for the specification of the

number of elements along the edge, as well as biasing parameters to grade the
size of elements in a flexible manner.

As indicated above, the preprocessor should house a variety of mesh generation

procedures ranging from simple bottom-up meshing procedures through fully

automatic meshing procedures. It is anticipated that as automatic mesh gen-

erators become more robust, and as the geometric modeling capabilities needed

to support them continue to improve, they will tend to become the main mesh

generation tool. However, until fully automated finite element modeling sys-
tems become available, there will be a continued need to support the other
mesh generation approaches.

Bottom-up mesh generation will tend to be used for the quick construction of

both mesh and geometry (in terms of the finite elements) for very simple

objects, and for adding simple finite element entities to an object that does

not contain all the geometric entities in a form convenient for generation of

that portion of the finite element model. Although, these procedures will not

represent the major mesh generation workhorse, their presence in the system is
necessary.

Mapped mesh generators are the most popular mesh generation procedures

currently available. To some extent, they are more difficult to provide the

needed geometric communication operators than some of the automatic mesh gen-
eration approaches [i]. The system must contain procedures that allow the

analyst to easily define the supplementary geometry needed to define the boun-

daries of mesh patches and to be able to select the geometric entities that

14



define the specific meshpatches. The process of defining these mesh patches
in a geometry-based preprocessor that accepts a general geometric model as
input is substantially different from preprocessors where the geometry is
built in a bottom-up fashion in terms of meshpatches. The user tools needed
to efficiently decomposea general geometry into a set of valid mesh patches
are different from those that are efficient for defining a geometry in terms
of a set of meshpatches. The preprocessing system discussed here should sup-
port both sets of capabilities.

The selection of fully automatic mesh generation procedures to be included in
such a system must consider the following factors:

I. The ability of the mesh generator to produce the desired types of
meshes.

2. The ease of integration of the meshing procedure with geometry
through a set of geometric communication operators.

3. The computational efficiency of the mesh generator.

Since the level of complexity of geometric operators needed to integrate an

automatic mesh generator with a geometric representation varies greatly [i],

as does their computational efficiency, it is likely that these two factors

will dictate the selection of automatic mesh generators to be included in the

preprocessor.

5. OPEN QUESTIONS IN THE DESIGN OF A GEOMETRY-BASED PREPROCESSOR

The procedures presented in the previous sectioqs address the close coupling

of the geometric representation of an object and the finite element mesh used

to analyze it when there is an obvious correspondence of the finite elements

generated and the geometric entities in the model. The type of finite element

models that yield this correspondence are those where the finite elements are

dimensionally the same as the geometric entities, and when the domains spanned

by the geometric and finite element model are the same. However, it becomes

much less clear how to account for the coupling between the geometric and fin-

ite element models when the geometric model is simplified for purposes of fin-

ite element analysis or when the finite element mesh contains a mix of element

types of different geometric order representing various portions of a solid

model. Common examples of these cases include ignoring specific geometric

features deemed unimportant, and the use of shell or beam elements when one or

two of the geometric dimensions of specific portions of a geometric model are

small compared to the others. Element types of a dimensional order less than

the geometric entity they represent account for the small dimensions in terms

of element parameters such as thickness and moment of inertia. Elements of

this type will subsequently be referred to as indirect elements.

Historically, the concern for the proper representation of the differences

between the geometric model and the finite element model have not existed.

This is because the two modeling processes were carried out independently.

However, the desires to make direct use of the information in the original

geometric model, to maintain complete links for making model revisions easier,

15



and to maintain a clear history of the analysis modeling procedures used,
makes it necessary to address the question of how to define and account for
these differences.

A major portion of the answer to these questions lies in the data structures
to be used and the procedures employed to reflect the differences between the
models in the database. However, this is not the appropriate place to begin
to address these questions. One of the major factors that makes this a com-
plex question is the lack of analytic procedures, or even an agreed upon set
of rules for determining when and how these modeling differences should be
used. If this information were available, it would be possible to devise
algorithmic approaches to carry out these processes and it would becomemore
obvious as to the best method to account for the results of those processes.
Lacking such information requires that the approach taken to address these
questions be somewhatopen ended, thus allowing users to carry out the opera-
tions associated with geometric simplification and the generation of indirect
element types in a flexible manner.

As an example of the range of possible approaches to geometric simplification,

three different approaches to account for domain differences are considered.

In all cases, the finite element analyst begins with the complete specifica-

tion of the geometric model. In approach one, the analyst generates the mesh

interactively with a mapped mesh generator. In this case, the finite element

model generation process consists of the analyst simplifying the geometric

model by performing specific geometric modeling operations during the con-

struction of the various mesh patches. With currently available finite ele-

ment modeling procedures, this is an appropriate method. However, this

approach does not readily lend itself to account for the specific geometric

simplifications made to the model before mesh generation. Ever if the analyst

was required to make the geometric simplifications, independent of the defini-

tion of the mesh patches, accounting for the simplification would require the

explicit storage of both models or storing the list of modeling operations

carried out during the simplification, neither of which is convenient.

The second and third approaches require the availability of a fully automatic

mesh generation procedure that can ignore geometric features during the mesh-

ing process. With such a capability, the mesh generator can be passed the

entire geometric model. Geometric features to be ignored are flagged

appropriately. Accounting for the differences between the geometric and fin-

ite element models consist of simply examining the geometric model to see

which geometric features are flagged. The second approach would consist of

the analyst flagging the geometric details to be ignored while the third

approach would rely on adaptive analysis procedures to determine the features

to be ignored. Although the finite element modeling capabilities needed to

support these two approaches are not fully available, components of them are

currently being investigated. For example, the quadtree [6] and octree [7]

mesh generators operate on the basis of hierarchic insertion of the geometric

entities within an object's boundary file into a tree structure. Therefore,

it is possible to simply identify those entities associated with the geometric

features to be ignored so they are represented in an approximate manner.

Although this approach may not be able to account for all desired forms of

geometric simplification, it should be able to easily handle a majority of

them. Efforts are currently underway to develop and test these capabilities.

16



The development of adaptive analysis procedures to automatically identify
geometric details to be ignored, is a much more complex issue. One possible
approach is to combine a set of rules employing analytic stress concentration
factors with the results from an initial analysis that ignored features in
order to estimate their influence [8] and to determine if they should be
included.

The controlled generation of, and accounting for, the use of indirect element
types is an even more complex process. The computerization of this process
could make effective use of artificial intelligence techniques to help convert
geometric representations to numerical analysis representations [9].

6. CLOSINGREMARKS

There are a number of areas that must be addressed before fully automated fin-
ite element modeling becomesa reliable analysis tool that is an integral part
the computer-aided engineering process. This paper has addressed one of those
areas which is the framework of a preprocessing system that allows the com-
plete integration of finite element modeling with geometric modeling. The two
key aspects of the approach are the use of geometric communication operators
and the use of advanced data structures required to store the various data
sets needed in finite element modeling. The key to the data structures is the
use of a single hierarchic boundary-based geometric representation for both
the geometric model and the finite element model. To this, auxiliary data
structures (e.g., the attribute data structure) can be linked. A boundary-
based representation was selected because:

i. It is the most general form of geometric representation to which
other geometric forms can be converted.

2. It is a convenient framework on which new geometric and finite ele-
ment types can be quickly added.

3. It is the most natural form, since finite element modeling is dom-
inated by boundary information.

The major penalty for the added capability of this approach is the large
amount of data storage. This is unavoidable if the goal of a general,
geometry-based system is to be achieved. The only way to reduce the amount of
information required is to reduce the level of integration with general
geometric modeling systems or to limit the number of finite element modeling
procedures that can be supported.

A final advantage of the approach presented here is that it can fully support
today's finite element modeling procedures while allowing the introduction of
ever increasing levels of automation as fully automatic mesh generators and
adaptive analysis procedures evolve. This is very important since current
preprocessing systems cannot support full automation and it is only through
automation of these procedures that finite element techniques can be made a
reliable tool for designers and not just the experts.

17



REFERENCES

. Shephard, M. S., "Finite Element Modeling Within an Integrated Geometric

Modeling Environment: Part I Mesh Generation, Part II Attribute

Specification, Domain Differences, and Indirect Element Types," Engineer-

in k With Computer, Vol. I, 1985, pp. 61-85.

2. "CAM-I Geometric Modeling Project Boundary File Design (XBF-2)."

Report R-81-GM-02. i, October 1982.

CAM- I

° Wilson, P. R., I. D. Faux, M. C. Ostrowski, and K. G. Pasquill, "Inter-

faces for Data Transfer Between Solid Modeling Systems," IEEE Computer

Graphics and Applications, Vol. 5, No. i, 1985, pp. 41-51.

4. Weiler, K., "Topological Structures for Geometry Modeling," PhD Thesis,

Rensselaer Polytechnic Institute, Troy, New York, 1986.

° Requicha, A. A. G. and H. B. Voelcker, "Solid Modeling: A Historical

Summary and Contemporary Assessment," IEEE Computer Graphics and Applica-

tlo___ns Vol. 3, 1982, pp. 9-24.

. Baehmann, P. L., S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A.

Yerry, "Robust Geometrically Based Automatic Two-Dimensional Mesh

Generation," TR-86007, Center for Interactive Computer Graphics, Rensse-

laer Polytechnic Institute, Troy, New York, 1986.

7. Yerry, M. A. and M. S. Shephard, "Automatic Mesh Generation for Three-

Dimensional Solids," Comput. Struct., Vol. 20, 1985, pp. 31-39.

. Shephard, M. S. and M. A. Yerry, "Toward Automatic Finite Element Model-

ing for the Unification of Engineering Design and Analysis," Finite Ele-

ments in Analysis and Desi_n_ Vol. 2, 1986, pp. 143-160.

° GregorY, B. L. and M. S. Shephard, "Design of a Knowledge Based System to

Convert Airframe Geometric Models to Structural Models," Expert Systems

in Civil Engineering_ ASCE, New York, New York, 1986, pp. 133-144.

i0. Casale, M. S. and E. L. Stanton, "An Overview of Analytic Solid Model-

ing," IEEE Computer Graphics and Applications, Vol. 5, No. 2, February

1985, pp. 45-56.

ii. Farouki, R. T. and J. K. Hinds, "A Hierarchy of Geometric Forms," IEEE

Computer Graphics and Applications_ Vol. 5, No. 5, May 1985, pp. 51-78.

18



LIST OF FIGURES

i. A NON-MANIFOLDGEOMETRYREPRESENTATIONFORFINITE ELEMENTMODELING

2. GENERICATTRIBUTEDATASTRUCTURE

3. MESHDATASTRUCTURE(A hierarchy of finite element entities)

4. RELATIONSHIPSOFTHEDATASTRUCTURES

19



)-

S
0
Q.

>-
rr

LIJ

0
u.J

_f _r _f

uJ w w I-



q

Z

_o_ G:

_S,,,

_°

0
IE

Z

o_

_,'r"
ff:o
t--w

_ a

__ i _

__ e_

1

0

el I.-

Z

0

S
0

n _

i

,I

q

q



w



rr"
I--
O0

r_

ILl
r_
0

I-
oO

_rT"
WLLI
r_
0 _
_0 w

ILl

z
_0>-


