
Wavelets Applied to Lossless Compression and Progressive Transmission of
Floating Point Data in 3-D Curvilinear Grids

Aaron Trott, Robert Moorhead, John McGinley
NSF Engineering Research Center for CFS

Mississippi State University *

Abstract

A method of lossless compression using wavelets is presented
that enables progressive transmission of Computational
Fluid Dynamics (CFD) data in PLOTJD format. The float-
ing point data is first converted to double-precision float-
ing point format to maintain adequate precision throughout
the transform process. It is then transformed using Haar
wavelets - four times in two spatial dimensions, twice in the
third spatial dimension, and twice in time for a total com-
pression factor of 64 times. The double precision format will
maintain enough precision during the transform to keep the
process lossless. Next, the transformed data is compressed
using Huffman coding and transmitted progressively using
spectral selection. This allows most of the information to be
transmitted in the first pass. Details are transmitted in later
passes which ultimately provide for lossless reconstruction of
the original data.

1 Problem and Underlying Principles

1.1 Introduction

Many times in Computational Fluid Dynamics (CFD) work
very large datasets are produced on remote machines. This
vast amount of data must often be moved to a local ma-
chine for post processing and visualization. However, this
can take large amounts of time because of the large quan-
tity of data that must be transmitted. Compressing the
data can speed up the transmission and save several hours
of the researchers’ time. Progressive transmission can fur-
ther increase efficiency of the visualization process by giving
researchers an approximation of the data very quickly. They
can then make a decision based on this approximation about
whether to continue the transmission or, if the data is de-
termined to be undesirable, to abort it.

1.2 Haar Wavelets

This application currently uses Haar Wavelets. These are
very simple functions with the scaling and detail filters de-
fined in Eq. (1) and Eq. (2) respectively.

@Hoar(t) =
1 ifO<t<l
0 otherwise

*Engineering Research Center, P.O. Box 9627, Missis-
sippi State University, Mississippi State, MS, 39762. Email:
{atrott,rjmjam}Qerc.msstate.edu

o-7803-3707-7196 ..$4.m @ 1996 IEEE

Figure 1: Example of a Multi-Zone Grid

Number of zones in tile (if multi-zone format)
(zone 1) i-dim j-dim k-dim
(zone2) i-dim j-dim k-dim

(zone n’) i-dim j-dim k-dim

(zone 1) all x values
all y values
all z values

(zone 2) all x values
all y values
all z values

(zone n) all x values
all y values
all z values

Figure 2: Format for Plot-3D Grid Files

1.3 The PLOT30 File Format

The PLOTJD file format has become a standard for deal-
ing with curvilinear grids. Fig. 1 shows an example of
a multi-zone curvilinear grid for the hull of a submarine.
The hemisphere displayed in the figure is divided into four
zones running the length of the hull and radiating outward
as indicated by the extended sections of the grid. The three
PLOTID file types are grid, solution, and function files. All
of these file types support multi-zone grids [2]. Grid files
contain the location of each point in a grid as shown in Fig.
2. Solution files contain information global to each zone as
well as the value of five parameters at each grid point. The
global values are the free stream math number, the angle of
attack, the Reynolds number, and the time (Fig. 3). The
five parameters are density, three components of momentum,
and energy. Function files can be user defined and are not
dealt with in this discussion.

385

Number of znnes in file (if multi-zone format)

(zone I) i-dim j-dim k-dim
(zone 2) i-dim j-dim k-dim

(zone n) i-dim j-dim k-dim

(zone 1) fsmach
alpha
re
time
all density values
all momentum (u) values
all momentum (v) vtiues
all momemtum (w) values

: all energy values

(zone I$ fsmach
alpha
re
time
all density values
all momentum (u) values

all momentum (v) values
all momemtum (w) values

all energy values

Figure 3: Format for Plot-3D Solution Files

Solution files are more complex than grid files, but they
can contain redundancy that aids in compression. In the
data sets discussed here the global attributes for all of the
zones are the same. This allows the elimination of all but the
first set of global attributes. Also, the density of the fluid
(water) remains a constant of 1.0 for all of the current work.
Since the density values make up 20 percent of each solution
file, it gives a significant boost to compression. However,
there are four other floating point values at each point, so
there is much more data to compress.

The data explored in this paper are contained in multiple
zones. Each zone can contain either part of the structure
being simulated or a time step in the simulation. Since we
use the zones for separate time steps our compression tool
only needs to deal with one file at a time. This greatly sim-
plifies the I/O procedure. However, if the zones are used for
different parts of the structure that have equal dimensions,
the zones can be compressed pairwise spatially instead of in
time.

1.4 Floating Point Numbers and Lossless Compres-
sion

Floating point numbers are more difficult to compress than
integers because their structure is more complicated. For
example, single precision floating point numbers are com-
posed of a sign bit, an eight bit biased exponent, and a 23
bit mantissa (Fig. 4). Double precision floating point num-
bers have a sign bit, an 11 bit biased exponent, and a 52
bit mantissa. The different parts of these numbers are not
on byte boundaries in memory, so breaking them into pieces
requires bit manipulations.

Another problem in lossless compression is that the num-
ber of significant digits increases as a result of the transform
process [l]. When numbers are added, extra bits are needed
to keep track of the significant digits. Let P,,,,, and P,,,i,, be
the maximum and minimum exponents in a series of floating
point additions. Then the total number of extra bits needed
is calculated in Eq. (3). Note that this is the worst case.

Single Recision Floating Point Number

31 30 23 22 0

S-bit exponent 23-bit mantissa

sign bit

Double Precision Floating Point Number

63 62 5251 0

I I -bit exponent 52-bit mantissa

sign bit

Figure 4: Formats for Floating Point Numbers

digits = P,,,,, - Pm;,, + n (3)

where:
min(2”) 2 number of coefficients added

For example, the addition of five numbers requires P,,,,, -
Pm;,, + 3 extra bits of precision because 23 is the smallest
power of two that is greater than or equal to five.

A mechanism must be developed to retain these extra bits.
One way to do this is to convert the single precision floating
point data to double precision. As long as the additions in
the wavelet transform do not increase the precision by more
than 52-23 = 29 bits, there will not be any lost information.
This should not be a problem in this implementation because
there will only be 64 numbers added per data point. These
additions will require only n = 6 extra bits of precision as
calculated in Eq. (3). The remaining 23 bits gained from the
conversion to double precision can be used for shifting the
mantissa to equalize exponents. An appropriate data set will
not require more than 23 extra mantissa bits in each 4x4x2
spatial footprint over two time steps so this is a reasonable
constraint.

After the data is transformed, it can be encoded in a vari-
ety of ways to ensure that the correct number of significant
digits is retained as well as provide for maximum compres-
sion.

2 Solution

By taking advantage of the principles discussed above as well
as the characteristics of the data we are using, we can imple-
ment a reasonable solution that meets both of our goals-
lossless compression and progressive transmission.

After reading the data from a PLOT3D file into mem-
ory, it can be transformed block by block. The data is first
transformed in two spatial dimensions dividing the data into
slices. The block size for this set of transformations is four
by four. The results of these transforms are placed into a
double precision floating point array to maintain the correct
number of significant digits as discussed previously. The
data is next transformed in the third spatial dimension us-
ing pairs of slices. Finally, it is transformed in time (Fig. 5).
This gives a combined compression factor of 64 to 1 if only
the scaling terms are retained.

After transforming the data, it is Huffman encoded based
on a statistics file that is generated beforehand. The statis-
tics file can be specific to a particular data file or general for
a class of files. There is a variety of ways in which to en-
code the transformed data. Utilizing spectral selection [3],
bands of coefficients in each block can be coded separately.

386

slice j+l
slice j

timestcp n timestep n+l

Figure 5: Structure of 4-Dimensional Data

[File Type Max Comp Min Comp
grid 14.94% 13.22%

solution 6.75% 4.62%

Table 1: Compression Ratios

For example, all of the scaling coefficients can be encoded
first then the coefficients corresponding to finer resolutions
(detail) follow.

On the receiving end the encoded data is decoded, inverse
transformed, and reassembled into its original form. Basi-
cally, the process described above is reversed and repeated
once for each spectrum of data that is received.

Currently, a very simple Huffman coding scheme is used
to perform the actual compression. The value of each byte of
the transformed data is used without regard to its position
in a double precision floating point number. These statistics
are used to compress the data byte wise instead of per dou-
ble precision floating point value. Although this is not the
most efficient means of compressing the data, it reduces the
number of entries in the statistics table from over 264 to 2*.

3 Results

The initial results from this scheme are very encouraging.
Table 1 shows the compression ratios achieved in test cases
for both grid files and solution files. Although the com-
pression ratios for solution files are not very high, actual
compression is only part of the goal. The progressive nature
of the scheme also aids in transmitting the most important
data quickly. There is great potential to improve these com-
pression ratios in the future as will be discussed in the next
section.

Table 2 shows the percentage of the coefficients used to
reconstruct the data set for each pass through the recon-
struction algorithm. It also shows the relative size of the
accumulated data compared to the size of the original file
for one of the test cases.

The reconstruction of the first pass is too coarse in many
cases to show the researchers much (Fig. 6). The first pass
can be combined with the second pass to save CPU time.

1 Ret Pass]I % Coeffs] % Data fl

Table 2: Reconstruction Coefficients

The second pass (Fig. 7) provides enough resolution to en-
able researchers to decide if a solution is acceptable or not.
If it is unacceptable, transmission of the data can be termi-
nated. The third pass (Fig. 8) gives a very good reconstruc-
tion and is accurate enough to begin analysis of many aspects
of a solution. Finally, pass 4 (Fig. 9) perfectly reconstructs
the original data to give researchers full confidence in their
analysis. Note that the multiresolutional representation of
the original data is smaller than the original (PLOT3D) rep-
resentation.

4 Conclusions and Future Work

The compression technique discussed here holds much
promise for compressing three dimensional floating point
data. There are currently few or no alternatives, so any
work in this area provides valuable insight into nature of
this problem. Also, since this technique transmits the most
important data first, it provides even more compression to
its users than is indicated by file size alone. PLOTJD files
are a good format with which to work because they are very
flexible and are widely used throughout the CFD commu-
nity.

There are still many aspects of this technique that need
improvement. The current code can be streamlined to speed
up the compression process. It could also work much faster if
it was implemented on parallel machines. Another improve-
ment could be made by examining the relationship between
compression time and transmission time to help determine
the optimal compression ratio. Much work can also be done
to generalize the method for use with many different file
structures.

Two other areas that need to be addressed are the
wavelets used and the Huffman coding scheme. Haar
wavelets are most likely not the best choice for this com-
pression scheme, so comparisons can be made with other
wavelets to find one better suited to both this method and
the type of data being compressed. Another promising im-
provement is to increase the number of Huffman statistics
tables so that different parts of the double floating point
data we treated separately. For example, the bytes near the
end of the mantissa will in most cases always be zero. If
run length coding were employed here, it could have a great
impact on the compression ratio.

This compression and transmission scheme attempts to
move data compression toward time-varying three dimen-
sional scientific data instead of text and image compression,
which have already been addressed extensively. It will hope-
fully impact the scientific community by speeding up analy-
sis of the vast amounts of data produced by researchers.

References

[l] H. Tao and R. Moorhead. Progressive transmission of
scientific data using biorthogonal wavelet transform. In
Proc. Visualization ‘94, pages 93-99. IEEE, 1994.

[2] P. Walatka and P Buning. Plot3D User’s Manual, vol-
ume version 3.5, chapter 8. NASA, 1988.

[3] G. Wallace. The JPEG still picture compression stan-
dard. Communications of the ACM, 34(4):39-41, 1991.

307

:--’

1’

/

,/-.....

Figure 6: Reconstruction Using 1.56% of Coeffkients. Figure 8: Reconstruction Using 50% of Coefficients.

Figure 7: Reconstruction Using 6.25% of Coefficients. Figure 9: Pass 4 - Lossless Reconstruction.

388

