ISO/IEC

13240

�
Information Technology (Standard Hypermedia/ Multimedia Scripting Language (SMSL)

�
Reference Number

ISO/IEC CD 13240�
Contents

� TOC \o "1-3" �1 Scope	� GOTOBUTTON _Toc329694417 � PAGEREF _Toc329694417 �4��

2 Normative References	� GOTOBUTTON _Toc329694418 � PAGEREF _Toc329694418 �5��

3 Definitions	� GOTOBUTTON _Toc329694419 � PAGEREF _Toc329694419 �5��

4 Relationship Between SGML, HyTime and SMSL	� GOTOBUTTON _Toc329694420 � PAGEREF _Toc329694420 �6��

4.1 HyTime Location Addressing Module	� GOTOBUTTON _Toc329694421 � PAGEREF _Toc329694421 �6��

4.2 HyTime Measurement Module	� GOTOBUTTON _Toc329694422 � PAGEREF _Toc329694422 �6��

4.3 SMSL Parameter Entity	� GOTOBUTTON _Toc329694423 � PAGEREF _Toc329694423 �6��

5 SMSL Application Model	� GOTOBUTTON _Toc329694424 � PAGEREF _Toc329694424 �6��

5.1 Object-Oriented Model	� GOTOBUTTON _Toc329694425 � PAGEREF _Toc329694425 �7��

5.1.1 Encapsulation	� GOTOBUTTON _Toc329694426 � PAGEREF _Toc329694426 �7��

5.1.2 Inheritance	� GOTOBUTTON _Toc329694427 � PAGEREF _Toc329694427 �7��

5.1.3 Composition	� GOTOBUTTON _Toc329694428 � PAGEREF _Toc329694428 �8��

5.1.4 Polymorphism	� GOTOBUTTON _Toc329694429 � PAGEREF _Toc329694429 �8��

5.1.5 Virtual Functions	� GOTOBUTTON _Toc329694430 � PAGEREF _Toc329694430 �8��

5.2 Message Passing Model	� GOTOBUTTON _Toc329694431 � PAGEREF _Toc329694431 �8��

5.3 Multimedia Authoring Paradigms	� GOTOBUTTON _Toc329694432 � PAGEREF _Toc329694432 �8��

5.4 User Interface Paradigm	� GOTOBUTTON _Toc329694433 � PAGEREF _Toc329694433 �8��

5.5 Authoring-time Environment	� GOTOBUTTON _Toc329694434 � PAGEREF _Toc329694434 �9��

5.6 Run-time Environment	� GOTOBUTTON _Toc329694435 � PAGEREF _Toc329694435 �9��

7 Classes	� GOTOBUTTON _Toc329694436 � PAGEREF _Toc329694436 �9��

7.1 The Class Architectural Form	� GOTOBUTTON _Toc329694437 � PAGEREF _Toc329694437 �10��

7.2 Memfunc Architectural Form	� GOTOBUTTON _Toc329694438 � PAGEREF _Toc329694438 �10��

7.3 Memdata Architectural Form	� GOTOBUTTON _Toc329694439 � PAGEREF _Toc329694439 �11��

7.4 Virtual Functions	� GOTOBUTTON _Toc329694440 � PAGEREF _Toc329694440 �11��

8 Collections	� GOTOBUTTON _Toc329694441 � PAGEREF _Toc329694441 �11��

8.1 The Collection Architectural Form	� GOTOBUTTON _Toc329694442 � PAGEREF _Toc329694442 �12��

9 Object Identifiers	� GOTOBUTTON _Toc329694443 � PAGEREF _Toc329694443 �12��

9.1 The objectid Architectural Form	� GOTOBUTTON _Toc329694444 � PAGEREF _Toc329694444 �12��

10 Messages	� GOTOBUTTON _Toc329694445 � PAGEREF _Toc329694445 �12��

10.1 The message Architectural Form	� GOTOBUTTON _Toc329694446 � PAGEREF _Toc329694446 �12��

10.2 The Message Routing Service	� GOTOBUTTON _Toc329694447 � PAGEREF _Toc329694447 �13��

12 SMSL Predefined Classes	� GOTOBUTTON _Toc329694448 � PAGEREF _Toc329694448 �13��

12.1 User Interface Classes	� GOTOBUTTON _Toc329694449 � PAGEREF _Toc329694449 �13��

13 SMSL Services	� GOTOBUTTON _Toc329694450 � PAGEREF _Toc329694450 �14��

13.1 ObjectConstruct	� GOTOBUTTON _Toc329694451 � PAGEREF _Toc329694451 �14��

Purpose	� GOTOBUTTON _Toc329694452 � PAGEREF _Toc329694452 �14��

Use	� GOTOBUTTON _Toc329694453 � PAGEREF _Toc329694453 �14��

Input	� GOTOBUTTON _Toc329694454 � PAGEREF _Toc329694454 �14��

Output	� GOTOBUTTON _Toc329694455 � PAGEREF _Toc329694455 �14��

13.2 ObjectDestroy	� GOTOBUTTON _Toc329694456 � PAGEREF _Toc329694456 �14��

Purpose	� GOTOBUTTON _Toc329694457 � PAGEREF _Toc329694457 �14��

Use	� GOTOBUTTON _Toc329694458 � PAGEREF _Toc329694458 �14��

Input	� GOTOBUTTON _Toc329694459 � PAGEREF _Toc329694459 �14��

Output	� GOTOBUTTON _Toc329694460 � PAGEREF _Toc329694460 �14��

13.3 SendMessage	� GOTOBUTTON _Toc329694461 � PAGEREF _Toc329694461 �14��

Purpose	� GOTOBUTTON _Toc329694462 � PAGEREF _Toc329694462 �14��

Use	� GOTOBUTTON _Toc329694463 � PAGEREF _Toc329694463 �14��

Input	� GOTOBUTTON _Toc329694464 � PAGEREF _Toc329694464 �15��

Output	� GOTOBUTTON _Toc329694465 � PAGEREF _Toc329694465 �15��

Annex A: IDL Notation for composing collections	� GOTOBUTTON _Toc329694466 � PAGEREF _Toc329694466 �15��

Annex B: Using C++ as a Scripting Language	� GOTOBUTTON _Toc329694467 � PAGEREF _Toc329694467 �15��

Annex C: The SMSL Meta-DTD	� GOTOBUTTON _Toc329694468 � PAGEREF _Toc329694468 �15��

��
0 Introduction

The traditional view of computer processing holds that a program and the data it processes are physically and logically separate. This appears to be a natural division as clearly, one should not have to modify a program to process new data. The problem with this theory is that most applications require the data (information) to be structured in a particular way before the program may process it. One program's definition of the data structures is often at odds with another. Data must be converted from one format to another, often with some associated loss of information. If the structure of data changes, programs must be modified.

The solution is to make data self-describing. A requisite step in this process is separating the data (content) from the structure of the data. ISO/IEC 8879: Standard Generalized Markup Language (SGML) and ISO/IEC 10744: Hypermedia/Time-based Structuring Language (HyTime) provide a mechanism for describing structure without affecting content. This description is known as a Document Type Definition (DTD). To apply object-oriented terminology to SGML, the DTD defines a class of documents and each document is an instance of a class.

While structure may be defined in a standardized manner, the semantics are application defined. This has led to much misunderstanding; how can a standard be useful if there are no semantics attached to it? The answer becomes clear when one realizes the benefits of self-describing information. In this scenario, the structure of the information drives the application; not the other way around. The imposition of semantics would subvert this model.

The emphasis of the Standard Hypermedia/Multimedia Scripting Language (SMSL) is on information, not programming. SMSL is not a programming language; rather, it standardized interface between programs (which may be written in any number of languages) and SGML documents.

1 Scope

This International Standard defines an environment for authoring and running hypermedia applications. An application is comprised of a program (an executable entity), data, and structure.

In SMSL, the program is represented as a series of scripts, which are written in a special language known as a Scripting Language.

A Scripting Language is a Programming Language, however, not all Programming Languages are Scripting Languages. More precisely, the set of Scripting Languages is a subset of the set of Programming Languages. The attributes which differentiate the Scripting Language subset are subtle, and often have more to do with perception than with any clear technical distinctions.

However, Scripting Languages often display one or more of the following characteristics:

language syntax and grammar resemble natural (spoken) languages

language is usable by people who are not professional programmers

language design stresses simplicity over functionality

language is "application focused", in that it is intended to address the needs of one class of application (language is not "general purpose")

The programs written in a Scripting Language are called "Scripts".

Scripting languages are most frequently applied to tasks where the required scripts are relatively simple, as well as somewhat repetitive; for example, application installation. The creation and modification of the script is often hidden from the user. For instance, a terminal emulator may support logon scripts, but the creation of the scripts might be managed by a menu-driven front end.

The Standard Multimedia/Hypermedia Scripting Language (SMSL), as its name implies, is designed for manipulating multimedia information. Any information that can be stored in a computer system and manipulated under software control qualifies as multimedia information.

In this standard, the data, scripts and structural information are organized into a single identifiable unit known as a document. The term document has the same meaning in this context as in SGML (ISO 8879) and HyTime (ISO/IEC 10744).

2 Normative References

ISO/IEC 10744: 1992 Information Processing — Text and office systems — Hypermedia/Time-based Structuring Language (HyTime)

ISO 8879:1986 Information Processing — Text and office systems — Standard Generalized Markup Language (SGML)

ISO DIS 13522-1 Information Technology — Coding of Multimedia and Hypermedia Information

ISO DIS 10179 Document Style Semantics and Specification Language (DSSSL)

3 Definitions

architectural form�
(use ISO/IEC 10744 definition)

�
�
attribute�
(use ISO 8879 definition)

�
�
authoring�
The process of creating multimedia applications.

�
�
authoring system�
The software and hardware associated with the creation and testing of scripted applications.

�
�
authoring time�
When a scripted application is created and tested.

�
�
class�
A set of objects that share a common structure and a common behavior.

�
�
collection�
A simple or compound data structure, constructed using the rules of SGML.

�
�
construct�
To create a run-time instance of an object, including the allocation of memory and other system resources required by the object.

�
�
destruct�
To destroy a run-time instance of an object, including the deallocation of all resources used by the object.

�
�
document�
A collection of information that is identified as a unit and that is intended for human perception; in SMSL, the document encapsulates data, structure and scripts.

�
�
element�
(use ISO 8879 definition)

�
�
entity�
(use ISO 8879 definition)

�
�
HyTime�
ISO/IEC 10744:1992 The Hypermedia/Time-based Structuring Language.

�
�
member data�
The data encapsulated within a class.

�
�
member function�
The methods, or functions, encapsulated within a class.

�
�
message�
Information communicated between objects.

�
�
message handler�
A method that handles a particular message type.

�
�
message map�
A data structure which maps message type to message handler for a class.

�
�
object�
An instance of a class. An object has state, behavior and identity.

�
�
object-oriented�
A design based upon the object module which encompasses the principles of abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and persistence.

�
�
run-time�
When a scripted application is run; usually by the application’s target user.

�
�
scripting language�
A programming language used with SMSL applications.

�
�
semaphore�
A shared resource used to implement mutual exclusion algorithms.

�
�
SGML�
ISO 8879:1986 The Standard Generalized Markup Language

�
�
Superclass�
The class from which another class is derived; the parent class.�
�
4 Relationship Between SGML, HyTime and SMSL

4.1 HyTime Location Addressing Module

This section is about the interface between SMSL and the HyTime hyperlink module.

Creating objects which correspond to anchors so that events automatically occur relative to a link.

4.2 HyTime Measurement Module

This section is about the interface between SMSL and the FCS module.

Define the sequencing of events in a “timeline-based” authoring paradigm

Define virtual coordinate spaces for displays

4.3 SMSL Parameter Entity

5 SMSL Application Model

SMSL is a standardized scripting environment.

An application is comprised of three components: data, structure, and methods.

An SMSL application is synonymous with a document, in that the document “contains” (or encapsulates) the three essential application components.

SMSL is intended to support "self-contained" applications, in which case, most of the processing associated with the application is embedded in the scripts.

Any number of languages may be used as a scripting language with SMSL.

Scripts interact with documents via SMSL services.

There are no media restriction in SMSL, the application can reside on any number and combination of media including CD-ROM, local disk and network server disk.

The application is intended to be as platform-independent as possible and SMSL provides the mechanisms for achieving almost universal portability. However, the application designer and/or SMSL implementor may choose not to support full portability for a variety of reasons (security, economics, etc.) and SMSL does not discourage them from doing so.

�

Figure 1 SMSL Application Architecture

5.1 Object-Oriented Model

SMSL supports all of the criteria for object-oriented languages, including: encapsulation, inheritance (including multiple inheritance), polymorphism, containment and virtual functions.

Scripting languages used with SMSL do not have to be object-oriented languages.

Using SMSL implies superimposing object-oriented design on an application, even if the languages(s) used are not object-oriented.

The interface between SGML documents and applications (provided by SMSL) is object-oriented.

5.1.1 Encapsulation

SMSL classes support encapsulation (also known as “data hiding”).

5.1.2 Inheritance

SMSL classes support the inheritance relationship (“Is-a”). No limits are placed upon the depth or breadth of the class hierarchy. SMSL supports multiple inheritance; that is, a class may be derived from any number of parent (base) classes. However, the inheritance graph must be acyclic; a class cannot be derived from itself, either directly or indirectly.

5.1.3 Composition

A class may contain other classes (the definition of the contained class may be as simple as a primitive data type). For example, a class corresponding to a dialog box can be built from other, more primitive classes (button, text edit box, list box, etc.). There is no limit on the depth or breadth of containment.

5.1.4 Polymorphism

Polymorphism is the ability to call a variety of functions using the same interface.

SMSL supports polymorphism by allowing multiple implementations of a method, providing that each instance either return a different data type, that the order and type of arguments vary, or some combination of the previous criteria.

5.1.5 Virtual Functions

SMSL supports virtual functions. Any class can over-ride the methods inherited from classes from which it is derived.

An attribute on the message architectural form (clause 10.1) provides the mechanism for distinguishing between the virtual function in a base class, and one in a derived class; e.g if a method in a derived class wishes to explicitly call a function in its base class.

5.2 Message Passing Model

Many modern software systems are based on a processing model where objects receive messages (or commands) which control their processing.

Each message type handled by an object corresponds to one member function of the class from which the object was instantiated.

The SMSL run-time environment serves as a kernel through which all application messages are passed. The kernel manages the ordered message queue.

Using the SendMessage service, an SMSL application can request that a message be sent to an object. These messages are known as synchronous events.

The kernel can, in some instances (such as mouse button events) send messages to an object that were not specifically requested to be sent by the application. These messages are known as asynchronous events.

The application or the kernel can request messages be sent to an object either at a specific time, or at a time relative to another event. These messages are known as isochronous events.

A message map establishes the relationship between a message and a message identifier (messageID).

5.3 Multimedia Authoring Paradigms

SMSL does not constrain the authoring paradigms used by multimedia applications.

5.4 User Interface Paradigm

Due to the fact that SMSL is intended for use in multimedia applications, SMSL assumes, but does not require, a graphical user interface. Graphical user interfaces share a number of common characteristics, and SMSL exploits these characteristics through “built-in” class libraries.

The SMSL services rely on the underlying operating system to support the display of windows and dialog boxes, display of graphics, audio and video playback, and other system dependent services required by the application. The interfaces between the SMSL run-time environment and the underlying operating system are not prescribed by SMSL.

5.5 Authoring-time Environment

The authoring-time environment provides the services required to author an SMSL application.

5.6 Run-time Environment

The run-time environment provides the services an SMSL application needs to run in its target (possibly “end user”) environment.

6 Event Sequencing

SMSL provides a mechanism for producing a sequence of messages that are sent to objects. This is a simple method of building an application from a set of objects. It is assumed that most of the processing will be performed by the methods associated with the objects, thus only the most rudimentary operations are supported using event sequencing. Still, most interactive multimedia applications could be implemented using this mechanism. Event sequencing is based on HyTime Finite Coordinate Spaces (FCS) and a variation of the HyLex and HyQ notations (see Annex A in ISO/IEC 10744 for further information.)

A common application of the Event Sequencing facility would be to have compiled scripts which implement the methods associated with a class of objects, and to interpret the event sequence at run time to implement the actual application.

7 Classes

A class is a set of objects that share a common structure and behavior.

Classes are declared in SMSL documents using the class architectural form. New classes can be derived from existing classes which are either implied by the element hierarchy of an SGML/HyTime document, or are defined as part of this standard.

One of the useful characteristics of SMSL is that new class hierarchies can be superimposed onto existing documents.

The content of a class is arbitrary, however two additional architectural forms are available which correspond to the object-oriented programming paradigm: the memfunc architectural form which is used to declare the member functions of a class (also known as methods), and the memdata architectural form which is used to declare data members.

The organization and use of the class by the scripting languages is not specified by SMSL. The class declaration may be used to derive any combination of authoring and run-time information that the implementor chooses. For example, if C or C++ is used as a scripting language, the class declarations may be used to produce header files that can be compiled along with the scripts.

SMSL provides limited support for dynamic classes; that is, classes which can be declared and/or modified at run-time. Since SMSL classes are declared within the context of an SGML document (and since parsing the document may be part of the run-time processing required by the application (the basic mechanism for dynamic class declaration is in place. However, the ability to support dynamic classing is also a function of the scripting language and implementation, and SMSL does not require such support.

7.1 The Class Architectural Form

The class architectural form is used when declaring a new class. The content of a class element is member function (script) elements, and data member elements. If additional content is required then a new element type, with the appropriate content model, should be derived from class.

The super attribute is a list of superclass names from which the new class is derived (i.e. a list of classes from which the new class will inherit data and function members). The order the superclasses are listed is not of significance to SMSL, although it may be significant to the scripting language implementation. The elements referenced by the super attribute must also specify the class architectural form.

A class is of ctype abstract if it cannot be directly instantiated; i.e. only other classes may be derived from this class. A class is of ctype normal (the default) if an instance of the class can be directly constructed.

In some languages, other attributes may be appropriate. For example, in C++, keywords such as virtual, public, private or protected are commonly used in class declarations. If the scripting language used by an application supports (or requires) additional keywords, they can be declared as additional attribute types of the derived element type.

<!element	class		- - (memfunc|memdata|class)+ >

<!attlist	class

		SMSL	NAME	#FIXED	“class”

		id		ID		#REQUIRED

		super		IDREFS	--rettype(class)-- #IMPLIED

						-- default: no inherited class --

		ctype		(normal, abstract) normal

>

7.2 Memfunc Architectural Form

The memfunc architectural form declares a member function of a class. The content of a memfunc element (or an element type derived from script) is a script in a declared notation.

The funcname attribute names the function. In some languages, there may be additional constraints placed upon the name. The only restrictions SMSL places on the function name is that it be a generic identifier that is unique to the class in which the function is declared.

The functype attribute names the notation that the script is written in. The notation must be declared according to the rules of clause 11.

The message attribute, if provided, must have as its value an IDREF to a message element. The message attribute indicates that the function acts as a handler when messages of that type are sent to the object. This is the primary mechanism for creating “virtual functions” in SMSL. Refer to clause 7.4 for further information about virtual functions.

<!element	memfunc	 - O (#PCDATA) --lextype(data-type-notation)-->

<!attlist	memfunc

		SMSL	NAME	#FIXED	“memfunc”

		funcname	NAME		#REQUIRED

		functype	NOTATION	#REQUIRED

		collin	IDREF		--rettype(collection)-- #IMPLIED

						-- default: no input collection

		collout	IDREF		--rettype(collection)-- #IMPLIED

						-- default: no output collection

		message	IDREF		--rettype(class)-- #IMPLIED

						-- default: if none, private func.--

>

In addition to the other attributes listed above, an implementation may add its own attribute types to a class derived from memfunc. For example, when C++ is used as a scripting language, it may be useful to create an access attribute that has as its possible values “protected”, “public” or “private”.

7.3 Memdata Architectural Form

The memdata architectural form declares a data member of a class. Each data member is a collection even if it is comprised of a single basic data type.

The collection may be declared externally to the class, in which case the ID of the collection is supplied when the data member is declared, or the collection may be declared in place, in which case the content of the memdata element declares the collection using the rules described in clause 8.1.

The memname attribute specifies the name of the data member. The memname is a generic identifier that must be unique to the class in which the memdata element is defined.

The collname attribute specifies the ID of an collection. If the collname attribute is used, the content of the memdata element must be empty.

NOTE:	Assume HyTime “context” attribute is used.

<!element	memdata - O (collection) >

<!attlist	memdata

		SMSL	NAME	#FIXED		memdata

		memname	NAME	#REQUIRED	-- data member name,

							 must be unique to

							 this class --

		collname	IDREF	#IMPLIED	-- collection name --

>

7.4 Virtual Functions

Virtual functions are implemented in SMSL by overloading message handlers. This is accomplished by declaring a method in a derived class that handles messages with the same message ID as a method in the parent class(es). Unlike certain object-oriented languages (for example, C++), the name of the method is not significant.

To explicitly call a method in a parent class, for which an overloaded function exists, specify the parent’s class name as an argument to the message passing service.

The implementation is responsible for providing default message handlers for each message type in the built-in classes that the implementation supports.

7.5 Polymorphism

Polymorphism in SMSL is achieved by assigning each implementation for a given method a unique collection-type attribute (refer to clause 8).

8 Collections

Collections are a method of describing and constructing data structures. The purpose of collections are to avoid platform and/or language-dependent data types. Collections may be expressed in any number of notations. IDL, the SMSL reference notation, is described in Annex A.

SMSL does not prescribe the run-time (binary) format of collections since different behavior is required by different environments. Ultimately, it is a compatibility issue for SMSL implementors. For distributed environments, a platform-independent binary coding mechanism, such as the Basic Encoding Rules (BER) of ISO 8825:1990 or ONC/RPC, may be desirable. Thus, data could be passed between objects which exist not only on different systems, but systems with different operating systems and/or processors, with little consideration of data format compatibility issues.

8.1 The Collection Architectural Form

The collection architectural form is used to construct collections compatible with SMSL applications. The content model for the collection architectural form is general. SMSL applications may derive new element types based on the collection architectural form, which may further constrain their content model.

SMSL provides predefined notation types for [IDL and...], and architectural forms which properly constrain the content model for the notation in use.

<!ELEMENT	collection - - (%SMSL;)*>

<!ATTLIST	collection

		SMSL	NAME		“collection”

		id		ID		#REQUIRED

		notation	NOTATION	#REQUIRED

>

9 Object Identifiers

Object identifiers uniquely identify an object. The object identifier is a run-time entity; its purpose is to address the object only during the “life” of the object.

The format of the object identifier is left as an implementation decision. In some implementations, the value of the object identifier might be a handle. In others, the value of the object identifier might be a pointer to the object’s location in memory, or even a network address.

It is possible for object identifiers to be reused if the implementation so chooses, providing that at any point in time, an object identifier maps to one and only one object.

The SMSL run-time environment is required to maintain a database of object identifiers and object locations.

An object identifier results from invoking the SMSL ObjectConstruct Service (clause 13.1).

9.1 The objectid Architectural Form

Used to declare an object identifier usable by the object instantiation services.

<!ELEMENT	objectid - - (#PCDATA) >

<!ATTLIST	objectid

		SMSL	NAME	#FIXED	“objectid”

		id		ID		#REQUIRED

>

10 Messages

Messages are passed between objects in SMSL applications under control of the message routing service. There are two types of messages: SMSL and Application. SMSL messages are defined by the standard. Application messages are defined by the application.

10.1 The message Architectural Form

The message architectural form is used to define message types in SMSL applications. Each message type is assigned a unique generic ID. The content of a message element, or an element type derived from message, is a string of letters and/or numbers that an SMSL implementation uses to identify the message. It is assumed that these values will be unique to each implementation of SMSL.

<!ELEMENT	message - - (#PCDATA) >

<!ATTLIST	message

		SMSL	NAME	#FIXED	“message”

		id		ID		#REQUIRED

>

The unique identifier specified when a message element is declared is used (in an IDREF) when member functions for a class are declared (refer to clause 7.2). This provides a mapping between the message type and the functions which handle that message for a particular class.

10.2 The Message Routing Service

The message routing service is used to pass messages between objects in SMSL applications. The arguments to the message routing service are the object ID of the object to receive the message, the message ID of the message to be sent, a collection ID for the arguments passed to the message handler function, and a second collection ID that will contain the function results when the message handler returns.

NOTE:	The mechanism for presenting the arguments to the message routing service is left as an implementation detail.

11 Declaring Script Notations

SMSL is designed to work with any number of scripting languages. A notation declaration (refer to ISO/IEC 8879:1986) is required for each language in use. The following example notation declaration would allow the LISP dialect known as scheme to be used as a scripting language in SMSL applications.

<!notation	scheme	PUBLIC

		“+//ISBN 0-xxxx-xxxx-1::Programming Language//NOTATION

		IEEE Scheme Specification//EN”>

12 SMSL Predefined Classes

The classes described in this clause are all catalogued in the SMSL meta-DTD.

The messages described in the clause are also catalogued in the SMSL meta-DTD.

The data members are all described as collections using the SMSL notation for IDL.

The methods described for each supported class must be implemented as part of the SMSL services.

Classes are “modularized” (as in HyTime) so that an implementation has some flexibility as to which classes it supports and which it does not.

12.1 User Interface Classes

User interaction will take place through a variety of user interface objects, such as dialog boxes, movie players, sound players, text editors, windows, and graphics interpreters.

13 SMSL Services

The SMSL services use an object (message passing) architecture.

13.1 ObjectConstruct

Purpose

To create an instance of an object at run time.

Use

Runtime

Input

Location of root of element tree signifying the class to be instantiated.

Output

An object ID for the created class.

13.2 ObjectDestroy

Purpose

To destroy an instance of a run-time object.

Use

Runtime

Input

Object ID: The object to be destroyed.

Depth: The depth to which contained objects are destroyed.

Output

13.3 SendMessage

Purpose

To send a message to an object.

Use

Runtime

Input

Output

Annex A: IDL Notation for composing collections

(NORMATIVE)

Annex B: Using C++ as a Scripting Language

(NORMATIVE)

Annex C: The SMSL Meta-DTD

(NORMATIVE)

		ISO/IEC CD 13240

� PAGE �15�

