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ABS TRACT 

The parameterization 

for attenuation cross-sections is discussed, with attention 

to the following details: prescriptions for "exact" calcula- 

tion of profile parameters, in which the effects of "distor- 

tions" are separated from the effects of multiple "scatterings": 

the validity of assuming independent (non-interfering) reso- 

nances: the specific case of autoionizing lines: connections 

with alternative parameterizations; the prohibition on negative 

cross-sections assured by unitarity: behavior at threshold: and 

the applicability of this parameterization to emission lines. 

n 
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I. INTRODUCTION 

Observations of photon (or neutron) attenuation typically 

disclose cross-sections with the energy dependence 

K 

Applied to photon projectiles, incident with energy w on an 

atom in state I, this attenuation cross-section reads 

(+rK) B K + ( W  - w IK) AK . 
( W  - w l 2  + (trKla IK 

a(1,u.l) = C ( w )  + 

K 

(Here, and throughout this paper, I use atomic units, 

e = h = m = 1; c = l/a ZE 137). The rapid variation of ~(I.,u)) 

with photon energy near the resonance energies u) = E - E 

traces the profile of an absorption line. 

IK K I 

Nuclear physicists have, for many years, used such param- 

eterizations, although the validity of formula (1.1) is by no 

means restricted to nuclear collisions. Until the recent revival 

of interest in ultraviolet spectroscopy, atomic spectroscopists 

had little need for such elaborate parameterization: for non- 

autoionizing lines, the parameter A vanishes, B is equal to 

27ra times the oscillator strength, and the observed width TK 

K K 
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reflects conditions in the absorbing medium rather than the 

natural radiative width. For autoionizing lines, the profile 

parameters A B and E each have empirical and physical 

utility2, just as do the more familiar parameters of quantum 

defect and oscillator strength. 

K’ K’ ‘K’ K 

Equation (1.1) is only one of several mathematically equiva- 

lent representations (parameterizations) of Q(E). Other expres- 

sions have also been suggested. Burke3, Smith4, and Peterkop 

and Veldre6 have recently reviewed the theories for explaining 

resonance structure in collision cross-sections for electron and 

photon scattering; Burke3 and Smith4 summarize the presently 

available values for profile parameters. To date, there has 

been little effort to determine, either theoretically or exper- 

imentally, profile parameters other than resonance width and 

resonance position. I hope the present article will stimulate 

experimental tests of formula (1.2) for the description of 

complicated photoionization cross-sections and will encourage 

computation of profile parameters. 

Before we judge the usefulness of formula (1.1) for fitting 

and predicting cross-sections, several points deserve attention. 

Are the resonances really independent, or is there interference 

between resonances? How does formula (1.1) compare with other 

commonly used parameterizations? Is formula (1.1) consistent 
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with the unitary property of the scattering matrix or will it 

give erroneous negative cross-sections? Do autoionizing lines 

seen in emission have the same profiles as absorption lines? 

The present paper addresses these questions, and provides a 

more refined prescription for the computation of profile pa- 

rameters than the formulas given in reference l. 
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11. BASIC DEFINITIONS' 

For a system comprising projectile and target, whose 

composite quantum numbers are a and whose combined energy is E, 

the attenuation cross-section o(a, E) is 

w a  

where F denotes the projectile flux corresponding to the choice 

of normalization for the incident wave Jr , T = - <$cITIJra) is 

the transition amplitude linking initial state JI with final 

state Jr and 5 denotes a generalized sum over final states (a 
sum over discrete labels and an integration over continuous 

a 

a ca 

a 

C' 
C 

labels). Making use of the unitary property of the scattering 

matrix S = 6 
ba ba - 21-1 &(Ea - Eb) Tba, one can write (2.1) in 

the alternative form 

Im Taa . 2 O(a,E) = - - 
Fa 

The optical theorem, Eq. ( 2 . 2 ) ,  expresses mathematically 

what experimenters long ago recognized: in studying neutral 

projectiles it is simpler to measure beam attenuation in the 

forward direction than to collect the scattered flux from all 
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directions. 

It should be clear that a(a,E) has the form Q(E) of 

Eq. (1.1) if T can be written aa 

+ D - iC. K F aa a 
K 

( 2 . 3 )  

Thus if the scattering amplitude can be expressed as the sum 

of independent resonance contributions, attenuation cross-sections 

will display the energy dependence Q(E) of equation (l.l), with 

no interference between resonances. 
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111. THE D E F I N I T I O N  OF INDEPENDENT 
OVERLAPPING RESONANCES 

Methods f o r  b reak ing  t h e  o p e r a t o r  

1 
T - V + V -  V E V + VGV 

E+-H 

Q’ 
i n t o  r e s o n a n t  ( T  ) and non-resonant ( T  ) p a r t s ,  T = T + T 

have been d i s c u s s e d  by Fonda and Newton7, Feshbach*, and 

Zh ivop i s t sevg  amongst o t h e r s .  The  resonance  s t r u c t u r e  can  be 

brought  o u t  most r e a d i l y  by t h e  u s e  of p r o j e c t i o n  o p e r a t o r s ,  

Q P P 

l = P + Q  PP  = P QQ = Q PQ = QP = 0 

( 3 . 2 )  

s u c h  t h a t  Q p r o j e c t s  resonance s t a t e s ,  and P p r o j e c t s  p o s s i b l e  

i n i t i a l  and f i n a l  s t a t e s ” .  The i n t r o d u c t i o n  of an o p e r a t o r 1  

t = V + VP [E+ - H o  - WP1-l PV 

t h e n  p e r m i t s  one t o  w r i t e  

T = V + V [E’ - H o  - VI-’ V 

= t + t Q  [E - H o  - QtQ1-l Qt 

( 3 . 3 )  

(3.4) 
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and so t o  i d e n t i f y  t h e  non-resonant p a r t  ( e las t ic  s c a t t e r i n g  

and d i r e c t  p r o c e s s e s )  

T = t  
P 

and t h e  r e s o n a n t  p a r t  

T = tQ [E - Ho - QtQI'l Qt 
Q 

( 3 . 5 )  

( 3 . 6 )  

W e  can now i n t r o d u c e ' ,  a t  l e a s t  fo rma l ly ,  a se t  of resonance  

s t a t e s  4 
K' 

w h i c h  s a t i s f y  t h e  equat ion  

[Ho + QtQ - EK1 djK = 0 

w i t h  complex e i g e n v a l u e  

( 3 . 8 )  

(3.9) 



-8- 

S i n c e  t i s  n o t  Hermi t i an ,  t h e  f a m i l i a r  o r t h o g o n a l i t y  theorem 

f o r  e i g e n s t a t e s  having d i f f e r e n t  e i g e n v a l u e s  a p p l i e s  t o  

<$:I qL> 
@' 

r a t h e r  t h a n  t o  t h e  u s u a l  (3,. I qL) , w h e r e  

is  t h e  a d j o i n t  of % . By u s i n g  t h e  f a c t  t h a t  

Q [ H " + t ] Q  = Q[H"+@VP E - 1 PHP PV - i i r  VPb(E-II)PV]Q 

Q[H" + VG V - i 7 r  V I V ] Q  (3 .10)  P P 

(8 d e n o t e s  p r i n c i p a l  va lue )  where H "  and Q W Q  a re  r e a l ,  one c a n  

s h o w  t h a t 1 "  @:= G K .  T h e  b i -o r thogona l  expans ion  i s  t h e r e f o r e  
* 

(3 .11)  

L, 

K 

J u s t  as w i t h  conven t iona l  c a l c u l a t i o n s  o f  a tomic  s t r u c t u r e ,  s t a t e s  

of d i f f e r e n t  energy  a r e  o r thogona l ,  b u t  d e g e n e r a t e  s t a t e s  need 

n o t  be. Equat ion  (3.11)  r e q u i r e s  t h a t  w e  de t e rmine  o u r  degener -  

a t e  s ta tes  t o  d i a c p n a l i z e  t h e  i n t e r a c t i o n  QtQ w i t h i n  a mani fo ld  

of d e g e n e r a t e  s ta tes .  T h i s  r equ i r emen t  can  be m e t  w i t h  conven- 

t i o n a l  approaches employing angular-momentum c o u p l i n g  and/or 

t h e  d i a g o n a l i z a t i o n  o f  compara t ive ly  s m a l l  matrices.  The  reso- 

nance par t  of t h e  s c a t t e r i n g  ampl i tude  can  now be w r i t t e n  

(3 .12)  

K 
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We thereby obtain, as desired, -.&e resonance scattering amp1 

tude as a sum over independent (though not necessarily well- 

separated) resonance terms. 

To determine the resonance parameters, it proves convenient 

to write 

n t = V  ) (GOV - irg V) 
P P 

L 
n = o  

where 

P 6 ( E  - H o ) P  
9P 

Go P E @[P E - H o  

1 
G o  @[Q E - HO Q 

(3.13) 

(3.14) 

We can then write a perturbation-theory solution of Eq. ( 3 . 8 )  

as 

(G'V + GoV - i-rrg V) (3.15) Q P P 
$K = [l + G o V  Q 

n = o  

is a combination of degenerate 
cpK where, as in reference 1, 

eigenatates of Ho chosen to diagonalize V within a degenerate 
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manifold. We may also write Eq. (3.15) as 

(3.16) 

K 
The preceding prescription yields an unnormalized state 4 
which satisfies the condition 

since { c p  Icp } = 1. 
K K  

Similarly, the complex value & can be written 
K 

(3.17) 

( 3 . 1 8 )  

The preceding expressions, extensions of previous results13, 

K'  
do not separate explicitly the real and imaginary parts of 

For that purpose, it is useful to introduce (real) states '4' 
K' 

(GOV + GoV)n qK 2 A'pK. 
Y =  K i Q  P (3.19) 

L 
n = o  

This expression for Y taken with the requirement that degen- K' 

erate Y have diagonal elements of V, 
K 

if E = E and K # L, 
K L 

(3.20) 
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i s  a d e s c r i p t i o n  of t h e  s t a t e s  o b t a i n e d  i n  c o n v e n t i o n a l  ca l cu -  

l a t i o n s  of  bound s t a t e s :  a l l  i n t e g r a t i o n s  over  continuum s ta tes  

require  pr inc ipa l  v a l u e s .  These Y c o n t a i n  mix tu res  of conf ig-  

u r a t i o n s ,  i n c l u d i n g  c o n t i n u u m  f u n c t i o n s ,  w h o s e  energy  d i f f e r s  

from E Thus u n l i k e  t h e  

s i v e l y  t o  t h e  Q set: 

K 

s ta tes  t h e y  do n o t  be long  exc lu-  
K '  K 

QYK + PYK = b u t  PTK # 0. K 

BY r e a r r a n g i n g  sums,  o n e  can t h e n  o b t a i n  t h e  formulas  

rK = 2~ (YK/vgpvpK) + 0(v4)  

(3.21)  

(3 .22a)  

(3 .23a)  

(3.24a) 

I<'Klvl la) l a  - T 2  I < PKIVgp vAI$a)12 + 0 ( v 6 ) ,  

(3.25a)  
1 B = - {  2 

a K F  

n 
where O ( V  ) i n d i c a t e s  t h a t  f u r t h e r  terms invo lve  n p roduc t s  of 

V. s u c h  c o r r e c t i o n s  are of t h e  form 
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and t h u s  t h e y  d e s c r i b e  t h e  e f f e c t s  of m u l t i p l e  s c a t t e r i n g s  

between equal-energy s t a t e s .  I n  c o n t r a s t ,  t h e  o p e r a t o r s  

VG V, VGOV, and A d e s c r i b e  " d i s t o r t i o n s "  w h i c h  mix configura-  

t i o n s  of  d i f f e r e n t  energy.  Formulas (3 .22)  - (3 .25)  t h e r e f o r e  

give a p r e s c r i p t i o n  f o r  p r o f i l e  parameters which separates t h e  

effects of  d i s t o r t i o n  and of m u l t i p l e  s c a t t e r i n g .  

P Q 

I n  o b t a i n i n g  t h e  preceding  formulas  I have n e g l e c t e d  correc- 

K: t i o n s  t o  t h e  no rma l i za t ion  o f  4 

2 1. ( 3 . 2 6 )  

H e r e  e i s  t h e  e igenva lue  of an  unper turbed  s t a t e :  H o q K  = eKqK. 

A s  w e  s h a l l  n o t e  i n  s e c t i o n  V I ,  t h i s  approximation is  c o n s i s t e n t  

w i t h  u n i t a r i t y  r e s t r i c t i o n s .  

I t  is  a l s o  u s e f u l  t o  i n t r o d u c e  ( real)  d i s t o r t e d  "continuumii 

, t h e  c o u n t e r p a r t s  of t h e  "bound" s t a t e s  Y - K '  s t a t e s  Ya 

V + G o  V)"  fa  A$,. P Y =  a 
(3 .27)  

L 
n=o 
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The  Ya s t a t e s  a r e  t h e  Y1 s ta tes  of  Lippmann and Schwinger14; 

t h e  wavefunct ions are  s t a n d i n g  waves. L ike  t h e  Y states ,  t h e  

Y s t a t e s  do n o t  be long  e x c l u s i v e l y  t o  t h e  P or t h e  Q class: 

K 

a 

PY + Q Y  = Y 
a a a bu t  QYa # 0 .  (3 .28)  

With t h e  i n t r o d u c t i o n  of t h e s e  d i s t o r t e d  continuum s ta tes ,  w e  

can  w r i t e  t h e  p r o f i l e  parameters  a s  

= ( r p K I ~ O  + v I v K ) +  0(v3)  

J 
C 

, 

+ O W ) .  

(3.22b) 

(3 .23b)  

+ o(v5) 

(3.24b) 

(3.25b) 

T h e s e  a r e  t h e  r e q u i r e d  g e n e r a l i z a t i o n s  o f  e x p r e s s i o n s  i n  refer- 

ence  1. 

e x c i t e d  s ta tes  Y 

Mat r ix  e lements  h e r e  i nvo lve  t h e  u s e  of " e x a c t ,  d i s t o r t e d "  

i n c o r p o r a t i n g  c o n f i g u r a t i o n  mixing i n  t h e  
K'  
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usual sense, and "zero-order, unperturbed" continuum states 

J', 
wavefunctions is the counterpart of the familiar result14 

. This asymmetry in the exactness of dextral and sinistral 

(3.29) 

The background may be expressed in a similar way, if we 

introduce the expansion 

n 
t = V  y ( G  V - iFirg V) 

P P 
L 

n =o 

(-i-rrg Vr\ ) n 
P P  

where 

} (G''V)n. 
P A, = 

L 
n =0  

We then obtain 

(3.30) 

(3.31) 

(3.32 a) 
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The mat r ix  e lement  h e r e  r e q u i r e s  e i t h e r  a d i s t o r t e d  i n i t i a l  

continuum f u n c t i o n ,  Y =A,$,, or d i s t o r t e d  f i n a l  f u n c t i o n s  P 
a 

Thus w e  c a n  w r i t e  Yp = A p g c ,  b u t  n o t  b o t h .  
C 

( 3 . 3 2 b )  

I n  summary, w e  see that t he  a t t e n u a t i o n  c r o s s - s e c t i o n  may be 

w r i t t e n  

bK + €1; aK 
+ 1 

o ( a )  = c + 

K 

where  

( 3 . 3 3 )  

( 3 . 3 3 )  
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For t h e  c a s e  of an i s o l a t e d  resonance,  o r  of degene ra t e  reso- 

nances ,  t h e r e  i s  no d i s t i n c t i o n  between \y and \y and w e  can  

w r i t e  

P 
a a’  

b + E  a 
o ( a )  = c + K K K  

K ( c , )  2 t 1 

w h e r e  

( 3 . 3 5 )  

( 3 . 3 6 )  
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IV. PHOTON ATTENUATION PROFILES 

The preceding formulas apply quite generally to attenua- 

tion. For the specific application to photon attenuation, 

discussed in reference 1, we must distinguish two contributions 

to the interaction V = H - Ho: the inter-electron (Coulomb, 

spin-orbit, etc.) interaction, which we shall call v, and the 

interaction with the radiation field, manifested through the 

atomic dipole-moment operator D. The parameters of Eq.(1.2) 

are then' 

- rad auto 
'K - rK + rK 

P 

crd 
K 

(4.1) 

J 
C 

A 

\ 
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The use of reduced matrix elements <TI 11 D 1 1  PiK) and intrinsic 

weights cm‘ = 2J + 1 eliminates all reference to magnetic quantum 
I I 

numbers, because the Coulomb interaction is independent of these 

numbers. 

A s  pointed out previously’, these quantities depend explic- 

itly on the photon energy 3. 

files, one may replace d by the resonance frequency w = E - E 

without introducing appreciable error. However, when one exam- 

ines the cross-section very far from resonance, as is done in 

In application to resonance pro- 

KI K I 

deriving the Rayleigh scattering formula, it is essential to 

recognize that w rather than ui appears in the formulas. 
IK 

A l l  the preceding formulas may, of course, be written in 

terms of a bound-bound oscillator strength, 

*I 

and a bound-free (photoionization) oscillator strength, 

( 4 . 7 )  

as was done previously’, or they could be written in terms of 

radiative transition probabilities. 
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(4.9) 

We can then see that B is 2 ~ r a  times the bound-bound oscillator 

strength less an amount attributable to interference with the 

photoionization background. 

K 

Formulas (4.3) - (4.6) show that the line profile of an 

autoionizing line depends on the amplitude for bound-bound tran- 

sition, 

the amplitude for autoionization, 

and the amplitude for bound-free photoionization, 

The present arrangement of these three quantities into the four 

quantities A 

expression for 0 ;  one could as well use matrix elements directly 

as the basic quantities. 

C ,  and r is done to simplify the algebraic 
K' BK' K 
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V . ALTERNATIVE EXPRESS I O N S  

It is easy to see that expression ( 3 . 3 3 )  may be written 

in the form 

where 

K 

J 
C 

( 5 . 2 )  
2 

( 5 . 3 )  

c K 

Expression (5.1) is a possible generalization of the isolated- 

resonance formula suggested by Fano" : 

However, 0 '  is not physically meaningful, because it contains b 

the infinite quantity [The background C of expression 

( 3 . 3 3 )  contains no such divergent sum.] 
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An alternative generalization may be obtained by recasting 

the resonance portion T of the T operator, 
Q 

1 
E - Ho - QtQ . QtP T = PtQ Q ( 5 . 6 )  

into a slightly different form. 

suggests a simple means for carrying o u t  this rearrangement. 

We first write t as 

A recent paper by Feshbach12 

where 

1 
P E - PHP ’ G 8 I P 6 ( E  - H)P. 

P 

This permits us to write 

( 5  - 9) T = j$-) PVQ [E - HQ + i-rr QV I Val-’ QVP ( + I  
Q P 

( + I  . QVP l -  ? 1  
- I E-HQ 1 

_I 
= sl_’-’PVQ c1 

1 + i T r 1  QVP i I VQ 
L E-HQ P 
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where 

HQ 3 Ho + QVQ + QVG VQ. 
P 

A simple rearrangement, using the identity 

1 
A = A  

1 + B A  ’ 1 
1 + AB 

then gives 

P 

(5.10) 

(5.11) 

We can now introduce a reaction operator12 

K = PVQ [E - HQ]-’ QVP 

E PVQ [ E  - Ho - QVQ - QVGpVQ]-l QVP 

and so write the T operator as 
Q 

( 5 . 1 2 )  

( 5 . 1 3 )  

(5.14) 
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To proceed, I shall assume that either PVP is diagonal in the 

continuum of Y , or that only a single continuum occurs. This 
a 

permits us to write n ( -1 K as p! (-1 I K. We need next to intro- P 
duce eigenstates of I K: 

P 

We can then write the resonance amplitudes as 

(5.15) 

& 
r, 

Let us now define E by 

Here I have made use of the fact that the Y states of the pre- K 
ceding section are eigenstates of H Q : 

[H 0 + V + V G V - E K ]  Y K = O .  
P (5.18) 
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P N e x t  n o t e  t h a t ,  because  Y = (1 + GpV) fa ,  we can w r i t e  a 

+; I rc ) <Tc I y"a .;> 

= ~ , J I  11 + V G ~  - i - r r  VI ( 7 -  ) 
a P c  

x r 11 + G ~ V  - ir I v l ~ i  > 
C P a  

= I < Y a I i j c ) '  P -  l a  - T a l  < Y a l V I p l l ,  P l 2  

-2Il-i < YapIVIPl?', )) \ . ' I C I Y a ' , '  - 

Thus we o b t a i n  t h e  resonant  par t  of t h e  cross-section as 

(5.19) 

. (Y P I V I  17- ') < , y - l Y a  P ,  ) . 
a P c  a F 

(5.20) 

I n  keep ing  w i t h  o u r  assumption t h a t  o n l y  a s i n g l e  continuum con- 

t r i bu te s ,  we w r i t e  t h e  cross-section as 

(5.21) 
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We thereby obtain formula ( 5 . 5 ) '  with 

(5 .23)  

(5 .24)  

and E given by Eq. ( 5 . 1 8 ) .  These expressions have the form of 

those derived by Comes and Sa1zerl7, who fit observations of 

Krypton by Huffmann et. all' to formulas (5 .5)  and (5 .18) .  

The preceding discussion is intended to indicate possible 

connections between the many-resonance formula (3 .3 )  and previous 

formulas used in discussions of autoionization, not as a pre- 

scription for computing o , o and q. It seems likely that the 

more explicit energy structure evidenced in formula ( 3 . 3 )  and 
a b' 

the simple physical and mathematical significance of those pro- 

file parameters will make that formula more useful than (5 .1)  or 

( 5 . 5 )  for overlapping resonances. Ultimately, of course, the 

validity of any parameterization must rest on empirical evidence. 
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VI. UNITARITY 

In accord with observations, formulas ( 3 . 2 4 )  - ( 3 . 2 5 )  give 

and A that may be positive, negative, or zero. The attenua- 
*K K 

tion cross-section of Eq. (2.1) cannot, of course, become nega- 

tive. If our approxiinat ion to the scattering amplitude T yields aa 

a unitary scattering matrix, then Eq. ( 2 . 2 )  will a l so  give non- 

negative cross-sections. To see that the preceding formulas are 

consistent with this restriction, let us write 

To get a negative B we assume that If3 1 ”  < 1. The attenuation 
K 

cross-section can then be written as 
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P 
Now i f  w e  d e f i n e  " v e c t o r s " 2 ,  a and K w having t h e  "components" 

t h e n  w e  can  w r i t e  

The c r o s s - s e c t i o n  t h e n  t akes  t h e  form 

The most extreme v a l u e  occurs  i f  a l l  resonances  occur  a t  t h e  

same energy  E 

e r a t e  bound s t a t e s  cor responding  t o  energy E and t h e r e  is  no 

d i s t i n c t i o n  between Y = /\p $a and Y = ,q qa .  Under these condi-  

The  Q c o l l e c t i o n  t h e n  c o n s i s t s  of t h o s e  degen- 
K '  

K' 
P 
a a 



-28- 

t i o n s  t h e  minimum, w h i c h  occurs  when @ = 0, i s  

The summation cannot  exceed IziI”, because  it i s  t h e  sum of t h e  

l l d i r ec t ion  c o s i n e s i i  i n  a s e t  of independent  “ d i r e c t i o n s  . I i  That  

is ,  t h e  summation goes over  a s e t  ( t h e  e n t i r e  Q c o l l e c t i o n )  of 

independent  (o r thogona l )  s ta tes .  Thus  t h e  c r o s s - s e c t i o n  cannot  

become n e g a t i v e .  The  minimum v a l u e  ( z e r o )  occurs,  a s  Fano 

noted’“,  when t h e  resonance s t a t e s  i n t e r a c t  w i t h  o n l y  a s i n g l e  

continuum, because t h e n  

The  photon continuum is  independent of t h e  e l e c t r o n  continuum, 

s o  t h a t  (6 .8 )  ho lds  a l so  when a s i n g l e  photon continuum and a 

s i n g l e  e l e c t r o n  continuum are  bo th  p r e s e n t .  

arguments a p p l y  t o  ove r l app ing  degene ra t e  resonances  as w e l l  

as t o  a sum of i s o l a t e d  resonances.  

The  p reced ing  
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V I 1  . THRESHOLDS 

The basic  d i v i s i o n  i n t o  P s ta tes  (open c h a n n e l s )  and Q 

s ta tes  ( c l o s e d  channe l s )  adopted i n  t h e  p r e s e n t  d i s c u s s i o n  i s  

energy-dependent .  W i t h  i n c r e a s i n g  p ro jec t i l e  energy ,  c h a n n e l s  

t h a t  once w e r e  c l o s e d  become accessible f o r  r e a c t i o n s .  A s  a 

simple example, w e  might  p r o g r e s s  f r o m  c o n s i d e r a t i o n  of ( 1 ~ ) ~  2p 

t o  1s 1 0 s  2 p  t o  t h e  continuum of Is cs 2p. A t  t h e  i o n i z a t i o n  

l i m i t  1s ms 2p ( o r  Is O s  2p) t h e  i n f l u e n c e  o f  t h e s e  s ta tes  must 

be t r a n s f e r r e d  from t h e  resonance  ampl i tude  T i n t o  t h e  " d i r e c t "  

background ampl i tude  T . 
fests  i t s e l f  as  a t h r e s h o l d  f o r  a n  a d d i t i o n a l  process. 

Q 

The p r e s e n c e  o f  a new continuum mani- P 

J u s t  b e l o w  t h r e s h o l d ,  i n  an  energy  i n t e r v a l  A which i n c l u d e s  

numerous r e sonances  converg ing  t o  a l i m i t  a t  t h e  t h r e s h o l d  

energy ,  t h e  energy-averaged c r o s s - s e c t i o n  i s  
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Because of the negative interference term, the cross-section can 

be quite small. In the absence of appreciable contribution from 

the continuum JI this expression reads 
C’ 

K 

Just above threshold, the resonance states Y become continuum 

states, say Y and we have 
b’ 

K 

1 

(7.3) 

The interference is now absent. Formulas (7.2) and (7.3) show 

that cross-sections need not display a discontinuous threshold 

behavior, even though the influence of a particular configura- 

P’ tion transfers abruptly from T to T 
Q 

It may happen, however, that the entire series occurs 

over a very brief energy interval, so that the cross-section may, 

for practical purposes, be considered as changing abruptly. This 

situation occurs with X-ray attenuation: absorption coefficients 

are customarily regarded as increasing discontinuously at thresh- 

olds, because the allowed Rydberg series occupies only a short 
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interval below the threshold. 

Note that the present formulas permit the occurrence of 

a series of autoionizing lines overlying the region near an 

ionization limit. Since the resonance states are independent, 

the cross-section appears as a superposition of the threshold 

behavior of E q s .  (7.1) - (7.3) and the resonance structure of 

formula (1.2). However, the present approach does m t  explic- 

itly display the interesting intensity variations, attributable 

to configuration mixing of bound states, which occur in a 

Rydberg series. 



V I I I .  ENERGY VARIATION OF PARAMETERS 

Formula (1.1) w i l l  be of u s e  when t h e  q u a n t i t i e s  A B 
K J  K J  

and E and I? v a r y  l i t t l e  w i t h  energy  E ove r  t h e  i n t e r v a l  of  

i n t e r e s t .  Under what c o n d i t i o n s  can w e  c o n s i d e r  t h e s e  quan- 

t i t i e s  t o  b e  c o n s t a n t  parameters?  

K K 

The p o s s i b l e  energy  v a r i a t i o n ,  as  shown by  formulas  ( 3 . 1 9 ) ,  

(3 .22)  - (3.25) and (4.1) - (4.6), comprises  t w o  types :  t h e  

energy  v a r i a t i o n  caused b y  d i s t o r t i o n  (and expressed  as p r i n c i p a l  

value i n t e g r a l s  i n v o l v i n g  t h e  va ry ing  e n e r g y ) ,  and an  energy  

v a r i a t i o n  caused by t h e  change of  continuum i n t e g r a l s  s u c h  as 

YKIVIYa } . (For  photon processes, t h e r e  is  a l s o  an  e x p l i c i t  

dependence on photon energy.)  W e  expec t  t h e  d i s t o r t i o n  change 

t o  be s m a l l  ove r  t h e  energy i n t e r v a l  spanned by a resonance,  so 

and C w i t h  E may be a t t r i b -  
K J  BK’ t h a t  t h e  major v a r i a t i o n  of A 

u t e d  t o  t h e  change of t h e  cont inuum wavefunct ion .  S u c h  slow 

v a r i a t i o n s  have been p r e v i o u s l y  s t u d i e d  w i t h  t h e  quantum d e f e c t  

formula t ion’* ,  a l though  t h e  same s t r u c t u r e  should  emerge from 

computat ions t h a t  employ an e f f e c t i v e  p o t e n t i a l .  For t h e  au to-  

i o n i z i n g  l i n e s  h i t h e r t o  i d e n t i f i e d ,  t h e  continuum v a r i e s  s u f f i -  

c i e n t l y  s lowly  over  a few wid ths  r t h a t  w e  can  expec t  A and K K 

t o  be c o n s t a n t s  c h a r a c t e r i s t i c  of  each resonance .  V e r i f i c a -  

t i o n  of t h i s  assumption [and t h e  u t i l i t y  o f  formula (1.2)] w i l l  

r e q u i r e  d e t a i l e d  examination of o b s e r v a t i o n a l  d a t a .  

BK 
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There are, of course, regularities in successive values 

and r as one progresses along a series of lines, 
K’ K 

of A 

In part, these variations come from the continuum structure 

just mentioned. In part, the regularities reflect variations 

of single-particle orbitals, such as the n-”/Z behavior of the 

hydrogenic wavefunction P And in part, the variations may 

be manifestations of the configuration mixing of bound states. 

These influences deserve further attention, although I shall 

not discuss them here. 

nd 
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IX. EMISSION PROFILES 

The absorption profile (1.2) is observed in the limit of 

a cold, gaseous, optically thin absorbing medium; under these 

conditions the specific monochromatic intensity passing through 

a thickness dx diminishes according to the formula 

where N(1,) is the number of atoms per unit volume in state I, 

The derivation of Eq. (1.2) from scattering theory made 

clear the applicability to autoionizing-line profiles observed 

in absorption spectroscopy. The same profiles should usually 

be observed in emission spectroscopy. That is, the monochromatic 

specific intensity emitted by an optically thin source of thick- 

ness dx, containing N free electrons per unit volume and N(I1) e 

ions per unit volume in ground state 11, is 

where I, denotes a state of the atom, formed by electron capture 

followed by photon decay, and de, @(Il), and d(1,) are the 

intrinsic statistical weights of electron, target ion, and 
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product atom respectively. The exponential energy E is 

E = E(1,) + w - E(Il). (9.3) 

Equation (9.2) is most easily obtained by writing 

u) 
dI(W.l = & dx 5 N(c) G(E(I,)+w-E(c)) v - o(c+Io,w) 

C 1 0  
(9.4) 

and assuming that the electrons have a Maxwellian velocity 

distribution and the ion states I,' are populated as in equi- 

1 ibr ium: 

4TV2 dv 1 

( Ne (2.rrkT)qZ de 1 exp(-e/kT) - (9.5) 

Here A =  E(1,') - E ( I l ) y  and C refers to quantum numbers of the 

composite system of electron plus ion. One can then use the 

reciprocity relation 
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and the fact that, for the profiles of interest, photon scatter- 

ing is negligible (that is, the autoionizing widths greatly ex- 

ceed the "naturalii radiative widths). Substitution of E q s .  (9.5) 

and (9.6) into (9.4) then gives formula (9.2). 

Formulas (9.1) and (9.2) state that (as one expects from 

simple thermodynamic arguments) an emission spectrum and the cor- 

responding absorption spectrum show the same profiles, apart from 

a numerical factor. The absorption profiles of autoionizing 

lines, as parameterized in E q .  (1.2), may appear as "windowsll 

(B C 0) or as asymmetric profiles (A # 0). Such profiles, often 

referred to as Beutler-Fano profiles, occur because of interfer- 

K K 

ence between direct photoionization and photoexcitation followed 

by autoionization. Autoionizing lines in emission are super- 

posed on a background of free-bound and free-free emission. 

Beutler-Fano profiles then occur because of interference between 

free-bound emission and electron capture followed by photon 

emission. Thus transitions which appear as bright features ("win- 

dow" resonances) in absorption will appear, in emission, as dark 

features. (Bright or dark here refer to greater or less intensity 

than adjacent continuum.) 

However, E q .  (9.2) does not always apply. In particular, 

when radiative widths are comparable to autoionizing widths, we 

can no longer identify photoionization c r ( I o ,  ui -. I,' C , E )  with 

the attenuation cross-section o ( I o , w ) .  The simplification 
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p e r m i t t e d  by t h e  o p t i c a l  theorem no longe r  o b t a i n s ,  and t h e  

p r o f i l e s  may show i n t e r f e r e n c e  between resonances .  
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