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ABSTRACT

The parameterization

(%TK) By + (E - EK) A
(E - EK)2 + (%I‘K)"

c(E) = C + K

K

for attenuation cross-sections is discussed, with attention

to the following details: prescriptions for "exact" calcula-
tion of profile parameters, in which the effects of "distor-
tions" are separated from the effects of multiple "scatterings";
the validity of assuming independent (non-interfering) reso-
nances; the specific case of autoionizing lines; connections
with alternative parameterizations; the prohibition on negative
cross-sections assured by unitarity; behavior at threshold; and

the applicability of this parameterization to emission lines.



I. INTRODUCTION

Observations of photon (or neutron) attenuation typically

disclose cross-sections with the energy dependence !

(%TK) By
2 1 F]
(E - B )7 + (3T,)

+ (E - EK) A

Q(E) = C(E) + K_ . (1.1)

K

Applied to photon projectiles, incident with energy w on an
atom in state I, this attenuation cross-section reads

1 -
2ly) By + (w - w ) Ay (1.2)

(w - wIK)z + (%FK)Q

o(I,w) = C(w) +

K

(Here, and throughout this paper, I use atomic units,

e=H=m=1; c l/a = 137). The rapid variation of og(I,,w)

with photon energy near the resonance energies wIK = EK - EI
traces the profile of an absorption line.

Nuclear physicists have, for many years, used such param-
eterizations, although the validity of formula (1.1) is by no
means restricted to nuclear collisions. Until the recent revival
of interest in ultraviolet spectroscopy, atomic spectroscopists
had little need for such elaborate parameterization: for non-

autoionizing lines, the parameter AK vanishes, BK is equal to

2ma times the oscillator strength, and the observed width TK



reflects conditions in the absorbing medium rather than the
natural radiative width. For autoionizing lines, the profile

parameters AK, BK, T and EK each have empirical and physical

K’
utility®, just as do the more familiar parameters of quantﬁm
defect and oscillator strength.

Equation (1.1) is only one of several mathematically equiva-
lent representations (parameterizations) of Q(E). Other expres-
sions have also been suggested. Burke®, smith?, and Peterkop
and Veldre® have recently reviewed the theories for explaining
resonance structure in collision cross-sections for electron and
photon scattering; Burke® and Smith® summarize the presently
available values for profile parameters. To date, there has
been little effort to determine, either theoretically or exper-
imentally, profile parameters other than resonance width and
resonance position. I hope the present article will stimulate
experimental tests of formula (1.2) for the description of
complicated photoionization cross-sections and will encourage
computation of profile parameters.

Before we judge the usefulness of formula (1.1) for fitting
and predicting cross-sections, several points deserve attention.
Are the resonances really independent, or is there interference

between resonances? How does formula (1.1) compare with other

commonly used parameterizations? 1Is formula (l.1) consistent




with the unitary property of the scattering matrix or will it
give erroneous negative cross-sections? Do autoionizing lines
seen in emission have the same profiles as absorption lines?
The present paper addresses these questions, and provides a
more refined prescription for the computation of profile pa-

rameters than the formulas given in reference 1.
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II. BASIC DEFINITIONS®

For a system comprising projectile and target, whose
composite quantum numbers are a and whose combined energy is E,

the attenuation cross-section og(a,E) is

g(a,E) = %71 (E_ - E) |T

_ o |, (2.1)

ca
CFa

where Fa denotes the projectile flux corresponding to the choice

of normalization for the incident wave §_, T v |Tly ) is
a ca c a
the transition amplitude linking initial state § with final
a
state wc’ and Sdenotes a generalized sum over final states (a
. C . . .
sum over discrete labels and an integration over continuous
labels). Making use of the unitary property of the scattering

matrix S = 6 - 27i 6(Ea - Eb) T

ba ba La® one can write (2.1) in

the alternative form

G(aJE) = -

LRI

Im Taa . (2.2)
The optical theorem, Eq. (2.2), expresses mathematically

what experimenters long ago recognized: in studying neutral

projectiles it is simpler to measure beam attenuation in the

forward direction than to collect the scattered flux from all




directions.
It should be clear that o(a,E) has the form Q(E) of

Eq. (1.1) if Taa can be written

2 B_ - iA .
L =Z K K + D - iC. (2.3)
E-E + l%LK

Thus if the scattering amplitude can be expressed as the sum

of independent resonance contributions, attenuation cross-sections
will display the energy dependence Q(E) of equation (1.1), with

no interference between resonances.




ITII. THE DEFINITION OF INDEPENDENT
OVERLAPPING RESONANCES®

Methods for breaking the operator

T =V + V V =V + VGV (3.1)

Et-H

into resonant (TQ) and non-resonant (TP) parts, T =T + TQ,
P

have been discussed by Fonda and Newton’, Feshbach®, and
Zhivopistsev® amongst others. The resonance structure can be

brought out most readily by the use of projection operators,

(3.2)

such that Q projects resonance states, and P projects possible

initial and final states!®. The introduction of an operator?
t =v + vp [EY - H® - PVP]-! PV (3.3)

then permits one to write

T=V+V [Et ~H® -Vv]"t v

t + tQ [E - H®° - QtQ]~* ot (3.4)




and so to identify the non-resonant part (elastic scattering

and direct processes)
T =+t (3.5)
and the resonant part

T =tQ [E - H° - Qto]~! ot (3.6)

We can now introduce®, at least formally, a set of resonance

states @K’

o ¢, =9, p & =o, (3.7)
which satisfy the equation

H° + oto - €1 ¢ =0 (3.8)

with complex eigenvalue

€x = Ex 4+ i . (3.9)




Since t is not Hermitian, the familiar orthogonality theorem
for eigenstates having different eigenvalues applies to

(@KTl (I)L> rather than to the usual <(§K \ §L> , where

LA . .
<§ is the adjoint of @ . By using the fact that
Q[H°+t]Q = Q[H"+8vp — 1 PV - ir VPO (E-H)PV]Q
E - PHP
= Q(H" + vc;pv - ir v I, v]1Q (3.10)

(® denotes principal value) where H° and QVVQ are real, one can

t X . . .
show that!?® @1== @K . The bi~-orthogonal expansion is therefore

- |®K> <d£_K*‘ R <¢K*|©L> = éKL. (3.11)

K

Just as with conventional calculations of atomic structure, states
of different energy are orthogonal, but degenerate states need

not be. Equation (3.1l1l) requires that we determine our degener-
ate states to diagonalize the interaction QtQ within a manifold

of degenerate states. This requirement can be met with conven-
tional approaches employing angular-momentum coupling and/or

the diagonalization of comparatively small matrices. The reso-

nance part of the scattering amplitude can now be written

(el @y (Sxlelv)
(- @xldx?

(3.12)

GplTl > =




We thereby obtain, as desired, the resonance scattering ampli-
tude as a sum over independent (though not necessarily well-
separated) resonance terms.

To determine the resonance parameters, it proves convenient

to write

o
n
t =V (G°V - imrg V) (3.13)
e
nz=0O
where
g =P 5(E - H°)P

9]
o]

i
—
av}

23}
[
o
o
uv}
PRSI |

(3.14)

@
o
1l
o
r—
©
=
©
—

We can then write a perturbation-theory solution of Eg. (3.8)

as

o0

(o] o (o] - : n

@K = [1 + GV Z (GQV + GPV 17rgpv) ]cpK (3.15)
n=o

where, as in reference 1, P is a combination of degenerate

eigenstates of H° chosen to diagonalize V within a degenerate
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manifold. We may also write Eg. (3.15) as

@K = [1 + GéV (l - Gav - G;V - ivgpv )—1 ]cpK. (3.16)

The preceding prescription yields an unnormalized state éK

which satisfies the condition

(ol By =1 since (cpK|cpK> = 1. (3.17)

Similarly, the complex value GK can be written

€ = B + 180, = (o lEe + e [ ). (3.18)

The preceding expressions, extensions of previous results?!?,

do not separate explicitly the real and imaginary parts of QSK'

For that purpose, it is useful to introduce (real) states YK,

n
= °V + G°V ¢ = . .
¥ ?(GQV Gp) P }\cpK (3.19)
n=

This expression for YK, taken with the requirement that degen-

erate YK have diagonal elements of Vv,

(cpK|v|ch N =0 if B, = E. and K # L, (3.20)
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is a description of the states obtained in conventional calcu-
lations of bound states; all integrations over continuum states
require principal values. These YK contain mixtures of config-
urations, including continuum functions, whose energy differs

from EK. Thus unlike the (iK states they do not belong exclu-

sively to the Q set:
QWK + PTK = ?K but PTK # 0. (3.21)

By rearranging sums, one can then obtain the formulas

Ep = SoelH + V[T ) + 0(v®) (3.22a)
Ty = 27 <‘I’K|Vgpvl‘I’K> + O(V*) (3.23a)
4
A, = -F—: Colva vl ) (i IvIg ) * + ove) (3.24a)

._2_. 2 _ 2 2
By = T {|<WK|VI¢a>l u |<‘PKIV<.:JP VALY S }+0(v6>,

a

(3.25a)

where O(Vn) indicates that further terms involve n products of

V. ©Such corrections are of the form

-1
VA - (-iTg VA )T,
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and thus they describe the effects of multiple scatterings
between equal-energy states. 1In contrast, the operators

VGpV, VG&V, and A describe "distortions" which mix configura-
tions of different energy. Formulas (3.22) - (3.25) therefore
give a prescription for profile parameters which separates the
effects of distortion and of multiple scattering.

In obtaining the preceding formulas I have neglected correc-

tions to the normalization of é}f

<®K*]@K>‘1 = 1 -Z ‘<YK|V|QPN> - im <WK‘vng‘YN> |2

- ]
(eK eN)
N

5 4
+ o(v )/(eK - eN)

= 1. (3.26)

Here e is the eigenvalue of an unperturbed state: H°wK = eKw .
As we shall note in section VI, this approximation is consistent
with unitarity restrictions.

It is also useful to introduce (real) distorted "continuum”

states Ya, the counterparts of the "bound" states YK:

o o n =
¥, = Z (GQ vV + Gp V) d’a = AV,- (3.27)
n=

o
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The Ya states are the ¥ states of Lippmann and Schwinger!?*;
the wavefunctions are standing waves. Like the YK states, the

Ya states do not belong exclusively to the P or the Q class:

PYa + QYa = Ya but QYa # 0. (3.28)

With the introduction of these distorted continuum states, we

can write the profile parameters as

E, = (@ |H? + V] )+ 0(v) (3.22b)
T, = 2T SSG(E - E.)| <wK|v|¢c 512 + o(v*) (3.23b)
C
4
Ag T ;Z- oIVl H* S 8(E = E) (Y [Vivg ) i lvIv,y + o(ve)
c (3.24b)
2
By ='E; | < dvie, Y12 - 7? f;@(E—EC) S VT (o Ivly) )2

Cc

+ 0(V®). (3.25b)

These are the required generalizations of expressions in refer-
ence 1. Matrix elements here involve the use of "exact, distorted"

excited states YK, incorporating configuration mixing in the
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usual sense, and "zero-order, unperturbed" continuum states
wa. This asymmetry in the exactness of dextral and sinistral

wavefunctions is the counterpart of the familiar result!?*

CrplTli, y = G lvlvly = ST (3.20)

The background may be expressed in a similar way, if we

introduce the expansion

[v o)
t =V (G'V - irg v)"
P P
n=-o
x
= VA (-irg VA" (3.30)
P p P .
n=o
where
oC
A= (cov) " (3.31)
P p .
nz=o
We then obtain
¢ = 3 m (el
F & a Ya
a
= g-T—T- <‘¢‘r IV/\ - g . V/\ lw ~> + O(V4)
F a P P p''a
27 C .
TF ) S = BN L ALy, > |5+ o). (3.32a)
a c
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The matrix element here requires either a distorted initial
. . P . . .
continuum function, Ya = pra’ or distorted final functions

=/\pwc, but not both. Thus we can write

27 ‘ P
C = F; S “(E - E) | <¢c|v|\ya S1F + o(v)
c
- 5(E - E ) | wP|v|~ | + o(v*) (3.32b)
B F (Y Va ? ) )

c

In summary, we see that the attenuation cross-section may be

written
s(a) = ¢ + y 2k & %
(€)% + 1
K
2. P P
=5 YAlvngl%A >+
a
% 2 T L V> 15 - I Ceedva vle, ) 12
27 (YKIVng|WK >
+ :,—v K vy <y lve vives (3.33)
a (- ) +1 2T (YK|Vngl%K‘>
K
where
- _ py
ay = AK/(—;;lK). bK = BK/(gTK).

g (E - EK)/(%TK). (3.34)




For the case of an isolated resonance,

-16-

or of degenerate reso-

. . . P
nances, there is no distinction between Ya and ¥ , and we can
a

write

o(a)

where

b + ¢ a
+ K K K
(e )2 + 1
<\Ya|Vng|°Ha> + O(V*)
S SE - )| v vy, Yy 17+ ovt).

o

(3.35)

(3.36)
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IV. PHOTON ATTENUATION PROFILES

The preceding formulas apply quite generally to attenua-
tion. For the specific application to photon attenuation,
discussed in reference 1, we must distinguish two contributions
to the interaction V = H - H°: the inter-electron (Coulomb,
spin-orbit, etc.) interaction, which we shall call v, and the
interaction with the radiation field, manifested through the

atomic dipole-moment operator D. The parameters of Eqg.(l.2)

are then?

Ty = Tx + Ty (4.1)
rad _ 4 N3 y 2
Tk = 2 3 (aw)® | \‘I’N“BH 1IfK>| (4.2)
N{K WK
auto . 2
Ty - gé(EI+m—Ec).2vl(‘{’Klv|‘Fc>| (4.3)
[
S . % ‘
AK = % T2aw SG(EIﬂn—EC) <WI I R“ q/K’ '\‘{/Klv| \yc > N \YIH R“ \Yc>*
o /ﬁg fﬁ§
¢ - (4.4)
4 71w | 3
B, =3 [ <yl >
I
2‘ N ¥ 27
- l\) b(e-w-B ) (Y lv[¥ s L RIS | /% (4.5)
4 c
c=3 Wau1<;5(EI + w- E) l <YI“QJl¢CT\‘2 . (4.6)
. s

< I
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The use of reduced matrix elements Q?I” D|] TK>> and intrinsic
weights n& = 2JI + 1 eliminates all reference to magnetic gquantum
numbers, because the Coulomb interaction is independent of these
numbers.

As pointed out previously!, these quantities depend explic-
itly on the photon energy w. In application to resonance pro-
files, one may replace » by the resonance frequency mKI = EK - EI
without introducing appreciable error. However, when one exam-
ines the cross-section very far from resonance, as is done in
deriving the Rayleigh scattering formula, it is essential to
recognize that w rather than wIK appears in the formulas.

All the preceding formulas may, of course, be written in

terms of a bound-bound oscillator strength,

LK) = _2 0 1< dinl g > 1P
f(r-x =f =3a SR (4.7)
(mJI

and a bound-free (photoionization) oscillator strength,

, 2
af. . _ 2w xRl v > | (4.8)
= 3 -
dw I

as was done previously', or they could be written in terms of

radiative transition probabilities.




-19-

o 1< linl vpo1® (4.9)

Tk

AT (K~ TI) =§ IamKI|

We can then see that BK is 270 times the bound-bound oscillator
strength less an amount attributable to interference with the
photoionization background.

Formulas (4.3) - (4.6) show that the line profile of an
autoionizing line depends on the amplitude for bound-bound tran-

sition,

<tllolhu >

the amplitude for autoionization,

St lvlvg >

and the amplitude for bound-free photoionization,

< linll v,y -

The present arrangement of these three quantities into the four

gquantities AK’ BK’ C, and FK is done to simplify the algebraic

expression for o; one could as well use matrix elements directly

as the basic quantities.
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V. ALTERNATIVE EXPRESSIONS

It is easy to see that expression (3.33) may be written

in the form

2
o(a) = o + Yo_. (ap + ep) (5.1)
(eK)5 + 1
K
where
272 / \2
Oax = T 8(E-E ) (¥ |v]vy (o lvI¥ )y (5.2)
2 c
a, - <*¥K|’vwa> (5. 3)
vS 8 (E-E) HJVIv > v IvIY >
2 P
oy = ;”1 8(B-E ) | <y IVIv, >1® + anK. (5.4)

< LS
Expression (5.1) is a possible generalization of the isolated-

resonance formula suggested by Fanol®:

2
g +e)” (5.5)

However, og is not physically meaningful, because it contains

the infinite quantity };OaK' [The background C of expression

(3.33) contains no such divergent sum. |
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An alternative generalization may be obtained by recasting

the resonance portion TQ of the T operator,

= Pt . ot .
To = PYQ 7" 5s " org - OFF (5.6)
into a slightly different form. A recent paper by Feshbach®?

suggests a simple means for carrying out this rearrangement.

We first write t as

t=V+ VGV - iT VI_V
p P

VP ﬂ_(+) = n_(") PV (5.7)

m

where

- SE - pmp Ip = P&(E - H)P. (5.8)

This permits us to write

T, = N pvQo {E - B2 + iT Qv I, vol-! Qup (+) (5.9)

1 T 7

= oo . QVP
1 oVP inVQ L E-HQ

= ﬂ_(—)PVQ

1 + iWEE—HQ
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where

ay
f

= H° + QVQ + QVGPVQ. (5.10)
A simple rearrangement, using the identity

A=A1—+"—BZ , (5.11)

~(+)
;
QVPi,— 1 A .

©1+ dim 1 vo r_1 QP

\ -

. E-H ] (5.12)

| E-HOQ

We can now introduce a reaction operator?!?

K = pvo [E - HQ]-! qvp

= pvQ [E - H° - QVQ - QVGPVQ]-1 QVP (5.13)

and so write the TQ operator as

T = ,(')K (1 + i IP K]t J)f+)

5 : (5.14)
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To proceed, I shall assume that either PVP is diagonal in the

continuum of Ya, or that only a single continuum occurs. This

(-)

permits us to write ({—)K as I IPK. We need next to intro-

duce eigenstates of IPK:

1 N , ,
zomo VT ) =0 ifc# . (5.15)

T lr, v

We can then write the resonance amplitudes as

, (- , . ~(+ .
<%qu)gxﬂg> «lef)l%/

< T v
b0’ "a 1 + ir <WE|IPK|TE;>

I
—1

- , +
=Z \Yb IT‘(—:>/\TC|‘¥a\>

o

, 1
STV T v T
X c E-H < ) (5.16)

, 1
1+ im gﬁélVQ'E:EQ ov T, >

Let us now define ¢ by

1
€

th

E- E - E

¢ S
T Ivo == vIT ) = z rl<Tvelyy > : (5.17)
K K

Here I have made use of the fact that the YK states of the pre-

ceding section are eigenstates of HQ:

(o]
4+ - = - -
[H V + VGV EK] Yoo 0 (5.18)
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Next note that, because YaP = (1 + GPV)wa, we can write
- / +
<\Ya|TC> \rrcl‘i’a D
= ( - 1 -
\\¢a|1 + VG, - im VIP|'TC/

X \,’jrcll + GV - dim IPVI U

N AV - 2 A R -
| <y 1B - @ < e[
P
I - N 5.19
2ri <Ya|VIPHc\> \_‘)cwa 5. ( )

Thus we obtain the resonant part of the cross-section as

- 2 2 1 P, ... .. P —
;i; Im <walTQl¢a> = E; }E e?+1 I< Ya‘wc7|2_v2‘iwa|VIP|IC'|2

k.

41 € P NN N
X F e?+1 ° \YalVIP|7c> ‘\75|Ya 4

(5.20)
In keeping with our assumption that only a single continuum con-

tributes, we write the cross-section as

1 !

2T , P P 2 P 2 P
o(a) = F_a <‘i’a|V.9P‘V|Ya >t F e®+1 { |<Wa'(ra> |%-m* ] <Ya|v|Ta>|2}

4T € P / P 5.21
tF o el <‘faIVIPl{T}i >‘\Tal\fa > (5.21)
a
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We thereby obtain formula (5.5), with

.o 2T _ 2 _ .
b T F, S“E E.) { < vy > | <o Ivlm, | (5.22)
C
7y = 5 KT vle > I (5.23)
a F a a-’ .
a
P
\Yawa> (5.24)
RSN
and ¢ given by Eg. (5.18). These expressions have the form of

those derived by Comes and Salzer'’, who fit observations of
Krypton by Huffmann et. al'® to formulas (5.5) and (5.18).

The preceding discussion is intended to indicate possible
connections between the many-resonance formula (3.3) and previous
formulas used in discussions of autoionization, not as a pre-

scription for computing 0> O and g. It seems likely that the

b’
more explicit energy structure evidenced in formula (3.3) and
the simple physical and mathematical significance of those pro-
file parameters will make that formula more useful than (5.1) or

(5.5) for overlapping resonances. Ultimately, of course, the

validity of any parameterization must rest on empirical evidence.
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VI. UNITARITY

In accord with observations, formulas (3.24) - (3.25) give
BK and AK that may be positive, negative, or zero. The attenua-
tion cross-section of Eg. (2.1l) cannot, of course, become nega-
tive. If our approximation to the scattering amplitude Taa yields
a unitary scattering matrix, then Eg. (2.2) will also give non-

negative cross-sections. To see that the preceding formulas are

consistent with this restriction, let us write

vl =8 . WS&(E—EC) Y VIS Qo lvly -
¢ (6.1)
To get a negative B, we assume that |]® < 1. The attenuation

cross-section can then be written as

(

{' Sé(E-EC) | < Y§|V|¢> |2

\C

o(a)

wlw
=)

u

- Z Sé(E—EC) <Ya|vwc>\’wc|v|wK> 2

K ¢
< 1
(1-B%) (3T,) + 2B(E-E,)
2 2
(B-E) " + (1,/2)

. (6.2)




-27-

P
Now if we define "vectors" a, a and K having the "components"

a_ = O(E-E) \wa|v|¢c S
P P

a, = S(E-E)) <¥_|v]y )
K, = O(B-E)) J¥ |V]i, >

then we can write

S@(E._Ec) <Ya|vlwc> <‘UC|V|YK‘> =a - EV(w

C

TK = 2W|5ﬂ2.

The cross-section then takes the form

(6.3)

(6.4)

(6.5)

( -y 2 _ p2(1 _ )
o) = & 2 7] - ZI%‘% L BT® - BPGT,) + 2B(T) (B-E) |
k.

a | (E-E )% + (5T,)°

The most extreme value occurs if all resonances occur at the

same energy EK. The Q collection then consists of those degen-

erate bound states corresponding to energy EK, and there is no

P
i i i tween ¥ =
distinction between a AP ¢a

and Ya = /\wa. Under these condi-

/
/
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tions the minimum, which occurs when B = 0, is

oo = 2 [ e - ) 2B (6.
a \ - ,

The summation cannot exceed |§J3, because it is the sum of the
"direction cosines" in a set of independent "directions." That
is, the summation goes over a set (the entire Q collection) of
independent (orthogonal) states. Thus the cross-section cannot
become negative. The minimum value (zero) occurs, as Fano
notedle, when the resonance states interact with only a single

continuum, because then
2kl = 1< VT i vl s 17 = falPxIkl®. (6.8)

The photon continuum is independent of the electron continuum,
so that (6.8) holds also when a single photon continuum and a
single electron continuum are both present. The preceding
arguments apply to overlapping degenerate resonances as well

as to a sum of isolated resonances.
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VII. THRESHOLDS

The basic division into P states (open channels) and Q
states (closed channels) adopted in the present discussion is
energy-dependent. With increasing projectile energy, channels
that once were closed become accessible for reactions. As a
simple example, we might progress from consideration of (1ls)?® 2p
to 1ls 10s 2p to the continuum of 1ls e¢s 2p. At the ionization
limit 1s »s 2p (or 1ls Os 2p) the influence of these states must
be transferred from the resonance amplitude TQ into the "direct"
background amplitude TP. The presence of a new continuum mani-
fests itself as a threshold for an additional process.

Just below threshold, in an energy interval A which includes
numerous resonances converging to a limit at the threshold

energy, the energy-averaged cross-section is

: Il
A‘li dE o(a) 2Tt ;ng C + }jv By :

(Y ’L v

K

~loop Uof ,
=4 o ;dE SG(E'Ec)i\_WaIVWC,\IQ
a . c
+Zl\;walv|YK> :
K
|

< (7.i)
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Because of the negative interference term, the cross-section can
be quite small. 1In the absence of appreciable contribution from
the continuum wc’ this expression reads

- 2T

F
a

|y vl s 12 (7.2)

=~

Just above threshold, the resonance states YK become continuum

states, say Yb, and we have

5 \aEo(a) = & IF ng g“E‘ECH <Y vy 1?
J a
c

N
{ \ 2
+ )dE Sé(E—Eb) \<\fa[vl¢b 5 | .
b .
(7.3)

The interference is now absent. Formulas (7.2) and (7.3) show
that cross-sections need not display a discontinuous threshold
behavior, even though the influence of a particular configura-
tion transfers abruptiy from TQ to TP.
It may happen, however, that the entire series occurs

over a very brief energy interval, so that the cross-section may,
for practical purposes, be considered as changing abruptly. This
situation occurs with X-ray attenuation: absorption coefficients

are customarily regarded as increasing discontinuously at thresh-

olds, because the allowed Rydberg series occupies only a short
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interval below the threshold.

Note that the present formulas permit the occurrence of
a series of autoionizing lines overlying the region near an
ionization limit. Since the resonance states are independent,
the cross-section appears as a superposition of the threshold
behavior of Egs. (7.1) - (7.3) and the resonance structure of
formula (1.2). However, the present approach does mot explic-
itly display the interesting intensity variations, attributable
to configuration mixing of bound states, which occur in a

Rydberg series.
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VIII. ENERGY VARIATION OF PARAMETERS

Formula (1.1) will be of use when the quantities AK’ BK’
and EK and TK vary little with energy E over the interval of
interest. Under what conditions can we consider these quan-
tities to be constant parameters?

The possible energy variation, as shown by formulas (3.19),
(3.22) -~ (3.25) and (4.1) - (4.6), comprises two types: the
energy variation caused by distortion (and expressed as principal
value integrals involving the varying energy), and an energy
variation caused by the change of continuum integrals such as

{ YK|V|Ya 5. (For photon processes, there is also an explicit
dependence on photon energy.) We expect the distortion change
to be small over the energy interval spanned by a resonance, so
that the major variation of AK, BK’ and C with E may be attrib-
uted to the change of the continuum wavefunction. Such slow
variations have been previously studied with the quantum defect
formulation*®, although the same structure should emerge from
computations that employ an effective potential. For the auto-
ionizing lines hitherto identified, the continuum varies suffi-
ciently slowly over a few widths FK that we can expect AK and
BK to be constants characteristic of each resonance. Verifica-

tion of this assumption [and the utility of formula (1.2)] will

require detailed examination of observational data.
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There are, of course, regularities in successive values

of A B

K and TK as one progresses along a series of lines.

K’
In part, these variations come from the continuum structure

just mentioned. 1In part, the regularities reflect variations
of single-particle orbitals, such as the n~3[ behavior of the
hydrogenic wavefunction Pn&' And in part, the wvariations may
be manifestations of the configuration mixing of bound states.

These influences deserve further attention, although I shall

not discuss them here.
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IX. EMISSION PROFILES

The absorption profile (1.2) is observed in the limit of
a cold, gaseous, optically thin absorbing medium; under these
conditions the specific monochromatic intensity passing through

a thickness dx diminishes according to the formula

-dI(w) = dx E: N(I,) o(I,, w) (9.1)
L,

where N(I,) is the number of atoms per unit volume in state I,

The derivation of Eq. (1.2) from scattering theory made
clear the applicability to autoionizing-line profiles observed
in absorption spectroscopy. The same profiles should usually
be observed in emission spectroscopy. That is, the monochromatic
specific intensity emitted by an optically thin source of thick-
ness dx, containing Ne free electrons per unit volume and N(I;)

ions per unit volume in ground state I,, is

N N 2ra y® Y

di(w) = dx "e ~(1I;) ?ggiﬁ%éé y  exp(-E/KT) W(I,) o(I.,uw),
w_ (1) [
I

° (9.2)
where I, denotes a state of the atom, formed by electron capture
followed by photon decay, and m%, w(I,), and @(I,) are the

intrinsic statistical weights of electron, target ion, and
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product atom respectively. The exponential energy E is
E = E(I,) + w - E(I,). (9.3)

Equation (9.2) is most easily obtained by writing

W

Ar(w) =, - dx SN(C) E S(E(I,)+w-E(c)) v . o(c-I,,uw)
c 1
’ (9.4)
and assuming that the electrons have a Maxwellian velocity
distribution and the ion states I,' are populated as in equi-

librium:

' )
SN(C) = Zg gde i N(I,) _:—E?T- exp(—A/kT)i
1
\
C Il, C
( 47v2 dv |
X iNe 7%%?579% exp(-¢/kT) 5% j . (9.5)
Here A= E(I,') - E(I,), and C refers to gquantum numbers of the

composite system of electron plus ion. One can then use the

reciprocity relation

21ra® y® W(I,)
oc(Iy' C,e = I, ,w) = —5— - —2%_ . I,,w - I,'C,ec
1 ¥} VB ‘m’e“m’(ll) 0( os W 1 3 )

(9.6)
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and the fact that, for the profiles of interest, photon scatter-
ing is negligible (that is, the autoionizing widths greatly ex-
ceed the "natural" radiative widths). Substitution of Egs. (9.5)
and (9.6) into (9.4) then gives formula (9.2).

Formulas (9.1) and (9.2) state that (as one expects from
simple thermodynamic arguments) an emission spectrum and the cor-
responding absorption spectrum show the same profiles, apart from
a numerical factor. The absorption profiles of autoionizing
lines, as parameterized in Eg. (l1.2), may appear as "windows"

(BK < 0) or as asymmetric profiles (AK # 0). Such profiles, often
referred to as Beutler-Fano profiles, occur because of interfer-
ence between direct photoionization and photoexcitation followed
by autoionization. Autoionizing lines in emission are super-
posed on a background of free-bound and free-free emission.
Beutler-Fano profiles then occur because of interference between
free-bound emission and electron capture followed by photon
emission. Thus transitions which appear as bright features ("win-
dow" resonances) in aksorption will appear, in emission, as dark
features. (Bright or dark here refer to greater or less intensity
than adjacent continuum.)

However, Eg. (9.2) does not always apply. In particular,
when radiative widths are comparable to autoionizing widths, we
can no longer identify photoionization o(I,, w - I,' C,e) with

the attenuation cross-section og(I,,w). The simplification
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permitted by the optical theorem no longer obtains, and the

profiles may show interference between resonances.
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