

CACORE SDK 4.0
DEVELOPER’S GUIDE

Center for Bioinformatics

October 10, 2007 This is a U.S. Government Work

Credits and Resources

caCORE SDK Contributors
SDK Development

Team
Other

Development
Teams

Guide Program
Management

Satish Patel 1 Kunal Modi 1 Satish Patel 1 Denise Warzel 4

Dan Dumitru 1 Vijay Parmar 1 Dan Dumitru 1 Avinash Shanbhag 4

Aynur Abdurazik 2 Shaziya Muhsin 2 Charles Griffin 1 George Komatsoulis 4

 Konrad Rokicki 2 Wendy Erickson-Hirons5 Charles Griffin 1

 Ye Wu 2

 Christophe Ludet 3

1Ekagra Software
Technologies

2 Science
Applications
International
Corporation (SAIC)

3 Oracle Corporation 4 National Cancer Institute
Center for Bioinformatics

5 Northern Taiga
Ventures, Inc.

SDK Resources

Name URL

Mailing List CACORESDK_USERS-L@mail.nih.gov

Mailing List Archive https://list.nih.gov/archives/ cacore_sdk_users-l.html

Project Home (GForge) https://gforge.nci.nih.gov/projects/cacoresdk/

SDK Support Tracker (GForge) https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731

 i

mailto:CACORESDK_USERS-L@mail.nih.gov
https://list.nih.gov/archives/%20cacore_sdk_users-l.html
https://gforge.nci.nih.gov/projects/cacoresdk/
https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731

caCORE SDK 4.0 Developer’s Guide

Contacts and Support
NCICB Application Support http://ncicb.nci.nih.gov/NCICB/support

Telephone: 301-451-4384

Toll free: 888-478-4423

Submitting a Support Issue
A GForge Support tracker group, which is actively monitored by caCORE SDK developers, has
been created to track any support requests. If you believe there is a bug/issue in the caCORE
SDK software itself, or have a technical issue that cannot be resolved by contacting the NCICB
Application Support group, please submit a new support tracker using the following link:
https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731. Prior to submitting a new tracker,
review any existing support request trackers in order to help avoid duplicate submissions.

Release Schedule
This guide has been updated for the caCORE SDK 4.0 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 4.0 version of
caCORE SDK, released in October 2007 by the NCICB.

ii

http://ncicb.nci.nih.gov/NCICB/support
https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731

Table of Contents

Chapter 1 Using This Guide ..1
Intended Audience...1
Recommended Reading..1
Organization of this Guide ...1
Document Text Conventions ...2

Chapter 2 Overview ...5
Introduction ..5
caCORE SDK Modules..5
caCORE SDK Users..6
SDK within the caCORE Environment...6
Benefits of Using the caCORE SDK..6
New Features for caCORE SDK 4.0 ...7

Code Generation ...7
Generated System...9

Obtaining the caCORE SDK..11
caCORE SDK Minimal System Requirements ..11
Software Requirements ...12

Contributing to caCORE SDK Development ...13

Chapter 3 Code Generation Technical Overview ...15
Introduction ..15

The Role of Code Generation in the caCORE SDK..15
Features and Limitations of Code Generation...16

Code Generation Process ...16
Reading the UML Model..17
Artifact Generation (Model Transformation) ..17
Output Management..18
Code Generation Framework ..18
Reusable Components of the Code Generation Workflow ...19

Overview of SDK Generated Artifacts ...19

Chapter 4 Runtime System Technical Overview ..21
High-Level Architecture ...21
N-Tier System..22

Persistence Tier...22
Application Service Tier...23
Security Interception Tier...25
Client Interface Tier ...25
Security Filters...30

Security ..31

 iii

caCORE SDK 4.0 Developer’s Guide

Authentication..32
Authorization..32
Instance and Attribute Level Security..32

Chapter 5 System Usage...33
XML-HTTP Interface..33

Accessing Data from a Web Browser..33
Accessing Data from a Thin Client ..37

Java API Interface ...39
Obtaining ApplicationService ..39
ApplicationService API Methods ...41

Web Service Interface ...52
SDK WSDL Directives - Schema Imports ...52
WSDL Service Definition ...53
WSDL Port Types (Network Endpoints) ..54
Messages, Elements, and Types ..55
Web Service Error Handling..57
SOAP Fault Structure ..57

Chapter 6 System Usage for a Secured System ...59
Introduction ..59
XML-HTTP Interface..59
Web Services Client ..62
Java API ..62

Chapter 7 Performance Tuning the Java API ..65
Database Indexes..65
Fine Tuning the Page Size ..65
Lazy Loading ...65
Hibernate Query Language (HQL) ..66

Chapter 8 Utilities ..67
XML Utility (Marshalling and Unmarshalling)...67
The caCOREMarshaller Class ..67
The caCOREUnmarshaller Class..68
Marshalling Java Objects to XML ..69
Unmarshalling XML to Java Objects ...70

Chapter 9 Creating the UML Model for caCORE SDK...71
Introduction ..71
Creating a New Project..72
Creating Classes and Tables ..74

Creating a Logical Model Package Structure..74
Creating a Logical (Object) Model Class...77
Creating a Data Model Table ..80

iv

Creating Attributes and Data Types ..85
Performing Object Relational Mapping..88

Adding/Modifying Tag Values..89
SDK Custom Tag Value Descriptions ...90

Exporting the UML Model to XMI (EA Only) ..98
Importing XMI into the UML Model (EA Only) ...100

Chapter 10 Configuring and Running the SDK ...103
SDK Configuration Properties ...103
Generating the SDK System ...107

Ant Build Script Targets...107
Selectively Generating Components ...109

Overview of Generated Packages...109
Deploying the Generated System..110

Deploying to JBoss..110
Deploying to Apache Tomcat ..111

Testing the caCORE SDK Generated System ..111
Testing the Web Interface ...111
Testing the Java API ...112
Testing the XML Utility...113
Testing the Web Service Interface ..115

Configuring Security ..117
JAAS-Based Authentication Configuration..118

Glossary...127

Index ..129

 v

caCORE SDK 4.0 Developer’s Guide

vi

Chapter 1 Using This Guide

This chapter introduces you to the caCORE SDK 4.0 Developer’s Guide.

Topics in this chapter include:

• Intended Audience on this page
• Recommended Reading on this page
• Organization of this Guide on this page
• Document Text Conventions on page 2

Intended Audience
The caCORE Software Development Kit 4.0 Developer’s Guide (SDK Guide) is the
companion documentation to the caCORE (cancer Common Ontologic Representation
Environment [http://ncicb-dev.nci.nih.gov/infrastructure/cacore_overview]) Software
Development Kit (SDK). The SDK aids programmers with some life science background who
are interested in using or extending the capabilities of caCORE. The caCORE SDK is a set
of development resources that allows you to create, compile, and run caCORE-like software.

Recommended Reading
Following is a list of recommended reading materials and resources that can be useful for
familiarizing oneself with concepts contained within this guide.
• Java Programming
• Enterprise Architect Online Manual
• ArgoUML Online Manual
• Hibernate
Uniform Resource Locators (URLs) are also included throughout the document to provide
more detail on a subject or product.

Organization of this Guide
The caCORE SDK 4.0 Developer’s Guide contains the following chapters:

• Chapter 1 Using This Guide - This chapter provides an introduction to this developer’s
guide.

• Chapter 2 Overview - This chapter provides an overview of caCORE SDK 4.0,
describes new features of the 4.0 release, and provides instructions for obtaining the
release.

• Chapter 3 Code Generation Technical Overview - This chapter describes the code
generation process in the context of the caCORE SDK. It also describes how the
caCORE SDK’s code generation module works.

• Chapter 4 Runtime System Technical Overview - This chapter describes the architecture

 1

http://java.sun.com/learning/new2java/index.html
http://www.sparxsystems.com.au/EAUserGuide/index.html
http://www.sparxsystems.com.au/EAUserGuide/index.html
http://argouml-stats.tigris.org/documentation/manual-0.24/

caCORE SDK 4.0 Developer’s Guide

of the caCORE system. It includes information about the major components, such as
security, logging, database object-relational mappings (ORM), client-server
communication, and system connection to non-ORM systems.

• Chapter 5 System Usage - This chapter provides examples to access the generated
system’s client interfaces by a client application or a user.

• Chapter 6 System Usage for a Secured System - This chapter describes how to use the
SDK generated runtime system when security is enabled.

• Chapter 7 Performance Tuning the Java API - The SDK development team and many of
the SDK users have encountered problems when applying the SDK to their own use
cases and workflows and have discovered solutions to improve performance. This
chapter includes some of the solutions discovered by these users.

• Chapter 8 Utilities - This chapter describes a class that can be used to serialize and
deserialize generated Java Beans to XML and back again.

• Chapter 9 Creating the UML Model for caCORE SDK - This chapter provides information
on how to create UML models that can be used by the caCORE SDK to generate the
system.

• Chapter 10 Configuring and Running the SDK - This chapter describes how to configure
the SDK Code Generator and generate the SDK system.

• Appendix A Troubleshooting - This appendix includes questions and scenarios that have
been reported by SDK users and may be helpful in troubleshooting a problem when
setting up the SDK.

• Appendix B Planned Features for Future Releases - This appendix contains a short
summary of some of the major features under consideration for the next release.

• Appendix C Example Model and Mapping - The caCORE SDK release package contains
the example model included in this appendix, which can be used by the user as a
reference to model a particular scenario for a system.

Document Text Conventions
The following table shows various typefaces to differentiate between regular text and menu
commands, keyboard keys, tool bar buttons, dialog box options, and text that you type. The
conventions illustrate how text is represented in this guide.

Convention Description

Notes Notes: Notes are enclosed for emphasis

Bold Bold type is used for emphasis, buttons, or tabs to select on windows,
and names of dialog boxes.

TEXT IN SMALL CAPS TEXT IN SMALL CAPS is used for keyboard keys that you press (for
example, ALT+F4)

2

 Chapter 1 Using This Guide

This chapter introduces you to the caCORE SDK 4.0 Developer’s Guide.

Topics in this chapter include:

• XIntended AudienceX on this page
• XRecommended ReadingX on this page
• XOrganization of this GuideX on this page
• XDocument Text ConventionsX on page X2X

Intended Audience
The caCORE Software Development Kit 4.0 Developer’s Guide (SDK Guide) is the
companion documentation to the caCORE (cancer Common Ontologic Representation
Environment [http://ncicb-dev.nci.nih.gov/infrastructure/cacore_overview]) Software
Development Kit (SDK). The SDK aids programmers with some life science background who
are interested in using or extending the capabilities of caCORE. The caCORE SDK is a set
of development resources that allows you to create, compile, and run caCORE-like software.

Recommended Reading
Following is a list of recommended reading materials and resources that can be useful for
familiarizing oneself with concepts contained within this guide.
• HJava ProgrammingH
• HEnterprise Architect Online Manual
• HArgoUML Online Manual
• HHibernateH

Convention Description

Text in italics Italics are used to reference other documents, sections, figures, and
tables.

Special typestyle Special typestyle is used for filenames, directory names, commands, file
listings, and anything that would appear in a Java program, such as
methods, variables, and classes.

Bold italics
typestyle

Bold italics is used for information the user needs to enter

{ } Curly brackets are used for replaceable items (for example, replace
{home directory} with its proper value such as C:\caadapter).

Figure 1-1 Document text conventions

 3

caCORE SDK 4.0 Developer’s Guide

4

Chapter 2 Overview

This chapter provides an overview of caCORE SDK 4.0, describes new features of the 4.0
release, and provides instructions for obtaining the release.

Topics in this chapter include:

• Introduction on this page
• caCORE SDK Modules on this page
• caCORE SDK Users on page 6
• SDK within the caCORE Environment on page 6
• Benefits of Using the caCORE SDK on page 6
• Obtaining the caCORE SDK on page 11
• Contributing to caCORE SDK Development on page 13

Introduction
NCICB provides biomedical informatics support and integration capabilities to the cancer
research community. NCICB has created caCORE Software Development Kit or caCORE
SDK, a data management framework designed for researchers who need to be able to
navigate through a large number of data sources. caCORE SDK is NCICB's platform for
data management and semantic integration, built using formal techniques from the software
engineering and computer science communities. By providing a common data management
framework, caCORE SDK helps streamline the informatics development throughout
academic, government and private research labs and clinics. The SDK generated system is
built on the principles of Model Driven Architecture (MDA) and n-tier architecture and
consistent API. Model Driven Architecture (MDA) is a software development practice that
uses a structured modeling language to describe the requirements, objects, and interactions
of a data system prior to its construction. The use of MDA and n-tier architecture, both
standard software engineering practices, allows for easy access to data, particularly by
other applications.

caCORE SDK Modules
The caCORE SDK is comprised of two modules (Figure 2-1). The first module is the Code
Generation Module, which accepts a UML model as input and produces various artifacts
corresponding to the model as output. The second module is the Runtime System, which is
a pre-built system and utilizes the artifacts generated by the code generation module in
order to serve the data to the client application. Chapter 3 describes the architecture of the
code generation module and an overview of the artifacts that the caCORE SDK generates.
Chapter 4 provides an overview of the architecture of the runtime system and describes the
variety of ways it can deliver the data to the client.

 5

caCORE SDK 4.0 Developer’s Guide

Figure 2-1 SDK System Generation Process

caCORE SDK Users
There are basically two types of caCORE SDK users that can be categorized by which
module they will use: 1) users of the code generation module and 2) users of the runtime
system. Users of the code generation module will primarily focus on preparing the UML
model and running it through the caCORE SDK with appropriate settings to generate the
runtime system. Users of the runtime system will primarily focus on writing queries against
the runtime system to retrieve the data from the data source. Chapter 3 provides an
overview of how the code generation module is used. Chapter 4 provides an overview of
runtime system usage scenarios.

SDK within the caCORE Environment
The caCORE SDK can be utilized to quickly generate a system from the caBIG’s silver-level
compatible UML model. For more information on caBIG compatible system levels, see the
caBIG web site at http://www.fkhealth.net/serviceweb/clients/nci/cabig_website/index.asp.
However, the use of the SDK is not limited to generating a system from silver-level
compatible models. The SDK can be used outside the caCORE environment to create a
system that is generated from a UML model and runs on standardized query languages.
Within the caCORE application development process, the caCORE SDK serves the purpose
of generating the system from the UML model after semantic integration is completed. More
details on the caCORE SDK application development process can be found in Chapter 10.

Benefits of Using the caCORE SDK
Users of the caCORE SDK are benefited in numerous ways. The primary benefit of using
caCORE SDK includes:

• Consistent UML representation of the data – Users of the caCORE SDK are required
to represent their data in UML format. As a user of the SDK, the user is likely to maintain
their UML model throughout the life cycle of the application. The same UML model can

6

http://www.fkhealth.net/serviceweb/clients/nci/cabig_website/index.asp

 Chapter 2 Overview

be used to quickly learn about the organization of the data at various levels in the
application.

• Rapid data service generation – The SDK can generate caBIG’s silver-level
compatible APIs quickly from the UML model. Once the UML model and the database
are ready, the data service can be generated in a matter of hours. Manually building the
application from the ground up can take several months to achieve the same
functionality.

• Uniform way to access data – SDK-generated systems provide uniform access to the
data stores. Other applications developed using the caCORE SDK have similar
mechanisms to retrieve the data. Thus common data representation allows multiple
applications to share data.

• Query using information model – SDK-generated systems also allows queries to be
written in various ways including Query By Example. Since the query is independent of
the system’s implementation, changes in the runtime systems do not affect the client
application.

• Integration with caGrid – SDK-generated systems can be easily integrated with the
caGrid using caGrid’s Introduce Toolkit. Developing caGrid-compatible data services
without using caCORE SDK can result in error prone and lengthy processes.

New Features for caCORE SDK 4.0
caCORE SDK 4.0 is a major release with many new features available. Some of the newly
developed features are to strengthen the infrastructure and others are to support new
requirements. The purpose of this section is to highlight the major functionality and
performance enhancements and improvements introduced in the caCORE SDK 4.0 release.

Code Generation

The architecture and the core of the code generation module of the caCORE SDK 4.0 has
been completely rewritten. Entire code generation framework now runs from a single
configuration file based on the Spring Framework as opposed to individual configuration files
used by the previous releases. Some of the visible improvements in the code generation
module are highlighted below.

• Support for Enterprise Architect and ArgoUML

Previous releases of the caCORE SDK used to support only Enterprise Architect as a
tool for UML modeling. With SDK 4.0, users can choose between ArgoUML and
Enterprise Architect. The added support for ArgoUML provides users an open source
alternative to commercial software like Enterprise Architect.

• Performance Improvement in Code Generation

The caCORE SDK 4.0 has significantly improved the performance of the code
generation module. Average users should notice the system generation process to be

 7

caCORE SDK 4.0 Developer’s Guide

completed in approximately 15% of time of what it used to take with the previous
releases of SDK.

• Support for Validators

The caCORE SDK code generator now has support for validators. Validators serves the
purpose of validating the object model and object relational mapping information before
the code generator starts. These validators provide descriptive messages to users,
which allow users to quickly identify the root cause of the code generation failure.

• Reduced and Improved Generated Artifacts

The artifacts generated by caCORE SDK are completely redesigned to suit the needs of
the newly redesigned runtime system. Artifacts generated by the previous SDK release
were not reusable outside of it due to certain dependencies on it. However, artifacts
generated by SDK 4.0 can be reused anywhere. For example, Java beans generated by
the SDK had getter methods to connect to the server and were not simple POJOs, which
in SDK 4.0 are simple POJO beans. The following table (Table 2-1) lists all of the
artifacts that have changed since the previous release.

Artifact SDK 4.0
Includes

SDK 3.2.x
Included

POJO beans for domain objects (*.java) yes yes

SDK specific Java beans for domain objects (*.java) yes no

“Impl” classes for Java beans (*.Impl.*.java) yes no

Web Service beans (*.ws.*.java) yes no

“Impl” classes for web service beans
(*.ws.impl.*.java)

yes
no

JUnit test cases for domain objects yes no

Hibernate O/R mapping files for domain objects
(*.hbm.xml)

yes
yes

Hibernate O/R mapping files for “Impl” classes
(*Impl.hbm.xml)

yes
no

Hibernate configuration file (*.cfg.xml) yes yes

Hibernate cache configuration file (ehcache.xml) yes yes

SDK DAO configuration file (DAOConfig.xml) yes no

Domain object list (coreBeans.properties) yes no

Association mapping file (roleLookup.properties) yes no

XML Schema for domain model (*.XSD) yes yes

8

 Chapter 2 Overview

Artifact

SDK 4.0 SDK 3.2.x
Includes Included

Castor mapping files (xml-mapping.xml, xml-
unmapping.xml)

yes
yes

Web service deployment descriptor (server-
config.wsdd)

yes
yes

Table 2-1 SDK 4.0 artifacts

• Additional UML Features Supported

caCORE SDK 4.0 now supports many new UML features in the object model and in the
object relational mapping aspect.

Object Model
o ID attribute – Users of the caCORE SDK do not have to name the attribute that

maps to the primary key column of the corresponding table for the class as “ID”.
Users can now specify the attribute mapping to primary key column using a tag
value on the class in the domain model.

o Primitives support – SDK 4.0 allows users to specify Java’s primitive type for any
attribute’s data type. SDK 4.0 interprets these primitives in the wrapper data type
during code generation.

o Collection of primitives –Users of the SDK can now use collection of primitives or
wrapper data types as the type of the attribute.

Object Relational Mapping
o Inheritance – caCORE SDK 4.0 now supports an alternate way of mapping

inheritance hierarchy in the database. SDK users can choose between existing
Table per class mechanism to map inheritance in the database or they can
choose Table per inheritance hierarchy for the mapping.

o Join tables – Previous releases of the SDK used to support join tables only for
the many to many type of associations. With SDK 4.0 users can choose to use
join tables for any type of associations.

Generated System

In addition to the new code generator module, caCORE SDK 4.0 has introduced significant
changes in the runtime system. Since many of the changes are in the infrastructure mostly
users utilizing advance options will notice or be affected by the restructuring of the SDK’s
runtime system

• Client Server Infrastructure

 9

caCORE SDK 4.0 Developer’s Guide

o The client-server infrastructure of SDK used to rely on the Java beans developed
specifically for SDK. These specialized java beans had the capability to connect
to the server when required to fetch the associated objects. With SDK 4.0,
regular POJOs are used in conjunction with concepts from Aspect Oriented
Programming (AOP) to facilitate similar mechanism. With this design approach,
domain object beans generated by SDK are true POJOs and can be used
outside of SDK easily.

o In addition to the restructuring of the Java beans with AOP, SDK 4.0 now also
can connect to various SDK generated system from within the same client JVM.
In previous versions, users of the SDK could connect to only one remote service
at a time; with this feature, developers will now be able to retrieve data from
multiple data services.

• Simplified Application Service

Many of the existing methods of the ApplicationService interface have been deprecated.
Newly added methods have syntax similar to the existing methods but they now require
less information. The simplified Application Service will be easier to work with

• Web Services

o SDK 4.0 generated web services work on the simple POJO beans. The web
service from previous version of SDK required specialized POJO beans in the
.ws package whereas SDK 4.0 generated web services utilizes the same Java
beans that are used by the other tiers of the application.

o SDK 4.0 web services also have additional methods to allow users to fetch the
associations of the domain object. Users can now specify which specific
association they would like to fetch from the server.

o Starting with version 4.0, users of the SDK will not have to deploy the web
service independently. The SDK 4.0 generated web services are embedded in
the .war file and will be deployed automatically when the application server starts

• Graphical User Interface

o The caCORE SDK 4.0 generated system has a newly developed graphical user
interface. This new interface allows users a richer experience.

o Security of the new user interface has been enhanced. Users now have access
to built in security capabilities such that when the security is enabled in the
system, users will get experience of completely secured system and not just one
of the secured interface.

o The caCORE SDK 4.0 generated GUI now has embedded Javadocs for the
domain objects for which the system was originally generated. Users of the web

10

 Chapter 2 Overview

interface can browse the Javadocs by visiting a link on the generated system’s
home page

o Previous release of the SDK did not allow fetching of an associated object that
had more than one association with another object. The newly generated web
interface allows user to retrieve associations regardless of the number of
associations between two objects.

• Security

o The caCORE SDK 4.0 has a completely new security implementation that is
based on ACEGI security framework. The previous implementation of security in
the caCORE SDK was weaved into the application logic. For caCORE SDK 4.0,
security implementation is kept outside of the application and is managed
through Aspect Oriented Programming principles. SDK users can now easily
change the implementation of security without going into the details of SDK’s
code base.

o Instance level security – The caCORE SDK 4.0 supports instance level security
utilizing CSM, which provides flexibility to provide more granular access to the
data. For example, users can be given access to only a subset of records from a
particular table versus all the records of a particular table.

o Attribute level security – In addition to the instance level security, the caCORE
SDK 4.0 also provides very granular attribute level security to the users. For
example, only certain users are allowed to see Social Security Numbers of
Person object.

o Concurrent user access in secured API – Users of the SDK generated java client
in the previous releases were constrained to use the same user account
throughout the lifecycle of the ApplicationService. In SDK 4.0, users can create
many different instances of the ApplicationService and login with different user
accounts at the same time from different threads of the client application.

Obtaining the caCORE SDK
The caCORE SDK is released periodically in .zip file format and .tar file format. Updates are
released frequently on the NCICB’s GForge website. The latest releases and archives can
be obtained from https://gforge.nci.nih.gov/frs/?group_id=148.

caCORE SDK Minimal System Requirements

In addition to the caCORE SDK files that must be downloaded from the link above,
additional hardware and software is also required.

 11

https://gforge.nci.nih.gov/frs/?group_id=148

caCORE SDK 4.0 Developer’s Guide

 Minimal Hardware Requirements

The caCORE SDK 4.0 has been built and tested on the platforms shown in Table 2-2.

 Linux Server Solaris Windows

Model HP Proliant ML 330 Sunfire 480R Dell GX 270
CPU 1 x Intel® Xeon™

Processor 2.80GHz
2 x 1050MHz 1 x Intel®

Pentium™
Processor
2.80GHz

Memory 4 GB 4 GB 1 GB
Local Disk System 2 x 36GB (RAID 1)

Data = 2 x 146 (RAID 1)
System 2 x 72GB

System 1 x 36GB

Operating
System

Red Hat Linux ES 3 (RPM
2.4.21-20.0.1)

Solaris 8 Windows
XP/2000
Professional

Table 2-2 Minimal system requirements

Notes: Users of the caCORE SDK will need a computer system for two purposes: first, to
generate a system using the caCORE SDK and second, to host the generated system in a
production environment. Select the appropriate hardware configuration based on the
amount of data that the system is expected to handle. Users can use the hardware
configurations listed above as a reference.

Software Requirements

Download and install the required software listed in Table 2-3. This software is not included
with the caCORE SDK. The software name, version, description, and URL hyperlinks (for
download) are indicated in the table.

Software Description Version URL

JDK The J2SE Software Development
Kit (SDK) supports creating J2SE
applications

1.5.0_11
or higher

http://java.sun.com/j2se/1.5.0/d
ownload.html

Enterprise
Architect
(EA)

6.0
or higher

http://www.sparxsystems.com.
au/

ArgoUML

UML Modeling Tool†

0.24
or higher

http://argouml.tigris.org/

Oracle 9i http://www.oracle.com/technolo
gy/products/oracle9i/index.html

MySQL

Database Server†

5.0.27 http://dev.mysql.com/download
s/mysql/5.0.html

JBoss 4.0.5 http://labs.jboss.com/jbossas/d
ownloads

Tomcat

Application Server†

5.5.20 http://tomcat.apache.org/downl
oad-55.cgi

12

http://java.sun.com/j2se/1.5.0/download.html
http://java.sun.com/j2se/1.5.0/download.html
http://www.sparxsystems.com.au/
http://www.sparxsystems.com.au/
http://argouml.tigris.org/
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossas/downloads
http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/download-55.cgi

 Chapter 2 Overview

Software Description Version URL

Ant Build Tool 1.6.5
or higher

http://ant.apache.org/bindownl
oad.cgi

Table 2-3 Minimal software requirements

† Only one is required.

Contributing to caCORE SDK Development
The caCORE SDK project is managed by an NCICB project manager. If a user would like to
contribute by providing a patch for a particular defect, email the caCORE SDK Users’
mailing list (CACORE_SDK_USERS-L@list.nih.gov). Users interested in participating in the
development process can contact NCICB management for more details.

 13

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
mailto:CACORE_SDK_USERS-L@list.nih.gov

caCORE SDK 4.0 Developer’s Guide

14

Chapter 3 Code Generation Technical Overview

This chapter describes the code generation process in the context of the caCORE SDK. It also
describes how the caCORE SDK’s code generation module works.

Topics in this chapter include:

• Introduction on this page
• Code Generation Process on page 16
• Overview of SDK Generated Artifacts on page 19

Introduction
Code generation is a systematic process of converting a model into a series of instructions
or programs that can be executed by a machine. The principle of code generation is
primarily popular in programming language compilers (for example, a C compiler or a Java
compiler) in which the code generation stage is responsible for generating machine specific
instructions or assembly language instructions. The input to the code generation stage
typically consists of parsed source code or an abstract syntax tree that is prepared by the
source code parser. In the context of the caCORE SDK, the code generator generates the
artifacts from the UML model using principles of Model Driven Architecture that are
consumed by the SDK’s runtime system.

The Role of Code Generation in the caCORE SDK

While other tools and programming language compilers use the code that the SDK
generates, the SDK itself can be viewed as a level above the other compilers and tools. The
code generation module is responsible for generating various artifacts from the UML model.
Like output from the code generation stage of compilers, the output from the code
generation stage of SDK is specific; the output of the caCORE SDK consists of artifacts like
Java source code, O/R mapping files etc. In other words, the caCORE SDK transforms the
UML model into system specific artifacts and the code generation engine is simply a
complex transformer for the UML model (Figure 3-1).

Figure 3-1 Code Generation

The primary purpose of the caCORE SDK is to allow users to quickly build data services.
One of the ways the SDK implements this requirement is to generate the application for the
user based on specified settings. The SDK takes a UML model, which consists of an object
model and a data model, as input, and generates a complete application using the

 15

caCORE SDK 4.0 Developer’s Guide

generation settings.

Features and Limitations of Code Generation

UML provides a generic mechanism to represent the various parts of a software system and
its lifecycle. However, UML by itself is unable to describe how the complete system works
after implementation. To efficiently generate code from a UML model, the SDK specifies
additional information (in the form of tag values) that needs to be embedded inside the
model. This additional information allows the SDK to determine how the code generation
should proceed.

The SDK code generation sub-system can interpret only a set of well-known features from
the model, which currently includes following:

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

UML packages

UML class

UML class attributes

UML attribute’s data type

UML association

UML dependency

UML tag values

UML generalization

The SDK cannot read and interpret unsupported features that a user has included in the
UML model. To interpret unsupported UML features, the SDK code generator must be
modified. In addition to the code generator’s modification, the runtime system also requires
modification so that it can consume the modified artifacts from code generator.

Code Generation Process
The SDK code generation process can be viewed as a layer of different processes. In order
to generate code from the UML model, the constructed model must first be exported from a
UML modeling tool. Then, the exported model can be used by the SDK to generate the
code.

The code generation process is illustrated in Figure 3-2 and involves the following high-level
steps to generate the artifacts required.

Read UML model

Artifact generation

Output management

16

 Chapter 3 Code Generation Technical Overview

U
M

L
M

od
el

in
g

To
ol

ca

C
O

R
E

 S
D

K
 C

od
e

G
en

er
at

or

Figure 3-2 Code generation process details

Reading the UML Model

When the UML model is constructed in the UML modeling tool, the information about the
model is stored in a proprietary formatted file. In order for the SDK to read the model, the
model information needs to be translated into a standard format that can be interpreted by
other modeling tools. Once the model information is exported in the standard format, the
SDK can read the model information and convert it into internal data structures. These
internal data structures can then be used by other stages of the SDK to generate the
desired code. Having the internal data structures also gives additional flexibility to the SDK.
In the event that a modeling tool adopts a new standard or starts exporting information in
some format other than the one recognized by SDK, a new model reader can be developed
without affecting other stages of code generation.

Currently the SDK uses the UML Model reader developed as a separate project at the
NCICB. The UML Model Reader, also known as the XMI Handler, can interpret model
information created by the tools Enterprise Architect or ArgoUML. If a UML modeling tool
other than those is to be supported by SDK’s code generator, then the UML Model Reader
needs to be extended. However, the code generator would not need to be changed.

Artifact Generation (Model Transformation)

The SDK generates various artifacts based on the information that it obtains from the UML

 17

caCORE SDK 4.0 Developer’s Guide

model. Artifacts can be Java Beans, O/R Mapping files, or web service deployment
descriptors. Most artifacts are generated from the information obtained from the UML model.
Other artifacts are generated from the property files and configuration files supplied at the
time of running the SDK. This section addresses artifact generation from the UML model
only.

The UML model contains various complex elements. The artifact generation stage reads all
the elements of the UML model and then constructs a collection of relevant elements from
which a particular artifact can be generated. The artifact generation process needs to be
repeated for each type of artifact.

Output Management

When an artifact is generated, the output must be written to a file. The file content can be
Java source code or XML. If the artifact is a Java program then it must be written in a
particular folder hierarchy to preserve namespace. In addition, all Java program files require
“.java” as a file extension. Similarly, generated XML documents must be placed in
appropriate folders and assigned appropriate file names and extensions.

Code Generation Framework

As explained earlier in the section, the code generation process involves various steps in
order to generate an artifact. If there are many different types of artifacts to be generated,
the model transformation process must be executed for each type of artifact to be
generated. In the case of multiple artifacts, it becomes necessary to automate these steps
so that the artifact generation process can be handled efficiently and effectively.

In the current design, the artifact generation process is controlled by means of a control or
configuration file. The control file specifies what combination of components will be used to
generate a particular type of artifact. The execution engine (Generator), which understands
the information specified in the control file, can then read the control file and orchestrate the
workflow as desired.

sd Code Generation

Client

codegen::Generator «interface»
codegen::Validator

«interface»
codegen::Transformer

«interface»
codegen::ArtifactHandler

setModel(model)

execute()

GeneratorErrors:= val idate(model)

GeneratorErrors:= val idate(model)

GeneratorErrors:= execute(model)

GeneratorErrors:= execute(arti fact)

Figure 3-3: Code Generation Workflow Automation Sequence Diagram

18

 Chapter 3 Code Generation Technical Overview

As described in Figure 3-3, when the code generation execution engine initializes, it reads
the control file and configures itself with the information obtained from the control file. The
execution engine configuration involves initializing the components defined in the controller
file as sub elements and configuring them one at a time. Once the configuration of the
execution engine and components finish, the code generation execution engine executes
the workflow as described by the pseudo-code below.

1. Open UML Model file.

2. Read UML Model file containing various UML models.

3. Set the UML Model in the Generator.

4. Set the Validators in the Generator.

5. Set the Transformers in the Generator.

6. Execute the Generator.

a. Execute all the registered validators

b. If the errors are present during the previous validation, then stop executing and log
the errors.

c. Execute the validate method of all the registered transformers.

d. If the errors are present during the previous validation, then stop executing and log
the errors.

e. Execute all the registered transformers.

i. Generate artifact from the UML Model.

ii. If errors are discovered during code generation then return the errors.

iii. Pass the generated Artifact to the registered ArtifactHandler.

1. Write the artifact to the respective file.

Reusable Components of the Code Generation Workflow

In order to complete the code generation process, the components used in the code
generation workflow must implement specific behaviors. As the code generation engine
executes the workflow, it instantiates and configures components required for the workflow
(as specified in the control file). Each type of component needs some information to
configure itself. This information is supplied from the control file to the component. The class
that implements the interface (Validator or Transformer) is recognized by the code
generation execution engine and is responsible for following certain behaviors expected by
the engine. This mechanism allows the new implementation of the components to be
plugged into the workflow by simply modifying the control file.

Since the SDK code generator uses a Spring Framework’s bean configuration file,
configuring each component becomes easy. It is up to the developer of a component to
specify what information the component needs to execute itself.

Overview of SDK Generated Artifacts
As part of the code generation process, the caCORE SDK generates the following artifacts

 19

caCORE SDK 4.0 Developer’s Guide

with the help of different transformers.

• Beans – For each object defined in the object model, a Java bean (POJO) is generated.
The generated bean follows the same package structure as the folder structure in the
object model. The generated Java beans are compiled and packaged in a JAR file. The
JAR file is named project_name-beans.jar.

• Hibernate files – The following hibernate files are packaged in a separate JAR file after
the generation. The JAR file is named project_name-orm.jar

o Hibernate mapping files - For each object defined in the object model, the
caCORE SDK generates a Hibernate mapping file (Object Relational mapping
file) by reading tag values that maps object and attributes to tables and columns
in the data model. In the case of inheritance in the object model, the mapping file
is created for the root level class in the inheritance hierarchy. The generated files
follow the same package structure as the folder structure in the object model.

o Hibernate configuration file – A configuration file named hibernate.cfg.xml is
generated for Hibernate, which contains a list of all the generated Hibernate
mapping files in addition to the database connection settings.

o EHCache configuration file – A cache configuration file for Hibernate.

• XSD and XML Mapping files – For each package defined in the object model, the
caCORE SDK generates an XSD file. The XSD file is named after the fully qualified
name of the package name for which the file was generated. If the UML model is
annotated with semantic tags (CDE information from caDSR) then the generated XSD
files will include this information as XSD documentation. The SDK also generates XML
mapping files (castor mapping files) for the entire object model. There are two XML
mapping files that are generated: xml-mapping.xml and xml-unmapping.xml. These files
are primarily used by the caGrid project to create a grid service from the SDK generated
system.

• Web Service deployment descriptor file – A deployment configuration file for the
AXIS- based web service is generated for the entire object model.

20

Chapter 4 Runtime System Technical Overview

This chapter describes the architecture of the caCORE system. It includes information about the
major components, such as security, logging, database object-relational mappings (ORM),
client-server communication, and system connection to non-ORM systems.

Topics in this chapter include:

• High-Level Architecture on this page
• N-Tier System on page 22
• Security on page 31

High‐Level Architecture

The caCORE SDK generated runtime system’s infrastructure exhibits an n-tiered
architecture with client interfaces, server components, backend objects, data sources, and
additional backend systems (Figure 4-1). This n-tiered system divides tasks or requests
among different servers and data stores. This isolates the client from the details of where
and how data is retrieved from different data stores. The system also performs common
tasks such as logging and provides different levels of security. Clients (browsers,
applications) receive information from backend objects. Java applications also communicate
with backend objects via domain objects packaged within the client.jar. Non-Java
applications can communicate via SOAP (Simple Object Access Protocol). Back-end objects
communicate directly with data sources, either relational databases (using Hibernate) or
non-relational systems (using, for example, the Java RMI API).

Figure 4-1 SDK Generated Runtime System Architecture

 21

caCORE SDK 4.0 Developer’s Guide

N‐Tier System
The SDK generated system can be viewed as a typical n-tier architecture system where
each tier in the system is responsible for a set of defined activities. In an SDK generated
system, the layers starting from the lowest layer are as follows:

• Persistence Tier
• Application Service Tier
• Security Interception Tier
• Client Interface Tier
• Application Service Tier

Persistence Tier

The persistence tier is responsible for understanding the query that has been sent and for
fetching the results. The SDK currently supports persistence tiers created in two ways;
object-relational mapping (ORM) based persistence tiers and non-object-relational mapping
(Non ORM) based persistence tiers (Figure 4-2). To access the data stored in the
persistence tier with the ORM-based mechanism, the SDK provides a pre-constructed DAO
(ORMDAOImpl). The ORMDAOImpl is written specifically for Hibernate-based object
relational mapping. This DAO converts the query into a Hibernate-specific query and
executes it using Hibernate APIs. Each DAO also provides a list of the domain objects when
the Application Service tier requests it by using the getAllClassNames() method of the DAO.
If the Application Service tier determines that there is an overlap between the lists of domain
objects provided by the DAOs then the application will not be loaded. Details on how each
DAO works are described in the following sections.

cd Logical View

«interface»
DAO

+ query(Request) : Response
+ getAllClassNames() : Collection

ORMDAOImpl

+ query(Request) : Response
+ getAllClassNames() : Collection

NonORMDAOImpl

+ query(Request) : Response
+ getAllClassNames() : Collection

«realize»«realize»

Figure 4-2 Persistence Tier Classes

Object Relational Mapping

The SDK code generator performs the object relational mapping for Hibernate
(http://www.hibernate.org) as its underlying technology. Hibernate allows the objects to be

22

http://www.hibernate.org/

 Chapter 4 Runtime System Technical Overview

mapped to the relational database by means of object relational mapping (ORM) files.
These ORM files are generated by the caCORE SDK during the code generation process. If
a user intends to not to use one or all of the mapping files and provide the mapping files
developed independently then he can do so by altering the code generation process.
Alteration of the code generation process can be done through the configuration files and is
explained in the later section.

Non‐Object Relational Mapping

SDK users can choose to not to use the ORM as a way to map the relational database to
the objects or the data for the objects which reside on a remote server. In this scenario, the
responsibility of populating the objects based on the query is on the user of the SDK who
will have to develop a custom Non-ORM DAO that can perform the task of retrieving the
data. The custom Non-ORM DAO is required to implement the interface expected by the
caCORE SDK. Other than supporting the method to retrieve results using the query, the
Non-ORM DAO needs to implements another required method (getAllClassNames()) which
returns a list of the domain objects supported by that DAO.

Application Service Tier

The Application Service tier consolidates incoming requests from the various interfaces and
forwards them to the appropriate persistence tier implementation (Figure 4-3). It is the main
tier that facilitates the operations within the SDK generated system and its methods in the
ApplicationService interface are exposed to the Java Clients. The class
ApplicationServiceImpl has the concrete implementation of the ApplicationService interface.
When any of the client interfaces in the SDK code requests a handle to the
ApplicationService, the default implementation of ApplicationServiceImpl is returned. When
the remote Java client requests a handle to the ApplicationService, a remote handle to the
ApplicationService is wrapped inside the ApplicationServiceProxy and returned to the client.
The default Application Service tier has methods to support ORM based systems. The
methods are sufficient to support requirements for most applications. The following sections
describe details about adding additional methods in the Application Service tier.

 23

caCORE SDK 4.0 Developer’s Guide

cd Logical View

«interface»
ApplicationServ iceImpl

+ search(String) : Collection

«interface»
ApplicationServ ice

+ search(String) : Collection

«realize»

Figure 4-3 Application Service

Extending the Application Service Tier

The default Application Service tier has methods to support an ORM-based system. If
additional methods are added in the Application Service tier, then one possible approach is
to modify the source code to add additional methods; another option is to extend the
Application Service and modify the configuration files to work with the extended Application
Service. As shown Figure 4-4, a CustomApplicationService can extend the
ApplicationService interface and the class CustomApplicationServiceImpl provides a
concrete implementation of the method inside the CustomApplicationService interface. As
the new methods are added to the Application Service, it is also necessary to modify client
tiers to expose the additional methods to their respective clients. The configuration files on
the client and the server side also must be modified to reflect the extension of the
ApplicationService.

24

 Chapter 4 Runtime System Technical Overview

cd Logical View

«interface»
ApplicationServ iceImpl

+ search(String) : Collection

«interface»
ApplicationServ ice

+ search(String) : Collection

«interface»
CustomApplicationServ ice

+ operationA() : Collection

«interface»
CustomApplicationServ iceImpl

+ operationA() : Collection

«realize» «realize»

Figure 4-4 Extending Application Service

Security Interception Tier

The Security Interception tier ensures that only authorized users are allowed to access the
system. The security configuration in the SDK is done using the ACEGI and the Common
Security Module (CSM) developed by NCICB. In the case of an unsecured system, this layer
is disabled through the configuration files. Additional details on implementing security in the
SDK can be found in Security on page 31.

Client Interface Tier

The SDK provides four distinct methods to reach the Application Service Tier.

1. XML-HTTP Interface (browsers, thin clients)

2. Web Services Client

3. Local Java API Client

4. Remote Java API Client

Each of these methods of retrieving data involves preparing the query in the format that the
interface understands, sending the request to the corresponding interface, and retrieving the
results from the interface to which the query was submitted. Details about system usage for
each method follows.

XML‐HTTP Client

The XML-HTTP client accesses data using two types of clients 1) a web browser to view
data in the form of a web page and 2) a thin client to get data in XML format. The web based
GUI interface was also known as Happy.jsp interface in the previous release. The clients
can form a query using Query By Example (QBE) syntax and are provided data for the result

 25

caCORE SDK 4.0 Developer’s Guide

object. If a client intends to fetch data for the associated object then the client is required to
make a second query. In a web browser, a user can click on a link to fetch the associated
object. In the thin client, the client application is required to form the query to fetch the
associated object and send it to the server. If the query executed by the client returns a
large number of records, the server returns only the results allowed per page size. The client
is required to make a second call to fetch the next page from the server. When client intends
to fetch the data in the form of XML instead of a web page format, he/she can use a different
URL (GetXML) with the same query parameters.

Note: The page size can be configured in the configuration file application-
config.xml).

See XML-HTTP Client on page 25 for additional information.

Web Services Client

SDK generated web services runs on Apache Axis using a literal based RPC web service
protocol. The Web Services client uses this protocol to fetch data. When a query returns a
large amount of data, the Web Service client only receives the maximum number of allowed
records per call. The client application is required to make an additional call to the server to
fetch next chunk of data. The server also does not return the association to the client
application. If the client needs to fetch the association then the client application has to
make an additional call with specific details on which association the client application would
like to fetch. See Web Services Client on page 26 for additional information.

Java API Local and Remote Client

The Java API client can access the SDK generated application using two different
mechanisms; 1) a local API call and 2) a remote client server API call. Regardless of the
type of call the Java client application chooses, the interaction of the client application
remains the same. Typical Java API client communication with the SDK generated
application is illustrated in Figure 4-5.

sd Client-Serv er Interaction

Client Application

ApplicationServiceProvider «interface»
ApplicationService

«interface»
DAO

Bean

ApplicationService= getApplicationService()

Collection= search(query)

Response= query(request)

String= getAttribute

Collection= getAssociation

Figure 4-5 Java API communication with an SDK generated application

26

 Chapter 4 Runtime System Technical Overview

The client of the generated application intends to fetch data from the database and use the
data in the desired manner in their respective application. The client application intends to
achieve this behavior with the following steps.

1. Obtain a reference to the service that can deliver the data.

2. Form the query and search the database using the prepared query on the service

obtained in step one.

3. Iterate through the results and obtain attributes/associations of the result object.

If the client application uses the generated system in remote client server mode, the
generated client must connect to the remote service using the remote client. On the other
hand, if the client application uses the generated system locally, the service must be present
in the local environment and remote calls should be avoided. Since the client application is
developed in a different environment, it is better to isolate the client from knowledge about
what type of client is used to fetch the data (that is, local client versus remote client).

Technical Challenges

There are many ways to implement the expected behavior of the client. Technologies
include 1) Java RMI 2) Web Services 3) EJB 4) CORBA 5) Remoting etc. From the client
perspective, it is least relevant which technology is adopted to solve the problem of the
client server communication. Another problem is how to fetch a large result set and its
associated objects. Regardless of which technology is used to implement the application
framework, the problem of loading the large result set and associated objects remains. In
order to resolve these problems, the data is required to be loaded on demand (lazy-loading).
In order to lazy-load the objects, the developed application framework must recognize the
event when the remaining objects are to be loaded from the database. Events that require
lazy loading are 1) iterating through the large result set and, 2) accessing
attributes/associations of the retrieved objects.

The retrieved objects are required to trigger the event whenever the client application makes
an attempt to access the attribute/association of that object. One possible way to achieve
this functionality is to hardwire the event triggers in the result objects. This approach makes
the result objects tied to the SDK generated application. Another way to achieve the same
functionality is to dynamically inject the event triggers in the result objects. The next section
describes how lazy-loading behavior is achieved in SDK.

Dynamic Proxy-Based SDK Generated Client API
In order for the client application to obtain the handle to the service tier (Application Service)
of the generated application, the SDK provides a helper class called
ApplicationServiceProvider (ASP). ASP instantiates the service based on the settings in the
configuration file (application-config.xml). The sequence diagram in Figure 4-6
demonstrates how ASP retrieves the service. When the client application requests a handle
to the service, ASP retrieves the handle using the configuration file and adds an interceptor
to the service resulting in ApplicationServiceProxy, which is a dynamic proxy generated
using the AOP feature of the Spring Framework (http://www.SpringFramework.org).
ApplicationServiceProxy intercepts all the calls to the actual ApplicationService and takes
action to facilitate the lazy-loading mechanism described earlier. When this occurs, the client
application is expecting a handle to the ApplicationService to be received from ASP but

 27

http://www.springframework.org/

caCORE SDK 4.0 Developer’s Guide

receive ApplicationServiceProxy instead.
sd Client-Server Interaction With Proxy

Client Application

ApplicationServiceProvider ApplicationServiceProxy «interface»
ApplicationServiceImpl

ORMDAOImplProxyHelper

Client's call on the
ApplicationService
intercepted by
ApplicationServiceProxy

Interceptor is added to
the returned objects

ApplicationService= getApplicationService()

createProxy()

Collection= search(query)

Collection= search(query)

Response= query(request)

Collection= converToProxy(Collection)

 Figure 4-6 Actual Behavior of the SDK Generated Application - 1

When the client application calls the ApplicationService, ApplicationServiceProxy intercepts
the call and executes it. After the invocation made by the client on the ApplicationService,
the ApplicationServiceProxy obtains the result from the actual ApplicationService. The
obtained result set can be the primitive objects: Java, domain objects, or Java collections.
Since domain objects or collections of domain objects can be required to lazily load their
associated objects, ApplicationServiceProxy is required to add an interceptor on the domain
objects. After obtaining the results from the ApplicationService, ApplicationServiceProxy
uses the class ProxyHelper to add the appropriate interceptor (BeanProxy) to the domain
objects so that the domain objects can trigger the event to lazily load attribute/associated
objects.

28

 Chapter 4 Runtime System Technical Overview

sd Client-Serv er Interaction With Proxy 2

Lazy Initialization of Associaton

Client Application

Bean «interface»
ApplicationServiceImpl

ApplicationServiceProxyProxyHelper ORMDAOImplBeanProxy

ProxyHelper is used to determine if
the attribute/association should be
lazi ly loaded

Lazy initial ization of
the association using
the
ApplicationService
from which the
parent object arrived

String= getAttribute

boolean= isInitialized(Object, attribute)

String= getAttribute

String= getAttribute

Collection= getAssociation

boolean= isInitialized(Object, association)

Collection= getAssociation

Collection= lazyload(Object, association)

Collection= getAssociation(Object, association)

Collection= getAssociation(Object, String)

Response= query(request)

Collection= convertToProxy(Collection)

Figure 4-7 Actual Behavior of the SDK Generated Application - 2

The results returned from the ApplicationServiceProxy to the client application have an
added interceptor (BeanProxy). The interceptor holds a reference to the ApplicationService
where the result objects were loaded. When the client application invokes any of the
methods on the result objects to retrieve attributes/associations, the interceptor (BeanProxy)
of the domain object triggers an event. Subsequent to this event, the ProxyHelper class is
used as a decision maker to determine if the attribute/association should be lazily loaded. If
the ProxyHelper class indicates that the method should be lazily loaded (i.e. the method
should not be executed locally and ApplicationService should be used to obtain the return
value), BeanProxy again uses ProxyHelper to execute the method and load the result from
the correct Application Service.

For ORM-based applications, the ProxyHelper class always checks for the presence of
HibernateProxy for the associations. If HibernateProxy is present instead of the actual

 29

caCORE SDK 4.0 Developer’s Guide

associated objects, the ApplicationService is called (via ApplicationServiceProxy) to fetch
the associated objects. ProxyHelper is responsible for preparing the query and calling the
ApplicationService with the appropriate parameters.

For a Non-ORM system, the ApplicationService may have been extended to support
additional query methods and these methods can return the domain objects that are not the
same as regular POJOs. In that case, the implementer of the Non-ORM system must
intercept all the method calls to the result objects and resolve the lazy initialization routine.
The Non-ORM system can configure the custom ProxyHelper through the configuration file
application-config-client.xml.

Connecting to Multiple Remote Application Services
The client application framework can be used to connect to multiple application services at
the same time; that is, the client can connect to various SDK generated services at the
same time using the same framework.

Note: This feature can be used only with the remote client and not with the local client API.

 In order to facilitate this feature, the ApplicationServiceProvider (ASP) class is used in
conjunction with the proxy framework mentioned earlier. ASP reads information from the file
application-config.xml to create a new instance of the Application Service. If the
client application does not mention the service it needs to connect to, the ASP initializes the
service described under the “ServiceInfo” bean in the configuration file. However, if the client
application mentions the name of the service, the ASP locates the configuration entry for
that service, instantiates the service handler, and returns it to the client after adding the
interceptor. When using the client framework in multiple services mode, the developer of the
client application must ensure the following:

1. Domain objects corresponding to all the services to which they are trying to connect

must be present in the local environment.

2. The services to which the client application intends to connect should be based on the

ApplicationService interface of the SDK core.

3. The remote services can be an extension of the ApplicationService interface provided by

the SDK. If one or more services have the same extension interface name (e.g.

com.xyz.CustomService) then they should have the same method signatures as well.

4. All the extensions of the ApplicationService interface corresponding to different remote

services should be present in the local environment.

5. If any of the remote services has modified in the ApplicationService interface then the

client framework will fail to operate.

6. Appropriate entries should be made in the application-config.xml for each of the

remote services.

Security Filters

Security filters are HTTP servlet filters configured through ACEGI
(http://www.acegisecurity.org/) in the file application-config-web-security.xml.

30

http://www.acegisecurity.org/

 Chapter 4 Runtime System Technical Overview

The filters are used in a chained fashion to ensure reusability of the filters. For different
client interfaces, the purpose of the filter is to 1) retrieve a user’s security credentials from
the HTTP message 2) log a user into the application by putting information in the
ThreadLocal variable (http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ThreadLocal.html)
and 3) clear a user’s security information from ThreadLocal at the end of the request. For a
web interface, a user’s security information is stored in the HTTPSession so that it can be
retrieved on a subsequent call. For all other interfaces, a user is required to resubmit login
information for each request to be processed.

Security
The caCORE SDK provides an integrated security solution that uses ACEGI and CSM as its
underlying technologies with ACEGI as the security interceptor layer (Figure 4-8). Once calls
from the user are intercepted with the help of ACEGI, CSM is used to provide security at the
core level. By default, security is disabled in the SDK configuration. To enable the security,
enable the security flag in the configuration file and generate the system. Security can also
be enabled the security in the generated system by modifying multiple configuration files.
However, since this process is error prone, it is not recommended to all the users of the
SDK.

Figure 4-8 Security Layers in caCORE SDK

The SDK can provide security at the following levels (Figure 4-9):

• Unsecured system/No Security – All users of the SDK have equal access to the data
that the runtime system serves.

• Class level security – Only users who have access to certain objects in the system can
query the data. For example, doctors can view data for their patients whereas
administrators cannot.

• Instance level security – Users are allowed to access only data to which they have
access. For example, doctors can view data for their patients only and no other patients
in the system.

• Attribute level security – Users are allowed to see data for which they have
authorization. For example, doctors can view a patient’s medical record number but not
a patient’s social security number.

 31

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ThreadLocal.html

caCORE SDK 4.0 Developer’s Guide

Figure 4-9 Security Levels in caCORE SDK

SDK users can select the appropriate level of security for a system. Security level
configuration is enabled and managed through a configuration file at the system generation
time. When security is enabled, the system achieves the class level security by default. To
provide instance and/or attribute level security, see Configuring Security on page 117.

Authentication

SDK generated application provides a mechanism to log user in the application. It takes the
user credentials from the client and supplies it to ACEGI framework so that ACEGI
framework can validate the user credentials and decide if user can proceed with the
operation or not. Since security policy is managed at the CSM level, a bridge is prepared
between CSM and ACEGI. The ACEGI-CSM bridge retrieves the user information from the
security database and logs the user in the application. If the user is successfully logged in
the system, his/her security policy is cached at the application level. In case of unsuccessful
login, an exception is thrown back to the user indicating the cause of the error.

Authorization

Authorization in SDK refers to the class level security. Whenever user is trying to execute
any operation on the service layer, ACEGI framework intercepts the call to the operation and
with the help of a SecurityHelper class it determines what classes the user is trying to
access. Subsequent to that, ACEGI framework decides if the user has access to that class
or not by checking against the security policy of the user. If the user does not have access
then access denied exception is thrown back to the user.

Instance and Attribute Level Security

If the system is a secured system and instance and/or attribute level security is enabled then
SDK utilizes the CSM’s services to provide the instance and attribute level security. CSM
provides instance level security by altering the query using Hibernate filters. The modified
query has additional criteria in the where clause which goes against the CSM security
configuration which restricts user to retrieve only the records to which he/she has access to.
In order to use this feature, the CSM security configuration has to be available on the same
database schema.

32

Chapter 5 System Usage

This chapter provides examples to access the generated system’s client interfaces by a client
application or a user.

Topics in this chapter include:

• XML-HTTP Interface on this page
• Java API Interface on page 39
• Web Service Interface on page 52

XML‐HTTP Interface
The XML-HTTP interface can be accessed in two ways: 1) from a web browser or 2) from a
thin client application that can fetch data in XML format from the server using the REST-like
syntax.

Accessing Data from a Web Browser

The SDK web page contains links to several other pages that facilitate access to domain
data. The Home page is accessed from the following URL (Figure 5-1):

SDK GUI URL Pattern http //<server_name><server_port>/<project_name>

Sample SDK GUI URL http//localhost8080/example

 33

caCORE SDK 4.0 Developer’s Guide

Figure 5-1 SDK Home page

The Home page contains various links to SDK-related sites and documentation, such as:

• the SDK GForge site
• the SDK Download site
• the SDK Release Notes
• Javadocs for the domain objects of the generated system

Note: When security is disabled (which is the default), a Continue button displays on the
Home page. If security is enabled, a Login form requesting a User ID and Password displays
instead. More about enabling security is provided in Configuring Security on page 117.

Click the Continue button to display a hierarchical domain package/class browser tree
known as the Content page, which contains both a domain class browser and a Criteria form
to search for records. The Content page for the sample SDK model is shown in Figure 5-2.

34

 Chapter 5 System Usage

Figure 5-2 Content page

Expand or collapse the Domain Class Browser tree by clicking on the + or - symbols to the
left of a domain package name. To view the Search Criteria for a particular class, expand a
domain package so that its classes are listed, then select the desired class name node. A
Search Criteria form listing the searchable class fields is displayed to the right of the browser
tree.

Figure 5-3 illustrates the Search Criteria form for the Professor class of the sample SDK
model:

 35

caCORE SDK 4.0 Developer’s Guide

Figure 5-3 Search Criteria Form

Note: To search for date attributes, use the syntax: mm-dd-yyyy. The Search Criteria form
accepts the asterisk (‘*’) as a wildcard character. The Search Criteria form also contains a
drop-down list containing Search Objects (domain classes) that are associated with the
current domain class. Selecting a Search Object from the drop-down list causes the query to
return records of the type represented by the Search Object, and not records of the type
represented by the selected class, which is the default if no Search Object is selected.

Click the Submit button on the Search Criteria form to display any matching records on the
Result Data Table page in a new window (Figure 5-4). Fields from the resulting domain
class type are displayed as table columns within the table header on the Results page. A
collection of wrappers of primitive object types and field values are displayed as strings
within the corresponding table cells. Fields that represent an association to another domain
class are displayed as links, which can be clicked to retrieve any associated domain object
records.

36

 Chapter 5 System Usage

Figure 5-4 Result Data Table page

Accessing Data from a Thin Client

The Representational State Transfer (REST) interface provided by the SDK is a simple URL
interface that transmits domain-specific data over HTTP without an additional messaging
layer, such as SOAP, or session tracking via HTTP cookies. For more information on REST,
see http://en.wikipedia.org/wiki/REST.

The URL used by this interface uses the following pattern:

REST Interface URL Pattern http//<server_name><server_port>/<project_name>/
GetXML?query=<target>&<criteria>[&rolename=<rolen
ame>]

The following table (Table 5-1) describes each of the variable properties of the REST URL

Parameter Description
server_name A string identifying the server, or host, name. Examples

include localhost and 127.0.0.1.
server_port A string identifying the port number to which the SDK

server is listening.
Examples include 80 or 8080.

Project_name A string identifying the project name used when
building and deploying the SDK application.
Examples include example and myproject.

Note: This value coincides with the PROJECT_NAME
property found within the deploy.properties
file.

Target A string identifying the qualified or non-qualified query

 37

http://en.wikipedia.org/wiki/REST

caCORE SDK 4.0 Developer’s Guide

Parameter Description
target/result class name.
Examples include:
gov.nih.nci.cacoresdk.domain.inheritance.childwithasso
ciation.Bank

Criteria A string identifying the qualified or non-qualified criteria
class name to be used as a filter/constraint on the
result set.
An example is the SDK sample model Credit class that
has an association to the Bank class via its
issuingBank attribute.
If desired, the value of the id attribute of the criteria
class instance can also be supplied in order to further
constrain the result set. The pattern for such a criteria
string is <criteria_class_name>[@id=<id_value>]. An
example might be Credit[@id=3], which indicates that
only target/result class instances are returned that are
associated to the Credit record with an id value of 3.

Rolename The name of the attribute within the criteria class that
identifies the association to be traversed when
retrieving the target/result class(es).
An example is the issuingBank attribute of the Credit
class found within the sample SDK model.
The rolename property must be specified whenever the
Criteria class has two or more attributes representing
associations to the same target/result class type. One
example would be the Child class within the sample
SDK model that contains two attributes, mother and
father, that both represent instances of the Parent
class. In this scenario, specifying a value of
rolename=mother or rolename=father within the REST
URL would ensure that the correct Parent instance
would be returned.

Table 5-1 Variable properties of the REST URL

A sample URL from the sample SDK model is provided below:

Sample REST URL http://localhost:8080/example/GetXML?query=Bank&Credit[@id
=3]&roleName=issuingBank

While such a URL can be invoked directly from a browser, it is most frequently done so
programmatically via a remote client program. An example of such a program,
TestGetXMLClient.java, is provided in the \output\example\package\remote-client\src folder
created by the SDK Code Generator. Figure 5-5 provides a sample of the XML output
produced from invoking the Sample REST URL above.

38

 Chapter 5 System Usage

Figure 5-5 Sample XML output from REST call

Java API Interface
The use of the Java API client involves two primary steps. The first step involves obtaining a
reference to the instance of ApplicationService interface from the ApplicationServiceProvider
class. The second step involves invoking one of the interface methods in order to fetch the
results from the SDK generated server component (local in the case of a local client).

The following test programs illustrating how the SDK Java API can be used are provided as
samples:

• TestClient.java: A sample local client located in the folder
\output\example\package\local-client\src.

• TestClient.java: A sample remote client located in the folder
\output\example\package\remote-client\src.

More information about these test programs is provided in Testing the Java API on page
112.

Obtaining ApplicationService

Access to the ApplicationService interface is provided via the ApplicationServiceProvider
class, which provides several variations of a single method as shown below.

Primary Application Service
Provider Method

getApplicationService(service, url, username,
password)

 39

caCORE SDK 4.0 Developer’s Guide

c d c lie nt

Applic a tionS e rv ic e P rov ide r

+ g e tA p p l i ca ti o n S e rvi ce () : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g , u rl :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , se rvi ce :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , se rvi ce :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce

 Figure 5-6 ApplicationServiceProvider Methods

The four required parameters required by the methods of the ApplicationServiceProvider
class are described in the following table (Table 5-2).

ApplicationService
Parameter

Description

Service A string identifying the name of the Spring bean to use when
configuring the ApplicationService instance. The bean represents a
hash map and is defined within the configuration file, application-
config-client.xml, located within the folder
/output/<project_name>/package/[local|remote]-
client/conf/.
The default bean name (for those methods that do not require the
service parameter) is ServiceInfo. This default hash map defines the
following configuration properties:
• APPLICATION_SERVICE_BEAN: A reference to another Spring

bean within the same configuration file that identifies the
ApplicationService class to instantiate.

• AUTHENTICATION_SERVICE_BEAN: A reference to another
Spring bean within the same configuration file that identifies the
authentication provider class to use when security is enabled.

• APPLICATION_SERVICE_URL: The URL to the Spring
DispatcherServlet configured within the SDK to handle remote Java
API calls. The URL must conform to the following pattern :
http://<server_name>:<server_port>/<project_name>

• APPLICATION_SERVICE_CONFIG: A reference to another Spring
bean within the same configuration file that identifies a configuration
string used when instantiating the ApplicationService instance.

Note: This is an advanced property setting, and should rarely need
to be changed, if ever.

url A string identifying the URL to the remote service configured within the
SDK to handle remote Java API calls. The URL must conform to the
following pattern:

40

 Chapter 5 System Usage

ApplicationService Description
Parameter

http://<server_name>:<server_port>/<project_name>.
username A string identifying the username to use for both authentication and

authorization purposes. Only required and valid when security is
enabled.

password A string identifying the password to use for authentication purposes.
Only required and valid when security is enabled

Table 5-2 Primary ApplicationServiceProvider method parameters

The ApplicationServiceProvider method can be classified into two method groupings. The
first group of methods returns an ApplicationService instance without requiring an
Application Service URL. The second group, in contrast, requires that an Application Service
URL be provided.

Note: The ApplicationServiceProvider methods requiring a URL are useful when overriding
the default URL. These methods are also useful when multiple ApplicationService instances
to differing SDK applications are desired.

ApplicationService API Methods

The SDK Java API consists of several query/search methods and a few other convenience
methods that facilitate read-only access to domain data. A class diagram, which highlights
these methods, is shown in Figure 5-7.

c d a pplic a tions e rv ic e

« in te rfa ce »
Applic a tionS e rv ic e

+ g e tA sso cia ti o n (so u rce :O b je ct, a sso cia ti o n Na me :S tri n g) : L i st<O b je ct>
+ g e tMa xRe co rd sCo u n t() : In te g e r
+ g e tQ u e ryRo w Co u n t(cri te ri a :O b je ct, ta rg e tCla ssNa me :S trin g) : In te g e r
+ q u e ry(cq lQ u e ry :CQ L Q u e ry, ta rg e tCla ssNa me :S tri n g) : L i st<O b je ct>
+ q u e ry(cq lQ u e ry :CQ L Q u e ry) : L i st<O b je ct>
+ q u e ry(d e ta ch e d Cri te ria :De ta ch e d Cri te ri a , ta rg e tCla ssNa me :S tri n g) : L i st<O b je ct>
+ q u e ry(d e ta ch e d Cri te ria :De ta ch e d Cri te ri a) : L i st<O b je ct>
+ q u e ry(h q lCri te ri a :HQ L Cri te ri a , ta rg e tCla ssNa me :S tri n g) : L i st<O b je ct>
+ q u e ry(h q lCri te ri a :HQ L Cri te ri a) : L i st<O b je ct>
+ q u e ry(cri te ria :O b je ct, f i rstRo w :In te g e r, ta rg e tCla ssNa me :S tri n g) : L i st<O b je ct>
+ se a rch (ta rg e tCla ss :Cla ss, o b jL i st :L i st<? >) : L i st<O b je ct>
+ se a rch (ta rg e tCla ss :Cla ss, o b j :O b je ct) : L i st<O b je ct>
+ se a rch (p a th :S tri n g , o b jL i st :L i st<? >) : L i st<O b je ct>
+ se a rch (p a th :S tri n g , o b j :O b je ct) : L i st<O b je ct>

Figure 5-7 ApplicationService Interface Methods

The ApplicationService methods are grouped into different categories and are discussed is
the following sections.

 41

caCORE SDK 4.0 Developer’s Guide

Convenience Query

The ApplicationService interface provides various convenience query methods, which can
be SDK users, but which are typically used by the SDK infrastructure. Table 5-3 highlights
these methods.

ApplicationService Method Description
getMaxRecordsCount() Returns the maximum number of records the

ApplicationService interface has been configured to
return at one time.

getQueryRowCount(Object criteria,
String targetClassName)

Returns the number of records that meet the search
criteria. This method is used by the client framework
to determine the number of list chunks in the result
set. SDK users can also invoke this method in
conjunction with the getMaxRecordsCount() method;
however, this is not typical.

getAssociation(Object source, String
associationName)

Retrieves an associated object for the example
object specified by the source parameter.

Table 5-3 ApplicationService interface query methods

HQL Query

Hibernate is equipped with a powerful query language, called Hibernate Query Language
(HQL), that is similar to SQL. However, though the syntax is SQL-like, HQL is still fully
object-oriented and understands concepts like inheritance, polymorphism and association.
See http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html for more
information on the Hibernate Query Language. The SDK contains a wrapper class called
HQLCriteria, which is used for submitting HQL queries. A diagram of this class is shown in
Figure 4-8.

c d hibe rna te

S e ria l i za b le
HQ LCrite ria

- h q lS tri n g : S tri n g
- p a ra m e te rs: L i st
- se ri a lV e rsio n UID: l o n g = 1 L

+ g e tHq lS tri n g () : S tri n g
+ g e tP a ra m e te rs() : L i st
+ HQ L Cri te ri a (h q lS tri n g :S tri n g)
+ HQ L Cri te ri a (h q lS tri n g :S tri n g , p a ra m e te rs :L i st)

Figure 5-8 HQLCriteria Class Diagram

The following table highlights the HQL related ApplicationService methods.

ApplicationService Method Description
query(HQLCriteria hqlCriteria) This method retrieves the results obtained by querying the data

source using the Hibernate Query Language (HQL). As such, the

42

http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

 Chapter 5 System Usage

ApplicationService Method Description
data source must use Hibernate at the persistence tier. Internally,
Hibernate executes the HQL query against the relational
database and fetches the results.
Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by
the getMaxRecordsCount() method, then the result set will only
contain a subset of the total records. The client framework will
execute a subsequent query (transparent to the client application)
against the ApplicationService to load the remaining results in the
list chunk.

query(HQLCriteria hqlCriteria,
String targetClassName)

Deprecated. Internally calls the query(HQLCriteria hqlCriteria)
method without the targetClassName parameter.

Table 5-4 HQL ApplicationService methods

Figure 5-9 shows how an SDK HQLCriteria object representing an HQL query might be
instantiated and submitted. Figure 5-10 shows how the results would be returned.

Figure 5-9 Sample HQL Query

 Figure 5-10 Sample HQL Query Results

Detached Criteria Query

While HQL is extremely powerful, some developers prefer to build queries dynamically,
using an object-oriented API, rather than building query strings. To this end, Hibernate
provides an intuitive Criteria query API. See
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria for more
information on Hibernate Criteria queries. See section 15.8. Detached Queries and
Subqueries of the same chapter for details on the Hibernate DetachedCriteria itself. The
Hibernate Detached Criteria extends the Criteria concept, allowing Criteria queries to be
created outside the scope of a session to be executed later using some arbitrary Hibernate
Session.

 43

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria

caCORE SDK 4.0 Developer’s Guide

Table 5-5 highlights the Detached Criteria related ApplicationService methods.

ApplicationService Method Description
query(DetachedCriteria
detachedCriteria)

Retrieves the result from the data source using the
DetachedCriteria query object. The DetachedCriteria query
structure can be used only by the Object Relational Mapping based
persistence tier. Hibernate executes it against the relational
database and fetches the results.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

query(DetachedCriteria
detachedCriteria, String
targetClassName)

Deprecated. Internally calls the query(DetachedCriteria
detachedCriteria)method without the targetClassName parameter.

Table 5-5 Detached Criteria related ApplicationService methods

Figure 5-11 shows how a Hibernate DetachedCriteria object might be instantiated and the
query submitted. Figure 5-12 shows how the results would be returned.

Figure 5-11 Sample DetachedCriteria Query

 Figure 5-12 Sample DetachedCriteria Query Results

CQL Query

In addition to providing access to Hibernate specific queries, SDK also provides language
neutral SDK specific queries. CQL is one of such two query mechanisms. SDK CQL queries
are modeled similarly to the object representation of the caBIG Query Language (CQL),
which uses syntax similar to the Query-by-Example (QBE) query language to specify the
way results are to be retrieved.

44

 Chapter 5 System Usage

Note: QBE is a database query language for relational databases. It was devised by Moshé
M. Zloof at IBM Research during the mid 1970s, in parallel to the development of SQL. It is
the first graphical query language, using visual tables where the user would enter
commands, example elements and conditions. See
http://en.wikipedia.org/wiki/Query_by_Example for more information.

The system formulates the query based on the navigation path specified in the query search
criteria. The query mechanism allows the user to search for the objects using platform-
independent query syntax.

The CQL query is represented by a complex object structure as shown in Figure 5-13. The
starting object for a CQL query is always CQLQuery object in which the user has to specify
which object (target object) to be fetched from the database. The target object (CQLObject)
is an example of the object that a user intends to search. The example query object has
space for 1) an attribute (CQLAttribute) 2) an association (CQLAssociation) and 3) a group
(CQLGroup) of association collection and attributes collection.

For example, to search for an object with one of its attributes called zipcode with a value
equal to 20852, a CQLObject must be created with a CQLAttribute object populated inside
it. The CQLAttribute object will have its name attribute’s value as zipcode and value
attribute’s value as 20852. The CQLAttribute object will also require a CQLPredicate for
comparison between CQLAttribute and the database value. In this example, the
CQLPredicate of EQUAL_TO will be selected and is equivalent to “where zipcode=20852”.
CQLGroup allows the logical grouping of other groups, attributes, or associations. To create
a query like “where zipcode=20852 and name like ‘%Dav%’ ”, then CQLGroup can be
utilized.

c d c ql

ja va .i o .S e ri a l i za b le
CQ LAs s oc ia tion

- se ri a lV e rsi o n UID: l o n g = 1 L
- so u rce Ro le Na m e : S trin g
- ta rg e tRo le Na m e : S tri n g

ja va .io .S e ri a l i za b le
CQ LAttribute

- n a m e : S tri n g
- p re d i ca te : CQ L P re d i ca te
- se ri a lV e rsio n UID: lo n g = 1 L
- va l u e : S tri n g

ja va .io .S e ri a l i za b le
CQ LG roup

- a sso ci a ti o n Co l l e ctio n : Co l le cti o n <CQ L A sso cia tio n >
- a ttrib u te Co l l e cti o n : Co l le cti o n <CQ L A ttri b u te >
- g ro u p Co l l e ctio n : Co l l e cti o n <CQ L G ro u p >
- l o g icO p e ra to r: CQ L L o g ica lO p e ra to r
- se ria lV e rsi o n UID: l o n g = 1 L

ja va .i o .S e ri a l i za b le
CQ LLogic a lO pe ra tor

+ A ND: CQ L L o g i ca lO p e ra to r = n e w CQ L L o g ica lO ...
+ O R: CQ L L o g ica lO p e ra to r = n e w CQ L L o g i ca lO ...
- se ri a lV e rsio n UID: l o n g = 1 L
- va lu e : S tri n g

ja va .i o .S e ri a l i za b le
CQ LO bj e c t

- a sso cia ti o n : CQ L A sso cia ti o n
- a ttri b u te : CQ L A ttrib u te
- g ro u p : CQ L G ro u p
- n a m e : ja va .l a n g .S tri n g
- se ria lV e rsio n UID: l o n g = 1 L

ja va .i o .S e ria l i za b le
CQ LP re dic a te

+ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ G RE A T E R_ T HA N: CQ L P re d ica te = n e w CQ L P re d i ca t...
+ G RE A T E R_ T HA N_ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ IS _ NO T _ NUL L : CQ L P re d ica te = n e w CQ L P re d i ca t...
+ IS _ NUL L : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ L E S S _ T HA N: CQ L P re d ica te = n e w CQ L P re d i ca t...
+ L E S S _ T HA N_ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ L IK E : CQ L P re d ica te = n e w CQ L P re d i ca t...
+ NO T _ E Q UA L _ T O : CQ L P re d ica te = n e w CQ L P re d i ca t...
- se ri a lV e rsi o n UID: lo n g = 1 L
- va l u e : S trin g

ja va .i o .S e ri a l i za b le
CQ LQ ue ry

- se ri a lV e rsi o n UID: l o n g = 1 L
- ta rg e t: CQ L O b je ct

-ta rg e t

-a sso ci a tio n

-a ttrib u te

+G RE A T E R_ T HA N

-p re d ica te

-lo g i cO p e ra to r

-g ro u p

+A ND+O R

+E Q UA L _ T O

+G RE A T E R_ T HA N_ E Q UA L _ T O

+IS _ NO T _ NUL L

+ IS _ NUL L

+L IK E

+NO T _ E Q UA L _ T O

+L E S S _ T HA N_ E Q UA L _ T O

+L E S S _ T HA N

Figure 5-13 CQL Query Association Diagram

 45

http://en.wikipedia.org/wiki/Query_by_Example

caCORE SDK 4.0 Developer’s Guide

The following table highlights the CQLQuery related ApplicationService query methods.

ApplicationService Method Description
query(CQLQuery cqlQuery) Retrieves the query result from the data source using the CQL

query syntax. Internally, CQL query structure is converted into
Hibernate Query Language (HQL). Hibernate in turn converts the
HQL into SQL and executes it against the relational database.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

query(CQLQuery cqlQuery,
String targetClassName)

Deprecated. Internally calls the query(CQLQuery cqlQuery) method
without the targetClassName parameter.

Table 5-6 CQLQuery related ApplicationService query methods

The following paragraphs provide an example of how to create and execute a CQL query
using the ApplicationService interface. Figure 5-14 shows classes from the sample SDK
model package gov.nih.nci.cacoresdk.domain.other.levelassociation, and is provided as a
point of reference.

cd Other

lev elassociation::
Hand

- id: Integer

+handCollection 0..*

lev elassociation::
Card

- id: Integer
- Name: String
- image: String

lev elassociation::
Suit

- id: Integer
- name: String

lev elassociation::
Deck

- id: Integer
- name: String

+cardCollection

*

+suit

1

+cardCollection 1..*

+suitCollection +deck

1..* 1

Figure 5-14 Sample Domain Class Diagram

Figure 5-15 shows how an SDK CQL query object might be instantiated and the query
submitted as “select * from Suit where id=1”.

46

 Chapter 5 System Usage

Figure 5-15 Sample CQL Query without Association

 Figure 5-16 Sample CQL Query without Association Results

Figure 5-17 shows how an SDK CQL query object might be instantiated and the query
submitted as “select * from Suit (select suit from card where id=2 or id=32)”.

 47

caCORE SDK 4.0 Developer’s Guide

Figure 5-17 Sample CQL Query with Association

48

 Chapter 5 System Usage

Figure 5-18 Sample CQL Query with Association Results

Nested Search Criteria Query

SDK Nested Search Criteria queries are developed specifically for SDK and have two parts:
1) a comma separated path to the target search object and 2) an example of the source
object. The comma separated path starts with the target object (the fully qualified name of
the class) to retrieve from the database. The next item in the comma-separated path is a link
in the chain to an element (fully qualified name of the class) that connects the element on its
left to the element on its right. The element on the right could be the example object or
another element in the chain. The linked element provides a mechanism to traverse from the
example object to the object that is desired using a comma separated path.

Table 5-7 highlights the Nested Search Criteria related ApplicationService methods.
ApplicationService Method Description
search(String path, List<?>
objList)

Retrieves the result from the data source using a Nested Search
Criteria. The path specifies the list of objects (separated by
commas), which should be used to reach the target object from the
example objects passed in the objList, or the associated object for
the example object. Internally, the Nested Search Criteria is
converted into the data source specific query language. For the
Object Relational Mapping based persistence tier, the query
structure is first converted into the Hibernate Query Language
(HQL). Hibernate then converts the HQL into SQL and executes it
against the relational database.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

search(Class targetClass,
List<?> objList)

Retrieves the result from the data source using the Query by
Example query language. The targetClass specifies the object that
to fetch after executing the query. The targetClass should be the

 49

caCORE SDK 4.0 Developer’s Guide

ApplicationService Method Description
same as the object specified in the objList or associated object for
the example object. All the objects in the objList have to be the
same type. The example query is converted into the data source
specific query language. For the Object Relational Mapping based
persistence tier, the example query structure is first converted to a
Nested Search Criteria, and then to Hibernate Query Language
(HQL). Hibernate then converts the HQL into SQL and executes it
against the relational database.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

search(Class targetClass,
Object obj)

Retrieves the result from the data source using the Query by
Example query language. The targetClass specifies the object that
the user intends to fetch after executing the query. The targetClass
should be same as the example object or associated object for the
example object. The example query is first converted into the data
source specific query language. For the Object Relational Mapping
based persistence tier, the example query structure is first
converted to a Nested Search Criteria, and then to Hibernate Query
Language (HQL). Hibernate finally converts the HQL into SQL and
executes it against the relational database.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

search(String path, Object
obj)

Retrieves the result from the data source using the Nested Search
Criteria. The path specifies the list of objects (separated by
commas) which should be used to reach the target object from the
example object passed as obj, or the associated object for the
example object. Internally, the Nested Search Criteria is converted
into the data source specific query language. For the Object
Relational Mapping based persistence tier, the query structure is
first converted into the Hibernate Query Language (HQL).
Hibernate then converts the HQL into SQL and executes it against
the relational database.

Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

Table 5-7 Nested Search Criteria related ApplicationService methods

50

 Chapter 5 System Usage

Figure 5-19 demonstrates how to use the nested search criteria. In the example, the Suit
class is retrieved from the database from the Card object. There are two different instances
of the Card object inside the cardCollection that will be ORed and their corresponding Suit
will be retrieved. The resulting query will be as “select * from Suit where suit in (select suit
from card where id=2 or id=6)”:

Figure 5-19 Sample Nested Search Criteria Query

Figure 5-20 Sample Nested Search Criteria Query Results

 51

caCORE SDK 4.0 Developer’s Guide

Web Service Interface
The SDK 4.0 Web Services is based on the Axis 1.4 framework, which adheres to the
J2EE 1.4 server programming model described by JAX-RPC and JSR 109 (that is,
the SDK 4.0 Web Services uses the Remote Procedure Call (RPC) Web Service style).

See the Introduction to Web Services Metadata:
http://dev2dev.bea.com/pub/a/2004/10/Anil_WServices.html. There are four "styles" of
service in Axis. RPC services use the SOAP RPC conventions, and also the SOAP "section
5" encoding. Document services do not use any encoding (so in particular, you will not see
multiref object serialization or SOAP-style arrays on the wire) but DO still do XML<->Java
databinding. Wrapped services are just like document services, except that rather than
binding the entire SOAP body into one big structure, they "unwrap" it into individual
parameters. Message services receive and return arbitrary XML in the SOAP Envelope
without any type mapping / data binding. For more information, see
http://ws.apache.org/axis/java/user-
guide.html#ServiceStylesRPCDocumentWrappedAndMessage.

Note: While the SDK Web Service continues to be based on the Axis 1.4 framework, the
extraneous .ws layer found in previous SDK versions has been eliminated.

In addition, the SDK Web Service Deployment Descriptor (WSDD) is now packaged along
with the rest of the SDK generated system, thus allowing for automatic deployment of the
Web Service (that is, manual deployment of the Web Service is no longer required).
A sample test program illustrating how the SDK generated Web Service can be consumed,
TestClient.java, is provided in the \output\example\package\ws-client\src folder. More
information about this test program is provided in Testing the Web Service Interface on page
115.

The remainder of this section provides specifications for the SDK generated Web Service
via the Web Services Description Language (WSDL) and includes an overview of the
schema imports, service, port types, and messages found within the WSDL. For more
information related to the WSDL format and structure, see http://www.w3.org/TR/wsdl.html
or http://en.wikipedia.org/wiki/WSDL.

SDK WSDL Directives ‐ Schema Imports

Figure 5-21 provides a list of the schema imports found within the WSDL for the sample
SDK model. It is provided here in order to emphasize that a schema import statement is
added to the WSDL for each of the distinct domain package(s) found within the model
provided to the SDK Code Generator:

52

http://dev2dev.bea.com/pub/a/2004/10/Anil_WServices.html
http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

 Chapter 5 System Usage

Figure 5-21 Sample WSDL Directives - Schema Imports

WSDL Service Definition

The WSDL defines a Web Service as a collection of network endpoints, or ports. Figure 5-22
and Figure 5-23 provide details for the SDK generated Web Service defined within the
WSDL, which includes its:

• Name
• Prefix
• Target Namespace, and
• Port Information

 53

caCORE SDK 4.0 Developer’s Guide

Figure 5-22 Sample WSDL Service Definition

Figure 5-23 Sample WSDL Service Definition – Port

Note: The SDK Code Generator uses the value of the PROJECT_NAME property provided
within the deploy.properties file (in this case, “example”) while generating the WSDL.
Therefore, while the information displayed above is specific to the sample SDK model, the
same pattern is followed in the generation of the WSDL Service and Port definitions for other
models.

WSDL Port Types (Network Endpoints)

The WSDL defines a port as an association of a network address with a reusable binding.
Port types, in turn, are abstract collections of supported operations. Figure 4-24 provides a
summary of the collection of network endpoints (and their messages) that composes any
SDK generated Web Service.

54

 Chapter 5 System Usage

Figure 5-24 WSDL Port Types (Network Endpoints)

Messages, Elements, and Types

The WSDL defines messages as abstract descriptions of the data being exchanged. The
concrete protocol and data format specifications for a particular port type constitutes a
reusable binding, where the messages and operations are then bound to a concrete network
protocol and message format. Table 5-8 provides a summary of the messages and elements
(including parameters and data types) that make up the Web Service defined in the WSDL
for the sample SDK model.

Message Description
getAssociationRequest The getAssociationRequest message is used by a Web Service client

to request object(s) associated to a given Java domain object
instance. Required parameters include:
• source: An instance of the Java domain object containing the

association (rolename) method to be invoked;
• associationName: The name of the method (rolename) that

represents the associated object(s) to be returned;
• startIndex: The starting index into the resulting dataset. Useful

during subsequent calls when “scrolling” through a large result

 55

caCORE SDK 4.0 Developer’s Guide

Message Description
dataset. Initial requests should set the value of this parameter to
zero (0).

getAssociationResponse The getAssociationResponse message is used by the SDK server to
provide any qualifying objects associated to the source Java domain
object. The response is an array of qualifying objects.

getTotalNumberOf
RecordsRequest

The getTotalNumberOfRecordsRequest message is used by a Web
Service client to request a count of total number of records that would
be returned for a given search criteria. Required parameters include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself, or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object,
containing values for any desired field(s) (attributes) that should
act as a filter (constraint) on the resulting dataset;

getTotalNumberOf
RecordsResponse

The getTotalNumberOfRecordsResponse message is used by the
SDK server to provide a count of the total number of records that
would be returned for a given search criteria. The response type is a
positive integer (int), or zero, if no qualifying records are found.

queryRequest The queryRequest message is used by a Web Service client to
request object(s) that meet the supplied search criteria. Internally, a
nested search criteria is performed. Required parameters include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself, or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object,
containing values for any desired field(s) (attributes) that should
act as a filter (constraint) on the resulting dataset

• startIndex: The starting index into the resulting dataset. Useful
during subsequent calls when “scrolling” through a large result
dataset. Initial requests should set the value of this parameter to
zero (0).

queryResponse The queryResponse message is used by the SDK server to return
any objects that meet the search criteria passed via the
queryRequest message. The response is an array of qualifying
objects.

queryObjectRequest The queryObjectRequest message is used by a Web Service client to
request object(s) that meet the supplied search criteria. Required
parameters include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself, or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object,
containing values for any desired field(s) (attributes) that should
act as a filter (constraint) on the resulting dataset.

Note: The queryObjectRequest operation has the same effect as
invoking the queryRequest message with a startIndex of zero (0). A
different operation/message name had to be used, as the Axis 1.4
framework does not seem to allow the “overloading” of method

56

 Chapter 5 System Usage

Message Description
signatures.

queryObjectResponse The queryObjectResponse message is used by the SDK server to
return any objects that meet the search criteria passed via the
queryObjectRequest message. The response is an array of qualifying
objects.

Table 5-8 Summary of messages and elements for Web Service as defined in WSDL

Web Service Error Handling

The errors that may be generated during a message exchange between a Web Service
client and a generated SDK system Web Service fall into one of the two following
categories:

• Those that would be generated by the generated SDK application, and
• Those that would be generated by any of the framework APIs used during the message

exchange between systems.
In both instances, a SOAP Fault element handles the transport of error messages. More
information related to the SOAP Fault can be found in the Simple Object Access Protocol
(SOAP) 1.1 Specification: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

The application-related errors occur when the SDK generated cannot fulfill a request from a
Web Service client. For example, when a Web Service client sends a
getAssociationRequest message and supplies an invalid associationName value. In the
case of the Web Services framework API, an error could occur when a message cannot
reach its destination. An example of that would be interruption in network, issue with the
message structure, or message load, etc. In these instances, the Web Services framework
generates an error relevant to the incident and a SOAP Fault element transports the
message to the client, if it can be delivered.

SOAP Fault Structure

As stated above, the SOAP Fault element is used to carry error and/or status information
within a SOAP message. If a Fault element is present, it must appear as a child element of
the Body element. A Fault element can only appear once in a SOAP message.

The SOAP Fault element has the following sub elements (Table 5-9).
Sub Element Description

<faultcode> A code for identifying the fault.

<faultstring> A human readable explanation of the fault.

<faultactor> Information about who caused the fault to happen.

<detail> Holds application specific error information related to the Body element.
Table 5-9 SOAP Fault Structure Element Descriptions

 57

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

caCORE SDK 4.0 Developer’s Guide

58

Chapter 6 System Usage for a Secured System

This chapter describes how to use the SDK generated runtime system when security is enabled.

Topics in this chapter include:

• Introduction on this page
• XML-HTTP Interface on this page
• Web Services Client on page 62
• Java API on page 62

Introduction
When the generated system is secured, the user of the system is required to perform the
login operation before making any query to the system. Depending on the client interface
that is used, the login operation varies. Information is provided in this chapter about logging
into the individual client interfaces. Once the login operation is complete, querying the
system can be done in the same fashion as explained in the previous chapter.

XML‐HTTP Interface
The XML-HTTP interface can access data using two types of the clients 1) a web browser to
view data in the form of a web page and 2) a thin client to get XML data. Browser-based
clients have security configured through a form-based authentication meaning that a user
must type in a username and password in the login form provided by the application (Figure
6-1).

Note: The login form appears on the SDK Home page whenever the secured system is
generated.

 59

caCORE SDK 4.0 Developer’s Guide

Figure 6-1 Security login form in the web browser

If login is unsuccessful, the client receives an error message shown in Figure 6-2. After
three consecutive unsuccessful login attempts, the user’s login account is locked out by
CSM for 30 minutes.

60

 Chapter 6 System Usage for a Secured System

Figure 6-2 Security Login failure in the web browser

The XML-based REST interface communicates with the SDK generated application using a
thin client application. If the SDK generated system is secured, the thin client application is
required to provide the username and the password using BASIC authentication
(http://www.ietf.org/rfc/rfc2617.txt, http://en.wikipedia.org/wiki/Basic_access_authentication).
Under BASIC authentication, the username and password are encrypted using Base64
encryption and are supplied as part of the HTTP header to the server. The server side
component decrypts the headers using the corresponding decryption logic and attempts to
log in the user in the application. The code snippet in Figure 6-3 demonstrates setting up
BASIC authentication using the Java API.

 61

http://www.ietf.org/rfc/rfc2617.txt
http://en.wikipedia.org/wiki/Basic_access_authentication

caCORE SDK 4.0 Developer’s Guide

URLConnection conn = url.openConnection();
String base64 = "userId" + ":" + "password";
conn.setRequestProperty("Authorization", "Basic " + new String(
 org.apache.commons.codec.binary.Base64.encodeBase64(base64.getBytes())));

Figure 6-3 Security Login in Java based REST (XML) client

Note: For the REST interface, the thin client application is required to provide the username
and password in every call that is made to the server.

Web Services Client
A secured SDK generated web services user is required to supply user credentials in the
form of a web service message header. As part of the web service message, a new header
called SecurityHeader is required to be added to the web service call. This header has an
element called security with two child elements named username and password
respectively. The values of these child elements reflect the user’s login name and login
password for the underlying application. The code snippet in Figure 6-4 demonstrates the
usage of SecurityHeader in Java.

SOAPHeaderElement headerElement = new
 SOAPHeaderElement(call.getOperationName().getNamespaceURI(),"SecurityHeader");
headerElement.setPrefix("security");
headerElement.setMustUnderstand(false);
SOAPElement usernameElement = headerElement.addChildElement("username");
usernameElement.addTextNode("userId");
SOAPElement passwordElement = headerElement.addChildElement("password");
passwordElement.addTextNode("password");
call.addHeader(headerElement);

Figure 6-4 Security Login in Java based web services client

Note: The web service communication is stateless. Hence, the user of the web service is
required to provide the login information in the header of the message each time it is making
a call to the server.

Java API
Using security with the Java API client is a simple one-step process. The user is required to
use the methods that accept the username and password to obtain the reference to the
ApplicationService from the ApplicationServiceProvider class. If the username and
password are passed as parameters then the ApplicationServiceProvider class validates the
username and password against the authentication service and if successful, logs the user
in the application (Figure 6-5).

ApplicationService appService =
ApplicationServiceProvider.getApplicationService(“userId”, “password”)

Figure 6-5 Security Login in Java API client

62

 Chapter 6 System Usage for a Secured System

Note: In addition to the example shown above, there are other additional convenience
methods in the ApplicationServiceProvider class that allow a user to log in on a different
service or different URL.

 63

caCORE SDK 4.0 Developer’s Guide

64

Chapter 7 Performance Tuning the Java API

The SDK generated Java API provides the powerful feature of creating a data service in a small
amount of time. As the SDK is just a tool to generate the API, it cannot understand all the use
cases of the user’s application and hence cannot provide a comprehensive solution to
requirements for all users. The SDK development team and many of the SDK users have
encountered problems and have discovered several solutions to improve performance. This
chapter includes some of the solutions discovered by these users.

Topics in this chapter include:

• Database Indexes on this page
• Fine Tuning the Page Size on this page
• Lazy Loading on page 65
• Hibernate Query Language (HQL) on page 66

Database Indexes
Problem: Missing or corrupt indexes can explain performance problems for most queries.
Most database modeling tools provide an option to create indexes for the primary key and
foreign keys; however, the database indexes have been found missing or corrupted due to
various reasons including batch data load and recreating the records.

Solution: Fixing the indexes should improve the performance of the queries. Proper indexes
on the primary and foreign key columns will definitely improve performance for the database
table joins. The user may have to create additional indexes for the columns that are more
likely to be hit from the end user search.

Fine Tuning the Page Size
Problem: An SDK user can choose the page size for the SDK generated system at the time
of generating system. There are two kinds of pages for the generated system. The first is for
the maximum number of records (rowCounter) that can be displayed to the user of the web
interface. The second is the maximum number of records (resultCountPerQuery) that can be
fetched by the Java API per call.

Solution: Both of these properties can be altered in the file application-config.xml,
which is located in the SDK distribution folder /conf/system/web/WEB-INF/classes.
By default, the maximum number of records shown to the user of the web application is set
to 200 and the maximum number of records that can be fetched by the Java API in one call
to the server is set to 1000. Based on the nature of the underlying data, the developer of the
application can choose the appropriate page size.

Lazy Loading
Problem: By default, an SDK generated application will only fetch the objects demanded by
the query. For example, a query for a Person object will result in fetching of only a Person
object and none of its associated objects. When the client application invokes the getter
method to retrieve the associated objects (for example, getAddress() of a Person object),

 65

caCORE SDK 4.0 Developer’s Guide

the SDK generated application seamlessly connects to the server to retrieve the associate
object(s). This approach is known as lazy loading and results in a delayed response from
the application due to additional calls over the network.

Solution: This default behavior can be overridden in two

d

 ways:

rough the O/R mapping.

s

2. f associated objects . This

he

ate.org/hib_docs/reference/en/html/querycriteria.html#querycriteria-

1. Disabling lazy loading for certain associations of the object th
Based on the use case of the system, a user of the SDK code generator can specify a
UML tag-value with the key = lazy-load and the value for the key = no on the
association which the user intends to fetch eagerly (or not lazily). Currently, thi
approach works for a unidirectional association only.
Using Hibernate’s DetachedCriteria for eager loading o
approach is the more flexible approach of the two. The user of the SDK generated
runtime system can use DetachedCriteria from Hibernate, which allows specifying t
eager loading option for some of the associations for the queried object. For more
information see,
http://www.hibern
detachedqueries.

Hibernate Query Language (HQL)
 SDK generated queries from SDK’s Nested Search Criteria and SDK’s CQL search criteria

domain

result in fetching the complete domain object from the database. At the same time, the
database queries generated by the SDK specific search criteria can result in poor
performance. A user of the SDK has an option to use the HQL queries to fetch the
objects from the data service. The user can choose to retrieve selected attributes of the
domain object but not the complete object by writing a more granular HQL query.

66

http://www.hibernate.org/hib_docs/reference/en/html/querycriteria.html#querycriteria-detachedqueries
http://www.hibernate.org/hib_docs/reference/en/html/querycriteria.html#querycriteria-detachedqueries

Chapter 8 Utilities

This chapter describes a class that can be used to serialize and deserialize generated Java
Beans to XML and back again.

Topics in this chapter include:

• XML Utility (Marshalling and Unmarshalling) on this page
• The caCOREMarshaller Class on this page
• The caCOREUnmarshaller Class on page 68
• Marshalling Java Objects to XML on page 69
• Unmarshalling XML to Java Objects on page 70

XML Utility (Marshalling and Unmarshalling)
While used primarily by caGRID, the caCORE SDK does provide a class, XMLUtility.java,
which can be used to marshal (serialize) the generated domain Java Beans to XML, and
unmarshal (deserialize) XML data back to the generated domain Java Beans (Figure 7-1).

cd xml

XMLUtility

- log: Logger = Logger.getLogge...
- marshaller: Marshaller
- unmarshaller: Unmarshaller

+ fromXML(xmlFile :File) : Object
+ fromXML(input :Reader) : Object
+ toXML(beanObject :Object) : String
+ toXML(beanObject :Object, stream :Writer) : void
+ XMLUtility(marshaller :Marshaller, unmarshaller :Unmarshaller)

Figure 8-1 XML Utility Class Diagram

As implied by the XMLUtility Constructor method, the XMLUtility class wraps both an SDK
Marshaller and Unmarshaller class, which it is dependent upon in order to perform its work.
These collaborating classes and their interfaces are discussed in the following sections.

The caCOREMarshaller Class
The SDK caCOREMarshaller class implements the SDK Marshaller interface and is used by
the XMLUtility class to perform the actual work of marshalling (serializing) domain Java
Bean objects to XML (Figure 7-2).

Note: The caCOREMarshaller class is used internally by the XML Utility infrastructure and is
not typically invoked by the end user.

 67

caCORE SDK 4.0 Developer’s Guide

c d x m l

c a CO RE M a rs ha lle r

« in te rfa ce »
M a rs ha lle r

~ g e tB a se Ma rsh a l l e r() : O b je ct
~ to X ML (O b je ct) : S tri n g
~ to X ML (O b je ct, Wri te r) : vo id

-m a rsh a l l e r

- l o g : L o g g e r = L o g g e r.g e tL o g g e ...
- m a p p in g : M a p p in g
- m a p p in g Fi le Na m e : S trin g
- m a rsh a l le r: M a rsh a l le r
- va l i d a ti o n : b o o le a n

+ ca CO RE M a rsh a l l e r(S tri n g , b o o le a n)
+ g e tB a se M a rsh a l l e r() : O b je ct
+ g e tM a p p in g () : M a p p in g
+ g e tM a rsh a l le r() : M a rsh a l l e r
+ to X M L (O b je ct) : S tri n g
+ to X M L (O b je ct, j a va .i o .Wri te r) : vo id

Figure 8-2 Marshaller Class Diagram

The caCOREMarshaller uses Castor technology, and utilizes the SDK generated xml-
mapping.xml file, which provides Java-to-XML binding settings used by the Castor engine.
Castor is an Open Source data binding framework for Java, and facilitates conversion
between Java Beans, XML documents and relational tables. Castor provides Java-to-XML
binding, Java-to-SQL persistence, and more. See http://www.castor.org/ for more
information. Mappings are included for value attributes, collections, and associations to
other domain Java Beans.

Note: When processing associations and collections, the caCOREMarshaller also uses
custom Castor collection and domain object Field Handlers. This is done in order to prevent
infinite recursion whenever domain classes have circular references/associations to each
other. Consequently, associations and collections are only serialized to their first level.

The caCOREUnmarshaller Class
The SDK caCOREUnmarshaller class implements the SDK Unmarshaller interface and is
used by the XMLUtility class to perform the actual work of unmarshalling (deserializing) XML
to domain Java Bean objects Figure 7-3.

Note: The caCOREUnmarshaller class is used internally by the XML Utility infrastructure,
and is not typically invoked by the end user.

68

http://www.castor.org/

 Chapter 8 Utilities

c d x m l

c a CO RE Unm a rs ha lle r

« in te rfa ce »
Unm a rs ha lle r

~ fro mX ML (ja va .i o .Re a d e r) : O b je ct
~ fro mX ML (ja va .i o .Fi l e) : O b je ct
~ g e tB a se Un ma rsh a l l e r() : O b je ct

-u n m a rsh a l l e r

- l o g : L o g g e r = L o g g e r.g e tL o g g e ...
- m a p p in g : M a p p i n g
- m a p p in g Fi l e Na m e : S tri n g
- u n m a rsh a l l e r: Un m a rsh a l l e r

+ ca CO RE Un m a rsh a l l e r(S tri n g , b o o le a n)
+ fro m X M L (ja va .i o .Re a d e r) : O b je ct
+ fro m X M L (ja va .i o .Fi l e) : O b je ct
+ g e tB a se Un m a rsh a l l e r() : O b je ct
+ g e tM a p p in g () : M a p p in g
+ g e tUn m a rsh a l l e r() : Un m a rsh a l l e r

Figure 8-3 Unmarshaller Class Diagram

The caCOREUnmarshaller uses Castor technology and utilizes the SDK generated
unmarshaller-xml-mapping.xml file, which provides XML-to-Java binding settings used by
the Castor engine. Mappings are included for value attributes, collections, and associations
to other domain Java Beans.

Marshalling Java Objects to XML
The XMLUtility class provides two wrapper methods for marshaling (serializing) domain Java
objects to XML, as described in Table 8-1.

XMLUtility Method Description
toXML(Object beanObject) Accepts a domain Java Bean instance and passes it to the

Marshaller instance (caCOREMarshaller, by default), which in turn
marshals (serializes) the instance to XML and returns it as an XML
string.

toXML(Object beanObject,
Writer stream)

Accepts a domain Java Bean instance. This object is similarly
passed to the Marshaller instance (caCOREMarshaller, by default),
which marshals (serializes) it to XML. However, the XMLUtility then
writes the serialized XML string to a character stream writer
instead.

Table 8-1 Wrapper methods for marshaling domain Java objects to XML

The code snippet in Figure 8-4 demonstrates how one of the XML Utility marshaling
methods might be invoked.

 69

caCORE SDK 4.0 Developer’s Guide

Figure 8-4 Sample marshaling code

A sample test program, TestXMLClient.java, is also provided in the folder
\output\example\package\remote-client\src folder. More information about this
test program is provided in Testing the XML Utility on page 113.

Unmarshalling XML to Java Objects
The XMLUtility class also provides two wrapper methods for unmarshalling (deserializing)
XML to domain Java objects, as described in Table 8-2.

XMLUtility Method Description
fromXML(File xmlFile) Instantiates a domain Java Bean object from an XML file that

contains the serialized output of that object.
fromXML(Reader input) In addition, instantiates a Java Bean domain object from XML, but

reads it instead from a java.io.Reader character stream.
Table 8-2 Wrapper methods for unmarshalling XML to domain Java objects

The highlighted portion of the code snippet in Figure 8-5 demonstrates how one of the XML
Utility unmarshalling methods, fromXML(File), can be invoked.

Figure 8-5 Sample Unmarshalling Code

A sample test program, TestXMLClient.java, is also provided in the folder
\output\example\package\remote-client\src. More information about this test
program is provided in Testing the XML Utility on page 113.

70

Chapter 9 Creating the UML Model for caCORE SDK

This chapter provides information on how to create UML models that can be used by the
caCORE SDK to generate the system.

Topics in this chapter include:

• Introduction on this page
• Creating a New Project on page 72
• Creating Classes and Tables on page 74
• Creating Attributes and Data Types on page 85
• Performing Object Relational Mapping on page 88
• Exporting the UML Model to XMI (EA Only) on page 98
• Importing XMI into the UML Model (EA Only) on page 100

Introduction
The SDK Code Generator is based upon a Model-Driven Architecture (MDA) that supports
the implementation of the following scenarios specified via a UML model:

• Modeling of class attributes including :

o A simple (primitive) attribute, such as an integer or string;

o A collection of simple (primitive) attributes; and,

o An identifier attribute that is named something other than the default (ID) in
the Logical (Object) Model.

• Modeling of class associations, including:

o Uni- and bi-directional associations;

o Many-to-Many, Many-to-One, One-to-Many, and One-to-One associations;

o Associations that use a Join Table;

o Associations that do not use a Join Table;

• Modeling of inheritance that is implemented using:

o One table per class in inheritance hierarchy

o One table per inheritance hierarchy

o One table per inheritance hierarchy, with a separate table for leaf-level child
class(es)

 71

caCORE SDK 4.0 Developer’s Guide

The caCORE SDK distribution provides a sample model that demonstrates how these
scenarios, and many others, can be modeled in a manner that is understood by the SDK
Code Generator. The sample model is intended to be used as a reference when creating
your own model. The sample model is located within the \models directory of the SDK
distribution, and has been implemented in both Enterprise Architect and ArgoUML. The
name of the sample model project file is, respectively:

• Enterprise Architect: SDKTestModel.EAP

• ArgoUML: sdk.uml

The following sections describe how to perform various modeling activities using both the
Enterprise Architect (EA) and ArgoUML modeling tools.

Creating a New Project

To create a new object model project file, use the following steps.

1. In EA, open the SDKEATemplate.EAP baseline file provided in the \models directory of
the SDK distribution. This file already contains the base Logical View, Data Model, and
Logical (Object) Model packages, as well as classes representing the wrapper Java
primitive type classes (Figure 9-1).

Figure 9-1 EA Project View Browser

In ArgoUML, open the SDKArgoTemplate.EAP baseline file provided in the \models
directory of the SDK distribution. This file already contains the base Logical View, Data
Model, and Logical (Object) Model packages, classes representing the wrapper Java
primitive type classes, Tag Definitions (TD) for all the possible Tag Value types, and
DataTypes (Figure 9-2).

72

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-2 ArgoUML Explorer Pane Showing Packages/Classes, Tag Definitions, Data Types

2. Select the File > Save Project As.
3. In EA, the Save Enterprise Architect Project dialog displays (Figure 9-3).

Figure 9-3 EA Save Enterprise Architect Project dialog

In ArgoUML, the Save Project dialog displays (Figure 9-4).

 73

caCORE SDK 4.0 Developer’s Guide

Figure 9-4 ArgoUML Save Project dialog

4. Enter a new project name in the File name field.
5. Click the Save button.
6. Alternatively, either of the baseline template files, SDKEATemplate.EAP or

SDKArgoTemplate.uml, can be copied and renamed. The new project file is now ready
for use in creating the object and data model.

Creating Classes and Tables

UML Class elements are used to represent both Logical (object) Model classes and Data
Model classes (tables). Object classes are typically created using a package hierarchy
within the Logical Model package, while Data Model classes (tables) are created directly
within the Data Model package without the use of a package hierarchy.

Creating a Logical Model Package Structure

To add a package structure to the Logical Model, use the following steps.

1. In EA, select the Logical Model package (Figure 9-5).

74

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-5 EA Project Browser

In ArgoUML, select the Logical Model package (Figure 9-6).

Figure 9-6 ArgoUML Explorer Pane

Note: See http://argouml-stats.tigris.org/documentation/manual-0.24/ch11.html for more
information on the ArgoUML Explorer pane.

2. In EA, right click and select Add > Add Package or select Project > Add Package
submenu.
In ArgoUML, right click and select Add Package.

3. In EA, the following dialog displays (Figure 9-7).

Figure 9-7 EA New Package Dialog

In ArgoUML, the Properties tab in the Detail pane becomes active for the new package
(Figure 9-8).

 75

http://argouml-stats.tigris.org/documentation/manual-0.24/ch11.html

caCORE SDK 4.0 Developer’s Guide

Figure 9-8 ArgoUML Package Detail Pane, Properties Tab

Note: See http://argouml-stats.tigris.org/documentation/manual-0.24/ch13s03.html for more
information on the ArgoUML Detail Pane, Properties tab.

4. In EA, enter a package (folder) name, and click OK. In ArgoUML, click the Save Project
icon () or press CTRL-S.

Note: Package names should follow Java package naming conventions; i.e., Java
packages are defined using a hierarchical, lowercase, naming pattern, with levels in the
hierarchy separated by periods (.) . Furthermore, package names are typically the
organization’s domain name backwards. An example, taken from the SDK sample
model, is gov.nih.nci.cacoresdk.domain.

When implemented within EA, each period designates the end of one package level, and
the start of a new package level (termed a subpackage). Each package/subpackage
needs to be created individually, that is no period(s) should be used when specifying a
package name in the New Package dialog. Thus the fully qualified package
gov.nih.nci.cacoresdk.domain requires a total of five (5) packages to be created within
the model, one for each of the package levels. Each package is nested within the higher-
level package.

5. Repeat steps 2-4 until the fully qualified package hierarchy has been created. To create
a package within another package (as a sub-package/folder), select the existing
package first, and then follow steps 2-4 above. The following diagram (EA only) shows
most of the package hierarchy created in this manner for the SDK sample model:

76

http://argouml-stats.tigris.org/documentation/manual-0.24/ch13s03.html

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-9 EA SDK Sample Model Packages

Creating a Logical (Object) Model Class

To add a Logical Model class to a package, use the following steps:

1. In the EA Project Browser, or the ArgoUML Explorer pane, select the desired Logical
Model package to which the class should be added.

2. In EA, right click and select Add > Add Element or select Project > Add Element
submenu.
In ArgoUML, new classes are added in the context of a class diagram within the selected
package. If needed, click on a class diagram within the package to open/activate it, or
create a new class diagram within the package if none exists. Select the New Class icon

 77

caCORE SDK 4.0 Developer’s Guide

() found at the top of the diagram Editing pane and then draw a new class within the
diagram. This effectively creates a new class within the selected package. Alternatively,
click on an existing class within the selected package. The Property tab of the Detail
pane displays the properties for the selected class. It also displays the New Class icon.
Click on this icon.

Note: See http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html for more
information about the Editing pane.

3. In EA, the Insert New Element dialog displays (Figure 9-10).

Figure 9-10 EA Insert New Element Dialog

In ArgoUML, the Properties tab in the Detail pane becomes active for the new class (Figure
9-11).

Figure 9-11 ArgoUML Class Detail Pane, Properties Tab

4. In EA, set the Insert New Element options as follows:
Insert New Element Option Description

Type Select Class as the element type from the drop down list.
Name Enter a class name according to the Java class naming

conventions; i.e., class names should start with a capital letter, with

78

http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html

 Chapter 9 Creating the UML Model for caCORE SDK

Insert New Element Option Description
embedded words capitalized.

Stereotype Leave blank for Logical (object) Model classes.
Open Property Dialog Check the Open Property Dialog option if you want the Property

dialog to open immediately after the class is created.
Close dialog on OK Uncheck the Close dialog on OK option if you want to add multiple

classes in one session.

Note: Logical (Object) Model class names should follow Java class naming conventions;
i.e., class names should start with a capital letter, with embedded words capitalized. An
example from the SDK sample model is GraduateStudent.

In ArgoUML, enter a class name in the Name field according to the Java class naming
conventions; i.e., class names should start with a capital letter, with embedded words
capitalized. Next, select the desired package where the class should be created from the
Namespace drop down.

In EA, click OK. If the Open Property dialog was checked, the Property dialog opens
immediately after the class is created. The Property dialog for the SDK sample Credit
class is shown Figure 9-12(EA).

5.

Note: The Stereotype field is blank since this class represents a domain object, and not a
data table.

Figure 9-12 EA Class Property Dialog

 79

caCORE SDK 4.0 Developer’s Guide

In ArgoUML, click Save Project () or press the CTRL-S.

For instructions on adding attributes to classes, see Creating Attributes and Data Types on
page 85.

Repeat steps 1-5 to add other classes. In EA, if the Close dialog on OK option was
unchecked in the Insert New Element dialog, additional classes can be created in the
selected package by repeating steps 4-5. Figure 9-13 shows a series of classes that
have been created in the many-to-many bidirectional and unidirectional packages of the
SDK Sample model.

6.

Figure 9-13 EA Project View Browser Showing SDK Sample Classes

Creating a Data Model Table

To add a Data Model (Table) class, use the following steps.

In the EA Project Browser, select the Data Model package (Figure 9-14). 1.

80

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-14 EA Data Model Package

In ArgoUML Explorer pane, select the Data Model package (Figure 9-15).

Figure 9-15 ArgoUML Data Model Package

Note: Unlike object model classes that are created using a package hierarchy, all table
classes should be created within the Data Model package.

2. In EA, right click and select Add > Add Element or select Project > Add Element.

In ArgoUML, new classes (tables) are added in the context of a class diagram within the
selected package. If needed, click on a class diagram within the Data Model package to
open/activate it, or create a new class diagram if none exists. Select New Class () at the
top of the Diagram Editing pane and then draw a new class within the diagram.

Note: See http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html for more
information about the Editing pane.

This effectively creates a new class within the selected package. Alternatively, click on an
existing class (table) within the selected package. The Property tab of the Detail pane
displays the properties for the selected class. It also displays the New Class icon (). Click
on this icon.

In EA, the Insert New Element dialog displays (Figure 9-16). 3.

 81

http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html

caCORE SDK 4.0 Developer’s Guide

Figure 9-16 EA Insert New Element (Table) Dialog

In ArgoUML, the Properties tab in the Detail pane become actives for the new table (class).

4. In EA, set the Insert New Element options as follows:
Insert New Element Option Description

Type Select Class as the element type from the drop down list.
Name Enter a table name according to the Table naming conventions;

i.e., table names should be all uppercase, with embedded
words separated by an underscore (_).

Stereotype Select table from the drop down list.
Open Property Dialog Check the Open Property Dialog option if you want the

Property dialog to open immediately after the table is created.
Close dialog on OK Uncheck the Close dialog on OK option if you want to add

multiple tables in one session.

Note: Table names should follow Table naming conventions; i.e., table names should be all
uppercase, with embedded words separated by an underscore (_). An example from the
SDK sample model: UNDERGRADUATE_STUDENT.

In ArgoUML, enter a class name in the Name field of the Properties tab according to the
Java class naming conventions; i.e., class names should start with a capital letter, with
embedded words capitalized. Next, select the Data Model package from the Namespace
drop down (Figure 9-17).

82

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-17 ArgoUML Table (Class) Properties Tab

Finally, click on the Stereotype tab, select the table stereotype, and apply it to the new
class by clicking the >> icon (Figure 9-18).

Figure 9-18 ArgoUML Applying a Stereotype to a Table Class

Alternatively, select the class within a diagram, right-click to open the context menu, and
then select Apply Stereotypes > table.

In EA, click OK. If the Open Property dialog was checked, the Property dialog opens
immediately after the class is created. The Property dialog for the SDK sample Credit
table is shown (Figure 9-19). Note that the Stereotype field is set to table.

5.

 83

caCORE SDK 4.0 Developer’s Guide

Figure 9-19 Property dialog for the SDK sample Credit

In ArgoUML, click Save Project () or CTRL-S.

For instructions on adding attributes (columns) to tables, see Creating Attributes and Data
Types on page 85.

Repeat steps 1-5 to add other tables. If the Close dialog on OK option was unchecked
in the Insert New Element dialog, additional tables can be created in the Data Model
package by repeating steps 4-5. Figure 9-20 shows various tables that have been
created in the Data Model package of the SDK sample model.

6.

84

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-20 EA Various Tables from the SDK Sample Model

Creating Attributes and Data Types

UML Attribute elements are used to represent both Logical (Object) Model class attributes
and Data Model table columns (class attributes). Both Logical Model and Data Model class
attributes can be added/modified using the same process outlined below.

To add/modify a class or table attribute, use the following steps.

Select the desired Logical Model class or Data Model table (class) element. Figure
9-21 shows the Logical Model AllDataType class from the SDK sample model selected.

1.

 85

caCORE SDK 4.0 Developer’s Guide

Figure 9-21 Logical Model AllDataType class

In EA, right click and select Attributes or select Element > Attributes. 2.
In ArgoUML, the Properties tab in the Detail pane becomes active for the selected class.
Click the New Attribute () icon.

Alternatively, select the class within a diagram, right- click to open the context menu, and
then select New Attribute from the Add sub-menu.

In EA, the Attributes dialog opens. Figure 9-22 shows the Attributes dialog for the
Logical Model AllDataType class from the SDK sample model. This class illustrates all of
the available primitive data types (including primitive collections) that can be assigned to
a class attribute.

3.

86

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-22 Sample AllDataType Class Showing Available Attribute Primitive Data Types

In ArgoUML, the Attribute properties tab becomes active in the Detail pane (Figure 9-23).

 87

caCORE SDK 4.0 Developer’s Guide

Figure 9-23 ArgoUML Attribute Properties Tab

4. In EA, add an attribute by clicking New and type an attribute name in the Name field.
Select a type from the Type drop down and then click Save.

Note: The SDK Code Generator is only concerned with the Name and Type fields. All
other fields on the EA General tab of the Attributes dialog can be ignored (left default).
In addition, the SDK Code generator understands both primitive wrapper class types
(e.g. Boolean) and primitive types (e.g., boolean). If a particular data type is not shown in
the drop down, it can be entered (typed) into the Type field.

For a list of the primitive attribute types understood by the SDK Code Generator,
reference the AllDataType class in the SDK sample model (also shown in the diagram
above). Note that primitive collection types (e.g., the stringCollection attribute of type
Collection<String>) are also understood as an attribute type.

In ArgoUML, enter an attribute name in the Name field, and then select a type from the
Type drop down. Click the Save Project icon () or press CTRL-S to save the changes.

5. To modify an attribute in EA, select it in the Attributes dialog, change the value of the
Name and/or Type field, and then click Save.

To modify an attribute in ArgoUML, select the attribute in the Explorer pane by
expanding the class to show its attributes, or click on the attribute name within the class
in the Editing pane, if working with a diagram. The Attribute properties tab will become
active for the attribute. Change the value of the Name and/or Type field. Click the Save
Project icon () or press CTRL-S to save the changes.

Performing Object Relational Mapping

The SDK Code Generator relies on information contained within custom Tag Values to
generate particular system artifacts whenever the information needed cannot be derived
from the UML model elements (Class, Attributes, and Associations) directly. Tag Values, for
instance, are used to hold class/attribute documentation (comments and/or descriptions)
while generating Java Docs for the object model. More importantly, however, Tag Values
are used extensively when generating Hibernate Object Relational Mapping (.hbm.xml) files.
Basically, it can be said that custom Tag Values are at the heart of the Logical (Object)
Model-to-Data (Table) Model mapping process.

The SDK distribution provides a sample model (located within the \models directory) that
demonstrates how various scenarios can be modeled through the use of custom Tag

88

 Chapter 9 Creating the UML Model for caCORE SDK

Values. In addition, a reference table describing each of the various custom Tag Values and
their usage is provided in section SDK Custom Tag Value Descriptions.

For those who may find that working directly with the Tag Values may be too cumbersome
or error prone, please reference the caAdapter tool, which, among other capabilities,
provides the ability to map object models to data models via a Graphical User Interface
(GUI). For more information regarding the caAdapter tool/project, see
http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter.

Adding/Modifying Tag Values

In EA, Tag Values attached to a particular UML element (such as a Class, Attribute, or
Association) can be added/modified via the Tag Value browser, which is accessible by
sequentially clicking and holding down the Ctrl-Shift-6 keys.

The following diagram (Figure 9-24) from the SDK sample model illustrates an association
between the Employee and Project Logical Model classes.

c d M a ny to M a ny

bidire c tiona l::
E m ploye e

bidire c tiona l::
P roj e c t

- i d : In te g e r
- n a m e : S tri n g

+e m p lo ye e Co l le cti o n +p ro je ctCo l le cti o n

- i d : In te g e r
- n a m e : S tri n g

0 ..* 0 ..*

Figure 9-24 Employee-Project Asssociation Diagram

A sample of the Tag Value browser for the Association (line) between both classes is shown
in (Figure 9-25).

 89

http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter

caCORE SDK 4.0 Developer’s Guide

Figure 9-25 EA Tag Values Browser

Once the Tagged Values browser is open, selecting a particular UML element (such as a
Class, Attribute, or Association) will cause the browser to display the corresponding Tag
Values attached to the selected element.

In ArgoUML, Tag Values attached to a particular UML element (such as a Class, Attribute,
or Association) can be added/modified by first selecting the element. This will cause the
Detail pane to become active for the selected element. Next, click on the Tagged Values tab
to activate it.

A sample of the Tagged Values tab for the Association between the Sample SDK Employee
and Project Logical Model classes is shown in Figure 9-26.

Figure 9-26 ArgoUML Detail Pane, Tagged Values Tab

SDK Custom Tag Value Descriptions

The following table (Table 9-1) lists the tag values recognized by the SDK Code Generator,
and also describes when and where to use them.

90

 Chapter 9 Creating the UML Model for caCORE SDK

Tag Value Description

correlation-table A Tag Value added to an Association element (line) drawn between two
Logical Model classes within the same diagram. The value specifies the
correlation (join) table name.

Given the following Many-to-Many relationship diagram:

c d M a ny to M a ny

bidire c tiona l::
E m ploye e

bidire c tiona l::
P roj e c t

- i d : In te g e r
- n a m e : S tri n g

+e m p lo ye e Co l le cti o n +p ro je ctCo l le cti o n

- i d : In te g e r
- n a m e : S tri n g

unidire c tiona l::
Author

- i d : In te g e r
- n a m e : S tri n g

unidire c tiona l::
Book

- i d : In te g e r
- n a m e : S tri n g

0 ..* 0 ..*

+a u th o rCo l le cti o n

0 ..* 0 ..*

A couple of corresponding examples from the SDK sample model are
provided in the table below:

Logical Model
Class (Source)

Logical Model
Class (Target)

Tag Value (correlation-table)
Note: should be added to the

Association (line) element
Employee Project EMPLOYEE_PROJECT

Book Author AUTHOR_BOOK

description An optional Tag Value added to a Class or Attribute element to store
documentation/comments for the element. The value describes the element,
and is used when creating Java Docs for generated domain objects.

Note: The description Tag Value is only used if the documentation tag value
for the element is empty or does not exist.

 91

caCORE SDK 4.0 Developer’s Guide

Tag Value Description
discriminator A Tag Value added to a Data Model class Attribute element. The value of this

tag represents the Logical Model class name that acts as the discriminator in
situations when the parent and sub-class are persisted within the same
database table. The value of the tag, if present, is placed within the
discriminator element of the generated Hibernate mapping file.

Note: The <discriminator> element is required for polymorphic persistence
using the table-per-class-hierarchy mapping strategy and declares a
discriminator column of the table. The discriminator column contains marker
values that tell the persistence layer what subclass to instantiate for a
particular row. See
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping-
declaration-discriminator for more information.

A couple of examples from the SDK sample model is provided in the table
below:

Data Model
Class (Table)

Data Model
Attribute
(Column)

Tag Value (discriminator)

SHOES DISCRIMINATOR gov.nih.nci.cacoresdk.domain.inh
eritance.childwithassociation.sam
etable.Shoes

GOVERNMENT DEMOCRATIC_
DISCRIMINATOR

gov.nih.nci.cacoresdk.domain.inh
eritance.twolevelinheritance.same
table.DemocraticGovt

documentation An optional Tag Value added to a UML element to store documentation/

comments for the element. The value will be used when creating Java Docs
for the generated domain object.

See also the documentation Tag Value.

id-attribute A Tag Value added to a Logical Model class Attribute. The presence of the
Tag Value indicates that the attribute is the class identifier attribute. This Tag
Value is required when the identifier attribute is named something other than
the default name, id. The value should specify the fully qualified name of the
Logical Model class that contains the attribute.

An example from the SDK sample model is provided in the table below:

Logical Model
Class Name

Logical Model
Attribute Name

Tag Value (id-attribute)

NoIdKey myKey gov.nih.nci.cacoresdk.domain.other
.primarykey.NoIdKey

92

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping-declaration-discriminator
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping-declaration-discriminator

 Chapter 9 Creating the UML Model for caCORE SDK

Tag Value Description
implements-association A Tag Value added to a Data Model class Attribute (column). The value

specifies the associated Logical Model class attribute that implements the
association. The value must be specified using the following pattern: <fully
qualified logical model class name>.< attribute name>.

A couple of examples from the SDK sample model are provided in the table
below:

Data Model
Class

(Table)

Data Model
Attribute
(Column)

Tag Value (implements-association)

CARD SUIT_ID gov.nih.nci.cacoresdk.domain.other.level
association.Card.suit

ASSISTANT PROFESSOR
_ID

gov.nih.nci.cacoresdk.domain.inheritance
.parentwithassociation.Assistant.
professor

inverse-of A Tag Value added to a Data Model class Attribute (column). Used to identify
the inverse attribute (column) of a bi-directional association. The value
specifies the corresponding inverse Logical Model class attribute, and must
have the same value as the implements-association Tag Value of the bi-
directional association. The value must be specified using the following
pattern: <fully qualified logical model class name>.< attribute name>.

Given the following Logical Model class diagram from the sample SDK model:

c d M a ny to O ne

w ithj oin::Album w ithj oin::S ong

- i d : In te g e r
- ti t l e : S tri n g

+a lb u m
- i d : In te g e r
- t i tl e : S tri n g0 ..1 *

And the corresponding Data Model class diagram:

c d M a ny to O ne

Da ta M ode l::ALBUM

co lu m n

Da ta M ode l::ALBUM _ S O NG
Da ta M ode l::S O NG

co lu m n
*P K A L B UM _ ID: NUM B E R(8)
*P K S O NG _ ID: NUM B E R(8)

co lu m n
*P K ID: NUM B E R(8)
 T IT L E : V A RCHA R2 (5 0)

*P K ID: NUM B E R(8 ,2)
 T IT L E : V A RCHA R2 (5 0)

P K
+ P K _ A L B UM _ S O NG (NUM B E R, NUM B E R)P K

+ P K _ S O NG (NUM B E R)
P K
+ P K _ A L B UM (NUM B E R)u n iq u e

+ UQ _ A L B UM _ S O NG _ A L B UM _ ID(NUM B E R)

An example inverse-of Tag Value would be:

 93

caCORE SDK 4.0 Developer’s Guide

Tag Value Description
Data Model

Class
(Table)

Data Model
Attribute
(column)

Tag Value (inverse-of)

ALBUM_
SONG

SONG_ID gov.nih.nci.cacoresdk.domain.manytoone.u
nidirectional.withjoin.Song.album

This indicates that the SONG_ID attribute (column) is the inverse side of the
Song/Album bi-directional association implemented by album attribute of the
Song class.

Note: When adding an inverse-of value to a Data Model class Attribute for a
Many-to-Many association, One-to-Many join table, Many-to-One join table,
or a One to One - No Join Table scenario, make sure to supply the same
value for both the implements-association and inverse-of Tag Values of the bi-
directional association.

See also the related implements-association Tag Value.

lazy-load A Tag Value added to an Association element between two Logical Model
classes. The value specifies whether the association should be fetched lazily
or not.

Permissible values are yes, and no. That is, any value other than yes is
treated as a no. Sets the lazy attribute in the generated .hbm.xml file to either
true or false accordingly.

No example is provided in the SDK sample model.

mapped-attributes A Tag Value added to a Data Model class Attribute (Column). The value
specifies the corresponding mapped Logical Model class Attribute. The value
must be specified using the following pattern: <fully qualified logical model
class name>.< attribute name>.

A couple of examples from the SDK sample model are provided in the table
below:

Data Model Class
(Table)

Data Model
Attribute
(column)

Tag Value (mapped-
attributes)

UNDERGRADUATE
_
STUDENT

STUDENT_ID gov.nih.nci.cacoresdk.domain.in
heritance.multiplechild.Undergr
aduateStudent.id

SHOES ID gov.nih.nci.cacoresdk.domain.in
heritance.childwithassociation.s
ametable.Shoes.id

94

 Chapter 9 Creating the UML Model for caCORE SDK

Tag Value Description
mapped-collection-table A Tag Value added to a Logical Model class Attribute. The value specifies the

name of the mapped primitive collection (non-domain class – e.g., String,
Integer) table.

Given the following Data Model class diagram from the SDK sample model:

c d O the r

Da ta M ode l::ALL_ DATA_ TY P E

co lu m n
 B O O L E A N_ P RIM IT IV E _ V A L UE : V A RCHA R2 (1)
 B O O L E A N_ V A L UE : V A RCHA R2 (1)
 CHA RA CT E R_ P RIM IT IV E _ V A L UE : CHA R(1)
 CHA RA CT E R_ V A L UE : CHA R(1)
 CL O B _ V A L UE : CL O B
 DA T E _ P RIM IT IV E _ V A L UE : DA T E
 DA T E _ V A L UE : DA T E
 DO UB L E _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 DO UB L E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ V A L UE : NUM B E R(8 ,2)
*P K ID: NUM B E R(8)
 INT _ P RIM IT IV E _ V A L UE : NUM B E R(8)
 INT _ V A L UE : NUM B E R(8)
 L O NG _ P RIM IT IV E _ V A L UE : NUM B E R(3 8)
 L O NG _ V A L UE : NUM B E R(3 8)
 S T RING _ P RIM IT IV E _ V A L UE : V A RCHA R2 (5 0)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

P K
+ P K _ A L L _ DA T A _ T Y P E (NUM B E R)

Da ta M ode l::ALL_ DATA_ TY P E _ S TRING _ CO LL

co lu m n
*FK A L L _ DA T A _ T Y P E _ ID: NUM B E R(8)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

FK
+ FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E (NUM B E R)

+FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E 0 ..*

(A L L _ DA T A _ T Y P E _ ID = ID)

« FK »

+P K _ A L L _ DA T A _ T Y P E 1

An example mapped-collection-table Tag Value would be:

Logical
Model
Class

Logical Model
Attribute

Tag Value (mapped-collection-table)

AllDataType stringCollection ALL_DATA_TYPE_STRING_COLL

 95

caCORE SDK 4.0 Developer’s Guide

Tag Value Description
mapped-element A Tag Value added to a Data Model class Attribute (Column). The value

specifies the name of the mapped primitive collection (non-domain class –
e.g., String, Integer) Logical Model class attribute. The value must be specified
using the following pattern: <fully qualified logical model class name>.<
attribute name>.

Given the following Logical Model class diagram:

c d O the r

da ta type ::AllDa ta Type

- b o o le a n P rim i ti ve V a lu e : b o o le a n
- b o o le a n V a lu e : B o o le a n
- ch a ra cte rP rim i ti ve V a lu e : ch a r
- ch a ra cte rV a lu e : Ch a ra cte r
- clo b V a lu e : S tri n g
- d a te P rim i ti ve V a lu e : d a te
- d a te V a lu e : Da te
- d o u b le P rim i ti ve V a lu e : d o u b le
- d o u b le V a lu e : Do u b le
- fl o a tP rim i ti ve V a lu e : fl o a t
- fl o a tV a lu e : Flo a t
- i d : In te g e r
- i n tP rim i ti ve V a lu e : i n t
- i n tV a lu e : In te g e r
- l o n g P rim i ti ve V a lu e : l o n g
- l o n g V a lu e : L o n g
- stri n g Co l l e cti o n : Co l l e cti o n <S tri n g >
- stri n g P rim i ti ve V a lu e : stri n g
- stri n g V a lu e : S tri n g

And the following Data Model class diagram from the SDK sample model:

96

 Chapter 9 Creating the UML Model for caCORE SDK

Tag Value Description
c d O the r

Da ta M ode l::ALL_ DATA_ TY P E

co lu m n
 B O O L E A N_ P RIM IT IV E _ V A L UE : V A RCHA R2 (1)
 B O O L E A N_ V A L UE : V A RCHA R2 (1)
 CHA RA CT E R_ P RIM IT IV E _ V A L UE : CHA R(1)
 CHA RA CT E R_ V A L UE : CHA R(1)
 CL O B _ V A L UE : CL O B
 DA T E _ P RIM IT IV E _ V A L UE : DA T E
 DA T E _ V A L UE : DA T E
 DO UB L E _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 DO UB L E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ V A L UE : NUM B E R(8 ,2)
*P K ID: NUM B E R(8)
 INT _ P RIM IT IV E _ V A L UE : NUM B E R(8)
 INT _ V A L UE : NUM B E R(8)
 L O NG _ P RIM IT IV E _ V A L UE : NUM B E R(3 8)
 L O NG _ V A L UE : NUM B E R(3 8)
 S T RING _ P RIM IT IV E _ V A L UE : V A RCHA R2 (5 0)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

P K
+ P K _ A L L _ DA T A _ T Y P E (NUM B E R)

Da ta M ode l::ALL_ DATA_ TY P E _ S TRING _ CO LL

co lu m n
*FK A L L _ DA T A _ T Y P E _ ID: NUM B E R(8)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

FK
+ FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E (NUM B E R)

+FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E 0 ..*

(A L L _ DA T A _ T Y P E _ ID = ID)

« FK »

+P K _ A L L _ DA T A _ T Y P E 1

An example mapped-collection-table Tag Value would be:

Data Model
Class (Table)

Data Model
Attribute
(Column)

Tag Value (mapped-element)

ALL_DATA_
TYPE_
STRING_
COLL

STRING_VALUE gov.nih.nci.cacoresdk.domain.other.
datatype.AllDataType.
stringCollection

 97

caCORE SDK 4.0 Developer’s Guide

Tag Value Description
type A Tag Value added to a Data Model class Attribute (Column). The value

specifies the DB column type. Valid values include (but are not limited to):

• CHAR
• CLOB
• NUMBER
• VARCHAR2

 Several examples from SDK sample model include:

Data Model
Class (Table)

Data Model
Attribute
(Column)

Tag Value (mapped-element)

CHARACTER_
PRIMITIVE_KEY

ID CHAR

CARD IMAGE CLOB

UNDERGRADUA
TE_STUDENT

STUDENT_ID NUMBER

SHOES COLOR VARCHAR2

Table 9-1 Tag values recognized by the SDK Code Generator

Exporting the UML Model to XMI (EA Only)

Note: This section only applies to EA, as the ArgoUML project is stored in an XML format
that the SDK Code Generator can understand and process directly; i.e., the ArgoUML
project file does not need to be exporting to XMI prior to processing it via the SDK Code
Generator.
Before the SDK can process a UML model created within Enterprise Architect (EA), it needs
to be exported to XMI and then copied to the \models directory within the SDK root folder.

To export a package to XMI, use the following steps.

In the EA Project Browser, select the Logical View package (Figure 9-27). 1.

98

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-27 EA Logical View Package

Right click and select Import/Export or select Project > Import/Export. Select the
Export Package to XMI.

2.

3. The Export Package to XMI dialog displays (Figure 9-28).

Figure 9-28 EA Exporting Package to XMI

4. Set the Export options according to those in Table 9-2.

Note: The XMI export options that should be selected have changed for SDK 4.0. The new
required options are:

• Export Diagrams
• Enable full EA Roundtrip

 99

caCORE SDK 4.0 Developer’s Guide

Export Option Description

Filename Used to indicate where to output the XMI file. Enter a valid
directory/path name. Also, make sure the file type suffix is .xmi.

Stylesheet Used to post-process XMI content before saving to file. Leave
unselected.

Export Diagrams Leave checked.
Use Unisys Rose Format Used to indicate whether or not the Model should be exported in

Rose UML 1.3, XMI 1.1 format. Leave unchecked.
Format XML output Used to indicate whether or not to format output into readable XML

(takes a few additional seconds at end of run). Leave checked.
Write log file Used to indicate whether or not a log of export activity should be

created (recommended). The log file will be saved in the same
directory exported to. Optional. Leave checked if desired.

Use DTD Used to indicate whether or not to use the UML1.3 DTD. Using this
option will validate the correctness of the model and that no
syntactical errors have occurred. Leave unchecked.

Exclude EA Tagged Values Used to indicate whether or not EA specific information should be
excluded from the export to other tools. The SDK now supports Full
EA roundtrip. Leave unchecked.

Table 9-2 EA Export options

5.
6.

1.

Click Export.
Once the XMI file has been exported, copy it to the \models directory within the SDK root
folder.

Note: The XMI file name and the value of the MODEL_FILE property within the
deploy.properties file must match. Otherwise, a File Not Found error will be reported when
trying to process the XMI file through the SDK Code Generator.

Importing XMI into the UML Model (EA Only)

Note: This section only applies to EA, as the ArgoUML project is stored in an XML format
that the SDK Code Generator can understand and process directly; i.e., the ArgoUML
project file does not need to be exporting to XMI prior to processing it via the SDK Code
Generator.

The SDK now supports the processing of XMI that was exported using the full EA roundtrip
option. Some organizations may have the need to modify the exported XMI file, perhaps to
add Tag Values. As long as the XMI was exported using the roundtrip option, it can be
synchronized with the UML model by importing it back into EA.

Warning! The selection of the incorrect import options may corrupt the model file. Ensure
that you back up the original model file prior to importing XMI back into the UML model.

To import an XMI package back into EA, use the following steps.

In the EA Project Browser, select the Logical View package (Figure 9-29).

100

 Chapter 9 Creating the UML Model for caCORE SDK

Figure 9-29 EA Logical View Package

Right click and select Import/Export or select Project > Import/Export. Select Import
Package from XMI.

2.

3. The Import Package from XMI dialog opens (Figure 9-30).

Figure 9-30 EA Import Package from XMI

4. Set the Import options according to those in Table 9-3.
Import Option Description

Filename Used to indicate where to import the XMI file. Enter a valid
directory/path name.

Import Diagrams Leave checked.
Strip GUIDS Used to remove Universal Identifier information from the file on import.

This permits the import of a package twice into the same model - the
second import will require new GUIDS to avoid element collisions.
Leave checked.

Treat Imported Datatypes
as

Leave unselected.

 101

caCORE SDK 4.0 Developer’s Guide

Import Option Description
Write log file Used to indicate whether or not a log of export activity should be

created (recommended). The log file will be saved in the same
directory exported to. Optional. Leave checked if desired.

Table 9-3 Import options

5. Click Import. A confirmation dialog opens (Figure 9-31).

Figure 9-31 EA Confirm XMI File Import Dialog

6. Click Yes. The XMI file is imported back into EA and the XMI and UML model are
synchronized.

102

Chapter 10 Configuring and Running the SDK

This chapter describes how to configure the SDK Code Generator and generate the SDK
system.

Topics in this chapter include:

• SDK Configuration Properties on this page
• Generating the SDK System on page 107
• Overview of Generated Packages on page 109
• Deploying the Generated System on page 110
• Testing the caCORE SDK Generated System on page 111
• Configuring Security on page 117

SDK Configuration Properties
The SDK Code Generator is configured, for the most part, by a single file,
deploy.properties, which is located in the /conf folder in the SDK distribution.

The following table (Table 10-1) describes each of the properties (and their values) found
within this file.

Property Default Value Description
PROJECT_NAME Example Used in the creation/naming of the

following items:
• Output project directory folder name
• Beans JAR file name
• ORM JAR file name
• Client JAR file name
• WAR file name
• Web Service Namespace
• Documentation title in the generated

API (Javadocs)
• Server URL context value

SDK users should modify this property
to reflect their own project name.

NAMESPACE_PREFIX gme://caCORE.caCORE/3
.2/

Used in the creation/naming of the
following code generation artifacts:
• Schemas (XSD’s)
• XML Marshalling and Unmarshalling
Mapping files

If XSDs are to be used for the caGRID,
the value of the NAMESPACE_PREFIX
is the same as the GME namespace
value.

SECURITY_ENABLED False Used to enable or disable security within
the generated system during code
generation.
This applies to all of the SDK interfaces,

 103

caCORE SDK 4.0 Developer’s Guide

Property Default Value Description
including:
• Web Interface (GUI)
• Java API Interface (local and remote

clients)
• Web Service Interface

CSM_PROJECT_NAME Sdk Used as a prefix when creating the CSM
security configuration file name. CSM
configuration should have the same
application name configured

INSTANCE_LEVEL
_SECURITY

False Used to enable/disable CSM instance
level security.
Only relevant if the
SECURITY_ENABLED property is set
to ‘true’

ATTRIBUTE_LEVEL
_SECURITY

False Used to enable/disable attribute level
security.
Only relevant if the
SECURITY_ENABLED property is set
to ‘true’

WEBSERVICE_NAME ${PROJECT_NAME}Servi
ce

The name of the Web Service.

SERVER_TYPE Other Used to include/exclude the log4j.jar file
during the war file packaging. If set to
‘jboss’ will exclude log4j.jar from the war
file, as the JBoss server already has its
own instance of the log4j.jar file. Any
other value will include the log4j.jar in
the war file.
Valid values are ‘jboss’ if deploying to a
JBoss server, and ‘other’ if deploying to
any other type of Servlet container such
as Apache Tomcat.

SERVER_URL http://localhost:8080/
${PROJECT_NAME}

The URL (including the application
context) of the deployed application.
Used as part of the URL that specifies
the location of the deployed Web
Service. I.e., the following pattern is
used when undeploying the Web
Service from the server:
${SERVER_URL}/services/${WEBSER
VICE_NAME}Service

MODEL_FILE sdk.xmi The name of the file that contains the
object/data model to be processed.
SDK users should modify this property
to reflect their own model file name. The
file is to be placed under the \models
directory.

MODEL_FILE_TYPE EA The file type of the object/data model
file to be processed.
Valid values are ‘EA’ for Enterprise
Architect files, and ‘ARGO’ for ArgoUML
files .

LOGICAL_MODEL Logical View.Logical
Model

The logical model base (root)
package/folder name containing the

104

 Chapter 10 Configuring and Running the SDK

Property Default Value Description
domain package(s) and class(es) to be
processed by the Code Generator.

DATA_MODEL Logical View.Data Model The data model base (root)
package/folder name containing the
data model package(s) and class(es) to
be processed by the Code Generator.

INCLUDE_PACKAGE Domain Used to determine which packages
within the model should be included
during code generation; i.e., all
packages containing this property value,
as part of their fully qualified name will
be included during code processing.

EXCLUDE_PACKAGE None Used to determine which packages
within the model should be excluded
during code generation; i.e., all
packages containing this property value,
as part of their fully qualified name will
be excluded during code processing.

Note: All packages are first
filtered/constrained by the
INCLUDE_PACKAGE property value,
and then furthered filtered by the
EXCLUDE_PACKAGE value.

EXCLUDE_NAME None Used to determine which classes within
the model should be excluded during
code generation; i.e., all classes
containing this property value, as part of
their non-fully qualified name will be
excluded during code processing.

USE_JNDI_BASED
_CONNECTION

No Indicates whether a JNDI DB
Connection should be used for the
application database.
If
USE_JNDI_BASED_CONNECTION=ye
s, then the DB_JNDI_URL property
value is used to obtain the DB
connection and retrieve data.

DB_JNDI_URL java:/SDK The DB JNDI URL value of the
application database.
This property is irrelevant/ignored if
USE_JNDI_BASED_CONNECTION=no
.

DB_CONNECTION_URL
DB_USERNAME
DB_PASSWORD

None The application database connection
properties.
A sample DB_CONNECTION_URL
value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK
users should provide appropriate values
for their database within the

 105

caCORE SDK 4.0 Developer’s Guide

Property Default Value Description
local.properties file located in the root
folder of the SDK distribution.

DB_DIALECT org.hibernate.dialect.Oracl
eDialect

The Hibernate Database dialect to be
used when connecting to the application
database.
Typical values include:
• org.hibernate.dialect.OracleDialect
• org.hibernate.dialect.MySQLDialect

CSM_USE_JNDI
_BASED_CONNECTION

No Indicates whether a JNDI DB
connection should be used for the CSM
database.
If
USE_JNDI_BASED_CONNECTION=ye
s, then the DB_JNDI_URL property
value is used to obtain the DB
connection and retrieve data.

CSM_DB_JNDI_URL java:/SDK The DB JNDI URL value for the CSM
database.
This property is irrelevant/ignored if
CSM_USE_JNDI_BASED_CONNECTI
ON=no.

CSM_DB_CONNECTION
_URL
CSM_DB_USERNAME
CSM_DB_PASSWORD

None The CSM database connection
properties.
A sample DB_CONNECTION_URL
value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK
users should provide appropriate values
for their CSM database instance within
the local.properties file located in the
root folder of the SDK distribution.

CSM_DB_DIALECT org.hibernate.dialect.Oracl
eDialect

The Hibernate Database dialect used
when connecting to the CSM database.
Typical values include:
• org.hibernate.dialect.OracleDialect
• org.hibernate.dialect.MySQLDialect

VALIDATE_LOGICAL
_MODEL

True Used to enable/disable the validation of
the logical object model prior to code
generation.

VALIDATE_MODEL
_MAPPING

True Used to enable/disable the validation of
the logical object model to the data
model mapping prior to code
generation.

GENERATE_
HIBERNATE_MAPPING

True Used to enable/disable the generation
of the Hibernate Object-Relational
Mapping files during code generation.

GENERATE_BEANS True Used to enable/disable the generation
of the domain object beans (Java
Beans) during code generation.

GENERATE_CASTOR_
MAPPING

True Used to enable/disable the generation
of the Castor XML marshalling and

106

 Chapter 10 Configuring and Running the SDK

Property Default Value Description
unmarshalling mapping files.

GENERATE_XSD True Used to enable/disable the generation
of the XML Schemas (XSDs).

GENERATE_WSDD True Used to enable/disable the generation
of the Axis Web Service Deployment
Descriptor (WSDD) file.

INCLUDE_SEARCH
_EVENT_LISTENER

False Used to toggle whether or not Event
Listeners for the Hibernate Search API
will be generated in the Hibernate
Configuration file (hibernate.config.xml).

CACHE_PATH java.io.tmpdir An advanced property used by ehcache
to store its cache files on disk. A value
of ‘java.io.tmpdir’ will create the cache
files within the temporary directory.
SDK users may choose to specify any
absolute path instead for the cache files.

Table 10-1 SDK configuration properties

Generating the SDK System

Ant Build Script Targets

Apache Ant is a Java-based build tool used within the SDK to perform various build related
tasks. See http://ant.apache.org/ for more information. The SDK provides an Ant script,
build.xml, which is located in the root folder of the SDK distribution. This script contains
targets for performing various system generation tasks, including building and packaging the
system.

Typically speaking, most SDK users will only need to run the following two targets:

• build-system: Executes the SDK Code Generator using the properties configured within
the deploy.properties file. See SDK Configuration Properties on page 103 for more
information.

• clean-all: Deletes all files and folders from the previous build process. It is strongly
recommended that SDK users run this target prior to running the ‘build-system’ target.

Note: The SDK build process is configured by the properties found within the
deploy.properties file, as described in SDK Configuration Properties on page 103. Please
review and update these properties as needed to reflect your environment prior to
generating the system.
For those interested in the remaining targets, the table below (Table 10-2) provides a
complete list:

Ant Target Description
build-system Generates the SDK system using properties set within

\conf\deploy.properties.
This is the primary [default] target within the build script, and the one
SDK users will most typically use when generating the system. SDK
users are strongly recommended to run the ‘clean-all’ target prior to

 107

http://ant.apache.org/

caCORE SDK 4.0 Developer’s Guide

Ant Target Description
running the ‘build-system’ target.

clean Cleans the main generated directories and files (\output) created
following the execution of the build-system target.

clean-all Cleans the generated directories and files of both the main and child
projects.

SDK users are strongly recommended to run the ‘clean-all’ target prior to
running the ‘build-system’ target

codegen Runs the SDK Code Generator. The Generator is capable of selectively
generating the system components. The following properties within the
deploy.properties file control the behavior of the Code Generator:
• VALIDATE_LOGICAL_MODEL
• VALIDATE_MODEL_MAPPING
• GENERATE_HIBERNATE_MAPPING
• GENERATE_BEANS
• GENERATE_CASTOR_MAPPING
• GENERATE_XSD
• GENERATE_WSDD
See SDK Configuration Properties on page 103 for more information.
This target is run as part of the process run by the ‘build-system’. SDK
users should rarely, if ever need to invoke this target individually.

compile-beans Compiles the generated beans.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

doc Generates Javadocs for the generated beans.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

init An internal target that prepares the output directory structure.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-codegen-
artifacts

Packages (jars) the generated Hibernate ORM and Java bean artifacts.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-local-client An internal target that prepares, packages the local client files.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-release-
contents

Creates release binary and source packages in a zip file format for
distribution.

This target is typically run by the SDK team when creating an SDK
release for distribution.

package-remote-client An internal target that prepares, packages the remote client files.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-system Packages the system. Internally runs the following targets:
• package-remote-client
• package-local-client
• package-webapp
• package-ws-client

This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-webapp An internal target that prepares, packages the Web application Archive
(war) file for deployment to a Servlet container such as JBoss or

108

 Chapter 10 Configuring and Running the SDK

Ant Target Description
Tomcat.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

package-ws-client An internal target that prepares, packages the Web Service client.
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually.

prepare
prepare-codegen
prepare-condition-
codegen
prepare-condition-
system
prepare-system

An internal target that runs the following targets:
• prepare-codegen
• prepare-system
This target is run as part of the ‘build-system’ process. SDK users
should rarely, if ever need to invoke this target individually

show-properties Dumps a list of all currently set properties.
Table 10-2 Ant Script target descriptions

Selectively Generating Components

For those SDK users interested in only generating certain SDK components, the SDK Code
generator is capable of selectively generating the following components:

• Hibernate O/R Mapping files
• Java Beans (domain Java objects)
• Castor XML Mapping files
• Schema (XSD) files
• Axis Web Service Deployment Descriptor (WSDD) file
To control which components are generated by the Code Generator, toggle the following
respective properties within the deploy.properties file:

• GENERATE_HIBERNATE_MAPPING
• GENERATE_BEANS
• GENERATE_CASTOR_MAPPING
• GENERATE_XSD
• GENERATE_WSDD
Setting the value of a given property to ‘true’ will cause the component to be generated;
conversely, setting it to ‘false’ will cause the component to be ignored. See SDK
Configuration Properties on page 103 for more information.

Overview of Generated Packages
During the code generation process, SDK prepares four different packages, which are
placed under a folder located at \output\<project_name>\package\. The following is
a summary of the different packages created.

• local-client – This package contains the complete application that can be used in the
local environment. It corresponds to the local-client interface of the SDK generated

 109

caCORE SDK 4.0 Developer’s Guide

application. The generated binaries along with other required libraries are located in the
folder /lib folder. /conf which contains the configuration file required by the local
client to function. The folder /src contains a sample test program that can be used to
test the generated local-client.

• remote-client - This package contains the remote client component of the generated
application that can be used in the isolated environment. It corresponds to the remote-
client interface of the SDK generated application. The generated binaries along with
other required libraries are located in the folder /lib. The folder /conf contains the
configuration file required by the local client to function in addition to the generated
XSDs and castor mapping files. The folder /src contains a sample test program that
can be used to test the generated remote-client. The sample programs test 1) the Java
API interface 2) the XML marshalling and unmarshalling and 3) the XML-HTTP
interface’s REST capabilities.

• ws-client - This package contains the environment to invoke the SDK generated web
services with the Java based web services client. This package corresponds to the web
service interface of the SDK generated application. The generated binaries along with
other required libraries are located in the /lib. The folder /src contains a sample test
program that can be used to test the generated client.

• webapp – This package contains a <project_name>.war file generated by the SDK,
which represents the server component of the SDK generated system. This file must be
deployed to the application server before any of the client interfaces (except local-client)
are accessed.

Deploying the Generated System
The Ant build process packages the generated SDK system Web ARchive (war) file for ease
of deployment. This file is named <project_name>.war, and is located in the directory
\output\<project_name>\ package\webapp. Typically, this file can be copied to the
web server deployment folder and the system is automatically deployed when the web
server is started.

Note: The generated SDK system has been tested on both JBoss v4.0.5 and Apache
Tomcat v5.5.20 servers. The system should also work on other servers such as Weblogic or
WebSphere; however, no guarantees are made.

Deploying to JBoss

If the generated system war file is to be deployed to a JBoss server instance, the
SERVER_TYPE property found in the \conf\deploy.properties file should be set to
‘jboss’. This ensures that the log4j.jar file is excluded from the packaged war file during
the build process. This is required as JBoss already has its own copy of the log4j.jar file,
and will report an error if it finds another copy of this file within the war.

To deploy to a JBoss server instance, copy the generated war file to the directory <JBoss
installation directory>\ server\default\deploy, and then restart the server.

110

 Chapter 10 Configuring and Running the SDK

Deploying to Apache Tomcat

If the generated system war file is to be deployed to a JBoss server instance, the
SERVER_TYPE property found in the file \conf\deploy.properties should be set to
‘jboss’. This will ensure that the log4j.jar file is excluded from the packaged war file. This is
required as JBoss already has its own copy of the log4j.jar file, and will report an error if it
finds another copy of this file within the war.

To deploy to a Tomcat server instance, copy the generated war file to the directory
<Tomcat Installation Directory>\ webapps, and then restart the server.

Note: When redeploying the system war file to Tomcat after an initial build, it is strongly
recommended that the old war file and corresponding exploded directory be deleted before
the new war file is copied to the deployment directory. This ensures that all files from the
previous deployment are properly deleted.

Testing the caCORE SDK Generated System
The following sections discuss various tests for determining whether or not the SDK system
has been successfully generated and deployed.

Testing the Web Interface

The SDK generated GUI consists of several web pages that facilitate access to domain
data. The Home page can be accessed via the following URL pattern:

SDK Web Interface Test
URL Pattern

http://<server_name>:<server_port>/<project_name>

Thus, for the Home page of the sample SDK model, the URL might be
http://localhost:8080/example. If the system has been successfully deployed, the page
shown in Figure 10-1should display.

 111

http://localhost:8080/example

caCORE SDK 4.0 Developer’s Guide

Figure 10-1 Web Interface test page

For more information, see Accessing Data from a Web Browser on page 33.

Testing the Java API

The program, TestClient.java, is provided with the SDK distribution for testing the Java API.
This program is located within the folder \output\<project_name>\package\remote-
client\src\. To execute the program, run the default target of the Ant script,
build.xml, located within the folder \output\ <project_name>\package\remote-
client\.

Note: The generated system must be deployed to the server, and the server must be
running before the test is invoked.
Figure 10-2 shows the main test method algorithm.

112

 Chapter 10 Configuring and Running the SDK

Figure 10-2 Java API test algorithm

As shown, the program systematically loops through all the generated Java Bean classes
and searches for each one without any filtering. It then takes the first qualifying record
returned from the search and prints out its details to stdout, thus testing whether or not the
Java API is working.

Note: The TestClient.java program is simply that, a client for testing the Java API. It
provides only one example of how the SDK Application Service search API may be invoked.
If desired, it can be modified to use a different method within the Application Service API, or
the return results filtered by adding criteria data to the search object prior to the search.
See Java API Interface on page 39 for more information.

Testing the XML Utility

The program, TestXMLClient.java, is provided with the SDK distribution for testing the
generated Castor XML Mapping and Schema (XSD) files. This program is located within the
folder \output\<project_name>\ package\remote-client\src\. To execute the
program, run the runXML target of the Ant script, build.xml, located in the folder
\output\<project_name>\package\remote-client\.

Note: The generated system must be deployed to the server, and the server must be
running before the test is invoked.
Figure 10-3 shows a portion of the main test method.

 113

caCORE SDK 4.0 Developer’s Guide

Figure 10-3 XML Mapping and Schema Test Algorithm

As shown, the program systematically loops through all the generated Java Bean classes
and searches for each one without any filtering. It then takes the first qualifying record
returned from the search, and marshals (serializes) it to a file. Next, it reads the XML file
back in, parses the XML, and validates it against the generated schema. Finally, it
unmarshal (deserializes) the XML back to the corresponding domain Java Bean object, thus
testing that the generated XML Mapping and Schema files are working properly.

Note: The TestXMLClient.java program is simply that, a client for testing the XML Utility. It
provides only one example of how the XML Utility marshalling/unmarshalling methods may
be invoked. It can be modified to use a different method if so desired.

114

 Chapter 10 Configuring and Running the SDK

In addition, the same search algorithm used during the testing of the Java API is reused
here. See Testing the Java API on page 112 for more information.

Finally, by its very nature, XML processing can be memory intensive. The
TestXMLClient.java program has been successfully run against the sample SDK model,
which does not contain much data. When running the test program against a model with
much data, the memory specified by the maxmemory=512m attribute within the runXML
target may need to be increased.

Testing the Web Service Interface

Testing the Web Service URL

A successful Web Service deployment can be tested by entering in a browser the Web
Service URL that conforms to the following pattern:

SDK Web Service Test URL
Pattern

http://<server_name>:<server_port>/<project_name>/ser
vices/<project_name>Service

Thus, a successful Web Service deployment URL for the sample SDK model might be
http://localhost:8080/example/services/exampleService.

Figure 10-4 illustrates the result of a successful Web Service deployment test.

Figure 10-4 Web Service test page

Note: The SDK Web Service Deployment Descriptor (WSDD) is now packaged along with
the rest of the SDK generated system, thus allowing for automatic deployment of the SDK
Web Service whenever the system is deployed. Manual deployment of the Web Service is
no longer required.

Obtaining the WSDL for Deployed Services: ?WSDL

As shown in the previous section, entering the Web Service URL in a browser causes a
message to be displayed indicating that the endpoint is an Axis service. However, if the
suffix ‘?wsdl’ is added to the end of the URL, Axis automatically generates a WSDL service
description for the deployed service and returns it as XML in the browser. The URL pattern
is shown below.

 115

http://localhost:8080/example/services/exampleService

caCORE SDK 4.0 Developer’s Guide

SDK Web Service WSDL
Pattern

http://<server_name>:<server_port>/<project_name>/service
s/<project_name>Service?wsdl

Figure 10-5 illustrates a portion of the resulting XML that is generated after invoking the
WSDL URL for the SDK sample Web Service.

Figure 10-5 Obtaining the WSDL for Deployed Services: ?WSDL

Testing Web Services via the Client Program

The SDK distribution also provides the client program, TestClient.java, for testing the Web
Service Interface. This program is located in the folder
\output\<project_name>\package\ws-client\src\. To execute the program, run
the default run target of the Ant script, build.xml, located in the folder
\output\<project_name>\package\ws-client\.

Note: The generated system must be deployed to the server and the server must be
running before the Web Service test is invoked.
Figure 10-6 shows a portion of the main test method.

116

 Chapter 10 Configuring and Running the SDK

Figure 10-6 Web Service test algorithm

The Web Service test program systematically loops through all the generated Java Bean
classes and creates a Web Service queryObject call for each one. It then takes the first
qualifying record returned from the call, and checks to see if the returned object has an
association to another domain object. If it does, the program then proceeds to create and
invoke a Web Service getAssociation call for it, thus testing a couple of the Web Service
operations defined within the WSDL.

Note: The Web Service program TestClient.java is simply that, a client for testing the
generated Web Service. It provides only one example of how the SDK Web Service
messages may be created and invoked. It can be modified to use a different operation or
algorithm if so desired.

In addition, the same search algorithm used during the testing of the Java API’s is re-used
within the test program. See Testing the Java API on page 112 for more information. See
also the Web Service Interface on page 52 for more information.

Configuring Security
Security in SDK is provided by ACEGI and CSM. Security can be configured in three steps.

1. Configure security related properties by altering the configuration parameters in the file
deploy.properties before generating the system.

2. Configure the application server for JAAS based authentication configuration.
3. Setup the CSM database configuration for an SDK-based application.

The following table (Table 10-3) shows the properties that must be modified in order to
correctly enable the security in SDK.

 117

caCORE SDK 4.0 Developer’s Guide

Property Name Default Value Description
SECURITY_ENABLED False Used to enable or disable security within the

generated system during code generation.
This applies to all of the SDK interfaces, including:
• Web Interface (GUI)
• Java API Interface (local and remote clients)
• Web Service Interface

CSM_PROJECT_NAME Sdk Used as a prefix when creating the CSM security
configuration file name. CSM configuration should
have the same application name configured

INSTANCE_LEVEL
_SECURITY

False Used to enable/disable CSM instance level
security.
Only relevant if the SECURITY_ENABLED property
is set to ‘true’

ATTRIBUTE_LEVEL
_SECURITY

False Used to enable/disable attribute level security.
Only relevant if the SECURITY_ENABLED property
is set to ‘true’

CSM_USE_JNDI
_BASED_CONNECTION

No Indicates whether a JNDI DB connection should be
used for the CSM database.
If USE_JNDI_BASED_CONNECTION=yes, then
the DB_JNDI_URL property value is used to obtain
the DB connection and retrieve data

CSM_DB_JNDI_URL java:/SDK The DB JNDI URL value for the CSM database.
This property is irrelevant/ignored if
CSM_USE_JNDI_BASED_CONNECTION=no

CSM_DB_CONNECTION
_URL
CSM_DB_USERNAME
CSM_DB_PASSWORD

None The CSM database connection properties.
A sample DB_CONNECTION_URL value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK users
should provide appropriate values for their CSM
database instance within the local.properties file
located in the root folder of the SDK distribution.

CSM_DB_DIALECT org.hibernate.di
alect.OracleDial
ect

The Hibernate Database dialect used when
connecting to the CSM database.
Typical values include:
• org.hibernate.dialect.OracleDialect
• org.hibernate.dialect.MySQLDialect

Table 10-3 Security properties

JAAS‐Based Authentication Configuration

Applications dependent on JAAS-based
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html) login
can configure their login procedure in several ways. Since the caCORE SDK uses ACEGI
and CSM as underlying security technologies, users of the SDK must perform configuration
as recommended by those technologies. For an SDK generated local-client, users receive
the database-based JAAS configuration prepared by the SDK. Users of the web application
must configure the application server container. Figure 10-7 provides an example of how to
configure JAAS-based authentication in a JBoss server. See the CSM Developer’s Guide for
more information on configuring JAAS-based security in different application servers and

118

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html

 Chapter 10 Configuring and Running the SDK

other configuration options.

Figure 10-7 Configuring JAAS-based authentication in JBoss server

SDK users must make an entry in the file <jboss-
home>/server/default/conf/login-config.xml similar to the code snippet shown
above. CSM reads the entry from the server’s login configuration and performs
authentication using the configuration.

Configuring CSM

caCORE SDK 4.0 requires CSM 4.0 for security. SDK users must setup a CSM database
schema and configure it with CSM’s User Provisioning Tool (UPT).

Note: If you are planning to use instance level security then you are required to put CSM
tables on the same database schema where the tables for domain classes reside. See the
CSM Developer’s Guide for more information on installing CSM on a particular database
and using the User Provisioning Tool (UPT) for configuring the security schema.

While configuring the security schema with the UPT, a Protection Element is required to be
created for each domain object in the SDK generated system. The Protection Element
should have the name as fully qualified name of the domain object. The SDK Security
implementation uses the name of the domain object as a key to be searched in the CSM
configuration to determine access privileges. Figure 10-8 demonstrates the addition of the
StringKey class as a protection element in the CSM.

 119

caCORE SDK 4.0 Developer’s Guide

Figure 10-8 StringKey class as protection element in CSM

Once all the protection elements are created, users and user groups can be created and
assigned READ privileges to appropriate protection elements based on the security needs of
the application.

120

Appendix A Troubleshooting
The following questions and scenarios have been reported by users and may be helpful in
troubleshooting a problem when setting up the SDK.

1. I tried to use the SDK during code generation but I am getting just the exceptions
and not error messages
Getting just the exceptions indicates that the SDK code generator did not initialize due to
either invalid settings in the deploy.properties or an invalid UML model file. The UML
model file can be considered invalid if it is not developed per the specification of the SDK
or it is not exported as specified by the SDK.

2. I tried to generate an application with the SDK but I received validation errors.
How do I make sure that model that I have created runs through the code
generator?
The validation error messages generated from the SDK indicates specific error
conditions under which the SDK cannot generate the code. Fixing the UML model and
executing the code generator will solve the problem.

3. When running the generated application (.war file) under JBoss I am getting a
Log4J exception.
SDK by default includes the log4j.jar and commons-logging.jar file in the generated .war
file’s lib directory. The JBoss server requires both of these files to be excluded from the
.war file before deployment. A developer using the SDK can either remove these two jar
files from the .war file before deployment or they can specify SERVER_TYPE=jboss in
the deploy.properties file and regenerate the system. Specifying a server type as jboss
during code generation will exclude the unnecessary jar files from being packaged in the
.war file.

4. I successfully generated the application with the SDK. However, when running the
application, I am getting database connection errors.
While generating the application with the SDK, the database connection parameters
must be specified in the deploy.properties file. If these settings are incorrect, the SDK
cannot fetch the data from the database. Make sure that the database settings are valid
and the database server is running.

 121

caCORE SDK 4.0 Developer’s Guide

5. When I try to query the generated system, queries for some of the objects are
running very slow.
There can be many different problems associated with slow searches. The primary
problem is with the missing indexes on the primary key filed, foreign key field, or search
key field. Creating these indexes should stop the database from performing full table
scans and improve performance. Chapter 7 includes information on optimizing the
performance of the Java API.

122

Appendix B Planned Features for Future Releases

The SDK development team constantly strives to improve the experience of using the SDK by
providing new features and enhancing existing features. During the course of development for
the current release, the team has come across many new features that will be considered for
development immediately following the release of the current version. The following is a short
summary of some of the major features under consideration.

Grid Integration – The latest release of SDK is not compatible with caGrid 1.0 or 1.1. The SDK
team will be working with the caGrid team to integrate the latest release of the SDK with a future
version of caGrid.

GUI for installation and build process – The current SDK build process involves executing
the ANT scripts to generate code with the SDK code generation module and preparing the
packages for deployment and release. Although this process is geared towards novice users,
many users find it difficult to use the command line script execution. A new tool is under
consideration for development that will allow users to control the execution of code generation
process from a graphical interface.

Robust user interface – The current user interface for the web application is a major
improvement over the user interface provided by the previous release. The current version of
the interface is based on the NCICB UI templates and has better integration of security then the
previous version. This user interface will be expanded to provide additional features like:

• Complex Query By Example (QBE) input forms
• In line documentation for the UML class and attributes in the domain class browser
• Displaying UML diagrams in the domain class browser
• Allow to edit the records
Writable API – The current version of the SDK provides a read only API for the domain model.
The previous release of the SDK did include a primitive version of a writable API but is not being
released with the new SDK. The SDK team is planning to develop a complete working solution
for the writable API, which is applicable to the requirements of most users.

 123

caCORE SDK 4.0 Developer’s Guide

124

Appendix C Example Model and Mapping

The caCORE SDK release package contains the example model included in this appendix,
which can be used by the user as a reference to model a particular scenario for a system. The
example model is available under the models directory of the release package and is available
for Enterprise Architect (SDKTestModel.eap) and ArgoUML (sdk.uml). Users can easily refer to
these models, which are organized in a self-explanatory fashion.

The current version of the example model includes the scenarios in the following tables.

Attribute Types

 Primary Key Simple Data type Collection data type
String Yes Yes Yes
Integer Yes Yes Yes
Double Yes Yes Yes
Boolean No Yes Yes
Float Yes Yes Yes
Short Yes Yes Yes
Long Yes Yes Yes
Byte Yes Yes Yes
Character Yes Yes Yes
Date Not Supported by

SDK
Yes Not Supported by SDK

String (CLOB) Not Supported by
SDK

Yes Not Supported by SDK

Association Mapping

 Unidirectional Bidirectional Unidirectional

with Join
table

Bidirectional
with Join
table

One to One Yes Yes Yes Yes
One to Many Yes Yes Yes Yes
Many to One Yes Yes Yes Yes
Many to Many Yes Yes Yes Yes
Self Association Yes Not Supported

by SDK
No Not Supported

by SDK
Multiple Associations Yes Yes Yes Yes

 125

caCORE SDK 4.0 Developer’s Guide

Inheritance Mapping

Table per class
Table per hierarchy
Table per hierarchy with separate table for one of the child class

126

Glossary

The following table contains a list of terms used in this document, with accompanying
definitions.

Term Definition

Acegi Acegi is a security framework that provides a powerful, flexible security
solution for enterprise software, with a particular emphasis on
applications that use the Spring Framework. Acegi Security provides the
SDK with comprehensive authentication, authorization, instance-based
access control, channel security and human user detection capabilities.
See http://www.acegisecurity.org/ for more information.

Ant Apache Ant is a Java-based build tool used within the SDK to perform
various build related tasks. See section 0 Ant Build Script Targets for
more information on how Ant is used within the SDK. See
http://ant.apache.org/ for more information on Ant itself.

Castor Castor is an Open Source data-binding framework for Java, and
facilitates conversion between Java Beans, XML documents and
relational tables. Castor provides Java-to-XML binding, Java-to-SQL
persistence, and more. See http://www.castor.org/ for more information.

Ehcache Ehcache is a simple, fast and thread safe cache for Java that provides
memory and disk stores and distributed operation for clusters. The SDK
uses ehcache in conjunction with Hibernate. See
http://sourceforge.net/projects/ehcache for more information.

QBE Query by Example (QBE) is a database query language for relational
databases. It was devised by Moshé M. Zloof at IBM Research during the
mid 1970s, in parallel to the development of SQL. It is the first graphical
query language, using visual tables where the user would enter
commands, example elements and conditions. See
http://en.wikipedia.org/wiki/Query_by_Example for more information.

Hibernate Hibernate is an object-relational mapping (ORM) solution for the Java
language, and provides an easy to use framework for mapping an object-
oriented domain model to a traditional relational database. Its purpose is
to relieve the developer from a significant amount of relational data
persistence-related programming tasks. See http://www.hibernate.org/ for
more information.

HQL Hibernate Query Language (HQL) is a powerful query language that looks
similar to SQL. Though the syntax is SQL-like, HQL is fully object-
oriented, and understands concepts like inheritance, polymorphism and
association. See
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html for

 127

http://www.acegisecurity.org/
http://ant.apache.org/
http://www.castor.org/
http://sourceforge.net/projects/ehcache
http://en.wikipedia.org/wiki/Query_by_Example
http://www.hibernate.org/
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

caCORE SDK 4.0 Developer’s Guide

Term Definition

more information.

Marshaling The process of producing an XML document from Java Beans; i.e., the
process of serializing Java Beans to XML.

ORM An acronym for Object-Relational Mapping, a programming technique for
converting data between incompatible type systems in databases and
Object-oriented programming languages. This creates, in effect, a "virtual
object database" which can be used from within the programming
language. See http://en.wikipedia.org/wiki/Object-relational_mapping for
more information. Hibernate implements this technique within the SDK.

REST “Representational State Transfer (REST) is a style of software
architecture for distributed hypermedia systems such as the World Wide
Web. The term was introduced in the doctoral dissertation of Roy Fielding
in 2000,[1] one of the principal authors of the Hypertext Transfer Protocol
(HTTP) specification, and has come into widespread use in the
networking community.

“REST strictly refers to a collection of network architecture principles that
outline how resources are defined and addressed. The term is often used
in a looser sense to describe any simple interface that transmits domain-
specific data over HTTP without an additional messaging layer such as
SOAP or session tracking via HTTP cookies. These two meanings can
conflict as well as overlap. It is possible to design any large software
system in accordance with Fielding's REST architectural style without
using the HTTP protocol and without interacting with the world wide web.
It is also possible to design simple XML+HTTP interfaces that do not
conform to REST principles, and instead follow a Remote Procedure Call
model. The two different uses of the term "REST" cause some confusion
in technical discussions. See http://en.wikipedia.org/wiki/REST for more
information.

Unmarshalling The process of populating a generated class object from a corresponding
XML document; i.e., the process of deserializing XML to Java Beans.

WSDD An acronym for Web Service Deployment Descriptor, which can be used
to specify resources that should be exposed as Web Services. See
http://ws.apache.org/axis/java/user-
guide.html#CustomDeploymentIntroducingWSDD for more information.

WSDL An acronym for Web Services Definition Language, which is an XML-
based language that provides a model for describing Web services. See
http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL for
more information.

128

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/REST
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

Index

A
ACEGI

security filters, 30
security interception tier, 25

ArgoUML
create attributes and data types, 85
example model and mapping, 125
tag values, 90

C
caBIG, 6
Client

dynamic proxy-based SDK generated client API, 27
java api local and remote, 26
multiple remote application services, 30
technical challenges, 27
web services, 26
XML-HTTP, 25

Code Generation Module, 5
artifact generation, 17
features and limitations, 16
framework, 18
output management, 18
overview, 15
process, 16
reading UML model, 17
reusable components, 19

Code Generator
deploy.properties file, 103

CSM
security interception tier, 25

E
EA

create attributes and data types, 85
example model and mapping, 125
export UML model to XMI, 98
import XMI into UML model, 100
tag values, 89

EHCache configuration file, 20

G
Generating SDK System

Ant build script targets, 107
deploying, 110
package overview, 109
selectively generating components, 109
testing, 111

H
Hibernate configuration file, 20
Hibernate mapping files, 20

J
Java API client

accessing, 39

L
local-client, 109

M
Model Driven Architecture, 5

N
Non-Object Relational Mapping, 23
N-Tier System

application service tier, 23
client interface tier, 25
persistence tier, 22
security interception tier, 25

O
Object Relational Mapping, 22

tag values, 88

R
Reading materials, 1
remote-client, 110
Representational State Transfer. See REST
Resources, 1

 129

caCORE SDK 4.0 Developer’s Guide

REST Interface
accessing, 37

Runtime System, 5
Runtime System Module

architecture, 21

S
SDK

4.0 features, 7
configure and run, 103
contributing to development process, 13
custom tag value descriptions, 90
example model and mapping, 125
generated artifacts, 19
modules, 5
obtaining the release, 11
system usage, 33
user types, 6

SDK See Software Development Kit, 1
Security

authentication, 32
authorization, 32
configuring, 117
instance and attribute level, 32
overview, 31

Software Development Kit
defined, 1

System Requirements

hardware, 11
software, 12

T
Tag Values

SDK custom descriptions, 90
Troubleshooting, 121

U
UML, 6

code generation process, 17

W
Web Service deployment descriptor file, 20
webapp, 110
ws-client, 110

X
XML

mapping files, 20
XML-HTTP

accessing, 33
client description, 25, 26
secure system, 59

XSD
mapping files, 20

130

	Credits and Resources
	Table of Contents
	Chapter 1 Using This Guide
	Intended Audience
	Recommended Reading
	Organization of this Guide
	Document Text Conventions

	Chapter 2 Overview
	Introduction
	caCORE SDK Modules
	caCORE SDK Users
	SDK within the caCORE Environment
	Benefits of Using the caCORE SDK
	New Features for caCORE SDK 4.0
	Code Generation
	Generated System

	Obtaining the caCORE SDK
	caCORE SDK Minimal System Requirements
	 Minimal Hardware Requirements

	Software Requirements

	Contributing to caCORE SDK Development

	Chapter 3 Code Generation Technical Overview
	Introduction
	The Role of Code Generation in the caCORE SDK
	Features and Limitations of Code Generation

	Code Generation Process
	Reading the UML Model
	Artifact Generation (Model Transformation)
	Output Management
	Code Generation Framework
	Reusable Components of the Code Generation Workflow

	Overview of SDK Generated Artifacts

	Chapter 4 Runtime System Technical Overview
	High-Level Architecture
	N-Tier System
	Persistence Tier
	Object Relational Mapping
	Non-Object Relational Mapping

	Application Service Tier
	Extending the Application Service Tier

	Security Interception Tier
	Client Interface Tier
	XML-HTTP Client
	Web Services Client
	Java API Local and Remote Client
	Technical Challenges
	Dynamic Proxy-Based SDK Generated Client API
	Connecting to Multiple Remote Application Services

	Security Filters

	Security
	Authentication
	Authorization
	Instance and Attribute Level Security

	Chapter 5 System Usage
	XML-HTTP Interface
	Accessing Data from a Web Browser
	Accessing Data from a Thin Client

	Java API Interface
	Obtaining ApplicationService
	ApplicationService API Methods
	Convenience Query
	HQL Query
	Detached Criteria Query
	CQL Query
	Nested Search Criteria Query

	Web Service Interface
	SDK WSDL Directives - Schema Imports
	WSDL Service Definition
	WSDL Port Types (Network Endpoints)
	Messages, Elements, and Types
	Web Service Error Handling
	SOAP Fault Structure

	Chapter 6 System Usage for a Secured System
	Introduction
	XML-HTTP Interface
	Web Services Client
	Java API

	Chapter 7 Performance Tuning the Java API
	Database Indexes
	Fine Tuning the Page Size
	Lazy Loading
	Hibernate Query Language (HQL)

	Chapter 8 Utilities
	XML Utility (Marshalling and Unmarshalling)
	The caCOREMarshaller Class
	The caCOREUnmarshaller Class
	Marshalling Java Objects to XML
	Unmarshalling XML to Java Objects

	Chapter 9 Creating the UML Model for caCORE SDK
	Introduction
	Creating a New Project
	Creating Classes and Tables
	Creating a Logical Model Package Structure
	Creating a Logical (Object) Model Class
	Creating a Data Model Table

	Creating Attributes and Data Types
	Performing Object Relational Mapping
	Adding/Modifying Tag Values
	SDK Custom Tag Value Descriptions

	Exporting the UML Model to XMI (EA Only)
	Importing XMI into the UML Model (EA Only)

	Chapter 10 Configuring and Running the SDK
	SDK Configuration Properties
	Generating the SDK System
	Ant Build Script Targets
	Selectively Generating Components

	Overview of Generated Packages
	Deploying the Generated System
	Deploying to JBoss
	Deploying to Apache Tomcat

	Testing the caCORE SDK Generated System
	Testing the Web Interface
	Testing the Java API
	Testing the XML Utility
	Testing the Web Service Interface
	Testing the Web Service URL
	Obtaining the WSDL for Deployed Services: ?WSDL
	Testing Web Services via the Client Program

	Configuring Security
	JAAS-Based Authentication Configuration
	Configuring CSM

	Appendix A Troubleshooting
	Appendix B Planned Features for Future Releases
	Appendix C Example Model and Mapping
	Glossary
	Index

