§ 173.40 IBC may not exceed 3 cubic meters (106 cubic feet) capacity. - (k) When an IBC is used for the transportation of liquids with a flash point of 60.5 °C (141 °F) (closed cup) or lower, or powders with the potential for dust explosion, measures must be taken during product loading and unloading to prevent a dangerous electrostatic discharge. - (1) *IBC filling limits*. (1) Except as provided in this section, an *IBC* may not be filled with a hazardous material in excess of the maximum gross mass marked on that container. - (2) An IBC which is tested and marked for Packing Group II liquid materials may be filled with a Packing Group III liquid material to a gross mass not exceeding 1.5 times the maximum gross mass marked on that container, if all the performance criteria can still be met at the higher gross mass. - (3) An IBC which is tested and marked for liquid hazardous materials may be filled with a solid hazardous material to a gross mass not exceeding the maximum gross mass marked on that container. In addition, an IBC intended for the transport of liquids which is tested and marked for Packing Group II liquid materials may be filled with a Packing Group III solid hazardous material to a gross mass not exceeding the marked maximum gross mass multiplied by 1.5 if all the performance criteria can still be met at the higher gross mass - (4) An IBC which is tested and marked for Packing Group I solid materials may be filled with a Packing Group II solid material to a gross mass not exceeding the maximum gross mass marked on that container, multiplied by 1.5, if all the performance criteria can be met at the higher gross mass; or a Packing Group III solid material to a gross mass not exceeding the maximum gross mass marked on the IBC, multiplied by 2.25, if all the performance criteria can be met at the higher gross mass. An IBC which is tested and marked for Packing Group II solid materials may be filled with a Packing Group III solid material to a gross mass not exceeding the maximum gross mass marked on the IBC, multiplied by 1.5. [Amdt. 173–238, 59 FR 38064, July 26, 1994, as amended by Amdt. 173–243, 60 FR 40038, Aug. 4, 1995; 64 FR 10777, Mar. 5, 1999; 66 FR 45380, 45381, Aug. 28, 2001; 68 FR 48569, Aug. 14, 2003] ## § 173.40 General packaging requirements for toxic materials packaged in cylinders. When this section is referenced for a Hazard Zone A or B hazardous material elsewhere in this subchapter, the requirements in this section are applicable to cylinders used for that material. - (a) Authorized cylinders. (1) A cylinder must conform to one of the specifications for cylinders in subpart C of part 178 of this subchapter, except that specification 8, 8AL, and 39 cylinders are not authorized. - (2) After September 30, 2002, DOT 3AL cylinders made of aluminum alloy 6351-T6 may not be filled and offered for transportation or transported with a Division 2.3 Hazard Zone A material, a Division 6.1 Hazard Zone A material, or any liquid meeting the definition of Division 6.1 and the criteria for Packing Group I Hazard Zone A, as specified in §173.133. If it is otherwise serviceable and conforms to the regulations in effect on September 30, 2002, a DOT 3AL cylinder made of aluminum alloy 6351-T6 and filled before October 1, 2002, may be transported for reprocessing or disposal of the cylinder's contents until April 1, 2003. - (b) Outage and pressure requirements. The pressure at 55 °C (131 °F) of Hazard Zone A and, after December 31, 2003, Hazard Zone B materials may not exceed the service pressure of the cylinder. Sufficient outage must be provided so that the cylinder will not be liquid full at 55 °C (131 °F). - (c) Closures. Each cylinder containing a Hazard Zone A material must be closed with a plug or valve conforming to the following: - (1) Each plug or valve must have a taper-threaded connection directly to the cylinder and be capable of withstanding the test pressure of the cylinder without damage or leakage. - (2) Each valve must be of the packless type with non-perforated diaphragm, except that, for corrosive materials, a valve may be of the packed type with an assembly made gas-tight by means of a seal cap with gasketed joint attached to the valve body or the cylinder to prevent loss of material through or past the packing. - (3) Each valve outlet must be sealed by a threaded cap or threaded solid plug and inert gasketing material. - (4) The materials of construction for the cylinder, valves, plugs, outlet caps, luting, and gaskets must be compatible with each other and with the lading. - (d) Additional handling protection. Each cylinder or cylinder overpack combination offered for transportation containing a Division 2.3 or 6.1 Hazard Zone A or B material must conform the valve damage protection performance requirements of this section. In addition to the requirements of this section, overpacks must conform to the overpack provisions of §173.25. - (1) Each cylinder with a wall thickness at any point of less than 2.03 mm (0.08 inch) and each cylinder that does not have fitted valve protection must be overpacked in a box. The box must conform to overpack provisions in §173.25. Box and valve protection must be of sufficient strength to protect all parts of the cylinder and valve, if any, from deformation and breakage resulting from a drop of 2.0 m (7 ft) or more onto a non-yielding surface, such as concrete or steel, impacting at an orientation most likely to cause damage. "Deformation" means a cylinder or valve that is bent, distorted, mangled, misshapen, twisted, warped, or in a similar condition. - (2) Each cylinder with a valve must be equipped with a protective metal cap, other valve protection device, or an overpack which is sufficient to protect the valve from breakage or leakage resulting from a drop of 2.0 m (7 ft) onto a non-yielding surface, such as concrete or steel. Impact must be at an orientation most likely to cause damage. - (e) *Interconnection*. Cylinders may not be manifolded or interconnected. [67 FR 51642, Aug. 8, 2002, as amended at 67 FR 61289, Sept. 30, 2002; 68 FR 24660, May 8, 2003] ## Subpart C—Definitions, Classification and Packaging for Class 1 SOURCE: Amdt. 173–224, 55 FR 52617, Dec. 21, 1990, unless otherwise noted. ## § 173.50 Class 1—Definitions. - (a) Explosive. For the purposes of this subchapter, an explosive means any substance or article, including a device, which is designed to function by explosion (i.e., an extremely rapid release of gas and heat) or which, by chemical reaction within itself, is able to function in a similar manner even if not designed to function by explosion, unless the substance or article is otherwise classed under the provisions of this subchapter. The term includes a pyrotechnic substance or article, unless the substance or article is otherwise classed under the provisions of this subchapter. - (b) Explosives in Class 1 are divided into six divisions as follows: - (1) Division 1.1 consists of explosives that have a mass explosion hazard. A mass explosion is one which affects almost the entire load instantaneously. - (2) Division 1.2 consists of explosives that have a projection hazard but not a mass explosion hazard. - (3) Division 1.3 consists of explosives that have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard. - (4) Division 1.4 consists of explosives that present a minor explosion hazard. The explosive effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package. - (5) Division 1.51 consists of very insensitive explosives. This division is comprised of substances which have a mass explosion hazard but are so insensitive that there is very little probability of initiation or of transition ¹The probability of transition from burning to detonation is greater when large quantities are transported in a vessel.