

 Oregon Micro Systems, Inc. models; V VX2 and MAXv. 	/ME8, VME44, VME58, VS4
2. Highland Technologies model V540.	
 Newport models MM3000, MM4000, M ESP300 and XPSC8. 	M4005, MM4006, PM500,
4. Soft Channel.	
5. Advanced Control Systems, Corp. mo	del MCB-4B.
6. Mclennan models PM304 and PM600.	
7. Intelligent Motion Systems, Inc. (IMS)	models IM483 and MDrive.
8. MX device driver.	
9. Physik Instrumente (PI) GmbH & Co. r	nodel C-844.
10. MicroMo model MVP 2001 B02.	
11. Micos model MoCo dc controller.	
12. Delta Tau PMAC2-VME controller.	

Cont'd Feature list

- Software travel limits.
- Send motor controller command primitives at initialization, premove and post-move; (INIT, PREM, POST).
- Drive Power Monitoring and Motor Synchronized DB Puts via **Device Directives.**
- Jogging.
- Motor record closed-loop control via Retries.
- Position feedback from either a EPICS PV link or a motor controller.
- Define current position (SET).
- Continuous, periodic updates via the Status Update field (STUP).

Office of Science U.S. Department

Pioneering Science and Technology

Cont'd Feature list Terminology • Stepper motors step and encoders tick. • The scope of the motor record is limited to single axis, noncoordinated, point to point moves. Readback <=> Feedback ٠ Absolute, relative and incremental moves. ٠ Supports stepper, DC and Soft Channel motors. Very few fields • absolute reference position (RMP). are motor type specific; • PID parameters (PCOF/ICOF/DCOF) for DC motors. · Velocity base (VBAS) for stepper motors. • Done Moving Input Link (DINP) for Soft Channel. • Three different position coordinate systems; user, dial and raw. • Record level backlash correction. • Homing. Pioneering Science and Technology Pioneering Science and Technology Office of Science U.S. Department of Energy

Cont'd Configuration example

- UREV = EGU's / 1 leadscrew rev.
- SREV = motor steps / 1 motor rev. > 0
- MRES = UREV / SREV

Pioneering Science and Technology

• MRES and UREV allow negative values so that the record's coordinate system can be configured to the opposite polarity of the motor controller's.

Office of Science U.S. Department

 \bigcirc

• Never change MRES while the motor is moving.

Feedback

Pioneering Science and Technology

- Two ways to input position feedback to the motor record: 1. From driver support, via the motor controller.
 - 2. From an EPICS PV, via a stand-alone, feedback device,
- For feedback from driver support:
 - Driver level code sets the *Encoder is Present* bit (EA_PRESENT) in the Motor Status field (MSTA) to True at initialization.
 - The Raw Encoder Position field (REP) has the motor controllers' raw encoder value [ticks].
- Configuring feedback from driver support:
 - Set the Encoder Resolution field (ERES) to convert encoder ticks to EGU's.
 - The Use Encoder If Present field (UEIP) determines if the REP is used [Yes/No].

Office of Science U.S. Department

```
Cont'd Configuration example

    Gear box example

      · Gear ratio definition; "The ratio of the powered gear
         of a gear train to that of the final or driven gear."
         Hence, a 3:1 gear ratio means that the motor makes
         3 revolutions per 1 revolution of the lead screw
                    EGU's
                                       1 leadscrew rev.
                                                               1 motor rev
 MRES =
               1 leadscrew rev.
                                        3 motor revs.
                                                               motor steps
   • For a DC motor with a motor mounted encoder, change motor
       steps to encoder ticks.
Pioneering
Science and
Technology
                                                                   Office of Science
U.S. Department
                                                                            \bigcirc
```


Retries

Pioneering Science and Technology

- What it isn't. Retries are not continuous, dynamic loop closure.
- What it is. Retries try to eliminate dial position error (DIFF) by making, consecutive, <u>relative moves</u> based on the DIFF field.
- DIFF = DVAL DRBV
- If ((EA_PRESENT = True, AND, UEIP == Yes), OR, URIP == Yes) is True, then all motor record moves are relative moves.
- Note that when the above is true, retries change the commanded position, not the target position. RVAL != RMP after a retry.
- Configuring retries:
 - Never set UEIP == Yes for a DC motor.
 - Set Retry Deadband (RDBD); retry if (DIFF > RDBD); RDBD limited to >= MRES.
 - Set Max Retry Count (RTRY) maximum number of retries.
 - Current Retry Count (RCNT) clear at beginning of every move.

Office of Science U.S. Department of Energy

