
Encapsulated PostScript
File Format Specification

Version 3.0

1 May 1992

Adobe Developer Support

PN LPS5002

Adobe Systems Incorporated

Corporate Headquarters
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400 Main Number
(415) 961-4111 Developer Support
Fax: (415) 961-3769

Adobe Systems Europe B.V.
Europlaza
Hoogoorddreef 54a
1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200
Fax: +31-20-6511 300

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F
4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
81-3-3437-8950
Fax: 81-3-3437-8968

Copyright 1985–1988, 1990, 1992 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems Incorpo-
rated unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Sys-
tems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Illustrator, Tran-
Script, Carta, and Sonata are trademarks of Adobe Systems Incorporated registered in the U.S.A. and
other countries. Adobe Garamond and Lithos are trademarks of Adobe Systems Incorporated. Quick-
Draw and LocalTalk are trademarks and Macintosh and LaserWriter are registered trademarks of
Apple Computer, Inc. FrameMaker is a registered trademark of Frame Technology Corporation. ITC
Stone is a registered trademark of International Typeface Corporation. IBM is a registered trademark
of International Business Machines Corporation. Helvetica, Times, and Palatino are trademarks of
Linotype AG and/or its subsidiaries. Microsoft and MS-DOS are registered trademarks and Windows
is a trademark of Microsoft Corporation. Times New Roman is a registered trademark of The Mono-
type Corporation plc. NeXT is a trademark of NeXT, Inc. Sun-3 is a trademark of Sun Microsystems,
Inc. UNIX is a registered trademark of AT&T Information Systems. X Window System is a trademark
of the Massachusetts Institute of Technology. Other brand or product names are the trademarks or reg-
istered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

1 Introduction 1

2 Guidelines for Creating EPS Files 3
Required DSC Header Comments 3
Conditionally Required Comments 5
Recommended Comments 6
Illegal and Restricted Operators 6
Stacks and Dictionaries 6
Graphics State 7
Initializing Variables 7
Ensuring Portability 8
Miscellaneous Constraints 9

3 Guidelines for Importing EPS Files 9
Displaying an EPS File 9
Producing a Composite PostScript Language Program 10

4 File Types and Naming 18
Apple Macintosh File System 18
MS-DOS and PC-DOS File System 18
Other File Systems 18

5 Device-Specific Screen Preview 18
Apple Macintosh PICT Resource 19
Windows Metafile or TIFF 19

6 Device-Independent Screen Preview 20
Guidelines for EPSI Files 21

7 EPS Example 23

Appendix: Changes Since Earlier Versions 27

Index 29

iv Contents (14 Feb 92)

1

The encapsulated PostScript file (EPSF)
format is a standard format for importing and
exporting PostScript language files among
applications in a variety of heterogeneous
environments. This appendix details the The

Encapsulated PostScript
File Format Specification

The encapsulated PostScript file (EPSF) format is a standard format for
importing and exporting PostScript language files among applications in a
variety of heterogeneous environments. This appendix details the format
and contains specific information about the Macintosh® and MS-DOS®

environments. The EPSF format is based on and conforms to the document
structuring conventions (DSC) detailed in thePostScript Document Structuring
Conventions Specification available from the Adobe Systems Developers
Association. Proper use of the document structuring conventions is required
when creating a PostScript language file that conforms to the EPSF format.

The main topics of this appendix include creating encapsulated PostScript
(EPS) files, importing EPS files into other PostScript language files, and
optional screen preview images for EPS files. Finally, a detailed example
illustrates the concepts presented throughout this appendix.

1 Introduction

An encapsulated PostScript file is a PostScript language program describing
the appearance of a single page. Typically, the purpose of the EPS file is to
be included, or “encapsulated,” in another PostScript language page descrip-
tion. The EPS file can contain any combination of text, graphics, and images,
and it is the same as any other PostScript language page description with only
a few restrictions. Figure 1 conceptually shows how an EPS file can be
included in another PostScript language document.

2 (1 May 92)

Figure 1 Document with an imported EPS file

Applications that create conforming EPS files must follow the guidelines in
section section 2.” There are two required DSC comments, some condition-
ally required comments, and several programming guidelines to ensure that
the EPS file can be reliably imported into an arbitrary PostScript language
page description without causing any side effects. An example of a side effect
is erasing the page of the importing document or terminating the print job.

Applications that import EPS files must follow the guidelines in section sec-
tion 3.” An application importing an EPS file must parse the EPS file for DSC
comments and extract at least the bounding box and resource dependencies of
the EPS file. The application should also read and display the screen preview,
if present. If there is no screen preview provided in the EPS file, the applica-
tion must provide an alternate representation and allow the user to place and
transform the preview on the screen.
The application must then convert the user’s manipulations into the appropri-
ate transformation to the PostScript coordinate system before sending the
document to the printer. The application must also preserve its stacks, current
dictionary, and graphics state before the imported EPS file is executed.

Note that EPS files are afinal-formrepresentation. They cannot be edited
when imported into a document. However, the imported EPS file as a whole
may be manipulated to some extent, including transformations such as
translation, rotation, scaling, and clipping.

The device-independent nature of the PostScript language makes it an excel-
lent interchange format. However, it normally requires a PostScript language
interpreter to preview an EPS file on screen. Display PostScript systems
allow EPS files to be dynamically interpreted, insuring the highest-quality,
on-screen preview regardless of scale, rotation, or monitor type. For other
environments where the Display PostScript system is not available, the
EPS file format allows for an optional screen preview image.

EPS File

=+

Document Page

Transportation
of the Future

What We Can
Do to Save

Our Rain Forests

Sailboard Heaven
Is Lake Lopez

50 Finest
Hiking Trails

Transportation
of the Future

What We Can
Do to Save

Our Rain Forests

Sailboard Heaven
Is Lake Lopez

50 Finest
Hiking Trails

OUTDOOR OUTDOOR

2 Guidelines for Creating EPS Files 3

The format of this preview representation varies from system to system. It
is typically a Macintosh PICT resource, a TIFF file, or a device-independent
hex bitmap. If the EPS file does not provide a preview image, the application
that includes the EPS file must provide a representation of the preview, such
as a gray box that represents the extent of the EPS file. The end user can use
the screen preview to position and size the EPS file in the document.

To support encapsulated PostScript files effectively, some cooperation is
required among the applications thatproduce EPS files and those thatuse
EPS files. Typically, EPS files are used by importing (or including) them in
other documents.

All DSC comments in an EPS file communicate information. How an appli-
cation uses this information is up to the programmer of the including applica-
tion. When importing an EPS file, do not reduce the amount of information in
the EPS file by improperly removing or altering DSC comments. In general,
the comments indicate what resources and language extensions are used,
and where they are used in the EPS file. Encapsulated PostScript files are
final-form print files that do not know anything about the printer on which
they will be imaged. If they have specific resource needs, such as fonts,
these needs must be carefully preserved and addressed.

Any application that generates PostScript language programs is potentially
both aconsumer and aproducer of encapsulated PostScript files. It is proba-
bly best not to think that an application is at either end of the chain. If an
application imports an EPS file, it is responsible for reading and understand-
ing any of the resource needs of the imported EPS file. These needs must be
reflected in the resource usage comments of the composite document the
including application creates. For example, if an imported EPS file uses
Lithos™, but the rest of the document is set in Times-Roman, then by import-
ing the EPS file, the document now also uses the Lithos font. This fact must
be reflected in the composite document’s outermost%%DocumentNeeded-
Fonts: comment. This concept holds true for the%%DocumentNeede-
dResources:, %%LanguageLevel: and%%Extensions: comments as well.

2 Guidelines for Creating EPS Files

To be considered a conforming EPSF version 3.0 file, a file must follow the
rules set forth in this appendix, be asingle page document that fully conforms
to the DSC version 3.0 or later (described in thePostScript Document
Structuring Conventions Specifications available from the Adobe Systems
Developers’ Association), and include two required DSC header comments.

2.1 Required DSC Header Comments

The two required DSC Header comments are

4 (1 May 92)

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: llx lly urx ury

The first required DSC header comment informs the including application
that the file conforms to version 3.0 of the EPSF format as described in this
appendix. This is the version comment.

The second required DSC header comment provides information about the
size of the EPS file and must be present so the including application can
transform and clip the EPS file properly. This is the bounding box comment.

The four arguments of the bounding box comment correspond to the lower-
left (llx, lly) and upper-right (urx, ury) corners of the bounding box. They are
expressed in the default PostScript coordinate system. For an EPS file, the
bounding box is the smallest rectangle that encloses all the marks painted
on thesinglepage of the EPS file. Graphics state information, such as the
current line width and line join parameters, must be considered when calcu-
lating the bounding box. Example 1: shows a minimally conforming EPS file
that draws a square with a line width of 10 units.

Example 1:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 5 5 105 105
10 setlinewidth
10 10 moveto
0 90 rlineto 90 0 rlineto 0 -90 rlineto closepath
stroke

The marks painted by Example 1:, and how they are positioned with respect
to the PostScript coordinate system, are illustrated in Figure 2. If the line
width were not considered when calculating the bounding box, the bounding
box would be incorrectly positioned by five units on each side of the square,
causing the application to incorrectly place and clip the imported EPS file.
The bounding box specified for this example is correct.

Figure 2 Calculating the correct bounding box

10

10

105

105

2 Guidelines for Creating EPS Files 5

Regardless of the coordinate system in which an application operates, there
is a convenient way to estimate the bounding box: Print the page, then use a
point ruler to measure from the lower-left corner of the paper to the lower-left
corner of the image. Then measure to the upper-right corner, also using the
lower-left corner of the paper as the origin. These two measurements give the
bounding box and do not depend on any computation.

2.2 Conditionally Required Comments

There are several optional DSC comments that may be conditionally required
for a conforming EPS file. These comments must appear in an EPS file if
certain features are present—for example, comments to bracket the preview
section or to state that a certain language version or language extensions
must be present in the interpreter.

The%%Begin(End)Preview comments must bracket the preview section of
an EPS file if the preview is represented in the encapsulated PostScript inter-
change (EPSI) format. See section section 6,” for details and an example of
EPSI.

The%%Extensions: comment is required if the EPS file requires a PostScript
language interpreter that supports particular PostScript language extensions
to print properly. For example, the EPS file may contain CMYK language
extension operators and must be sent to a printer that can handle those
operators. In such a case, the EPS file must contain either the
%%Extensions: CMYK or the %%LanguageLevel: 2 comment.

The%%LanguageLevel: comment is required if the EPS file uses Level 2 fea-
tures without providing conditional emulation. With this information, the
including application can alert the user and avoid any errors that would be
generated if the file were sent to a Level 1 printer.

If the EPS file uses language extensions or Level 2 features, and it
provides complete emulation of the features in terms of Level 1 operators,
the%%Extensions: and%%LanguageLevel: comments are not necessary.
See Appendix D of thePostScript Language Reference Manual, Second
Edition for compatibility and emulation strategies.

If the EPS file requires any fonts, files, forms, patterns, procsets (procedure
sets), or any other resources, the appropriate DSC comment must appear
in the header comments section of the file. See thePostScript Document
Structuring Conventions Specifications available from the Adobe Systems
Developers’ Association.

6 (1 May 92)

2.3 Recommended Comments

An application or spooler may optionally use the general header comments
%%Creator:, %%Title:, and%%CreationDate: to provide information about a
document. These header comments are strongly recommended for EPS files.

2.4 Illegal and Restricted Operators

There are some PostScript language operators plusstatusdict anduserdict
operators that are intended for system-level jobs or page descriptions that are
not appropriate in an EPS file. In addition to all operators instatusdict and
the operators inuserdict for establishing an imageable area, the following
operators must not be used in an EPS file:

banddevice exitserver initmatrix setshared
clear framedevice quit startjob
cleardictstack grestoreall renderbands
copypage initclip setglobal
erasepage initgraphics setpagedevice

If used properly, the following operators are allowed in an EPS file.
However, use of any of these must comply with the rules in Appendix I
of thePostScript Language Reference Manual, Second Edition. Improper
use can cause unpredictable results.

nulldevice sethalftone setscreen undefinefont
setgstate setmatrix settransfer

2.5 Stacks and Dictionaries

The PostScript interpreter’s operand and dictionary stacksmust be left in
the state they were in before the EPS file was executed. The EPS file must
not leave objects on either of these two stacks as a result of its execution.
All operators placed on the operand stack must be used or removed from the
stack with thepop operator.

It is strongly recommended that an EPS file make all of it definitions in its
own dictionary. This means an EPS file should create its own dictionary or
dictionaries instead of writing into the importing application’s current dictio-
nary. In Level 1 interpreters, the dictionary the importing application uses
may not have room for the EPS file definitions. Also, to avoid the possibility
of aninvalidrestore error, make sure the EPS file’s dictionary is removed
from the dictionary stack using the PostScript language operatorend when
the EPS file has finished using it. Every dictionary that the EPS file places
on the dictionary stack with abegin operator must be removed from the
dictionary stack by the EPS file with a correspondingend operator.

2 Guidelines for Creating EPS Files 7

Note Do not use theclear or cleardictstack operators to clear the stacks in an
EPS file. These wholesale cleanup operators not only clear the EPS file’s
operands and dictionaries from the stacks, they may clear other objects
as well.

The PostScript dictionary lookup mechanism searches the dictionaries that
are on the dictionary stack. Bypassing the dictionary lookup mechanism for
system-level names isillegal in an EPS file.Do not use the following type
of code:

/S systemdict /showpage get def% Illegal EPS code

It may cause incorrect results in the including application’s PostScript output
by overriding the application’s redefinitions.

2.6 Graphics State

An application importing an EPS file may transform the PostScript coordi-
nate system or alter some other aspect of the graphics state so it is no longer
in its default state. This allows the application to change the appearance of
the EPS file, typically by resizing, clipping, or rotating the illustration. If the
EPS file makes assumptions about the graphics state, such as the current
clipping path, or explicitly sets something it shouldn’t, such as the transfor-
mation matrix (see section section 2.4”), the results may not be what were
expected.

In preparation for including an EPS file, the graphics state must be set by the
including application as follows: current color to black, line caps to square
butt end, line joins to mitered, line width to 1, dash pattern to solid, miter
limit to 10, and current path to an empty path. Also, if printing to a Level 2
interpreter, overprint and stroke adjust should be set tofalse. An EPS file can
assume that this is the default state. It is the responsibility of the application
importing the EPS file to make sure that the graphics state is correctly set.

2.7 Initializing Variables

It is common for PostScript language programs to use short names, such asx,
for variables or procedures. Name-conflict problems can occur if an EPS file
does not initialize its variablesbefore defining its procedures—in particular,
before binding them. In the following example, the variablex is not initial-
ized before being used in the procedureproc1. Because the value ofx in the
enclosing program happens to be an operator,bind causes the namex to be
replaced by the operatorlineto in proc1. This causes astackunderflow error
upon execution.

%!PS-Adobe-3.0
...Document prolog of including application...
/x /lineto load def % Application defines x to be lineto

8 (1 May 92)

...More of document prolog and setup...
%%BeginDocument: GRAPHIC.EPS
...Document prolog and setup for EPS file...
/proc1 { % Enter deferred execution mode

/x exch def
x 4 moveto
} bind def % x associated with lineto after bind

4 proc1 % Execute proc1 and cause error
...Rest of EPS file...
%%EndDocument
...Rest of including application document...

In the following example, the EPS filecorrectly initializes the variablex
before defining the procedure proc1:

%!PS-Adobe-3.0
...Document prolog of including application...
/x /lineto load def % Application defines x to be lineto
...More of document prolog and setup...
%%BeginDocument: GRAPHIC.EPS
...Document prolog and setup for EPS file...
/x 0 def % Initialize variables before defining procs
/proc1 {

/x exch def
x 4 moveto

} bind def
4 proc1 % Execute Proc1
...Rest of EPS file...
%%EndDocument
...Rest of including application document...

2.8 Ensuring Portability

Although using outside resources, such as fonts, patterns, files, and procsets,
is allowed in an EPS file, the most portable files are those that are self-
contained and do not rely on outside resources. For example, if an EPS file
requires an encoding other than the default encoding for a font, then the EPS
file should perform the re-encoding.

EPS files must never rely on procedures that are defined in application- or
driver-provided prologs, such as procedures defined in the Apple LaserPrep
file. Such definitions might or might not be present, depending on the actions
of the enclosing program or previous jobs.

Because EPS files should be portable across heterogenous environments,
7-bit ASCII is the recommended format for data in EPS files. Although
binary data is allowed, use caution when producing data that is expected to
be portable. The use of binary data may make it impossible to print on some
printers across some communication channels. Binary data that has special

3 Guidelines for Importing EPS Files 9

meaning, such as “flow control” or “marking the end of a file,” can cause file
transmission problems in certain communications environments. For exam-
ple, the control-D character is used as an end-of-file indicator in serial and
parallel communications channels. Because this character terminates the job
in serial and parallel environments, it is not prudent to produce an EPS file
with this character in it.

See Appendix D of thePostScript Language Reference Manual, Second
Edition for guidelines about how to take advantage of language extensions
and Level 2 features while maintaining compatibility with Level 1 PostScript
interpreters.

2.9 Miscellaneous Constraints

EPS files must not have lines of ASCII text that exceed 255 characters,
excluding line-termination characters.

Lines must be terminated with one of the following combinations of
characters: CR, LF, CR LF, or LF CR.

CR is the carriage return character and LF is the line feed character (decimal
ASCII 13 and 10, respectively).

3 Guidelines for Importing EPS Files

This section contains guidelines that should be followed when creating an
application that imports EPS files. The first part discusses displaying an EPS
file; the second covers producing the PostScript language code for the printer.

This section contains several PostScript language code fragments. A com-
plete code example that implements all of these segments is in section section
7.”

3.1 Displaying an EPS File

There are several techniques for including an EPS file in a document. The fol-
lowing scenario is typical:

1. When the user imports an EPS file, the application prompts the user to
select the EPS file to be imported.

2. The application opens the selected file and parses it for useful information.
If either of the two required header comments is missing, the application
should alert the user that the file is not a conforming EPS file and abort
the import.

10 (1 May 92)

The DSC elementary type(atend) may be used to defer bounding box
data to the end of the EPS file. This means an application may need to
parse through the%%Trailer comments to obtain the bounding box data.

3. If the version and bounding box comments are found, the application
should prompt the user to place the EPS file. It should then display the
screen preview. If no preview is provided with the EPS file, the application
must provide a representation of the EPS file.

If the application must create its own representation, a gray box matching
the extent of the bounding box with some information in it suffices. The
information should at least include the title of the EPS file. This can be
obtained from the DSC header comment:%%Title:. Other information,
such as%%Creator: and%%Creation-Date:, may also be displayed.

The bounding box comment can be used to help determine scaling factors
and the proportions of the illustration. The including application should
enable the user to specify a “placement box” to display the screen preview
or the application-supplied representation of the screen preview if there is
not a preview present in the EPS file.

The bounding box can be used to calculate a ratio that the application can
use if the user wants to maintain original proportions while specifying a
placement box. Alternately, the application may display the preview full size,
and then allow the user to size and place the graphic as desired. Regardless
of the method used to display the preview initially, the user should have the
option of maintaining the original proportions supplied by the bounding box
or distorting the proportions of the EPS graphic.

3.2 Producing a Composite PostScript Language Program

The following guidelines must be considered when producing a composite
PostScript language program that includes an imported EPS file.

Use save and restore

An application should encapsulate the imported EPS file in asave /restore
construct. This allows all VM the EPS file uses to be recovered and the
graphics state to be restored.

Redefine s howpage

Theshowpage operator is permitted in EPS files because it is present in so
many PostScript language files. Therefore, it is reasonable for an EPS file to
use theshowpage operator, although it is not necessary if the EPS file will
only be imported into another document. The application importing the EPS
file is responsible for redefiningshowpage . showpage may be redefined
using the following code segment:

3 Guidelines for Importing EPS Files 11

/showpage { } def

Prepare the Graphics State

In preparation for including an EPS file, the including application must set
the graphics state as follows: current color to black, line caps to square
butt end, line joins to mitered, line width to 1, dash pattern to solid, miter
limit to 10, and the current path should be set to an empty path. This state
can be explicitly set using the following code segment:

0 setgray 0 setlinecap 1 setlinewidth
0 setlinejoin 10 setmiterlimit [] 0 setdash newpath

Also, if printing directly to a Level 2 printer, the overprint and stroke adjust
graphics state parameters must be set tofalse. This can be done by condition-
ally using the following code segment:

false setoverprint false setstrokeadjust

Note If the application knows that any given parameter of the current graphics
state is already in its default state, there is no need to execute the related
PostScript language code to reset that parameter.

Push userdict

It is recommended that an application importing an EPS file use thebegin
operator to push a copy ofuserdict on top of the dictionary stack. Ideally,
the imported EPS file should create its own dictionary, but if it does not, and
if the application’s dictionary does not have enough room for the EPS file’s
definitions, adictfull error may result when the EPS file makes its definitions.
After execution of the EPS file, the application should remove the copy of
userdict from the dictionary stack by executing theend operator.

Clear the Operand Stack

The application importing the EPS file must leave an empty operand stack for
the EPS file. It is reasonable for the EPS file to expect that the entire operand
stack be available for its own use. If the entire operand stack is needed and is
not available, astackoverflow error may occur. Also, if the operand stack is
empty, an EPS file that inappropriately executesclear will not cause any
problems.

Protect the Stacks

An EPS file should leave the operand and dictionary stacks as they were
before the EPS file was executed. However, this may not always be the
case. So before including the EPS file, the importing application should be
sure to count the number of objects on the dictionary and operand stacks.

12 (1 May 92)

Then, after executing the EPS file, it should make sure the stacks contain the
same number of objects as they did before the EPS file was executed. The fol-
lowing code segment shows how to obtain the count of objects on the
dictionary and operand stacks:

/Dict_Count countdictstack def
/Op_Count count def

Bracket EPS File with Comments

The included EPS file must be bracketed by the%%Begin(End)Document:
comments as described in thePostScript Document Structuring Conventions
Specifications available from the Adobe Systems Devlopers’ Association.

Handle Special Requirements

If either the%%LanguageLevel: comment or the %%Extensions: comment is
present in the header comments section of the EPS file, then at print time
the application printing the composite file is responsible for assuring that
the printer can handle the specified language extensions. If the application
determines that the printer does not have the necessary language features to
print the document properly, or if the application cannot determine extension
availability, the user should be notified and prompted for the appropriate
action. Also, if an application has imported an EPS file that requires exten-
sions, the application’s output is now dependent on thesame extensions.
This must be reflected in the document’s header comment section.

If any %%DocumentNeededResources: or %%DocumentNeededFonts:
comments are present in the header comments section of the EPS file, before
printing the document the application must be sure the resources are avail-
able. If any of the resource requirements cannot be handled, the user must
be notified and prompted for an appropriate action. Such an action may
involve having the user locate the resource or allowing the user or document
manager to reroute the print job to a printer that has the required resources.
Also, if an application has included an EPS file that requires these comments,
the application’s output is now dependent on the same resources. This must
be reflected in the document’s header comment section.

Default Coordinate System Transformation

Before including the EPS file in its page description, the importing applica-
tion must transform the PostScript coordinate system according to the final
user placement of the EPS file. The order of the transformation sequence
must be:

1. Translate the origin to the new user-chosen origin.

2. Rotate, if the user has rotated the EPS file.

3 Guidelines for Importing EPS Files 13

3. Scale, if the user has changed the size.

4. Translate the lower-left corner of the EPS file’s bounding box to the
user-chosen origin.

Details on transforming the PostScript coordinate system are below. The first
example is a simple case in which the user coordinate system matches the
default PostScript coordinate system. The second example is a general case
transformation from application space to the default PostScript coordinate
system.

Figure 3 shows an EPS file and its bounding box superimposed on a target
page. The EPS file is shown as it would be drawn if the EPS file were printed
without first transforming the PostScript coordinate system. The placement
box in the upper-right corner of the page shows where the user chose to place
the EPS file.

Figure 3 EPS file and placement box

Figure 4 contains three diagrams that show the steps necessary to properly
translate and scale the PostScript coordinate system to achieve the user-
chosen placement on the page.

400,400

560,560

100,100

-100,-100

14 (1 May 92)

Figure 4 Transforming the EPS file

Translate to new origin Scale to fit placement box Translate to final position

Assuming that the bounding box found in the header of the EPS file is
%%BoundingBox: -100 -100 100 100, the following PostScript language code
fragment properly places the EPS file on the printed page:

400 400 translate % Translate to new origin
.8 .8 scale % Scale to fit “placement
box”
100 100 translate % –llx –lly translate

This transformation code must be inserted into the PostScript streamahead
of the EPS code being sent to the printer.

Figures H.3 and H.4 and the corresponding PostScript code fragment assume
that the application coordinate system matches the default PostScript coordi-
nate system. The following section discusses a more general coordinate
system transformation.

General Coordinate System Transformation

Typically, an application transforms the PostScript coordinate system so the
native drawing units of the application space can be used as the operands to
the PostScript language operators defining the page. Consider Figure 5,
which represents an arbitrary application coordinate system and a placement
box for an EPS file.

3 Guidelines for Importing EPS Files 15

Figure 5 Application coordinate system plus placement box

To transform the PostScript coordinate system to match the application
coordinate system in Figure 5, an application could execute the following
code fragment:

0 792 translate
1 –1 scale

This assumes that each unit of application space is equal to one PostScript
unit. If one unit in application space were equal to five PostScript units, then
the transformation might look like this:

0 792 translate
5 –5 scale

Assuming that the coordinate system has already been properly translated
and scaled from the PostScript coordinate system to the application coordi-
nate system as above, then the following steps can be used to place the EPS
file in the user-chosen box:

1. left bottom translate

2. ((right – left)/(urx – llx)) (top – bottom)/(ury – lly) scale

3. – (llx) – (lly) translate

wherebottom, left, top, andright are coordinates of the placement box in
application space, andllx, lly, urx, andury are bounding box parameters the
EPS file supplies.

As a final example, assume that the PostScript coordinate system has already
been transformed to match the application coordinate system, the EPS file
bounding box is %%BoundingBox: 20 20 100 100, and the user-chosen

20,20 right,top

left,bottom 60,60

0,0

16 (1 May 92)

placement box is the box shown in Figure 5 on page 15. Using the formula
and steps above, the transformation before executing the included EPS file
would be as follows:

20 60 translate
.5 –.5 scale
–20 –20 translate

Set Up a Clipping Path

The importing application should set up a clipping path around the imported
EPS file. This can be accomplished by setting a clipping path that corresponds
to the bounding box of the imported EPS file after making the PostScript
coordinate system transformations or by allowing the user to optionally
supply an arbitrary clipping path for special effects.

Discard the Screen Preview

If an EPS file includes a screen preview in EPSI format, the importing appli-
cation should discard the preview before sending the document to a printer.
Although the EPSI preview is represented by PostScript comments and will
not pose a problem when included in the PostScript language file sent to the
printer, it takes extra time to transmit the preview.

If the preview in the EPS file is in Macintosh PICT format, do not include the
PICT resource in the PostScript language file sent to the printer.

If the preview is in TIFF format or in Microsoft® Windows™ Metafile
format, take care to extract the PostScript language code that is to be sent
to the printer. See section section 5.2,” for details.

If the EPS file does not include a screen preview, the entire EPS file can be
included in the PostScript language file sent to the printer.

Maintain EPSF Version 2.0 Compatibility

The EPSF version 3.0 requires that an EPS file leave the operand and dictio-
nary stacks as they were before the EPSF was executed. However, this was
not explicitly stated in earlier versions of the EPSF format. Therefore, before
including the EPS file, be sure to count the number of objects on the dictionary
and operand stacks. After executing the EPS file, make sure the stacks con-
tain the same number of objects they did before the EPS file was executed.

Preparation for Including an EPS File

Example 2: shows procedureBeginEPSF, which an application might use to
prepare to include an EPS file in its print stream. Execute theBeginEPSF
procedure before the EPS file.

3 Guidelines for Importing EPS Files 17

Example 2:

/BeginEPSF { %def
/b4_Inc_state save def % Save state for cleanup
/dict_count countdictstack def % Count objects on dict stack
/op_count count 1 sub def % Count objects on operand stack
userdict begin % Push userdict on dict stack
/showpage { } def % Redefine showpage, { } = null proc
0 setgray 0 setlinecap % Prepare graphics state
1 setlinewidth 0 setlinejoin
10 setmiterlimit [] 0 setdash newpath
/languagelevel where % If level not equal to 1 then
{pop languagelevel % set strokeadjust and
1 ne % overprint to their defaults.

{false setstrokeadjust false setoverprint
} if

} if
} bind def

Example 3: shows procedureEndEPSF, which illustrates how to restore the
PostScript state to the way it was before inclusion and execution of the EPS
file. Execute theEndEPSF procedure after the EPS file.

Example 3:

/EndEPSF { %def
count op_count sub {pop} repeat % Clean up stacks
countdictstack dict_count sub {end} repeat
b4_Inc_state restore

} bind def

Example 4: illustrates use of theBeginEPSF andEndEPSF procedures.

Example 4:

BeginEPSF % Prepare for the included EPS file
left bottom translate % Place the EPS file
angle rotate
Xscale Yscale scale
-llx -lly translate
...Set up a clipping path...
%%BeginDocument: MyEPSFile
...Included EPS file here...
%%EndDocument
EndEPSF % Restore state, and cleanup stacks

18 (1 May 92)

4 File Types and Naming

EPS files have become a standard format for importing and exporting
PostScript language files among applications in a variety of heterogenous
environments. This section contains specific information about file types
and naming conventions in a variety of environments.

4.1 Apple Macintosh File System

The Macintosh file type for application-created PostScript language files is
EPSF. Files of type TEXT are also allowed so users can create EPS files with
standard text editors. However, the DSC must still be strictly followed. A file
of type EPSF should contain a PICT resource in the resource fork of the file
containing a screen preview image of the EPS file. The file name may follow
any naming convention as long as the file type is EPSF. If the file type is TEXT,
the extensions .epsf, and .epsi should be used for EPS files with Macintosh-
specific and device-independent preview images, respectively. See sections
section 5,” and section 6.”

4.2 MS-DOS and PC-DOS File System

The recommended file extension is .EPS. For EPS files that provide an EPSI
preview, the recommended extension is .EPI. Because the name and exten-
sion may be user-supplied, it is recommended that the application provide a
default extension of .EPS or, if the file includes an EPSI preview, the applica-
tion can provide .EPI as the default extension.

4.3 Other File Systems

Although naming is file-system dependent, in general the extension .epsf is
the preferred way to name an EPS file. Likewise, .epsi is the preferred exten-
sion for the interchange format. In systems where lower-case letters are not
recognized or are not significant, all upper-case letters can be used.

5 Device-Specific Screen Preview

The EPS file usually has a graphic screen preview so it can be transformed
and displayed on a computer screen to aid in page composition before print-
ing. Depending on the capabilities of the importing application, the user may
position, scale, clip, or rotate this screen representation of the EPS file. The
composing software should keep track of these transformations and reflect
them in the PostScript language code that is ultimately sent to the printer.

The exact format of this screen representation is machine-specific. That is,
each computing environment may have its own preferred preview image
format, which is typically the appropriate screen representation for that envi-

5 Device-Specific Screen Preview 19

ronment. Also, a device-independent screen representation called EPSI is
specified in section section 6.” It is recommended that all applications sup-
port this format.

5.1 Apple Macintosh PICT Resource

A QuickDraw™ representation of the EPS file can be created and stored as
a PICT resource in the resource fork of the EPS file. It must be given resource
number 256. If the PICT exists, the importing application may use it for
screen display. If thepicframeis transformed to PostScript language
coordinates, it should agree with the%%BoundingBox: comment.

Given the size limitations on PICT images, thepicframe and bounding box
may not always agree. If there is a discrepancy, the%%BoundingBox: must
always be taken as the “truth,” because it accurately describes the area the
EPS file will image.

5.2 Windows Metafile or TIFF

Either a Microsoft Windows Metafile or a TIFF (tag image file format)
section can be included as the screen representation of an EPS file.

The EPS file has a binary header added to the beginning that provides a sort
of table of contents to the file. This is necessary because there is not a second
“fork” in the file system as there is in the Macintosh file system.

Note It is always permissible to have a pure ASCII PostScript language file as an
EPS file in the DOS environment.

The importing application must check the first 4 bytes of the EPS file. If they
match the header as shown in Table 1, the binary header should be expected.
If the first two match%!, it should be taken to be an ASCII PostScript
language file.

Table 1 DOS EPS Binary File Header

Bytes Description

0-3 Must be hex C5D0D3C6 (byte 0=C5).

4-7 Byte position in file for start of PostScript language code section.

8-11 Byte length of PostScript language section.

12-15 Byte position in file for start of Metafile screen representation.

16-19 Byte length of Metafile section (PSize).

20-23 Byte position of TIFF representation.

24-27 Byte length of TIFF section.

20 (1 May 92)

28-29 Checksum of header (XOR of bytes 0-27). If Checksum is FFFF
then ignore it.

It is assumed that either the Metafile or the TIFF position and length fields
are zero. That is, only one or the other of these two formats is included in the
EPS file.

The Metafile must follow the guidelines the Windows specification sets forth.
It should not set theviewport or mapping mode, and it should set thewindow
origin andextent. The application including the EPS file should scale the pic-
ture to fit within the%%BoundingBox: comment specified in the EPS file.

6 Device-Independent Screen Preview

This screen preview format is designed to allow EPS files to be used as an
interchange format among widely varied systems. The preview section of the
file is a bitmap represented as ASCII hexadecimal to be simple and easily
transportable. This format is called encapsulated PostScript interchange
format, or EPSI.

An EPSI file is truly portable and requires no special code for decompressing
or otherwise understanding the bitmap portion, other than the ability to
understand hexadecimal notation.

The%%BeginPreview: width height depth lines and%%EndPreview com-
ments bracket the preview section of an EPSI file. Thewidth andheight fields
provide the number of image samples (pixels) for the preview. Thedepth
field provides the number of bits of data used to establish one sample pixel of
the preview—typical values are 1, 2, 4, 8. An image that is 100 pixels wide
will always have 100 in thewidth field, although the number of bytes of hexa-
decimal needed to build that line will vary ifdepth varies. Thelines field tells
how many lines of hexadecimal are contained in the preview, so an applica-
tion that does not care may easily skip them. All arguments are integers.

The bit order of the preview image data is the same as the bit order used by
the image operator. That is, the preview image is considered to exist in its
own coordinate system. The rectangular boundary of the preview image has
its lower-left corner at (0,0) and its upper-right corner at (width, height). The
byte order is fixed and should be (0,0) through (width – 1), then (0,1) through
(width – 1,1), etc.

6 Device-Independent Screen Preview 21

6.1 Guidelines for EPSI Files

The following guidelines are to clarify a few basic assumptions about the
EPSI format, which is intended to be extremely simple because its purpose
is for interchange. No system should have to do much work to decipher EPSI
files. The format is accordingly kept simple and option free.

• The preview section must appear after the header comment section, but
before the document prologue definitions. That is, it should immediately
follow the%%EndComments: line in the EPS file.

• In the preview section, 0 is white and 1 is black. Arbitrary transfer func-
tions and “flipping” black and white are not supported. Note that in the
PostScript language, 0 and 1 have the opposite meaning (0 is black
and 1 is white) for thesetgray operator.

• The preview image can be of any resolution. The size of the image is
determined solely by its bounding box, and the preview data should be
scaled to fit that rectangle. Thus, thewidth andheight parameters from
the image arenot its measured dimensions, but rather describe the amount
of data supplied for the preview. Only the bounding rectangle describes
the dimensions.

• The hexadecimal lines must never exceed 255 bytes in length. In cases
where the preview is very wide, the lines must be broken. The line breaks
can be made at any even number of hex digits, because the dimensions of
the finished preview are established by thewidth, height, anddepth values.

• All non-hexadecimal characters must be ignored when collecting the data
for the preview, including tabs, spaces, newlines, percent characters, and
other stray ASCII characters. This is analogous to thereadhexstring
operator.

• Each line of hexadecimal begins with a percent character (%). This makes
the entire preview section a PostScript language comment to be ignored by
the PostScript interpreter. The file can be printed without modification.

• Although the EPSI hex preview can be sent to the printer, to shorten trans-
mission time it is recommended that the preview image be stripped out of
the document before transmitting the file to the printer.

• The data for each scan line of the image must be a multiple of 8 bits long.
If necessary, pad the end of the scan line data with 0’s.

22 (1 May 92)

Example 5: is a sample EPSI format file. Remember there are 8 bits to a byte,
and that it requires 2 hexadecimal digits to represent one binary byte. There-
fore, the 80-pixel width of the image requires 20 bytes of hexadecimal data,
which is (80 / 8)x 2. The PostScript language segment simply draws a box,
as can be seen in the last few lines.

Example 5:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: John Smith
%%CreationDate: November 9, 1990
%%EndComments
%%BeginPreview: 80 24 1 24
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1
4 4 moveto 72 0 rlineto 0 16 rlineto -72 0 rlineto
closepat h
8 setlinewidth stroke
%%EOF

7 EPS Example 23

7 EPS Example

The following example illustrates the proper use of DSC comments in a
typical page description that an application might produce when including an
EPS file. For an EPS file that is represented as

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 4 4 608 407
%%Title: (ARTWORK.EPS)
%%CreationDate: (10/17/89) (5:04 PM)
%%EndComments
...PostScript code for illustration..
showpage
%%EOF

the including document’s page description, including the imported EPS file,
would be represented as

%!PS-Adobe-3.0
%%BoundingBox: 0 0 612 792
%%Creator: SomeApplication
%%Title: (Smith.Text)
%%CreationDate: 11/9/89 (19:58)
%%Pages: 1
%%DocumentFonts: Times-Roman Times-Italic
%%DocumentNeededFonts: Times-Roman Times-Italic
%%EndComments

%%BeginProlog
/ms {moveto show} bind def
/s /show load def
/SF { %/FontIndex FontSize /FontName SF --

findfont exch scalefont dup setfont def
} bind def
/sf /setfont load def
/rect { % llx lly w h % Used to create a clipping path

4 2 roll moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath

} bind def

/BeginEPSF { %def % Prepare for EPS file
/b4_Inc_state save def% Save state for cleanup
/dict_count countdictstack def
/op_count count 1 sub def % Count objects on op stack
userdict begin % Make userdict current dict
/showpage { } def % Redefine showpage to be

24 (1 May 92)

null
0 setgray 0 setlinecap
1 setlinewidth 0 setlinejoin
10 setmiterlimit [] 0 setdash newpath
/languagelevel where % If level not equal to 1 then

{pop languagelevel % set strokeadjust and
1 ne % overprint to their defaults
{false setstrokeadjust false setoverprint
} if

} if
}bind def
/EndEPSF { %def

count op_count sub {pop} repeat
% Clean up dict stack

countdictstack dict_count sub {end} repeat
b4_Inc_state restore

} bind def
%%EndProlog

%%BeginSetup
%%IncludeFont: Times-Roman
%%IncludeFont: Times-Italic
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
/pgsave save def
%%EndPageSetup
/F1 40 /Times-Roman SF
...Set some text with F1...
/F2 40 /Times-Italic SF
...Set some text with F2...
F1 sf
...Set some more text with F1...
F2 sf
...Set some more text with F2...
BeginEPSF
65.2 10 translate % Position the EPS file
.80 .80 scale % Scale to desired size
-4 -4 translate % Move to lower left of the
EPS
4 4 604 403 rect % Set up clipping path
clip newpath % Set the clipping path

%%BeginDocument: ARTWORK.EPS
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 4 4 608 407
%%Title: (ARTWORK.EPS)
%%CreationDate: (10/17/90) (5:04 PM)
%%EndComments
...PostScript code for illustration..

7 EPS Example 25

showpage
%%EOF
%%EndDocument

EndEPSF % Restore state, cleanup
stacks
pgsave restore
showpage
%%EOF

26 (1 May 92)

27

Appendix: Changes Since
Earlier Versions

This content of this document is exactly the same as the specification in
Appendix H of thePostScript Language Reference Manual, Second Edition.

Changes Since Version 2.0

Detailed DSC comment descriptions have been left out of this specification.
When developing an application that will support EPS files, the DSC version
3.0 (see thePostScript Document Structuring Conventions Specifications
available from the Adobe Systems Developers’ Association) should be used
with this specification.

The following conditionally required DSC comments were added to this
specification as of version 3.0:

%%Extensions:
%%LanguageLevel:
%%DocumentNeededResources:
%%IncludeResource:
%%Begin(End)Document:

Changes Relevant to Applications Producing EPS Files

To help avoid ambiguities, section 2, “Guidelines for Creating EPS Files,”
has been added. This new section has several guidelines for producing EPS
files. Following these guidelines will help ensure that an EPS file can be reli-
ably included in documents without causing any annoying side effects. Also,
these new rules allow applications to easily determine if an EPS file is com-
patible with version 3.0 of the EPS file format. The following is an overview
of the new guidelines:

• %%Begin(End)Preview: comments must bracket an EPSI preview.

• There is a list of illegal operators that must not be used in an EPS file.

28 Appendix: Changes Since Earlier Versions (xx/xx/xx)

• There is a list of restricted operators. If these operators are used in an EPS
file, they must be used in accordance with the guidelines presented in
Appendix I of thePostScript Language Reference Manual, Second Edi-
tion.

• The operand and dictionary stacks must be returned to the state that they
were in before the EPS file was executed.

• It is strongly recommended that an EPS file make its definitions in its own
dictionary or dictionaries.

• An EPS file must not rely on procedures defined outside of the server loop,
such as procedures defined in the LaserPrep file.

Changes Relevant to Applications Importing EPS Files

To help clarify the responsibilities of an application including an EPS file,
section 3, “Guidelines for Importing EPS Files,” specifies the following new
rules:

• The including application must defineshowpage as null.

• The application must prepare the graphics state for the EPS file.

• The application must give the EPS file a clear operand stack.

• The application must surround the included EPS file by the
%%Begin(End)Document: comments.

29

Index

A

Apple Macintosh file system
EPS files and 18

Apple Macintosh PICT resource
EPS files and 19

applications
EPS files and 2–3, 27–28

B

%%BeginDocument:
EPS files and 12

%%BeginPreview:
EPS files and 20

%%BoundingBox:
EPS files and 14

C

changes
EPSF format 27–28

clear
EPS files and 7, 11

cleardictstack
EPS files and 7

clipping path
EPS files and 16

comment(s)
conditionally required for EPS

files 5–??
recommended for EPS files 6
required for EPS files 3–5

compatibility
EPS files and 16

conditionally required comments
EPS files and 5–??

coordinate system transformation
EPS files and 12–16

D

device-independent screen preview
EPS files and 20–22

device-specific screen preview
EPS files and 18–20

dictionar(ies)
EPS files and 6

displaying EPS files 9–10
DOS file system

EPS files and 18, 19

E

%%EndDocument
EPS files and 12

%%EndPreview
EPS files and 20

.EPI file extension 18

.EPS file extension 18

.epsf file extension 18

.epsi file extension 18
EPS (encapsulated PostScript) files

creating 3–9, 27–28
device-independent screen

preview and 20–22
device-specific screen preview and

18–20
displaying 9–10
example 23–25
file types and 18
illegal operators 6
importing 9–??, 28
naming 18
preparation for including 16
restricted operators 6

EPSF (encapsulated PostScript file)
format 1–28

background 1–3

30 Index (1 May 92)

changes to 27–28
EPSI (encapsulated PostScript

interchange) files
guidelines for 21–22

G

graphics state
EPS files and 7, 11

I

image
EPSI files and 20

importing EPS files 9–??, 28
initializing variables

EPS files and 7–8

M

Macintosh file system
EPS files and 18

Metafile (Windows)
EPS files and 19

N

naming conventions
EPS file 18

O

operand stack
EPS files and 11

P

PICT resource
EPS files and 19

portability of EPS files 8
preview

screen 18–22

R

recommended comments
EPS files and 6

required comments
EPS files and 3–5

restore
EPS files and 10

S

save
EPSF files and 10

screen preview(s)
device-independent 20–22
device-specific 18–20
EPS files and 16

showpage
EPS files and 10, 28

stack(s)
EPS files and 6, 11

T

tag image file format (TIFF)
EPS files and 19

transformation(s)
coordinate system 12–16

V

variables
initializing 7–8

W

Windows Metafile
EPS files and 19

	Table of Contents
	EPS Spec
	Introduction
	Guidelines for Creating EPS Files
	Required DSC Header Comments
	Conditionally Required Comments
	Recommended Comments
	Illegal and Restricted Operators
	Stacks and Dictionaries
	Graphics State
	Initializing Variables
	Ensuring Portability
	Miscellaneous Constraints

	Guidelines for Importing EPS Files
	Displaying an EPS File
	Producing a Composite PostScript Language Program

	File Types and Naming
	Apple Macintosh File System
	MS-DOS and PC-DOS File System
	Other File Systems

	Device-Specific Screen Preview
	Apple Macintosh PICT Resource
	Windows Metafile or TIFF

	Device-Independent Screen Preview
	Guidelines for EPSI Files

	EPS Example

	Appendix: Changes Since Earlier Versions
	Index

