
//3o

A Generalized Strategy
for

Building Resident Database Interfaces

Final Report

for

Contract NAS5-30304

May 12, 1990

by

Marsha Moroh & Ken Wanderman

Ken Wanderman & Associates, Inc

160 Bement Avenue

Staten Island, NY 10310

prepared for

NASA Goddard Space Flight Center

Greenbelt, MD 20771

(_ASA-C_-_.-le, gzz,_) A !;I--_,_-P,_L [,,'L-.D ST:::.AT_L,Y r-?,::,
f:!JILL_THG p,{SI')£_._T uATA.ASr l_'_Tt _.FA'.:;S Final

_,e_;ort (Wan]erm._n (_,en) :_n:! as__,oci at.es)

130 ;, CSCL 05r:: ,
G3/_2

"_{72-1192 0

unclas

0279314

File: \kwai\nasa\report8\report8



f



Table of Contents

Preface .................................................. 1

Objectives ............................................. 1
Interface Guidelines ................................ 1

Inner vs. Outer Interfaces .......................... 1

Refinement of Interface Templates ................... 1

Front-end Processor Software ........................ 2

Interface Driver Software ........................... 2

Building of Interfaces as Test Cases ................ 2

Scope of work .......................................... 2

Personnel, Materials & Facilities ................... 2

Deliverables ........................................ 3

Conclusions ............................................ 3

Report Body .............................................. 4

Overview ............................................... 4

Work Performed ......................................... 4

Inner Interfaces .................................... 4

Outer Interfaces .................................... 20

Front-end Processor ................................. 23

Interface Driver program ............................ 24

Guidelines for Interfacing Resident DBMSs to the

DAVID System ........................................ 31

What are the Components of an Interface? ............ 32
How to Build an Interface ........................... 39

What to do with the templates you just constructed .. 58

Summary - The Capabilities of your interface ........ 61

Outlook for Phase III .................................. 63

Suggestions for Further Research ....................... 64

Illustrations ............................................. 65

Appendixes

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

............................................. 103

- Installing Template Generator Software .... 103

- Running TGS ............................... 105
- TGS Detailed Information .................. 107

- Table Documentation ....................... 112

- Integration of Interface Driver Software

..0...0..00...........00..0..........0............0.000. 117

david.c ............................................. 117

gettemp.c ........................................... 117

tree.c .............................................. 117

create.c ............................................ 117

gettable.cb ......................................... 117

buildht.c ........................................... 118

typeconv.c & utility.c .............................. 118

Appendix 6 - IDMS Code for First, Next , etc ......... 119

Appendix 7 - SUBSTITUTING COMMAND NAMES .............. 120

For commands beginning with "@" ..................... 120

ContractNASS-30304Final Report Page i | !

PRECEDING PAGE BLANK NOT FILMED



FOR COMMANDS BEGINNING WITH @@ (used only by the

template builders) ..................................

Bibliography .............................................

122

124

ContractNAS5-30304Final Report Page iv



Table of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1 Interface Driver Program Design ................. 25

2 Interface Driver Program Organization ........... 28

3 Typical FITS Header for a Star Catalog .......... 65

4 Assign File ..................................... 68

5 FILE First and Next ............................. 77

6 File Insert ..................................... 84

7 File Deassign ................................... 88

8 - Generic Template for Definition Generator ..... 93

9 Defining an ORACLE database ..................... 96

i0 Generalized Template for ORACLE ................ 97

Ii Generalized Template - Type 2 Database Defintion

• ''oe-oeooooeoeeeeeoeoeeeeeeeeeeeeoeejeeloeleoeooeetoooeeo 98

Figure 12 Typical Generalized Template - Type 2 Database . 102

Contract NAS5-30304 Final Report Page v





Preface

Objectives

In Phase I of this project, we developed a theoretical method

for constructing interfaces of database management systems

(DBMSs) to host distributed heterogeneous database management

systems. In Phase II, we sought to incorporate the strategies

and techniques learned in Phase I to streamline the process of
creating interfaces. Our ultimate goal is the creation if the

Database Interface Design System (DIDS) to totally automate
the interface creation process. We envision this system as an
important software product for the 1990s.

While full implementation of DIDS was beyond the scope of this

project, we had the certain technical objectives as part of

the Phase II effort. The major objects are outlined as fol-
lows:

Interface Guidelines

Our initial goal was to examine a large number of commer-

cially available database management systems and to develop

a hand book for builders of interfaces. These guidelines
are a step by step approach to constructing interfaces. A

subsequent goal is to construct a totally automated system
of building interfaces using the guidelines.

Inner vs. Outer Interfaces

In the course of examining various commercial DBMS we deter-

mined there were two distinct approaches to building inter-
faces; viz, inner interfaces in which the interface software

is embedded directly into the code of the heterogeneous
distributed host system, and outer interfaces in which the

interface software is external to the host and a series of

templates are used to execute the database commands.

Refinement of Interface Templates

The original templates were designed in Phase I of this

project. The symbols in these templates, which represent

DBMS-specific items for each resident interface were simple
names to be replaced by strings in the actual interface.

Our objective in Phase II was to refine these templates as a

result of testing, and expand the template syntax to encom-

pass more complex data structures and integrate these tem-
plates into our overall system.

Contract NAS5 30304 - Final Report Page 1



Preface

Front-end Processor Software

An essential part of our automated system to build inter-

faces is a user session to capture the DBMS-specific items

to be used in the template. The solicited items are rarely
just a single word, and can be quite complex in structure.

In particular, for each item solicited in the user session,

not only its value but its meaning or semantic use must be

captured. A major objective was to develop software to

capture the information and store it for use by the inter-

face driver software. Our original idea was to code this

software in a language such as C, but further research

revealed that an expert system was more efficient. This

front-end processor became known as the Template Generator

Software as we developed it.

Interface Driver Software

The interface driver software is the engine of the entire
project. The objective in building this program is to

develop a process to extract the information captured by the

user session and build database management system dependent

templates from the skeleton templates and the information

captured by the front end processor.

Buildlng of Interfaces as Test Cases

The final objective was to apply our methodology and

actually build some database interfaces to the DAVID system.

The actual interfaces constitute the required deliverables
for this project.

Scope of work

Personnel, Materials & Facilities

Ken Wanderman & Associates, Inc. has provided the personnel,

materials, and facilities necessary to develop a generalized

strategy for building resident database interfaces as stated

in our proposal number 86-I-II 07.09-6211. In particular,

we have purchased a SUN 4, Sparcstation I computer to do all

the development work on. The only work not performed on our
premises is that work as done by subcontractors as specified
in article C-2 of the contract.

Contract NAS5 30304 - Final Report Page 2



Preface

Deliverables

We have delivered considerably more than the contract speci-

fies. In particular, the contract calls for the construc-
tion of interfaces to:

UNIFY

ORACLE

INGRES

R BASE

We have included these interfaces on the main deliverable

tape except for R BASE which runs only on micro computers

and thus awaits the transport of DAVID to personal comput-

ers. The R BASE interface is included on a separate dis-
kette.

During the course of the project, we have come to believe

that other interfaces would be of considerable more value to

NASA. Therefore we have included interfaces for the follow-

ing.

FILE

FITS

FOCUS

I DMS

In particular the general FILE interface and the FITS inter-

face will allow NASA scientists to immediately do important
work.

In addition we are delivering the source and executable code

for the Template Generator Software portion of DIDS. These

programs run on PC compatibles and are found on 3.5 inch
diskettes.

Conclusions

We have developed an interface method, which for large classes

of commercial resident DBMS's's, will yield usable interfaces

to the DAVID system and by extension to any heterogeneous dis-

tributed DBMS. In addition these interfaces can be built

within a few minutes or hours at the most. See the User Guide

Lines below for a detailed account of how to do this. We

anticipate that this will encourage greater exchange of data

among NASA scientists.

Contract NAS530304 - Final Report Page 3



Report Body

Report Body

Overview

There are a multitude of database formats in use at NASA

today. There are a variety of commercial and in-house data-

base management systems, each supporting a number of data-

bases. In addition, there are large quantities of data stored
in sequential files; data which can only be accessed by

specially written programs. This situation has led to diffi-

culties for scientists trying to access information stored in

a different format than their own. The DAVID system was

developed at NASA to act, in part, as a central database man-

agement system. One could "hook-in" to DAVID various database

management systems and DAVID could translate instructions and
data from one DBMS to DAVID, or from one DBMS to another via

DAVID. This "hooking-in" process is called a resident inter-

face and is at the heart of this project. Prior to this

project, the process of building an interface was long and
tedious and more work than most scientists were willing to do

to obtain data. What we have done is to streamline this pro-

cess, first with a step-by-step guide to building interfaces

and secondly with the beginnings of a totally automated system

for building interfaces. We have tested our strategy on a

number of commercial products and have found it most workable.

The remainder of this report details various parts of our sys-
tem.

Work Performed

Inner Interfaces

As part of this project, we developed a technique of build-

ing inner interfaces between resident and host DBMSs, and

investigated the feasibility of our technique by designing

and building four representative interfaces to resident

DBMSs from DAVID. We are pleased by our results; they point

us in the direction of a prototype for the design of fast,

easily-developed interfaces in the future.

We define an inner interface to a host DBMS as one in which

the resident DBMS facilities are used only for access at the

lowest level, i.e., the I/O of a single entity (record or

table). All other database operations are performed by the

host on the data after it has been moved to buffers belong-
ing to the host DBMS.

Contract NAS5 30304 - Fine[ Report Page 4



ReloortB_

This low-level-access-only capability is used in the con-

struction of interfaces to i) DBMSs which support a high-

level language interface, such as FORTRAN or C, but provide

neither a query language nor access at the path level; and

2) file systems, which contain no database processing rou-

tines of their own. The former condition occurs in many

network and hierarchically organized DBMSs; we describe

interfaces to IDMS and FOCUS below, both of which possess

these characteristics. The latter set of circumstances is

described in our interfaces to FITS and to general files,
both described below.

In the inner interface technique, requests for information

and transactions submitted via the host are processed by the

host until the request is reduced to a call for a single row

of a single table. At that level, the request is handled by

the DBMS under which the data is sitting. If the request

includes a boolean evaluation, the boolean is performed by
the host on the data after it has reached the host buffer.

The routines in an inner interface include a set of access

routines, and a set of opening and closing routines.

Accessing and Transaction routines. There are a set of

routines that perform low-level access on records (tables)

of the database which form the building blocks of the inter-
face.

First. The first row of a table of the resident database is

read into a buffer of the host DBMS. Any boolean evalu-
ation is done in the host buffer.

Next. The next row of a table of the resident database is

read into a buffer of the host DBMS. Any boolean evalu-
ation is done in the host buffer.

Insert, Delete, Update. A row of data in the resident data-

base is inserted, deleted, or updated.

Connect. A row of data which has just been inserted into a

table in the resident database, is connected to the proper

parent. This routine only has applicability in a database

system of network structure.

Disconnect. A row of data is disconnected from the desig-

nated parent and, if this is the last parent, the row is

deleted from the database. This routine only has

applicability in a DBMS of network structure.

Contract NAS5 30304 - Final Report Page 5



Report Body

Parent. Given a row of a table, and the name of a parent

table of that table, this routine returns a row of data from

the parent table. This routine only has applicability in a

database of network structure.

Assigning (opening) and Deassigning (closing) Resident Data-

bases. Before table-row routines can access a resident

database, certain initialization functions must be

performed. Similarly, after table-row access to a resident

database has occurred, some termination functions must take

place before the resident DBMS is exited. These include:

Assign Database. This routine performs "housekeeping" func-

tions necessary to allow the resident to communicate with

the host: it establishes the necessary data buffers and

variables needed by the resident, logs on to the resident

DBMS, provides the necessary security, and opens the resi-
dent database.

Deassign Database. This routine performs "housekeeping"

functions necessary to terminate host interaction with a

resident: it closes the resident database, logs off of the

resident DBMS, and deallocates any special data areas set

aside by Assign Database.

In our research, in order to investigate the feasibility of

the inner interface approach, we designed and built four

interfaces. These are described below. The first two, FITS

and general files, fall into the category of file systems,

i.e., they have no DBMS capabilities at all. The last two,

FOCUS and IDMS, are both full-fledged DBMSs; one (FOCUS)

hierarchical in organization, one (IDMS) network in organi-

zation. Although IDMS has an on-line query facility, OLQ,

and FOCUS has a 4th generation front-end, we bypassed these

facilities to implement these interfaces.

We chose FOCUS and IDMS because each was representative of a

class of DBMSs, i.e., network and hierarchical DBMSs. We

felt that in solving the problems inherent in building inner

interfaces to systems with each of these kinds of data orga-

nizations, we would learn a lot about how to deal with other

DBMSs of similar organization.

We chose the FITS and general file systems to interface

because they represent a large portion of the data currently

being held at NASA for analysis, and we felt that interfac-

ing them to a DBMS would make a real contribution to the

scientific community.

Contract MA$5 30304 - Final Report Psge 6



R_rtB_

All four of the inner interfaces are described in the text

below.

FITS interface

FITS (Flexible Image Transport System) is a file inter-

change standard developed by a group of scientists inter-

ested in the exchange of astrophysical data. It provides

a simple but powerful mechanism for the unambiguous

transmission of large data arrays and of catalogs

describing that data. The FITS format has been adopted

for the transmission of astronomical image data by sev-

eral large observatories including the Very Large Array,

the Westerbork synthesis telescope, the Kitt Peak

observatory and the Anglo-Australian observatory. It is

fast becoming a standard for the cataloging and transmis-

sion of astronomical images and their catalogs.

FITS files consist of a set of header records describing

the data in the file, followed by the data itself. The

header information is used by application programs which

read the data. Figure 3 contains a typical FITS file

header for a star catalog. It should be noted that by

"header", we do not mean operating-system-specific infor-

mation associated with a file; file access routines deal

with those. We are referring to information contained in

the first few records which describe the data in the

remaining records. The header information is strictly

for the interpretation of the data.

The FITS file system is not a DBMS. The access and inter-

pretation of FITS data is performed by a set of FORTRAN

routines which are either "home grown" or shared by other

sites among the astrophysics community. There is no

query facility supplied for FITS data and catalogues; nor

is there a browsing tool. Users of FITS cannot interface

FITS data with that of any other file or database system.

We have developed an interface technique for FITS files,

and have used the technique to connect the FITS file

system to the DAVID system. The effect of this is to

provide FITS users with a SQL-like query language front-

end, so that they can perform selection-projection opera-

tions on FITS data. They can select certain records and

fields from those records, applying boolean conditions on

the operations, and forming new files or databases for

the results (the results can be stored as FITS files, as

DAVID databases, or even represented in another database

Contract NAS5 30304 - Final Report Page 7



Report Body

system, such as ORACLE or INGRES). More important, data
from FITS files can be JOINed on some common trait with

other FITS files, with DAVID databases, and with data

from other commercially available DBMSs, thereby giving
scientists access to data never before available.

The components of a FITS interface are described below.

Defining and Deleting FITS Files through an Interface

These routines define and drop FITS files through the

host DBMS (here, the DAVID system), and establish and
break the connection between the host DBMS and the FITS

file.

For a FITS file to be "defined" to the host DBMS, a

database definition must be supplied to the host's

database directory. For the file to be "dropped", the
definition must be expunged from the host. In neither

case is the data changed in any way.

Our FITS interface treats the FITS file header as a

database schema, from which the description of the
attached data can be derived. Our software reads the

FITS header; then translates it into a host DBMS defi-

nition. Any information in the FITS header not used by
the DAVID system is preserved in the DAVID definition

by being represented as a comment in a special format
in the DAVID definition. That way, if the user wants
to create another FITS file containing all the attrib-

utes of the first one by issuing a "SELECT * " (select

and copy all information in the file) query, the
attributes of the first file can be obtained from the

DAVID definition.

After our software constructs the required definition,

it installs that definition onto the DAVID system. The

host then "knows about" the FITS file, and it can be

processed like any other database: questions and

reports in the form of queries can be solicited from

it, the browsing tool can read it a record at a time,

and data can be inserted into it via a query.

Query and Transaction Processing through an Interface

The records of a FITS file are accessed through the

host DBMS a row at a time, using the first and next

FITS file access routines built by us as part of the

Contract NAS5 30304 - Finat Report Pege 8



Report Body

file interface and linked into the DAVID system. To

process a query on a FITS file, the query must first be

decomposed into its primitive parts, optimized, and
translated into a set of subroutine calls to be issued

on the file.

At the lowest file-access level, FITS file access rou-

tines are identical to those of general files,
described below.

File interface

A file can be defined as a related collection of data

stored on some external electronic medium such as a disk

or magnetic tape. Files in general differ from the

description of FITS files, above, only in that they do

not possess a header containing their descriptions, or

record layouts. The descriptions of files generally exist

in some documentary form.

Once interfaced to a DBMS system such as DAVID, these

file could be treated as if they were databases: they

could be queried, selection-projections can be performed

on them, and they can be joined with information from

other database systems. They can also be converted into

other representations, such as DAVID or another DBMS.

Defining and Deleting Files through an Interface

These routines define and drop files through the host

DBMS (here, the DAVID system), and establish and break

the connection between the host DBMS and the file.

For a file to be "defined" to the host DBMS, a database

definition must be supplied to the host's database

directory. For the file to be "dropped", the defini-

tion must be expunged from the host. In neither case

is the data changed in any way.

The problem of creating a database "schema" for a gen-

eral file is approached differently than it is for

FITS; instead of decoding an existing header, the

system must rely on the user to provide the description

of the file. This can be done in one of two ways in

our system: via a DEFINE statement in DAVID's query

language, or via an interactive session with DAVID's

browsing tool. In either case, the submission of the

definition triggers an interactive session with the

user, in which he/she is asked to provide any informa-

ContractHAS5 30304 - F_r_[ Report Page 9



Report Body

tion required by the host system but not provided by

the definition (in the case of DAVID, such information
as column numbers for the individual fields, and data

types not available on the DAVID system). After the

definition is solicited, software constructs the

required definition.

Query and Transaction Processing through an Interface

The records of a file are accessed through the host

DBMS a row at a time, using the first and next file

access routines built by us as part of the file inter-

face and linked into the DAVID system. To process a

query on a file, it must be decomposed into its

primitive parts, optimized, and translated into a set
of subroutine calls to be issued on the file.

Figures 4 through 8 illustrate the use of the file
access routines to access a general file. The examples

are written in C, for a file on a SUN 4 computer under

UNIX. Figure 4, assign database, performs the prelimi-

nary tasks on the file so that it can be read through
the host DBMS. Note that instead of opening a

database, this routine opens the file. Figure 5,
table-row first and table-row next, provides the host

with the capability of reading a record at a time of

the resident. Figure 6 provides for inserting one

record a time and figure 7, Deassign File, illustrates

closing the file and performing any other necessary
housekeeping routines after file processing is fin-
ished.

The IDMS Database Management System Interface

The IDMS Database Management System, developed by the

Cullinet Corporation, is a network-structured DBMS that

runs on a variety of manufacturers' equipment, including
the IBM 327x series, and the DEC VAX series. Later ver-

sions contain a query language (OLQ) as well as the tra-
ditional access methods, via IDMS calls embedded in an

applications program written in PL/I, COBOL, C or
assembler.

IDMS was chosen for our research because it is repre-

sentative of a class of DBMS systems, namely those that

conform to the standards set by the Database Task Group

of the CODASYL Committee for database systems. These

DBTG systems, as they are often known, support network

Contract NAS5 30304 - Final Report Page 10



R_rtB_

database organization, and have 3 languages: a schema

data description language (DDL), a subschema data

description language (DML) and a data manipulation lan-

guage (DML). The schema languages are distinctly COBOL

in flavor, since that was the committee's orientation

(they were an outgrowth of the original designers of

COBOL) and the data manipulation language consists of

calls to be embedded in a language such as COBOL or PL/I.

Compared to the query facilities of many of today's lan-

guages the DML seems quite cumbersome; however, it was

the perfect vehicle for building an inner interface to a

host DBMS. N.B. Because the DAVID system is not yet

available on the platform on which IDMS runs, this inter-

face puts the data into the host buffers, from which it

is displayed.

Defining, Installing, Dropping and deleting IDMS data-

bases through an interface

In IDMS, as in other resident DBMSs, we distinguish

between the Define operation and the Install operation.

Define creates a new IDMS database via the host sys-

tem. To create the definition, the user, sitting at

the host DBMS front end, submits it in the host

query/definition language. Software from the interface

then translates the definition into an IDMS schema and

subschema representation and submits it to the IDMS

DBMS, where it defines a new database in IDMS. The

corresponding host definition submitted by the user is

then added to the collection of database definitions

belonging to the host DBMS.

Install, on the other hand, is used to connect existing

IDMS databases to the host DBMS, so that they can be

processed via the host. In the Install operation, the

IDMS schema is read, and software creates the corre-

sponding host database definition; then it adds the

definition to those of other resident and non-resident

DBMSs so that the host software can access the IDMS

database system. So the Install operation is used when

a user wants to be able to access an existing IDMS

database through the host DBMS; the Define operation is

used when the user is creating a new IDMS database via

the host DBMS. It may appear as though the Define

operation would be used less often than the Install,

but in fact the opposite is the case: whenever a user

issues a query on a database stored in the host or in

Contract NAS5 30304 - Finat Report Page 11



ReportBody

any other resident DBMS and requests for the result to
be stored as an IDMS database, the result is a call to
the IDMS database definition software.

The Drop operation does not affect the IDMS database

being deleted; it merely breaks the connection between
that database and the host. We can continue to do

processing operations on the IDMS database; but they
can only be IDMS operations; host database processing

is no longer defined on this database.

The Delete operation actually erases the IDMS database;

in addition, it drops its schema from the DAVID direc-

tory.

Query and transaction processing through an inner
interface

As in the case of FITS and general files, and all other

inner interfaces, the minimum set of operations needed

to process queries and transactions on an IDMS database
via the host DBMS is: open, close, first, next, and

insert. These operations will be discussed below.

IDMS was designed for database access via program (CO-

BOL or PL/I). Each query and transaction normally is

performed by writing, compiling and linking a separate

program specific to that query and transaction. The

program contains references to a specific database, and

specific records, sets (parent-child record pairs), and
fields in that database. For example, the declaration

section of the program contains declarations for the

schema and subschema of that particular database, and

there is a set of INCLUDE statements, one for the

database itself. The IDMS preprocessor reads and deci-

phers these statements, and replaces them by the corre-
sponding calls to IDMS external functions.

Our inner interface approach requires generic routines

with no database-specific variables; otherwise every
routine would have to be compiled and linked for every

query, and query processing would be far too slow. To

get around this problem, our solution was to bypass the

IDMS preprocessor, and replace the IDMS code by conven-

tional calls to a linked procedure called IDMS. In

this way we communicate with the IDMS DBMS directly

through the IDMS assembler procedure.

ContractNAS530304- Fir_lReport Page12



R_rtBody

Examples of some of these preprocessor expansions are

(we are assuming a schema called BCCIS45 with a child

table called TEACHER; the fields of TEACHER are

described in the declaration):

INCLUDE IDMS(BCCIS45-TEACHER).

is replaced by:

DECLARE 1 BCCIS45_TEACHER, 5

TM CIS45 TCHR ID NUM CHARACTER (6),5

 _-cis45--3C  FU L_N E,10
TM CIS45 TCHR LST NAME CHARACTER (15),I0

TM CIS45 TCHR FST NAME CHARACTER (10),5

TM CIS45 TCHR SOC SEC NUM CHARACTER (9),5

TM CIS45 TCHR RANK CD CHARACTER (1),5

FILLER0002 CHARACTER (7);

The preproccessor replaces the code:

INCLUDE IDMS(SUBSCHEMA_CTRL).

by:

DCL 1 SUBSCHEMA CTRL STATIC BINARY, 3

PROGRAM CHARACTER (8) INITIAL (' '), 3

ERROR_STATUS CHARACTER (4) INITIAL ('1400'),3
DBKEY FIXED BINARY 3

RECORD NAME CHARACTER (16) INITIAL (' '), 3

AREA NAME CHARACTER (16) INITIAL (' '), 3

ERROR_SET CHARACTER (16) INITIAL (' '),3

ERROR_RECORD CHARACTER (16) INITIAL (' ') ,3

ERROR AREA CHARACTER (16) INITIAL (" '),3

IDBMSCOM_AREA, 5

IDBMSCOM (i00) CHARACTER (1),3

DIRECT DBKEY FIXED BINARY (31),3

DATABASE_STATUS,5

DBSTATMENT_CODE CHARACTER (2),5

DBSTATUS_CODE CHARACTER (5),3

FILLER0001 CHARACTER (1),3

RECORD OCCUR FIXED BINARY (31),3

DML_SEQUENCE FIXED BINARY (31);

DCL 1 RECORD NAME

BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME))

STATIC INTERNAL, 3

SSC_NODN CHARACTER (8),3

SSC_DBN CHARACTER (8);

Contract NAS5 3030/+ - Final Report Page 13



Report Body

In our strategy, we bypass the preprocessor, and

replace the expanded calls by generic calls which can

be parameterized, so that all information can be

supplied to the interface routines at run time. So
instead of a schema declaration with actual field names

to replace the INCLUDE IDMS statement, we use a dynamic

allocation with the fields supplied at run time. In a

similar vein, all the expansions are established in

such a way that no information is database-dependent.

Below we describe the same process with database access

operations.

How do we open IDMS:

replace:

INCLUDE IDMS(SUBSCHEMA_BINDS).

by-

SUBSCHEMA CTRL.PROGRAM = name;

replace:

BIND RUN UNIT.

by-

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM(59),SUBSCH-
EMA CTRL

,SUBSCHEMA_NAME) ;

IF (ERROR_STATUS <> '0000") THEN DO;

STATUS CODE = ERROR STATUS;

GOTO END STATUS;

END;

replace:

READY RETRIEVAL.

by:

SEQUENCE := SEQUENCE + i;

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (37));

IF (ERROR_STATUS <> '0000') THEN STATUS_CODE =

ERROR_STATUS;

Contract NAS5 30304 - Final Report: Page 14



ReportB_

The open operation for IDMS, then, consists of a set of

generic preprocessor calls to which database-speCific

information is passed as parameters. It includes all

the declarations of variables, statements to bring up

IDMS, to open and ready the specific database and

schema areas, and to establish the error-reporting

mechanism, and the mechanism to retain currency infor-

mation while navigating through the database, so that

"give me the next record" has some meaning. It also

sets up bindings to buffers into which the data will be

transferred so that the host DBMS can pick it up.

When a user opens an IDMS database, the host system

must establish a memory data structure for keeping

track of the IDMS operations and their status. It also

contains buffers for any data to be transferred to the

host system. Each user wishing to access an IDMS data-

base must open IDMS separately. Therefore there will

be a separate memory data structure for each set of

IDMS processing operations taking place. These memory
data structures are used to communicate between the

embedded IDMS processing calls, which are widely scat-

tered through the host system, sometimes separated by

layers of functions through which the structures must

be passed. (In a totally IDMS environment, these prob-

lems do not arise; since each IDMS user is running a

separate program, many of these data areas can be

global.) All of these data areas had to be added to the

collection of host DBMS data structures. Because it was

clear that this situation will arise in all DBMSs of

this class, and in some of other classes as well, these

data structures were made as generic as possible, and

only a pointer to one of them was stored in the DAVID

cluster control area in the current implementation.

The first operation and the next operation both contain

function calls to the corresponding IDMS external

functions to correspond to the IDMS language calls

OBTAIN FIRST RECORD (name) SET (set_name) and OBTAIN

NEXT RECORD (name) SET (set_name)

The operations first and next have a different meaning

in hierarchical and network database systems than they

do in the context of relational database systems and

files. In a "flat" database (with no parents or chil-

dren) the meaning of "next record" is unambiguous. In

database systems where there are child tables and

parent tables, and particularly in network database

Contract NAS5 30304 - Finat Report Page 15



ReportBody

systems where there can be multiple parents for a

single child table, the request for a "next" record

must supply the identity of the parent of that record,

and keep track of the current owner at all times.

The close operation contains IDMS function calls to
close the database and check the error status of the

preceding operations. It must also perform such

"housekeeping" functions as deallocating the storage

for the data structures used in processing the data-

base. After a close has been executed for a particular

IDMS database, no further processing of that database

can occur unless another open command is first issued.

The code for the IDMS database access operations

appears in the appendix.

FOCUS Interface

The FOCUS Database Management System, developed by Infor-

mation Builders, Inc., is a hierarchically structured

DBMS that runs on a variety of platforms, including an

IBM personal computer and several mainframes. There is

an upload/download facility, whereby database information
can be transmitted from a PC to a mainframe and vice

veers. FOCUS has no query language per se; however, a

menu-driven 4th generation language front end is avail-

able on the PC version to aid the user in building

reports and requesting transactions. FOCUS databases can

also be accessed and updating using HLI (Host Language

Interface) commands, a set of function calls which can be

embedded in high level language programs.

FOCUS was chosen for our research because of the fact

that it is a hierarchically structured DBMS which runs on

a wide variety of computers; also because we feel it is

representative of a class of database systems, i.e.,

those which support tree-structured data organization.
Our interface did not use the menu facilities of FOCUS;

rather it was constructed of calls to the FOCUS HLI rou-

tines for the retrieval of information. Those routines,

which are generic for the processing of any database, can

be linked into the host system a single time; then

instantiated for a specific database via parameters

passed to the routine. N.B. Because the DAVID system is

not yet available on the platforms on which FOCUS runs,

this interface currently puts the data being retrieved

into the host buffers, from which it is displayed.

Contract NA$5 30304 - Final Report Page 16



Report Body

FOCUS databases are made up of a series of files, each

containing a logical record of the database. The files

(records) are connected by pointers. The interface loads

HLI (the FOCUS host language interface routines) and
accesses multiple files dynamically. In the interface,

files can not be opened more than once even though
HLI allows it. The number of files that can be

opened concurrently is limited only by the amount of RAM

memory.

Defining, Installing, Dropping and Deleting FOCUS Data-
bases via an Interface

Like that of its counterpart, the network DBMS, the
Define operation for a FOCUS database consists of

translating a host database definition into a set of
FOCUS definition calls that are then used to create a

new FOCUS database (called a "master file" in FOCUS);
the host version of the database definition is then

entered into the host's database directory. The

Install operation translates an existing FOCUS database

definition to a corresponding host definition for the

same FOCUS database. That definition is stored, as it

is in the Define operation, in the host's database

directory. The difference between the Define and the

Install operation is that Define is for new databases;

Install is for existing FOCUS databases to be connected

to the host system.

For the Install operation, the FOCUS Master File

Description (schema) is parsed; then the corresponding
host definition is generated. Fields that do not hold

data meaningful to the host (such as OCCURS COUNTER

fields) are ignored in the translation process. A

master file description contains file attributes, seg-
ment attributes and field attributes. The file attrib-

utes appear once in a master file description, and

contain information about the physical file, which maps

to the database name for the host. The segment attrib-

utes supply information about the parent relationships,
which is what gives FOCUS its hierarchical structure.

The field attributes correspond to the individual

fields of records of any file or database. There are

many parameters describing each field in a FOCUS data-
base; those which are meaningful to the host are trans-
lated to the host data definition; those which are not

are ignored.

Contract NAS5 30304 - Final Report Page 17



Report Body

The Define operation does the reverse: it creates a

FOCUS master file description from the host database

definition. This description will of necessity contain

very few FOCUS field parameters; only those which can
be defined in the host DBMS will be carried over; the

result is a "vanilla" FOCUS master file description.

The Drop operation simply removes the host's version of
the FOCUS database definition from the directory; the

FOCUS database is left alone, but it can no longer be

processed via the host. The Delete operation performs

a Drop; it also erases the actual FOCUS database.

Processing Queries and Transactions via an Inner Inter-
face

As in other inner interfaces discussed here, an inner

interface between FOCUS and the host DBMS requires five

major components: open, close, first, next and insert.

In order for the interface to deal dynamically with

databases, it must maintain a memory data structure

that contains data about the names, type, and length of

each field in the database (a full view of the database

is applied). These mapping tables are allocated from

memory and stored in linked list form. Every opened

file has a linked list, and every file is identified by

an index of linked lists. These are referenced by

the array list which is an array of pointers to lists.

The main elements of a list are HLI system struc-

tures of the type INFOF, which is a structure that
holds information about one field in the file. These

structures are linked together by a structure that has

two pointers: one pointer to INFOF structure, and a

second pointer to the next structure.

Each file has an entry in an array of files called

filename[], and a flag, open flag[], that has a true

value when the file is open. For each file a work
area is allocated dynamically as a character string.

When a retrieve operation is done such as get first

record, the data that HLI stores in the work area can

be retrieved by using the mapping tables stored in the

linked list. When a file is closed, all the memory
that was allocated for it is released.

Contract NAS5 30304 - Final Report Page 18



R_rtB_

So the open inner interface operation invokes FOCUS

(N.B. The PC FOCUS product can be made to become

memory-resident when it is invoked. So the more likely

scenario is to make it continuously memory-resident;

another option is for the open to make it memory-

resident. In this case it will reside in memory only
until the close removes it. In either case its status

must be checked; attempts to start up an already

memory-resident process can lead to unpredictable
results!

The open operation also performs some house-keeping

chores. The following is a representative set of these

chores: it allocates a work area for the data being

retrieved, it builds a control area for the opened

database by creating field mapping tables; it allocates
a file control block for the database

As in the network DBMS described above, first and next

have different meanings in hierarchical database sys-

tems than they do in relational systems or flat files.

Both operations call upon the generic HLI function call

"get_seg", which accepts as parameters the information

database operation (first, next, etc.)
database name

segment to be retrieved

parent of segment to be retrieved

and retrieves the required information. The database

name, segment name and parent segment name are supplied

by the host system as the request for data is issued by

the host system. The "currency", or the proper parent

for each segment, is kept in the work area allocated at

open time. The choice of database operation is deter-

mined by the calling host routine.

The olose operation closes the focus database and, if

FOCUS itself is not to be memory-resident, removes it

from memory. It also deallocates the many work areas

and temporary files set up to process the FOCUS data-
base.

Summary and Evaluation of the Inner Interface Method

The inner interface method proved to be a workable

method for building interfaces; indeed, it is the only

feasible way to build interfaces to those DBMSs with no

Contract NAS5 30304 - Final Report Page 19



ReportBody

query or path access facilities. It gives great power
to a resident DBMS -- all the power of the host DBMS --

with just the coding of a few routines, and is, from a

computing resources point of view, by far the more
efficient method for an interface than the alternative

method, by which a batch job containing data-base spe-

cific requests is created, then compiled and linked,
then executed. We rejected the latter approach

out-of-hand when a few preliminary tests showed it to

be intolerably slow.

Moving most of the processing that the resident data-

base performs on the records (such as boolean evalu-

ation) to the host from the resident will generally

improve performance over that of a similar operation on
the resident DBMS alone; the host system is designed

for faster processing than many of the older DBMSs.

However, there are difficulties with the inner inter-

face approach. For each interface, a total of about 15
routines must be compiled and linked to the host

system, and the resulting system must be debugged and

tested. The potential for error is great, and the
interface builder must be an experienced programmer. A

contrasting approach is presented in the next section,
in which we discuss outer interfaces.

Outer Interfaces

For database systems with query languages, a very fast way

to build interfaces is using the outer interface approach.

In this method, the Define, Install, Drop and Delete work

the same way as the same operations in the inner interface

method. However, the query and transaction processing

interface component is quite different.

When queries are submitted to the host system, they are

parsed; then translated into the query language of the resi-

dent system. The query is executed on the resident, and the

results are captured to a file, which can then be read by

the host system by a single standard inner interface.

This method of building interface is particularly attractive

because it is so straightforward: we have designed an expert

system to facilitate their construction. Using this system,

a person familiar with a resident DBMS can build an inter-
face in a short amount of time, sitting at a personal com-

puter. No programming is required.

Contract NAS5 30304 - Final Report Page 20



Report Body

The outer interface construction process uses an approach we

call the template approach; its components are explained in

detail in a subsequent section. Briefly, here's how it

works: Each database operation for every DBMS is depicted

in a block of text called a template. The template contains

DBMS-speci[ic commands, such as CREATE, or SELECT, or OPEN,

and symbols for data-base specific information: for exam-

ple, the name of a table would be replaced by the symbol
@tablename.

Here is a sample template for creating a single table in the

ORACLE database system:

CREATE TABLE @tablename (

@BEGINFIELDS

<,><><> @fieldname @fieldtype @fieldlength

@ENDFIELDS )

The symbols beginning with "@BEGIN..." And "@END..." Connote

loop structures for repeating text; the symbols <><><> con-

note left and right delimiters and separators for repeating
text.

At execution time, the template is filled in by replacing

the symbols (those beginning with @) with database-specific

information. The result is an executable module which per-

forms the required database operation.

The template approach is used for all outer interface compo-

nents; it is used also for the inner interface components

Define, Drop, Install and Delete. Only the inner interface

database access and transaction processing operations first,

next, open, close, and insert have to be individually coded,

since they have so many idiosynchratic requirements.

Summary and Evaluation of the Outer Interface Building

Approach

Outer interfaces have a clear advantage over inner ones

in their construction; an outer interface requires no

programming, and can be designed by a person knowledge-

able about the resident DBMS to be interfaced but with no

knowledge of the host DBMS. The designer can design the

entire interface sitting at a personal computer.

There are two disadvantages to the outer approach: one is

that it can only be used to design interfaces with DBMSs

that have query languages. The other is that there is a

great deal of overhead associated with the fact that the

Contract NAS5 30304 - Finat Report Page 21



Report Body

data is captured to a file before it can be processed by

the host system; in the case of very large databases, the

storage and processing requirements to do this can be

prohibitive.

A large portion of our research has been devoted to the

design and construction of an expert system to aid the

designers of outer interfaces in building the templates;

this simplifies the process of interface building even

more, because the builder has a great deal of help in

his/her task. The expert system, which we have called

TGS (the Template Generator Software) will be described

in the next section.

There is also a set of Interface Guidelines (see the

section of the same name below). This document is

intended to serve as an aid to the builder of any inter-

face, inner or outer. It "walks" the user through the

process, from the determination of the type of resident

interface is being built, through the design, construc-

tion and testing of the interface routines. The document

can be used without the expert system, or as a supplement

to it.

Contract NAS5 30304 - Final Report Page 22



ReportBody

Front-end Processor

The first of the two major pieces of software involved in

the DIDS project is the front-end processor which we have

called Template Generator Software (TGS). When a user

wishes to build an interface for a given DBMS, he/she must

first run the front-end processor to tell the system the

relevant information about that DBMS. This information is

solicited through a dialog with the user. The TGS continu-

ally guides the user by asking a series of questions about

the DBMS in question.

Detailed information concerning installation and running of

the software as well as the relevant tables (files) gener-

ated by these programs can be found in the appendices.

The TGS is an interactive software package which infers tem-

plates from user input. The user describes how specific

examples would be written in his/her own native database

language, and the software infers the syntax of the language

using techniques largely based on artificial intelligence.

The software is segmented to allow separate user sessions,

each user session generating a specific type of template for

the user's database language. It is only assumed that the

user is knowledgeable about his/her own database language.

Nothing is assumed about knowledge of DAVXD templates, and

the user is not asked to answer any questions which require

knowledge about templates. For information's sake only,

portions of the template being generated are displayed as

the reasoning progresses.

The separate sessions are invoked by separate modules. The

various sessions which can be invoked are:

I. A session to generate separate log-on and log-off

templates for a session in which a user wants to define a

database, using either the inner or the outer approach.

2. A session to generate a template for defining a

database in the user's native database language. There are

actually two modules built for this purpose:

2a. One which allows a user to describe how one

defines a database in a relational database language.

2b. Another which allows a user to describe how

one defines a database in a hierarchical or network data-

base language.

Contract NAS5 30304 - Final Report Page 23



Report Body

3. A session to generate separate log-on and log-off

templates for a session in which a user wants to access a

database which already exists on the system (the Install

operation).

4. A session to generate a query template for a session

in which a user wants to enter a query against a database.

(This session can be used only in the design of outer inter-

faces.)

A session of type 1 must be run before a session of type 2,

because the template generated during a session of type 2

includes the log-on and log-off protocols elicited from the

user in a session of type I. Similarly a session of type 3

must be run before a session of type 4. Otherwise the

sessions are completely independent.

These modules generate tables along with templates when such

tables are needed to supply additional information. The

software runs on IBM PC compatible computers with 640K of

main memory and a hard disk. At the completion of a session

the templates and associated tables are stored on the hard

disk so that they can be retrieved at the user's conve-
nience.

This expert system tool can be used to design all components

of outer interfaces; it can also be used to design the

Define, Delete, Install and Drop components of inner inter-
faces.

Interface Driver program

The second software component of the DIDS system is the

Interface Driver. Recall that a template is a block of text

designed to capture all the syntax of a DBMS command without

the actual database-dependent data. The TGS, described

above, creates a template with DBMS independent items (names

the items preceded with "@"). The Interface Driver is the

software component that replaces all the "@" commands with

DBMS specific language at run time. Thus the TGS is inde-

pendent of all DBMSs, while the Interface Driver fills in

the DBMS-dependent information into the output of the TGS.

From the templates generated by the TGS and other syntax

dependent tables generated by the TGS (see appendix 2), it

creates a "filled-in" template which can be used directly by

the DAVID system. See figure 1 for the over-all organization
of this module.

Contract NAS5 30304 - Final Report Page 24



R_rtB_

Figure 1: Interface Module Architecture

Next-GSQL

Data From DAVID

[ [
I I

I I Other J

Synfox-Dependent

_ __ n formation

Resident

DBMS

Command

The following 3 constructs are descriptions of items in Fig-
ure i.

(I) NEXT-GSQL: This is a DAVID data structure that contains

query-specific data to be translated into resident DBMS syn-

tax. This structure is filled in by DAVID and passed to the
Interface Drive.

(2) Templates: For each database operation (e.g., define,

selection-projection, etc.) there is a template describing

the syntax of that operation in that DBMS. The selected

template will be filled by the template-filling algorithm
which is the main element of the Interface Driver. The

result is a module which performs the given operation for

the given DBMS. These modules are executed by the DAVID

system in a timely fashion.

(3) Other Syntax-Dependent Files: For each DBMS, there may

be some DBMS dependent information required to complete the

template generation. For example, in translating a DEFINE

statement, on needs to know the corresponding type name of
say INT, in the resident DBMS. The type name may be INTEGER
or I or "numeric" etc. This information is found in the

Contract NAS5 30304 - Final Report Page 25



i

Report Body

type conversion table. This table and others is stored in

files generated by the TGS. Contents and format of these

files can be found in Appendix 4.

Template Design •

A template is a block of text that captures all the syn-

tax of a DBMS command without the actual data. Because a

template does not contain any actual data, we need some

special symbols to define the syntax of the template. In

this section, we discuss the syntax of the templates.

General Syntax

[1] @-Sign: Any token that begins with an @-sign is a

special command, to be processed by the software.

Either it is replaced by a piece of data, or by a

loop construct in the completed code. Symbols

which are not prefix by @-signs are considered to
be constants.

[2] Whitespace: Any @-command should be terminated by

a whitespace (blank, newline, tab). This white-

space terminator is consumed during the scanning

process and does not appear in the filled template.

All other blanks will be echoed as regular charac-
ters.

[3] Back Slash: The back slash character (\) is a

metacharacter that has special meanings. To have

it in the (output) string, one must use \\ to

override it. Thus "\\" is equivalent to "\". In

general, "\c" is equivalent to "c" for any charac-

ter c NOT equal to "n". See [4] for the meaning of

"\n". This provides a way to generate the actual

character "@" in the filled template ("\@").

[4] End-of-Line: Any "physical" end-of-line shall be

ignored by the template-filling program. Instead,

"\n" is used to break up the filled template into

lines. In other words, the physical end-of-line in

the template are there to make reading easier. It

has nothing to do with how the filled template

should look. (The filled template gets its line

spacing from the back slash n character).

Contract NAS5 30304 - Final Report Page 26



ReportB_

Substituting Commands

The syntax for the substituting commands is given
below:

@<name>[-<seq.no.>]

where <name> is a string of UPPERCASE letters of length

one or more, and the <seq.no.> is a positive integer.

The sequence number is optional with a default value of

one. A list of substituting commands and their defini-
tions can be found in Appendix 7. The command names can

be changed. To do so, the corresponding names in the
template and the Build hash table function have to be

changed to exactly the same name.

Repeating Commands

The syntax for the repeating commands is given below:

@BEGIN<name><delimiters>

@END<name>

where the <delimiters> is defined as

["<" ,separator> ["><" <L-delimiter> "><"

<R-delimiter>] ">"]. A list of all repeating commands

and their definitions can be found in Appendix 7. The

command names can be changed. To do so, the corre-
sponding names in the template and the Build hash table

function have to be changed to exactly the sa--me name.

Program Structure

A brief description of the structure of the program is
given in this section. Figure 2 below shows a general
organization of the interface module. Oval blocks indi-

cate program modules. Rectangular blocks are data

files/structures. Those rectangular blocks with double

edges are internal structures. A description of each
file included in this module is given below.

Contract NAS5 30304 - Final Report Page 27



Report Body

Figure 2: Interface Module Program Organization

I Template I

Type Conv. _

I[++,°x++.ll [H°++°b,.ll

I +:_';_+.I
david.c

This is the main driver of the module.

header files gsqlrow.h and template.h.
rithm is stated below:

-Select and Open the Template

-Build a syntax tree using the Template

-Create a GSQL-ROW structure

-Select and open the Type-Conversion table

-Traverse the GSQL-ROW structure

In includes two

The main algo-

Contract NAS5 30304 - Final Report Page 28



R_rtB_

-Select the information needed to fill in the tem-

plate.

For type information call the type conversion func-
tion.

Build the hash table to store all selected informa-

tion. All future references to the data is via the

hash table.

-Open an output file

-Generate filled template

gettemp.c

This file contains a function to open a template file.

tree.c

The file contains two major functions dealing with syn-

tax trees. The first, BUILDTREE, builds the syntax

tree using the template. The second, (GENERATECODE)

fills the template using the syntax tree and data from
the hash table.

gettable.c

This file contains a function that reads the type con-
version file and stores the information in an internal

type conversion table for later use.

buildht.c

This file contains routines that build the hash table.

The main body of the file walks through the GSQL-ROW to

select the information neeeded to fill the template.

For type information (name, length, precision, etc.), a

call to the type conversion function is needed. Build
the hash table to store all selected information. All

future reference to the data is via the hash table.

typeconv.c

This file contains two functions involved in dealing

with type conversion.

Contract HAS5 30304 - Final Report Page 29



ReportBody

utility.¢

This file contains several utility routines used

throughout the module.

Contract NAS5 30304 - Final Report Page 30



R_rtB_

Guidelines for Interfacing Resident DBMSs to the DAVID Sys-

tem

Introduction

These guidelines are intended to serve as an aid to the

interface developer. Using these guidelines, an inter-

face developer should be able to design, build and test a

complete resident database management system interface.

The aid of the host DBMS database administrator is

required for installation of the software generated with

the help of these guidelines.

These guidelines can be used to design interfaces to any

kind of DMBS. For designing outer interfaces (see expla-

nation below of outer interface) the developer need not

be a programmer; familiarity with the resident DBMS to be

interfaced with the DAVID system is sufficient. To

develop inner interfaces (see explanation below), pro-

gramming ability is required.

The DAVID System

Here, we describe the DAVID database management system,

and outline the process of interfacing your database man-

agement system (DBMS) to DAVID.

What is DAVID?

The Distributed Access View Integrated Database (DAVID)

system is a heterogeneous distributed database manage-

ment system currently under development at NASA's God-

dard Space Flight Center. It is heterogeneous, meaning

that its database structure, called a cluster, supports

databases with relational, hierarchical or network

structures. It is a distributed system, and can run

simultaneously on a variety of computers communicating

via a local area network and/or a variety of wide area

networks. It has its own query language, GSQL, and

also provides data access through a number of high-

level programming languages such as C, PASCAL and FOR-

TRAN. In addition to access via query language and

high-level programming language, DAVID provides
on-line interactive software for browsing through data-

bases and performing transactions.

Contract NAS5 30304 - Firm[ Report Page 31



ReportBody

What is an Interface to the DAVID System and what is it
used for?

An interface to the DAVID system consists of a set of
software routines connected to the DAVID software,

which allow the data from databases in your DBMS to be

processed via DAVID. Once a DBMS has a set of inter-
face routines linked into DAVID, any database in that

DBMS can be accessed via DAVID (provided, of course,

that its owner grants permission). Data from your DBMS
can be stored into DAVID, and DAVID data can be stored

in a database belonging to your DBMS.

Why would you want your DBMS to be interfaced with
DAVID?

By building an interface between the DAVID system and

your DBMS, we can provide your DBMS with the capabili-

ties of the DAVID system: Queries can be issued on

your data using the DAVID query language, DAVID access
routines can access your data, and data from DAVID can

be stored into a database on your DBMS and vice veers.

This gives access capabilities to your database that

you might not otherwise have. Furthermore, you are
now "interfaced" to any other DBMS that is in turn

interfaced to the DAVID system. So, for example, you

can issue queries on an ORACLE database whose results

can then be stored in a DBMS of your choice -- all

through the DAVID system. (This assumes, of course,
that interfaces exist between DAVID and your DBMS, and

DAVID and ORACLE.)

What are the Components of an Interface?

Here, we discuss the component parts that make up a complete

resident database interface. Depending upon the type of

DBMS you wish to interface, different of these components

will be used. A discussion of the types of DBMSs follows
this section.

Components to Define, Install, Delete and Drop a Resident
Interface.

These routines create new resident databases (DEFINE),

connect existing ones to the DAVID system (INSTALL),
disconnect resident databases from the host DBMS without

Contract NAS5 30304 - Final Report Page 32



ReportBody

actually touching the data in any way (DROP), and delete

resident databases from their own DBMS as well as the

DAVID system (DELETE).

DEFINE allows the user to create a new database under

his/her resident DBMS entirely through the DAVID system.

The user creates a database definition, or schema, for a

new database using DAVID syntax on the DAVID system.

When the request is executed, it is translated into the

syntax of the resident DBMS and executed; it then creates

the new database. In addition, it puts an entry into the

DAVID directory about the newly created database, and

enough of its schema information for DAVID to be able to

interpret the data from this database as if it were a
DAVID database.

INSTALL performs the second part of the DEFINE operation;

that is, it enters information about an existing resident

database into the DAVID system so that it can be accessed

via DAVID. It does not touch the database itself, which

already exists.

The DEFINE operation, then, is used to create new resi-

dent databases and tell the DAVID system about them; the

INSTALL operation is used only to tell DAVID about

existing databases.

The DROP operation drops directory information about the

resident database from the appropriate DAVID directory;

the database is still intact in the resident DBMS after

execution of a drop command, but DAVID can no longer
access it.

The DELETE operation does all that the DROP operation,

described above, does; in addition, it erases the actual

database and all of its associated data.

All of the four operations described above exist on all

resident databases, regardless of type. The components

to be described next differ greatly according to the type

of DBMS being discussed.

Components whioh depend on the type of DBMS to be inter-

faoed

First, the necessary information about the resident must

be installed in the directory of the host DBMS. Once

this has been done, queries and transactions meant for

the resident can be submitted through the host. These

operations are outlined in the next group of routines.

Contract NAS5 30304 - Finat Report Page 33



Report Body

The interaction between the resident and the host can

take place on 3 possible levels: the query language

level, the table level, and the path level.

The Query Language Level

Some resident DBMSs support their own query languages.

For those DBMSs, a query or transaction involving a resi-

dent submitted through the host DBMS can be translated by

the resident interface into a query or transaction in the

language of the resident, and then executed by the resi-

dent in its own environment. The following primitive

queries have been isolated as the components of any

complex query between a resident database and a host

database:

Generalized Selection-Projection. A selection-projection

or selection-multiprojection is performed on a resident

database. The results of the query are stored in a new

database on the host.

Semijoin. A join is performed between a resident data-
base and a host database. The result is a new database

on the host, and a table of pointers to rows of data

items in both the source host database and the new result

database.

Store-to-Database. A selection-projection is performed

on a database on the host DBMS; the result is stored in a

new database in the resident DBMS.

Insert, Delete, Update. Transactions submitted through

the host are performed on a resident database. Insert

adds row(s) of data items, delete removes a row or more,

update modifies a row or rows.

The Path Level

If the resident DBMS has a high-level language interface

(such as C, PASCAL or FORTRAN), and supports a command to
retrieve information from several tables of the database

as a single access (as is often the case in a hierarchi-

cal database), then requests for information and transac-

tions submitted via the host can be handled by the host

at the Path Level. The host DBMS determines the proper

access path through the resident database; then calls on

the path access routines of the resident DBMS to navigate

through the resident database. These routines are:

Contract NAS5 30304 - Firm[ Report Page 34



Report Body

Path First Row. The first path "row" of the resident

database (i.e., the first row of every table that makes

up the specified path through the database) is read by

the resident DBMS, and the data inserted into the host

DBMS data buffers. There is one host DBMS data buffer

for each corresponding table row of the resident. Any

boolean evaluation is performed by the host DBMS on the

data in the buffers.

Path Next Row, Path Previous Row, Path Last Row. The

required path "row" of the database is read into the

corresponding host DBMS buffers, where any boolean evalu-

ation is done.

Path Insert, Update, Delete. A path "row" of the data-

base, including all of the tables specified in the path,

is inserted, updated or deleted.

Path Assign. This routine performs "housekeeping" func-

tions necessary to allow the resident DBMS to communicate

with the host at the path level: it determines which

tables of the database must be used to make up the path,

and allocates necessary data buffers required by the res-

ident to contain path information.

Path Deassign. This routine performs any "housekeeping"

functions necessary to terminate a resident interface

path access by disassociating the resident with that path

if necessary, and deallocating any special data areas set

aside by Path Assign.

The Table-Row Level

In some cases, it is necessary to access the resident

DBMS at the lowest level, i.e., the Table-Row Level.

This table-at-a-time access capability is used for those

resident DBMSs which support a high-level language inter-

face, such as FORTRAN or C, but provide neither a query

language nor access at the path level. This is common in

network DBMSs. In these cases, the only way for the host

DBMS to process the resident data is at the single table

level. When resident DBMSs support user access at the

table-row level, requests for information and transac-

tions submitted via the host are processed by the host

until the request is reduced to a call for a single row

of a single table. At that level, the request can be

handled by the resident DBMS. If the table-row request

Contract NAS5 30304 -Fina[ Report Page 35



ReportBody

includes a boolean, the boolean evaluation is done by

the host on the data after it has reached the host

buffer. The table-row routines are:

Table-Row First, Table-Row Last. The first (last) row of

a table of the resident database is read into a buffer of

the host DBMS. Any boolean evaluation is done in the host
buffer.

Table-Row Next, Table-Row Previous. The next (previous)
row of a table of the resident database is read into a

buffer of the host. Any boolean evaluation is done in the
host buffer.

Table-Row Insert, Table-Row Delete, Table-Row Update. A
row of data of a table in the resident database is

inserted, deleted or updated.

Table-Row Connect. A row of data which has just been

inserted into a table in the resident database, is con-

nected to the proper parent. This routine only has

applicability in a database of network structure.

Table-Row Disconnect. A row of data is disconnected from

the designated parent, and if that is the last parent,

the row is deleted from the database. This routine only

has applicability in a database of network structure.

Table-Row Parent. Given a row of a table, and the name

of a parent table of that table, this routine returns a

row of data from the parent table. This routine only has

applicability in a database of network structure.

Assigning and Deassigning Resident Databases. Before

either table-row routines or path routines can access a

resident database, certain initialization functions must

be performed. Similarly, after path or table-row access

routines to a resident have been performed, some termina-

tion operations functions must take place before the res-

ident DBMS is exited. These routines are as follows:

Assign Database. This routine performs "housekeeping"

functions necessary to allow the resident to communicate

with the host: it establishes the necessary data buffers

and variables needed by the resident, logs on to the

resident, provides the necessary security, performs any

necessary language translation or execution of query lan-

guage statements.

Contract NAS5 30304 - Finat Report Page 36



R_rtB_

Deassign Database. This routine performs "housekeeping"
functions necessary to terminate host interaction with a

resident: closes the resident database, logs off of the

resident DBMS, and deallocates any special data areas set

aside by Assign Database.

Interface templates

The next section discusses the set of templates that

makes up each of our interfaces.

What are they?

The templates are the "building blocks" of each resi-

dent interface package. There is one template for each

interface component (described above) in every resident

DBMS interface. The construction of these templates is

the primary task of you, the interface builder. Once

the templates have been constructed and installed,

software in the DAVID system works with them to form

the complete interface.

The templates can contain

- high-level programming language statements

- calls to DAVID data management routines

- calls to your own DBMS data management
routines

Some templates contain a mixture of the three types of

statements; some contain only one or two of the above,

depending on your DBMSs requirements, and on the pur-

pose of the routine. A sample template, that for a

selection-projection (retrieval) routine for the ORACLE

(a relational) DBMS, is shown below, just to give you a

sense of what templates look like. No need to study

it; we'll examine more templates in detail later in

these guidelines.

How are the templates constructed?

You (the interface builder) construct a set of tem-

plates for any DBMS you want to use. This set of

templates is used by all databases on that DBMS and for

all queries and transactions issued under that DBMS.

So if all of your databases run under the same DBMS, no

matter how many databases you want to hook into the

DAVID system, you need only build one set of interface

templates. If you use several different DBMSs for your

databases, say, three different DBMSs, then you will

Contract NAS5 30304 -Fina[ Report Page 37



Report Body

need three different sets of templates for your three
interfaces. Detailed instructions as to how to con-

struct the templates (and what to do with them when

you're finished) appear below.

_ere do they fit into the DAVID system, and how do

they interact with DAVID?

For this illustration, let's assume that you want to

issue a selection-projection query on your employee
database, such as

1 SELECT name' ss# FROM empl°yee WHERE sal-lary > 50000

--that is, Give me all names and ss#s of people in the

database who have a salary greater than 50000. Let's

also assume that your database runs on the ORACLE DBMS.

Briefly, here's what happens when that query is entered

into the DAVID system: As soon as DAVID determines

that the query is intended for an ORACLE database, the
ORACLE interface is "activated", that is, the template

corresponding to the particular ORACLE transaction (in
this case, selection-projection) is retrieved from the

template "cluster". The associated software fills in

the template with database-specific and query-specific
information and, in most cases, writes it to a file.

The result is a program containing a mixture of state-

ments, commands to ORACLE and commands to DAVID. When

this program is executed, your query is performed.

Some interface commands behave differently; for exam-

ple, for "micro" DBMSs such as DBASE there is no

programming language support, so the file built by the

interface software simply captures your query results

onto a file, which can then be read by DAVID. Some

DBMSs don't have query language support. In these

cases, retrieval routines must be built into DAVID in a

different way. That's why, before building an inter-

face, it's important to determine what type of DBMS

you are using. The type classifications are explained
below.

Contract NAS5 30304 - Final Report Page 38



R_rtB_

How to Build an Interface

In this section, we present detailed instructions for cre-

ating interface templates. If you read and follow the

instructions carefully, hopefully you will be able to build

an interface to DAVID for your DBMS.

Determining the interface type for your DBMS

The first thing you must do is determine into which type

classification your DBMS falls, for DAVID's purposes.

Depending on the DBMS type, some of the interface tem-

plates differ. Here is a description of the types:

T_xpe 1 DBMSs have the following characteristics:

-- they support databases which are composed

of tables of data with no physical connections,

i.e., no parents, children, or sibling point-

ers. These are commonly called relational
databases.

-- they support a query language

-- they support an interface to a high-level

programming language, such as C or FORTRAN.

Type 2 DBMSs have the following characteristics:

-- Their databases consist of tables (or records) con-

nected, via pointers or physical proximity, to children,

and to a single parent. There may also be sibling

connections. A table can have multiple children, but

only a single parent. These are commonly called hierar-
chical databases.

-- Their databases can be accessed via path routines,

i.e., "macro" routines for the DBMS which, when given a

path through the database consisting of parents, chil-

dren, the children of those children, etc., will access

the tables which make up that path.

-- They support an interface to a high-level programming

language, such as C or COBOL.

-- Some support a query language, some do not.

Type 3 DBMSs have the followinq characteristics:

Contract NAS5 30304 - Finat Report Page 39



Report Body

-- their databases consist of tables connected, via

pointers, to children and parents. There may also be

sibling pointers. A table can have multiple children,

and multiple parents. These are commonly called network

databases.

-- access of Type 3 database is via table-row routines,

i.e., "macro" routines for the DBMS which, when given the

name of a table and of the proper parent for that table,

read/write/update/delete the table (or the parent) in

that table-parent set

-- they support an interface to a high-level programming

language, such as C or COBOL

-- most of them do not support a query language

Type 4 DBMSs have the following characteristics:

-- they support databases structurally composed of tab-

les of data with no physical connections, i.e., no par-

ents, children, or sibling pointers. These are commonly

called relational databases.

-- they do not support an interface to a commonly-used

high-level programming language, such as C or FORTRAN.

Some support a limited language, with a very restricted

set of operations, but they are not stand-alone lan-

guages, i.e., they are a part of their particular DBMS

environment, and run only under that DBMS.

-- they have some sort of query capability; usually it is

a primitive version of a query language.

These DBMSs commonly run on microcomputers.

TvDe 5 D BMSs have the followinq characteristics:

Type 5 DBMSs are not, strictly speaking, database manage-

ment systems. The "databases" which will require a TYPE 5

interface consist of data stored on tape or other media

as ASCII or EBCDIC files. Some of these files are part

of a "system", i.e., they are described by headers of a

standard format which contain parameters to aid in the

interpretation of the data. Others have no header infor-

mation, and it is up to the user to supply all routines

to manipulate the data. In our research, we have treated

all such files as another type of DBMS, with the missing

database processing capabilities provided by the host.

We will refer to them as "generic files".

Contract NAS5 30304 - Fina[ Report Page 40



R_rtB_

An interface to generic files has proven to be an

extremely useful tool. A great deal of data at NASA is

on such files, and conversations with scientists at NASA

has shown that the ability to operate on files with the

power of a heterogeneous DBMS would be most welcome.

Residents classified as Type 5 exhibit the following

properties:

-- their structure consists of a single file con-

taining identically formatted records

-- they can be processed by any high-level program-

ming language that has I/O consonant with their file

organization

-- they do not support a query language

-- software used to process their data is user-

supplied; i.e., they have no associated data-

manipulation routines as do DBMSs

Using the information supplied above, you should be

able to determine what type of DBMS your is. Here's

a review of the points above:

-- if it has a query language, it's Type 1

-- if it has no query language, but a host

language interface, and it's hierarchically struc-

tured, it's Type 2

-- if it's the same as Type 2 but has all the

network features, it's type 3.

-- if it's a micro DBMS, with some limited

query facility and no commercial language interface,

it's Type 4

-- if it's not a DBMS at all, but just a

collection of files, it's type 5.

The Generic Templates: Filling in the @@ signs

We have designed generic templates for you to work with

in building your specific interface templates. For each

DBMS type (types 1 through 5 are described above),

there's a set of generic templates, one for each module

of your interface. As soon as you have determined which

type of DBMS you are working with (see the type descrip-

ContractNAS5 30304 - Finat Report Page 41



Report Body

tions above), your job will be to fill in the generic

symbols -- they are "@@" (double "at" signs) -- with

information specific to your DBMS.

Building the Definition Generator Templates

There is a single generic definition generator template
for all database types described. See figure 8 for the

complete template. Some of the types use only a subset

of the keywords in the generalized template; others use a

different subset. Keywords which are not used are simply

deleted, as we'll see in our example below.

In this section, we'll work through an example, building

a template for definition generation. Then we'll outline

a general strategy for filling in a Definition Generator

template. Next, we'll discuss other considerations

introduced by the different DBMS types.

An Example

The object of our efforts in this example is to produce

a Definition Generator template for ORACLE from a real

sample ORACLE database definition, using as a model the

generic Definition Generator template.

Figure 8 is the generic template for the Definition

Generator for a type 1 DBMS. We'll fill it in step by

step for the ORACLE DBMS. You may wish to have figure

8 in front of you, as well as figure 9, a sample ORACLE
database definition.

The ORACLE database definition in figure 9 is, along

with every other database definition, made up of two

types of objects: ORACLE components (keywords and sym-

bols, such as the words "create table" and "char" and
"INT", and the symbols "(" and ")" in our example); and

non-ORACLE components, such as the variables "student"

and "name" and the length "8". In our generalized

template, the ORACLE components correspond to the "@@"
items; the non-ORACLE items, to the "@" items in the

template. To build an ORACLE template from a general-

ized template, we replace the symbols beginning with

"@@" by the ORACLE keywords. Thus, the completed ORACLE
template will contain only two kinds of items: ORACLE

components, and template symbols beginning with "@".

Contract NAS5 30304 - Final Report Page 42



Report Body

Note that we do NOT replace the symbols beginning with

"@" by non-ORACLE items; if we did that, the result

would be, not a template, but a specific ORACLE data-

base definition. By leaving the "@" symbols, we create

a template into which a variety of variables can be

filled in during definition processing.

We begin by scanning the template, line by line, com-

paring it with our ORACLE example. For every line, if

there is an ORACLE keyword corresponding to the

template "@@" symbol, we replace the template "@@" sym-

bol with that ORACLE keyword. If there is no corre-

sponding ORACLE symbol, we eliminate the template "@@"

symbol. If there is an ORACLE constant (variable

name, etc.) corresponding to the "@" (constant) sym-

bol, we leave the template symbol alone; if there is no

corresponding ORACLE constant, we eliminate the

template "@" symbol.

The first line we encounter is one for schema name

information. ORACLE has no schema name information, so

we eliminate the entire line from the template. Simi-

larly, we eliminate the line for file name, area name,

and dbname (ORACLE has no database name; only the

tables of ORACLE have names).

On the first line of our ORACLE example, we see the

words "create table student". We know that "student"

is the table name; in our template, it appears as the

symbol @tablename. The words "create table", then, are

our @@tablename keyword. So in the generalized tem-

plate, we replace "@@tablename keyword with "create

table". Since this is the only attribute describing a

table, "@@table attribute separator" is eliminated.

Similarly, the next four lines: parent information

(ORACLE has no parents), length keyword, start posi-

tion keyword, and comment keyword, can all be elimi-

nated.

So the first symbol in our ORACLE template is the

template keyword @beginrtable. Comparing the ORACLE

template to the generalized template, we see that in

the case of ORACLE, the information contained in the

first six lines of the generalized template are not

needed by ORACLE, and so can be eliminated.

Contract NAS5 3030& - Final Report Page 43



Report Body

Let's look at what we've done so far. We've scanned

the generalized Definition Generator template, the

first 12 lines. This much of the generalized template

is represented in the corresponding ORACLE template as

CREATE TABLE @tablename

Before we begin our first ORACLE field (See figure 3.2)

there is a "("; since it appears only before the first

field, and the corresponding ")" after the last one,

we conclude that these are table delimiters, not field

delimiters. So the next line in the generalized tem-

plate, "@@table left delim" is replaced by "(" in the

ORACLE version. Later, we will see that "@@table right

delim", towards the end of the template, will be

replaced by ");" which are the symbols that appear at

the end of each ORACLE table.

Our first ORACLE field is preceded by nothing after the

"(", which we have already tagged as a table left

delim. So we can eliminate the generalized template

symbols "@@field header" and "@@field left delim" for

our ORACLE template. Similarly, there is no "@@field

name keyword". The symbol "@fieldname" represents the

symbols "name" "id" and "grade" in our sample ORACLE

database definition. The symbol "@datatype" represents

the symbols "char" and "INT" in our sample ORACLE defi-

nition; there are no "@@datatype keyword" parameters or

"@@field attributed separators". The "@@field length

left delimiter" becomes "("; the "@@field length right

delimiter" becomes ")".

There is no "@@fldstart" information; hence that line

of the generalized template is not used. Neither is

there a "@@field comment" section; hence, that line

can be eliminated.

The "@@table right delimiter" symbol was discussed

above; as we see from our sample ORACLE database defi-

nition, it turns out to be ");".

The rest of the generalized template symbols fall under

the category of "network header" information; they are

used only for Type 3 DBMSs, and so will be discussed in
that context. We eliminate them for ORACLE

There is no "@@db right delim" symbol or "@db termina-

tor" symbol; these items can be eliminated.

Figure i0 shows the completed ORACLE template.

Contract NAS5 30304 - Firm[ Report Page 44



R_rtB_

Now we must fill in the data type table information

(see Appendix for data conversion table); then our tem-

plate package is finished. To do that, we consult an
ORACLE user's manual and a DAVID user's manual, to

match up the data types. We come up with the follow-

ing:

ORACLE DATA TYPE TEMPLATE TYPE # DAVID DATA TYPE

char 2 char

INT 2 num

INT 4 float

A final table to be completed is called the Length

Parameter table. For all datatypes in your DBMS, the

following questions are answered:

-- is there a length field?

-- if so, how many length parameters are there?

-- if there are two parameters, what do they mean?

The complete table is in Appendix 4.

With the completed template, and the tables above

filled in, the interface for your DBMS is now complete.
Section 3 explains what to do next.

General Strategy

In the previous section, we filled in the generalized

Definition Generator template using our ORACLE example

as a model, creating an ORACLE Definition Generator

template. Here, we outline a general strategy for

filling in a Definition Generator template.

The first thing you must do is determine which type of

DBMS (types 1 through 5 are described above). Then
skip to the section in this document which describes

the Definition Generator Templates for your type of
DBMS.

Type I Definition Generator Templates

In the example of ORACLE we filled in a type 1 Defini-

tion Generator template. Our type 1 sample DBMS,

ORACLE, did not contain such fields as database name.

Your type 1 DBMS may require more of these items.

Contract NAS5 3030/+ - Finat Report Page 45



ReportBody

To fill in the template, employ the same method as we

did in our example above: use the generalized template

as a guideline, and for each symbol prefixed by "@@"

-- if that construct exists in your DBMS,

replace the @@ symbol by the one in your DBMS

-- if that construct doesn't exist in your DBMS,

remove the @@ symbol.

Type 2 Definition Generator Templates

Type 2 database management systems support tree-

structured databases, where the tables can have parents
and children. So in addition to the information about

individual fields such as that supplied in the Type 1

templates, parent and child information must be

supplied in the definition of a table.

Figure 3.3 contains the general template for a type 2

DBMS; figure 3.4 contains a typical type 2 schema: one

for the IMS DBMS. The following additional keywords

appear:

@@parent_keywd -- to indicate that this is a parent
table

@@table_length_keywd -- to indicate the length of
the table

@@table_start_pos -- to indicate the starting

position of the table

@@table_comment_keywd -- to indicate a comment

Associated with the above keywords, there are left and

right delimiters and separators that must be supplied

in the proper places. See the example above, in which

these delimiters are filled in, to see how the process

is done.

As an example, the generalized template portion which

pertains to tables and their hierarchical relationships

appears as follows (this is a portion of the general-

ized template):

@@table name_keywd @@tbname_prefix @TABLENAME @@tbna-
me suffix &

@BEGINPAR @@table_attr_Sep @@parent_keywd @PARENT_NAME
@ENDPAR

@BEGINTLEN @@table_attr_sep &

@@table_length_keywd @TABLE_LENGTH @ENDTLEN

Contract NAS5 30304 - Firm[ Report Page 46



Report Body

@BEGINTPOS @@table attribute_sep &

@@table_start_pos_keywd @TABLE_START_POS @ENDTPOS

@BEGINTCOM @@table_attr_sep &

@@table_comment_keywd @TABLECOMMENT @ENDTCOM &

When the @@ information on the template is filled in by

the interface builder with information germane to a

type 2 database, the resulting text is a piece of the

template for a database definition of that type 2 data-

base. Here is an example (this example is a part of

the database definition for an IMS schema):

@BEGINTABLE<\n>

SEGM NAME=@TABLENAME,PARENT=@PARENT_NAME,

BYTES=@TABLE_LENGTH,START=@TABLE_START_POS

so, we can see, for this example,

@@table_name_keywd is "SEGM NAME="

@@table_attr_sep (separators between table attrib-

utes) is " "

there are no comments, so @@table comment_keywd is

eliminated, along with @BEGINTCOM, @TABLE_COMMENT

and @ENDTCOM

Proceeding along these lines, and using the techniques

illustrated in the ORACLE example, above, we either

fill in the rest of the @@ symbols with their DBMS-

dependent counterparts, or delete them.

Below is an example of a piece of a type 2 database

definition, the result of the interface driver's opera-

tion on the template subset shown above:

SEGM NAME=employee, PARENT=deptment, BYTES=24

This is an actual portion of the database-specific com-

mand that would get executed by the resident database

system to create a new database. The rest of the

template, and hence the code generated to define the

new database, is the same as for Type 1 databases, and

so will not be discussed here.

Type 3 Definition Generator Templates

Type 3 definition generator templates differ from those

of Type 2 only in that the data organization of the

Contract NAS5 30304 - Final Report Page 47



Report Body

databases is different. Since Type 3 databases are

network in structure, one child can have several par-

ents, and so the structure described above will not

suffice. Instead, the generalized template contains

information about SETS, which is what child-parent

tuples are usually called. For each set, the requisite

information to be supplied is the name of the parent,

or OWNER, as it's often called, and the name of the

child, or MEMBER, as it is sometimes known, plus appro-

priate delimiters.

Here is an example of a subset of the generalized

template used to connote these relationships. The rest

of the template is the same as for Type 1 DBMSs.

@@network header

@BEGINSET<@@set_sep><@@set_left_delim>&

<@@set_right_delim>

@@set_name_keyword @SET_OWNER_NAME @@set_name_sep
@SET MEMBER NAME &

@@set_attribute_left_delim

@@set owner_keyword @SET_OWNER_NAME @@set_attribute_se-

parator &

@@set_member_keyword @SET_MEMBER_NAME &

@@set_attribute_right_delim &
@ENDSET

We now fill the above template subset in for a sample

Type 3 DBMS; namely, IDMS. We have no @@net-

work_header, so we eliminate the line. Our set_na-

me_keyword is SET NAME IS; our set_owner_keyword is

OWNER IS; our set_member_keyword is MEMBER IS. The

completed template subset for this DBMS, then, is:

@BEGINSET

SET NAME IS @SETMEMBERNAME-@SETOWNERNAME \n

OWNER IS @SETOWNERNAME \n

MEMBER IS @SETMEMBERNAME \n

@ENDSET \n

to be repeated for as many sets as there are in the

specific database. A completed example of this subset

of a database definition, completed for a department-

employee database, is as follows:

SET NAME IS deptment-employee

OWNER IS deptment

MEMBER IS employee

Contract NAS5 30304 - Final Report Page 48



R_rtB_

The rest of the database description is generated as it

is in the other database types described above.

Type 4 Definition Generator Templates

The database definitions for Type 4 databases do not

differ in structure of those of type i. Since these

databases are tabular in structure (in fact, they are

usually limited to a single table), and since the tab-

les are never connected, they have no parent or set

pointers, and so the subset of the generalized template

used in type 1 databases also applies to them.

For a complete explanation of how to fill in a type 4

definition generator template, see the ORACLE example

above, and the explanation of type 1 definition genera-

tor templates.

Type 5 Definition Generator Templates

There are no Definition Generator Templates for objects

of Type 5. Since these are not databases, but rather

general files, there is no "schema" or database defini-

tion to be generated here. Type 5 databases rely only

on their counterpart, the DAVID database definition, to

describe them. To define a Type 5 database to the

DAVID system, you simply use the DAVID DEFINE command

as if it were a DAVID database (see the DAVID user's

manual for the syntax of the DEFINE command); in the

STORE AS clause at the end of the DEFINE, you fill in

the DBMS type as FILE and the name as the name of your

file. For example, to create a definition for a file

named FILE1, your DAVID DEFINE command ends with the
clause

STORE AS FILE(FILE1)

See the section Testing Your Interface Components, for

more information on how to generate a database defini-
tion.

Building the Define Templates

Your Define Template emerges from the Definition Genera-

tor Template (see section 2.3, above) you constructed.

The Define Template surrounds the Definition Generator
with the commands needed to bring up, or activate, your

DBMS and provide it with the necessary security, and the

commands needed to exit from your DBMS. Usually, this is

only a command or two.

Contract NAS5 30304 - F_r_l Report Page /+9



Report Body

The commands for the DEFINE appear in the Definition Gen-

erator template, at the top and the bottom. When you
have completed the process of filling in (or deleting)

the "@@"-prefixed symbols in the generalized template,

these commands will be filled in also; there is nothing

additional for you to do.

Building the Install Templates

The Install templates are constructed in the exact same

manner as the Definition Generator templates; remember,

the only difference between the Define operations and the

Install operations is that the Define creates an entirely
new database from scratch, while the Install connects an

existing database to the DAVID system.

Building the Drop and Delete Templates

The Drop operation is entirely a DAVID matter, since the

Drop operation simply disconnects your database from the

DAVID system. No resident database commands are needed

for a Drop, and so there is no template to construct.

The Delete operation, on the other hand, both drops the

database definition from the DAVID system and deletes the
database itself. So the template for this operation con-

tains the command to actually delete, or erase, the data-
base definition and all its associated data from your

DBMS. The template is a simple one; just replace the

@@delete database symbol with the language your DBMS uses
to delete a database.

Building the database access templates

There are several different methods for building the

database access templates, depending on the database Type

of your DBMS. For those DBMSs which support a query

language, (i.e., Type I and type 4 DBMSs), the purpose of

the template is to tell the DAVID system how to interpret

the query. For those DBMSs which have no query languages

and which have interfaces at the table-row level (i.e.,

Types 2, 3 an_ 5), the template helps to construct rou-

tines to walk through your DBMS and feed information to

DAVID, or insert information from DAVID.

Contract NAS5 30304 - Firm[ Report Page 50



Report Body

The access templates for Types 1 and 4 DBMSs, i.e., those

which serve as aids for query translation, reside as data

in the host DBMS, and are activated as an aid to building

specific queries at execution time. The access templates

for the other DBMS types serve a completely different

function: they are aids to interface builders for writing

procedures that will then be linked into the host system.

So filling in the generalized access templates for Type 1

and Type 4 DBMSs yields another set of templates, con-

taining symbols prefixed by "@", to be filled in at

execution time with query-dependent information; while

the access templates for the other types of DBMS are

filled in with actual code that gets compiled and linked

into the host system. There are no symbols in these

completed templates; there is only executable code.

NOTE: Writing the code for Type 2, 3 and 5 interfaces

sometimes presents a "language" problem. For example, we

wrote an interfaces to IDMS in C, since the code was

embedded inside a large system which was all written in

C; IDMS has a protocol with COBOL, PL/I and IBM Assem-

bler -- but not C. So the register conventions are all

different, parameters are passed differently, and many

potential problems can result. Let the coder beware!

In either case, the filled-in database access templates

form the heart of the interface; they provide the mecha-

nism for accessing the data.

Type 1 Database Access Templates

Below is the generalized template for database access

for Type 1 DBMSs. It will also be used for Type 4

DBMSs, as we will see below. As we did with the

Definition Generator templates, filling in the symbols

beginning with "@@" for our DBMS will yield a DBMS-

specific template to be used for queries. We will

proceed below, with an example.

There are also two tables which accompany these tem-

plates: the Linguistic Convention Table (LCT) and the

Boolean operator Table (BOT). These must be filled in

with information which tells the host system how to

interpret your query, after filling in the templates,

completing the LCT and the BOT will provide a complete
interface.

Contract MAS5 30304 - Finat Report Page 51



Report Body

@@invoke DBMS

@@give_password @RUID @@pwd_sep @@give_userid @RPWD

@@open_db @dbname

@@establish_file device @FILENAME

@@select_command
@BEGINSELECT

@result_field_sep><@@result_field_ift_delim>&
<@@result_field rt delim>
@RESULTFLD

/* this may also contain table prefix.

see table 1 for list of options */
@ENDSELECT

@@from command

@BEGINSOURCE

/*note: doing this as a loop allows for JOINS */

<@@source db sep><@@source db lft_delim>&

<@@source_db rt delim>
@SOURCEDB

/* this may contain db name and/or table name */
/* and will appear as @@SOURCEDB or @@SOURCETABLE

*/
@ENDSOURCE

@@boo1 command

@@boo1 lft_delim @bool_string @@bool rt delim

prefix.
/* @@bool_string may also contain table

see BOT for list of options */

@@close_db
@@exit

@@terminator

When the @@ symbols have been filled in with keywords

from our DBMS language (or NULLed out, if that language

construct doesn't exist in our DBMS), the result will
be a query-dependent template to be filled in at run
time.

Let us fill in the template for the ORACLE DBMS, fol-

lowing through from the database definition example.

ORACLE has an on-line query language, OLQ, through

which our query will be generated. Below is an example
of an ORACLE query, to retrieve information from a
student record file.

Contnact NAS5 30304 - F_nat Report Page 52



R_rtB_

oI_
USER = marsha, PWD = hi
OPEN students

SELECT name, id, grade FROM students

WHERE semester = 'fall' AND year = 1989 AND course
= 'csc126'

OUTPUT TO filel

EXIT

In the above template,

@@open_DBMS is replaced by OLQ
@@user id is USER =

@@pwd_sep is ,

@@pwd is PWD =

@@open_db becomes OPEN

@@establish file device is eliminated

Continuing in this vein, using our example and the

generalized template, we come up with the following

template for ORACLE. Notice that it contains only

items with a single "@"; those are query-dependent and

get filled in at run-time. All the symbols

beginning with "@@" have either been replaced by DBMS-
specific constructs, or have been eliminated.

ORACLE QUERY TEMPLATE

OLQ
OPEN

@BEGINSELECT

<,><><>

@RESULTFLD

@ENDSELECT

FROM

@BEGINSOURCE /*note: doing this as a loop allows for

JOINS */

<,><><>

@SOURCEDB

@ENDSOURCE

WHERE

@bool_string @BEGINRESULT
OUTPUT TO @RESULTFILE

CLOSE @dbname

EXIT

Contract WAS5 303_ - Finat Report Page 53



ReportBody

Now we need to fill in the two accompanying tables;

then we are finished. First, the LCT.

The Linguistic Convention Table provides a "picture" of

the query for it to be properly interpreted by the

system: such items as

- whether spaces are required around operators

- whether field names have to be qualified by tables

The format of the table is just a set of answers to

simple questions; the complete table appears in the

appendix to this document.

The Boolean Operator table aids the system in con-

structing a Boolean condition for your query in your

DBMS. For each Boolean operator that the host has, you

are requested to represent it in the language of your

DBMS. Also, the precedence rules are established.

This table also appears in the appendix to this docu-

ment.

These tables, along with the completed template, form a

complete picture of your DBMS; the interface software

of the host DBMS system can now construct queries in

your query language to be submitted on your databases.

Type 2 Database Access Templates

Type 2 and Type 3 DBMSs are both connected to the DAVID

system via inner interfaces. In that case, as you may

recall, we need to provide five database operations for

the interface, namely, open, close, first, next, and

insert. Since database systems differ greatly in the

way these operations are handled, a detailed case of

both a Type 2 and a Type 3 interface will be discussed
below.

If there were a database access template for type 2 and

type 3 DBMSs, it would simply consist of the commands:

@@open_database
@@read first record

@@read next record

@@close_database

Contract NAS5 30304 - Final Report Page 54



R_rtB_

These commands would be used quite differently than the

conventional template commands. Each would yield not a

string of text, but a function or collection of func-

tions, written in C or some other high-level language.

The functions themselves would not appear sequentially,

but would be imbedded in other functions, scattered

throughout the DAVID DBMS code. They would be compiled

and linked into DAVID, and executed via DAVID function

calls. Their net effect would be to make the resident

database function, not like a resident database with

its own associated DBMS, but like a DAVID database.

DAVID would call on the resident DBMS only to implement

the calls named above.

Below we described the 4 template commands described

above, plus a fifth one: open, first, next, close, and

insert.

The open command must "bring up" the DBMS, open the

specific database to be processed, and perform some

"housekeeping chores". Some of these might be (the

actual tasks to be done depend on the requirements of

the particular DBMS to be interfaced): allocate a work

area; allocate a file control block for the database

and initialize it; set up an error reporting mechanism;

open any files associated with the database.

The close command must close the database, perform any

DBMS-specific functions required, such as freeing any

storage areas allocated by the open routine, and exit

from the DBMS.

Type 2 databases generally are hierarchal in nature, so

that when we are asking for the first record or the

next record, we must set those requests in the context

of the parents of the record. Since we are supplying

the parent (which the host DBMS keeps track of) for

each call, these calls are in actuality for the first

or next record within a particular parent.

Since first and next routines are usually implemented

via subroutine calls in Type 2 databases, the two oper-

ations differ from each other only in that they are

different parameters to the same subroutine call, or

different subroutines. For example, in the FOCUS DBMS,

the call to retrieve the next record within the same

parent is a call to routine focmxp; the call to
retrieve the first record is a call to routine focfst.

All parameters are the same.

Contract NAS5 30304 - Final Report Page 55



Report Body

Similarly, insert is implemented by a similar subrou-

tine call, requesting that the record be inserted into

the proper place in the database.

Type 3 Datebas. Access Templates

As in Type 2 interfaces, these DBMSs are connected to

the host via inner interfaces. An explanation of the

open, close, first, next, and insert follows below.

In the open command, the DBMS is invoked, usually via

system commands, and the database is opened. Also, some

of the following "housekeeping" functions are per-

formed: storage is allocated for schemas and subsche-

mas ("bindings" are created), data control areas are

set up, an error-checking mechanism is established.

Note: in type 3 DBMSs, often a new declaration for the

subschema control area must be set up for every differ-
ent kind of database operation to be performed on that

schema; in particular, get (first or next) and insert
must have different subschema control areas. The easi-

est way to handle this is to automatically set up two

-- one for reading, one for updating -- in every open.

The close operation closes the database, deallocates

any storage allocated by the open operation, and exits
from the DBMS.

The first, next, and insert operations are usually all

done via a single procedure call. The procedure has

parameters for the subschema name, the name of the

record, the name of the physical area in which the
record sits, the control area in which currency is

maintained so the request for a "next" record has some

meaning, and, of course, the database operation. In

IDMS, for example, the single subroutine is called
IDMS; a call to obtain the next record would be

CALL IDMS (SUBSCHEMA_CTL, IDBMSCOM(II),
RECNAME, AREANAME, ERROR)

where the IDBMSCOM number signifies the database opera-
tion.

Type 4 Data]_ase Access Templates

Type 4 DBMSs have a language that resembles a query
language, although in some cases it is rather primi-

tive. As a result, they use the same kind of template

Contract NAS5 30]04 - Final Report Page 56



ReT)ort Body

as is used for Type 1 DBMSs: the query template. The

process used to fill in the query template is described

in detail in section on type 1 database access tem-

plates, and an example appears there.

Type 5 Database Access Templates

Type 5 databases are not, strictly speaking, databases

at all. They have no query languages associated with

them, and so the only approach to take is the inner

interface approach. A brief discussion of open, close,

first, next and insert follows. We will show that the

only operations to be constructed by the interface

builder for processing Type 5 databases are first,

next, and insert.

The open routine simply opens the file upon which the

data is residing. At execution, the name of the file is

passed to the routine as a parameter. Any work data

areas to be set up or error-reporting mechanisms to be

established, are already built into the DAVID system

for our generic file interface. So there is nothing

for the template builder to do here.

The same is true for the close operation: the DAVID

system already contains a generic file routine for

closing the data file and deallocating any storage

areas for that processing. So nothing needs to be
done.

The entire template for accessing a database, then
would consist of the commands:

@@read_first_record
@@read next record
@@inse_t record

The first and next operations differ only in that the

first routine must read past any header on the front of

the file. So the template routines to be filled in for
the first routine are:

and
@@read_past_header

@@read_next_record

ContractNAS530304- FinalRel:_rt Page57



Report Body

Routine read_past_header simply bypasses any heading

information on the front of the file, and positions us

for the next read at the first piece of data on the

file. This routine will be the same for every file on

the same file system (our FITS interface, for example,

contains a routine to read past any FITS header). If

the file has no header, this routine will be null.

The object of the read_next_record routine is to place
the data from one record of the file into a host data

buffer. Once the data is in this buffer, the host

system can then process it. The routine must go

through the data items one at a time, performing pre-

processing and data conversion where necessary and

moving the data into the corresponding position in the

proper DAVID data buffer. Preprocessing might include

stripping leading characters or trailing characters

from the data. Conversion might include translation

from ASCII to binary data representation.

The insert operation moves the data from the host data

buffer into a record of the file; therefore it is the

opposite of the next operation. The components of the

insert operation parallel those of next, but the data
is moved in the other direction. Once one of the

routines is written, it will be very clear what is

needed to construct the other.

What to do with the templates you just constructed

Depending upon the Type of your DBMS, the database access

templates you constructed are used in different ways. How-

ever, the Define, Delete and Install templates are used in

the same way, regardless of what kind of database system you

have. We explain their use first.

The set of templates you just constructed will become part

of the DAVID system, as a "system cluster" of data which

DAVID calls upon to do its work. Each time a request for a

database operation on one of your databases comes to DAVID,

the proper template -- the one for the correct operation on

your DBMS -- must be retrieved and filled in by DAVID. The

resulting text string contains a set of instructions to your

DBMS. When that text string is executed, it will "bring up"

your DBMS and perform the operation on it.

C_traot NAS5 30304 - Final Report Page 58



R_rtB_

For all DBMS types, the DEFINE, DROP, INSTALL and DELETE

templates are processed as described above. For database

systems of Types 1 and 4, the database access (query pro-

cessing) templates are also treated in this manner; however,

for database systems of types 2, 3, and 5, they are used

quite differently. Here, we outline that process.

The database access templates for database systems of types

2, 3, and 5, you may recall, generate not query-dependent

templates to be filled in with query-specific information,

but procedures. These procedures are general, i.e., they

contain no query-specific information, and they have to be

compiled and linked into the host DBMS -- once. So when the

access routines are finished, they are delivered to the

DAVID database administrator, who links them into the DAVID

system, and makes some system changes to accommodate the

routines. For DBMS Types 2, 3, and 5 you should skip the

next section, since there will be no templates to install,

and proceed with the section which discusses the testing of

your new interface.

Installation into the Template Cluster

Each template you have generated should be in a separate

text file. On the front of the file, 2 pieces of infor-

mation must be added: the DBMS number, and the type of

operation. The DBMS number is a distinct 3-digit number

for each non-DAVID DBMS on the system; ORACLE, for exam-

ple, is DBMS number 101, while INGRES is DBMS number 102.

The DAVID database administrator must assign a number to

the DBMS before the templates can be installed. The type

operations are as follows (they are 8-character codes):

DEFINE

INSTALL

DROP

DELETE

SELPROJ

STORE

Note: the first four operations are for any DBMSs; the

last two are for Type 1 and Type 4 DBMSs only.

There is a stand-alone program called load_template_clus-
ter which asks for the name of the file in which the

template sits; then reads that file and adds the data to

the DAVID template cluster.

Contract NAS5 30304 - Finat Report Page 59



RepOrt Body

A few things must be done to the DAVID system before you

can start testing your interface components. These oper-

ations will be performed by the database administrator of

DAVID. They are:

Your DBMS must be assigned a 3-digit DBMS number, which

is added to the resident database structure numbers [in

clstruct.h]. It is described above.

The logical statements which determine which resident

interface belongs to which query must be expanded to
include your DBMS name and number.

Once these actions have been performed, and DAVID has

been relinked by the database administrator, you are

ready to begin testing (and using!) your interface.

Testing your interface components

You must test your interface components on a "real" data-

base on your DBMS. To do this, you must first Define or

Install a database of that type. Let's try Define first;

you can do it through the DAVID system. You simply issue

a DAVID DEFINE command; the end of the command says STORE

AS XX(YYY); where XX is the name of the DBMS, and YYY is

the name of the new database you wish to create. So if,
for example, you wish to create an ORACLE database called

DBI, your DEFINE command would end .... STORE AS ORA-
CLE(DBI); See the DAVID users manual for the syntax of

the complete DEFINE command.

You can also create a new database in your DBMS via a

DAVID query. This way, it immediately gets loaded with

data, also. Simply query an existing DAVID database and

specify that the results be stored in a database in your

DBMS. For example, to create database DB1 as an ORACLE

database containing the same information as a DAVID data-

base called DB0, issue this query:

CREATE ACTUAL CLUSTER nl.usrl.filel.dbl

SELECT * FROM nl.usrl.filel.db0

WHERE all

STORE AS ORACLE (DB1);

NB: nl is the physical node on which your data resides

usrl is your user id

file1 is the physical file on which the data resides

See your DAVID database administrator for help in deter-

Contract NAS5 30304 - Final Report Page 60



Report Body

mining these values.

Once your database has been created, and is connected to

the DAVID system, you can test the following operations
on it:

a) You can issue queries. (See the DAVID user's manual

for the syntax of query commands). Your queries can

transfer data from one database to another in your DBMS,

from yours to DAVID, from DAVID to yours, or to and from

yours and any other DBMS for which a DAVID interface
exists.

b) You can browse through your database, looking at

records one at a time, setting "windows" (selected

fields) to restrict the number of fields and booleans to

restrict the number of records. You can even insert

records into your database using this browsing tool. See

the Reading Room user's manual for how to do this. An

important caveat: You can use this feature only if your

database interface is an inner interface, i.e., it was

built at the table-row level. DBMS interfaces that have

query-level interfaces can only support queries; no

browsing is permitted.

Summary - The Capabilities of your interface

Now that your database management system has been interfaced

to the DAVID system, all your databases can be accessed,

queried and updated via the DAVID system, and data can be

transferred between the DAVID system and your database sys-

tem, and between any other DBMS connected to DAVID and your

database system. In short, your DBMS becomes just another

DAVID database organization type, and your databases become

just more DAVID databases of different types.

For every database you wish to process via the DAVID system,

you must install it on DAVID, i.e., you must tell DAVID
about its database schema. Once the installation has been

done, the full spectrum of the DAVID query language is at

your command.

Permissible operations other than queries on your databases

are governed by the type of interface you have to the DAVID

system, which in turn is determined by the TYPE classifica-

tion you selected for your interface, based on the charac-

teristics of your DBMS. The inner interfaces (for databases

of types 3 and 4) have the most flexibility; you can issue

Contract NAS5 303(]4 - Final Report Page 61



-k

Report Body

queries on them, as well as browse through them using the

DAVID browsing tool. The outer interfaces are not endowed

with browsing capability; however, GSQL is a very powerful

query language, and provides a full range of database access
capabilities.

Contract NAS5 30304 - Finat Report Pege 62



Report Body

Outlook for Phase ZZI

Ken Wanderman & Associates is vigorously pursuing follow-on

contracts to this project in two areas. The first area is

using the results described in this report to enable us to act

as consultants for parties who have data in various DBMSs and

files, to interface that data to DAVID. In particular, in the

astrophysics community within NASA there is great interest in

using the FZTS and FZLE interfaces to translate data. The

arrangements we are pursing would be to have our company per-

form the translations in house. Such translations might poss-

ibly involve writing additional interfaces depending on the

nature of the data. We expect contracts to be signed within
the next few months.

A second area we are pursuing is in the direct sale of our

technology to commercial database management companies who

would like to have interfaces of their product to others. The

concept of interface between commercial relational databases

has come alive within the time span of this project; and, sev-

eral major companies such as FOCUS and ORACLE are now putting

emphasis on interfaces between their products and other

commercial DBMSs. Unfortunately, there are no commercial het-

erogeous distributed DBMSs, so our concept remains slightly

ahead of its time. Our plan is to pursue consulting until the

market catches up.

Contrect NAS5 30304 - Final Report Page 63



Report Body

Suggestions for Further Research

In our strategies to build interfaces we only considered what

one could call traditional type database systems; i.e., ones

based on tables. These were the relational, the hierarchal

and the network type DBMS. At this point, these traditional

systems make up the overwhelming majority of systems in use by

scientists and business and industry. However, the market for

commercial databases is an active one. New products and tech-

nologies are constantly emerging as the demand for more

sophisticated database products grows. Our approach accounts

for new products in the traditional area, but DBMS based on

entirely new techniques may call for interfaces inconsistent

with our approach. Two types of database systems still in the

development stage come to mind. One is Hypertext which allows

a more sophisticated linking mechanism than traditional DBMSs.

Interface to Hypertext systems should be considered for the

future, particularly when they become available on machines

larger than micro computers. A second type of DBMS is the

object-oriented database. A leading vendor in this area is

Servio Logic, Inc., whose product, Gemstone, has become the

pioneering product. While time and resources of this contract

did not allow us to pursue an interface with Gemstone, our

company plans to make this effort in the near future.

Contract NAS530304 - Final Report Page 64



lttustrations

Illustrations

Figure 3 - Typical FITS Header

SIMPLE

BITPIX

NAXIS

EXTEND

COMMENT

COMMENT

END

XTENSION= 'TABLE '

BITPIX =

NAXIS =

NAXISI =

NAXIS2 =

PCOUNT =

GCOUNT =

TFIELDS =

EXTNAME = "AKG3

TTYPEI = 'NO

TBCOLI =

TBFORM = 'A7

TTYPE2 = 'MG

TBCOL2 =

TFORM2 = 'E4.1 '

point

TUNIT2 = 'MAG

TTYPE3 = 'SP

TBCOL3 =

TFORM3 = 'A2

TNULL3 = "

TTYPE4 = 'RAH

TBCOL4 =

TFORM4 = 'I2

TUNIT4 = 'HR

TNULL4 = '99

= T / File is standard FITS format

= 8 / Character information

= 0 / No image data array present

= T / There are standard extensions

AGK3 Astrometric catalog, in FITS Tables Format
extension header follows in a new block

/ Table extension

8 / 8-bits per "pixel"

2 / simple 2-D matrix

74 / no of characters per row

3 / no of rows

0 / no "random" parameters

1 / 1 group

16 / 16 fields per row

/ name of the catalog

/ the star number

1 / start in column 1

/ 7 character field

/ stellar magnitudes

8 / start in column 8

/ xx.x standard precision floating

/ units are magnitudes

/ spectral type

13 / start in column 13

/ 2 character field

/ blank is indefinite value

/ right ascension hours

16 / start in column 16

/ 2-digit integer

/ units are hours

/ null value

Contract NAS53030/+ - Final Report Page 65



lLtustrati_

TTYPE5 = 'RAM

TBCOL5

TFORM5 = 'I2

TUNIT5 = 'MIN

TNULL5 = '99

TTYPE6 = 'RAS

TBCOL6 =

TFORM6 = "E6.3

TUNIT6 = 'S

TTYPE7 = "DECDSIGN"

TBCOL7 =

TBFORM = 'AI

TTYPE8 = 'DECD

TBCOL8 =

TFORM8 = 'I2

TUNIT8 = 'DEG

TTYPE9 = 'DECM

TBCOL9 =

TFORM9 = 'I2

TUNIT9 = 'ARCMIN

TNULL9 = '99'

TTYPEI0 = 'DECS

TBCOLI0 =

TFORMI0 = 'E5.2

TUNITI0 = 'ARCSEC '

TNULLI0 = '99.99

TTYPEII = 'EPOCH '

TBCOLII =

TFORMI0 = 'E7.2

TUNITII = 'YR

TTYPEI2 = 'N

TBCOLI2 =

TFORMI2 = 'il

TTYPEI3 = 'RAPM

TBCOLI3 =

TFORMI3 = 'E4.3

TUNITI3 = "ARCSEC.YR-I"

TNULLI3 = '9999

/ right ascension minutes

19 / start in column 19

/ 2-digit integer

/ minutes of time

/ null value

/ right ascension seconds

22 / starting in column 22

/ xx.xxx standard precision float

/ seconds of time

/ declination sign

29 / start in column 29

/ character field

/ declination degrees

30 / start in column 30

/ 2 digit integer

/ degrees

/ declination minutes

33 / start in column 33

/ 2 digit integer

/ minutes (angle)

/ null value

/ declination seconds

36 / start in column 36

/ xx.xx standard precision float

/ seconds (angle)

/ null value

/ epoch of positions

42 / start in column 42

/ xxxx.xx standard precision float

/ units are years

/ no. photo obs.

50 / start in column 50

/ one digit integer

/ proper motion in r.a.

52 / start in column 52

/ .xxx standard precision float

/ units are arc-seconds/yr

/ NULL VALUE

Contract NAS5 30304 - Final Report Page 66



!lLustrations

TTYPEI4 = 'DECPM '

TBCOLI4 =

TFORMI4 = 'E4.0

TUNITI4 = 'ARCSEC.YR-I'

TSCALI4 =

TNULLI4 = '999

/ proper motion in dec.

57 / start in column 57

/ xxx. standard precision float

/ units are arc-seconds/yr

0.001 / scale factor = 0.001

/ null value

TTYPEI5 = 'DEPOCH '

TBCOLI5 =

TFORMI5 = 'E5.2

TUNITI5 = 'YR

/ difference in epoch AGK3-AGK2

62 / start in column 62

/ xx.xx single precision float

/ unit is years

TTYPEI6 = 'BD

TBCOLI6 =

TFORMI6 = 'A7

TNULLI6 = '

/ Bonner Durch. star number

68 / start in column 68

/ 7-character field

/ blanks indicate null

AUTHOR = 'W. Dieckvoss'

REFERENC= 'Hamburg-Bergsdorf 1975'
END

Contract NA$5 3030/+ -Fina[ Report Page 67



I LL_strat ions

Figure 4 Assign File

* File: 6file_asgn.c *
* Module: scracc *

* Does extra things associated with assigning a general *

* file or FITS cluster (like reading the auxiliary cluster *

* into the CCA, and opening the file). *
************************************************************

************************************************************

Function: file asgncluster

File: 6file_asgn.c

Author: M. Moroh

Last Update: 8/88

For general files & FITS, opens files and reads header

from auxiliary cluster into CCA (new place: res_area)

Called by routine arbi_asgncluster /scracc/6212.c

NOTE: This routine is called by the asg cluster process. It

does NOT assign the main cluster, which is already done (cl is

its ptr). It simply assigns the auxiliary cluster associated with

it, loads the header infor into main cca, and deassigns the aux

cl.

This routine is also called by define cluster (since the define

operation for file-type clusters also has to assign it). To avoid

a big mess, this routine exits if it discovers the header to be

empty. This means: header isn't constructed yet! So don't try

to read it!!! */

#include "chap4std.h"

/* and utility.h

JWF - was 'marsha.h' in original fits but

that file has been merged with 'chap4sdt.h'

Contract NAS530304 - Final Report Page 68



Illustrations

#define pmode 0777 /* file access mode for new cluster file

*/
#define VCA_EOT 60002 /* EOF on subcluster read */

file_asgncluster(vl,cl,c_name,query,access)

VCA *vl;

CCA *cl;

char *c name;

char *query;

executed */
char *access;

date */

/* note: the parameter "query" will be null for most general
files.*/

/* only for retrieval systems w. built-in functions will it be

nonnull */

(
TCA *tl;

CCA *c2;

SCA *sca;

char *uid;

char *pwd;

/* same VCA as usual */

/* CCA ptr for main cluster */

/* cluster name of main cluster */

/* if this is to be an "outie", i.e., a fcn

/* whether aux cluster is to be read/write/up-

/* TCA ptr for table containing data */

/* CCA ptr for the auxiliary cluster */

/* cluster name */

/* pointer to structure for data areas

/* for allocating fieldinfo */

/* to find length of record */

/* mode for opening file (r,w) */

/* int version of data length. To get

FILE *fopen(), *fp;

clust struct *name ds;

FF_AREA *file_area;
*/
char *calloc();

char the_name[CLUSTER_HDG LEN + 2];
int result = SUCCESS;

int bind_flag = FALSE;

AFIELD *eachfield;

AFIELD *last;

char openmode[3];

int int_length;

around */

/* USHORT problem (cast it; assign it to
./

/* each field->length) */

/* Allocate data areas for file header info, etc. */

file_area = (FF_AREA *) calloc(l,sizeof(FF_AREA));

/* Insert a pointer to the resident areas into the CCA

cl->res_area = file area;
./

ContractNAS5 30304 - Final Report Page 69



I [ [ustretions

/*

*/
Set TCA pointer (tl) to first table of CCA (we need it later)

tl = cl->tca_ptr;

/* Provide the userid and/or password */

/* (Is this ever necessary?) */

/* uid = (char * ) calIoc(I,NAME_LEN); */

/* pwd = (char * ) calIoc(I,NAME_LEN); */

/* Open up the general file & store its ptr in the CCA */

/* Open it for read, write or update, depending on access. */

/* On the VAX it would be: */

/*

*I
I*
*I
I*
*I

I*(

JWF - DAVID ops other than delete put a 'D' in the access

string - this will have to be resolved eventually but for now

checking will be disabled.

result = E ILLEGAL ACCESS MODE;

set status_vl, E_ILLEGAL_ACCESS_MODE);

JWF */

/* NOTE: code below will allow for "RW" (though it'll actually

open "a" */

/* in that case). It won't alllow for "D" */

/* Allowing for RW provides multiple user access to same file (I

think) */

eachfield = NULL;

last = NULL;

if (result == SUCCESS)

{
if (foundit(access,"RW") != NULL) strcpy(openmode,"a+") ;

else if (strchr(access,'W') != NULL) strcpy(openmode,"a") ;

else /* cluster is for reading only */

strcpy(openmode,"r");

if ((fp = fopen(cl->res_name,openmode)) == NULL)

{
printf("\n unable to open file %s with access mode

%c%c\n",

cl->res_name, openmode[0], openmode[l]);

set_status(vI,E_ARBI_FILE_CREATE_ERROR);

Contract NAS530304 - Final Report Page 70



Illustrations

result = E_ARBI_FILE_CREATE_ERROR;

)
)

/* Now get the header information from the "auxiliary CCA" */

if (result == SUCCESS)

(
cl->res_file_ptr = fp;

/* first, allocate a field description structure */

eachfield = (struct afield *) calloc(l,sizeof(struct

afield));

eachfield->next = NULL;

file_area->firstfield = eachfield; /* hook structure to cca

/* Now assign and read the secondary cluster for the file,

/* which contains the header information. */

/* create the name of the secondary cluster (routine

get_aux_name)

it was created in the define routine (in file

arbi_hdr.c) */

get_aux_name(c_name,the_name);

/* for testing, a single-level table (omit device info) */

/* if ((result =

bindcolumn(vl,c2,"device","device info",

file_area->device_info, DCHAR, 20 ))
,/

if ((result = asgcluster(vl,&c2,the name,"*" "RWD"))

II
(result =

CESS

!= SUC-

"xname" eachfield->name,bindcolumn(vl,c2,"xheader",

DCHAR,NAME_LEN )) != SUCCESS II

(result =

bindcolumn(vl,c2,"xheader","xtype",eachfield->type,

DCHAR, 8))

,= succEss II
(result =

bindcolumn (vl, c2, "xheader", "xlength", & (eachfield->length) , DINT,

0))
;= success II

(result =

Contract NAS530304 - Final Report Page 71



IlLustrations

bindcolumn (vl, c2, "xheader", "xnodecs", & (eachfield->nodecs) , DINT,

0))
,= succEssII

(result =

bindcolumn(vl,c2,"xheader","xcolumn",&(eachfield->column), DINT,

0))
l=sUCCESSII

(result =

bindcolumn (vl, c2, "xheader", "xcomments",

eachfield->comments,DCHAR, 200)) != SUCCESS)

; /* Don't do anything */

)

/* Read information from header into auxiliary cluster */

if (result == SUCCESS)

(
bind_flag = TRUE;

if ((result = asgsubcluster(vl, c2, &sca, "*")) != SUCCESS)

(
dasgcluster(vl,&c2);

result = CANT ASGN AUXSUBCL;

)
)

if (result == SUCCESS)

(
scrbfirst(vl,c2,sca,NULL);

if (vl->status == VCA_EOT)

{ /* printf("\n in file_asgn, xheader cluster showed up

empty."); */

/* JWF - Clean up bindings. */

if ((result =

unbindcolumn(vl,c2,"xheader","xlength",&(each-

field->length)))

+=succEssII
(result =

unbindcolumn(vl,c2,"xheader","xname",eachfield->name))

,= succEssII
(result =

unbindcolumn(vl,c2,"xheader","xtype",eachfield->type))

!= SUCCESSII
(result =

unbindcolumn (vl, c2, "xheader", "xnodecs", & (each-

field->nodecs)))

!=sUCCESSII
(result =

ContractNAS5 30304 -Fimt Report Page 72



Illustrations

unbindcolumn(vl,c2,"xheader","xcolumn",&(each-

field->column)))

i= succEss II
(result =

unbindcolumn (vl, c2, "xheader", "xcomments", each-

field->comments))

!= SUCCESS)

; /* dont do anything */

dasgcluster(vl,&c2);

return(SUCCESS);

)
else if (vl->status != SUCCESS)

(
printf("\n in file_asgn, cant read ist header record

properly");

dasgcluster(vl,&c2);

result = E CANT READ ARBI HDR;

)
)

/* now unbind all cluster variables; then rebind. */

while (result == SUCCESS)

(
if ((result =

unbindcolumn(vl,c2,"xheader","xlength",&(each-

field->length)))

l= sUCCESSII
(result =

unbindcolumn(vl,c2,"xheader","xname",eachfield->name))

i= succEss II
(result =

unbindcolumn(vl,c2,"xheader","xtype",eachfield->type))

!= SUCCESS II
(result =

unbindcolumn(vl,c2,"xheader","xnodecs",&(each-

field->nodecs)))

l= SUCCESSII
(result =

unbindcolumn (vl, c2, "xheader", "xcolumn", & (each-

field->column)))

l= sUCCESS II
(result =

unbindcolumn (vl, c2, "xheader", "xcomments", each-

field->comments))

!= SUCCESS)

; /* dont do anything */

Contract NAS5 30304 -Fina[ Report Page 73



ILLustretions

else

(
/* set up another memory location for next field info

last = eachfield; /* keep track of last field */

eachfield->next = (AFIELD *) calloc(l,sizeof(AFIELD));

eachfield = eachfield->next;

eachfield->next = NULL;

./

if ((result =

bindcolumn (vl, c2, "xheader", "xname", eachfield->name,

DCHAR,NAME_LEN ))

l= sUCCESSII
(result =

bindcolumn(vl,c2,"xheader","xtype",eachfield->type,

DCHAR, 8))

l= SUCCESSii
(result =

bindcolumn (vl, c2, "xheader", "xlength", & (eachfield->length) , DINT,

0))
,= sUCCESSII

(result =

bindcolumn (vl, c2, "xheader", "xnodecs", & (eachfield->nodecs) , DINT,

0))
,= successli

(result =

bindcolumn (vl, c2, "xheader", "xcolumn", & (eachfield->column) , DINT,

0))
:= successII

(result =

bindcolumn (vl, c2, "xheader", "xcomments", each field->comments,

DCHAR,200))

!= SUCCESS)

; /* Dont do anything */
else

/* now read the next row of the auxiliary cluster */

result = scrbnext(vl,c2,sca,NULL);

)
) /* end of while loop */

/* Check for normal ending of while loop */

if (vl->status == VCA_EOT)
result = SUCCESS;

Contract NAS530304 - First Report Page 74



Illustrations

/* now unbind all cluster variables */

if (result == SUCCESS [[ bind_flag)

{

if ((result =

unbindcolumn(vl,c2,"xheader","xlength",&(each-

field->length)))

l= sUCCESS II
(result =

unbindcolumn(vl,c2,"xheader","xname",eachfield->name))

z= sUCCESSII
(result =

unbindcolumn(vl,c2,"xheader","xtype",eachfield->type))

l= sUCCESSII
(result =

unbindcolumn (vl, c2, "xheader", "xnodecs", & (each-

field->nodecs)))

l= sUCCESS II
(result =

unbindcolumn (vl, c2, "xheader", "xcolumn", & (each-

field->column)))

!= sUCCESS II
(result =

unbindcolumn (vl, c2, "xheader", "xcomments", each-

field->comments))

!= SUCCESS)

)

/* if there's one extra instance of eachfield. Free it. */

if (last ]= NULL) last->next = NULL;

if (eachfield != NULL)

cfree(eachfield) ; /* JWF */

/* Figure out the max record length (not necessary to rd NAXIS

then) */

/* --it's the column of the last record + the length of the last

rec */

/* NOTE: statement below seems to point to FIRST field, not

last. */

/* That's because DAVID stores records BACKWARDS, so first IS

last. */

/* Note from KW, however: should really sort on columns,

because */

/* it's not necessariliy last; could sometimes be a different

order. */

Contract NAS5 30304 - Final Report Page 75



I t |ustret ions

if (result == SUCCESS)

(
file_area->maxlen = (file_area->firstfield->column) +

(file_area->firstfield->length) - 1;

dasgcluster(vl,&c2);

/* very last thing to do before leaving: calculate offsets for

*/
/* buffer fields. Routine sort_offsets, below, does this. */

result = sort_offsets(file_area->firstfield, tl);

)

return (result) ;

) /* end file_asgncluster */

Contract NAS5 30304 - Finer Report Page 76



Illustrations

Figure 5 File First and Next

#include "chap4std.h"

#include <ctype.h>

***************************************************************
/* */
/* File: 6file_ops.c */

/* Module: scracc */

/* */
/* */
/* */
/* */
/* */
/* */

*/

contains functions read, write & insert (plus utilis)

for FITS and general file clusters

Routines:

file insert

file first

/* file next

***************************************************************
***************************************************************
/* */
/* Function: file first */

/* File: 6file_ops.c */

/* Author: M. Moroh */

/* Last Update: 8/88 */

/* */
/* Read first record of general files and files of FITS */

/* Called by /scracc/62i.c routine generic_function */

/* */
***************************************************************

char *calloc();

void free();

#define NEW_LINE '\n'

/* read first record of a generic file into a buffer */

file_first(vl,cl,tl)

VCA *vl;

CCA *cl;

TCA *tl;

(
int result;

/* vca pointer */

/* pointer to CCA */

/*for host version of resident cluster */

/* tca for table corresponding to file */

Contract NAS5 30304 - Final Report Page 77



lttustrationa

/* first, rewind the tape (or reposition the disk, or whatever)

*/
/* NOTE: This routine is probably system dependent. */

result = file_rewind(cl->res_file ptr);

if (result == SUCCESS)

{
result = read_past_hdr(cl);

if (result == E_EOF_ON_FILE_HDR) result = file_rewind(cl-

>res_file_ptr);

if (result == SUCCESS)

result = file_next(vl,cl,tl);
)
return(result);

) /* end file_first */

***********************************************************
/* */
/* Function: file next */

/* File: 6file_ops.c */

/* Author: M. Moroh */

/* Last Update: 4/90 - KW add binary types */
/* */
/* */
/* Read next record of general files and files of FITS */

/* Called by /scracc/62i.c routine generic_function */
/* */
***********************************************************

/* Routine to read the next record of a generic file into

buffer */

/* remember - assign file already read file header cluster */

/* and puts header info into cl->res areas */

***********************************************************

file next(vl,cl,tl)
VCA *vl;

CCA *cl;

resident cluster */
TCA *tl;

/* vca pointer */

/* pointer to CCA for host version of

/* tca for table corresponding to file */

(
AFIELD *eachfield;

AFIELD *last;

AFIELD *firstfield;

int length;

/* for allocating fieldinfo */

/* to find length of record */

/* beginning of record (ist field) */

/* for calculating field lengths */

Contract NAS530304 - Final Report Page78



lltustrations

char *datarec;

char *item;

FIELD *fpointer;

FIELD *find_data_item();

FIELD */
int itemlen;

int input_length;

char *place;
int k;

char *file_format;
int i;
int c;

int anint;

float afloat;

int errorcode = OK;

union {

char c[4];
short s;

int i;

} utype;

/* buffer for a record of data */

/* buffer for an item of data */

/* function find.., returns ptr to

/* length of a field */

/* allocate storage for the file record */

/* length was put into cca special area cl->res_area by table-
row assign */

/* also allocate storage for a data item (max size: whole

record) */

/* printf("\n With a resident file pointer of %d", cl-

>res_file_ptr); */

/* printf("kn logical pointers in buffer: tl->nlptrs is %d, tl-

>npptrs is %d",

tl->nlptrs, tl->npptrs); */

input_length = cl->res_area->maxlen + i;

datarec = (char * ) calloc(l,input_length);

item = (char * ) calloc(l, input_length);

*****************************************************************

/* read next record of the file & get it into the TCA buffer */

*****************************************************************

i=0;

c=EOS;

while (( i < input_length-i ) && (c != EOF))

(
c = getc(cl->res_file_ptr);
if ((c != '\n') && (c!= EOF)) datarec[i++] = c;

/* maybe in future versions more ending characters should be

Contract NAS5 30304 - Finat Report Page 79



ILLustrations

included */

)
datarec[i++] = EOS;

/* if (c != EOF) printf("\n the data record image: %s", datarec);

*/
if (c == EOF) /* end of file */

errorcode =EOT;

/* now go through the data, field by field. Convert it to the */

/* corresponding host format and move it to the host buffer */

else

{
firstfield = cl->res area->firstfield;

eachfield = firstfield; /* start at beginning of field

list */

)

/* REMEMBER: FIELDS COME OUT BACKWARDS */

while (eachfield != NULL && errorcode == OK)

(
/* convert the data to the corresponding host data type

*/
/* the file data item is called item; the host item, */

place = (datarec - i) + eachfield->column; /* ptr to place

in record */

bfwdcopy(item,place, eachfield->length);

record */

*(item+eachfield->length) = EOS;

string mark */

/* printf("\n item to decode is %s; its len is %d",i-

tem,strlen(item)); */

/* for testing: skip conversion table. Use only DAVID data

types. */

/* Do this by giving the ce pointer (to conversion table) a

null value. */

cl->res_area->ce = NULL; /* for testing -- see above

lines */

/* find the name of the data item in the TCA of the main

cluster */

/* fpointer is a ptr to the FIELD in the TCA of the main

cluster */

/* printf("\n in file next, about to look for field

%s",eachfield->name);*/

fpointer = find_data_item(tl,eachfield->name);

/* copy from file

/* add end of

Contract NAS5 30304 - Final Report Page 80



Ittustrati_s

if (fpointer == NULL)

{
/* printf("\n CANT FIND FIELD IN ARBI FILE: %s",eachfield-

>name) ; */
errorcode = E CANT FIND ARBI FIELD;

)

/* it may be necessary to convert the FILE's format types to

lower case */

file format = calloc(l,strlen(eachfield->type) + 1);

strcpy(file format,eachfield->type);

lower_case(file_format);

/* Transfer the data to the DAVID buffer */

/*********File and DAVID are both char or or both num

***************/
if (((strncmp(file_format, "char",4) == 0) && (fpointer->type

== Tc )) If
((strncmp(file format "num" 3) == 0) && (fpointer->typer F

== TNUM) ) )

/* stick the char string item right in the buffer */

(
bfwdcopy((tl->buf_ptr + ,OFFSET(tl,fpointer->id)),item,

strlen(item));

)

/**** File is ASCII integer; DAVID is integer data ********/

else if (((strncmp(file_format,"int",3)==0) && (fpointer-

>type == TINT)) I I

( (strncmp (file_format, "num", 3 )==0) &&

(fpointer->type == TINT)))

{
sscanf(item,"%d",&anint);

/* put the host version of the data item into the host

buffer */

bfwdcopy ((tl->buf_ptr + *OFFSET(tl,fpointer->id)),

((char *)&anint),fpointer->length);

)

/**** File is Binary integer I4; DAVID is integer ****/

else if(((strncmp(file_format,"i4",2)==0) && (fpointer-

>type==TINT)) II

((strncmp(file_format,"i4",2)==0) &&

(fpointer->type==TNUM)))

(
bfwdcopy((tl->buf_ptr + *OFFSET(tl,fpointer->id)),

item,fpointer->length);

ContractNAS5 30304 - Final Report Page 81



I l lust rations

)
/**** File is binary integer I2; DAVID is integer INT

***/

>type==TINT))

(

else if ((strncmp(file_format,"i2",2)==0) && (fpointer-

/* First convert to short integer */

bfwdcopy(utype.c,item,2);

/* convert to regular integer */

anint = utype.s;

/* Copy to DAVID buffer */

bfwdcopy((tl->buf_ptr + *OFFSET(tl,fpointer-

>id)),(char *) &anint,sizeof(int)); )

/**** FILE is ASCII floating point and DAVID is floating

point */
else if ((strncmp(file_format,"float",5) ==0) &&

(fpointer->type == TFLOAT))

(
sscanf(item,"%f", &afloat);

bfwdcopy ((tl->buf_ptr + .OFFSET(tl,fpointer->id)),

((char .)&afloat),fpointer->length);

)

/**** FILE is binary 4 byte floating and DAVID is

floating point ****/

else if ((strncmp(file_format,"r4",2) ==0) && (fpointer-

>type ==TFLOAT))

(
bfwdcopy((tl->buf_ptr + .OFFSET(tl,fpointer->id)),item,

fpointer->length);

) /* end of floating point handling */

else

( /* An unexpected condition has occurred */

printf("Unexpected condition-Data mismatch in main + aux

clusters:\n");

printf("Item = %s, type in aux = %s, type in DAVID is

%d",

item, file_format,fpointer->type);

)

/* now do the same for the next field in the file record */

cfree(file_format); /* JWF */

eachfield = eachfield->next;

} /* end of WHILE loop */

Contract NAS530304 - Final Report Page 82



Ittustrations

cfree (item) ;

cfree (datarec) ;

return (errorcode) ;

) /* end of file next
m

,/

/* JWF */

/* JWF */

Contract NAS5 30304 - Final Report Page 83



It lust rations

Function: file insert

File: 6file_ops.c

Author: M. Moroh

Last Update: 4/90

Add binary types

Routine to insert records into a generic file from

DAVID buffer

Called by /scracc/62i.c routine generic_function

file insert(vl,cl,tl)

VCA *vl;

CCA *cl;

TCA *tl;

(
AFIELD *eachfield;

AFIELD *last;

AFIELD *firstfield;

int length;

char *datarec;

char *item;

FIELD *fpointer;

FIELD *find data_item();

int itemlen;

int input_length;

char *place;

int k;

char *file format;

int i;

int c;

int anint;

float afloat;

char *s;

char *ptr;

char *temp;

int *int_ptr;
int errorcode = OK;

short *short_ptr, ashort;

union (

/* vca pointer */

/* pointer to CCA */

/* tca for table corresponding to file */

/* for allocating fieldinfo */

/* to find length of record */

/* beginning of record (ist field) */

/* for calculating field lengths */

/* buffer for a record of data */

/* buffer for an item of data */

/* length of a field */

Contract NAS530304 - Final Report Page 84



Iltustrations

char c[4];
short s;

int i;

} utype;

/* allocate a data record (datarec) for file stuff, */

/* and a variable (item) for each field to get from DAVID.

input_length = cl->res_area->maxlen + I;

datarec = calloc(l,input_length);

temp = calloc(l,input_length);

/* Initialize the buffer to blanks */

for (i = O; i < input_length; i++)

*(datarec + i) = ' '-,

./

/* go through the data, field by field in the aux cluster. Con-

vert it to the */

/* corresponding resident format (if nec) and move it to the host

buffer */

firstfield = cl->res area->firstfield;

eachfield = firstfield; /* start at beginning of field list */

/* REMEMBER: FIELDS COME OUT

BACKWARDS */

while (eachfield .=' NULL &&

(fpointer = find_data_item(tl,eachfield->name)) !=

NULL)

{
/* printf("\n the field we're working on is %s", eachfield-

>name) ; */

/* place is a pointer to the position of this field in the

data record */

place = (datarec - i) + eachfield->column;

/* for testing: skip conversion table. Use only DAVID data

types. */

/* Do this by giving the ce pointer (to conversion table) a

null value. */

cl->res_area->ce = NULL; /* for testing -- see above

lines */

/* it may be necessary to convert the FILE's format types

to lower case */

file_format = calloc(l,strlen(eachfield->type) + i);

strcpy(file_format,eachfield->type);

lower_case(file_format);

Contract NAS530304 - Finat Report Page 85



l t Lust rat ions

/********** DAVID data was CHAR or NUM. File is ASCII

**************/

if (((strncmp(file_format, "char", 4) == 0) &&

(fpointer->type == TCHAR)) II

((strncmp(file_format, "num", 3) == 0) && (fpointer->type

== TNUM)))

{

datarec.
/* Copy the data from the DAVID buffer to

Note that the

DAVID buffer item will contain an EOS if it less than

the maximum

field length; hence the following routine:

*/
ptr = (char *) (tl->buf_ptr +

*OFFSET(tl,fpointer->id));

copy_no_eof(place,ptr,fpointer->length);

} /* end of if item is char or num */

/**** DAVID data type is INT. File is ASCII (called INT OR

NUM)****/
"int" 3) == 0) &&else if (((strncmp(file_format,

(fpointer->type == TINT)) II

((strncmp(file_format,"num",3) == 0) && (fpointer->type

== TINT)))

(

bfwdcopy((char *)&anint, (tl->buf_ptr +

*OFFSET(tl,fpointer->id)),

sizeof(int));

/* printf("\n INTEGER value about to be put on file is

%d\n", anint); */

sprintf(temp,"%*d", eachfield->length, anint);

copy_no_eof(place,temp,strlen(temp));

er****/

/* for (k = 0; k < eachfield->length; k++)

printf(place + k);

*/
) /* end of if item is int */

/****DAVID type is INT; FILE type is I4 binary integ-

else if ((strncmp(file_format,"i4",2)==0) &&

(fpointer->type == TINT))

(
bfwdcopy ((char *)&anint,(tl->buf_ptr +

*OFFSET(tl,fpointer->id)),

sizeof(int));

Contract NAS5 30304 - Fill Report Page



Illustrations

****/

ptr = (char *) (&anint);

bfwdcopy(place,ptr, sizeof(int));

)
/****DAVID type is int; FILE type is I2 binary integer

else if ((strncmp(file_format,"i2",2)==0) && (fpointer-

>type == TINT))

(
/* copy to an integer for alignment */

bfwdcopy ((char *)&anint,(tl->buf_ptr +

*OFFSET(tl,fpointer->id)),

sizeof(int));

/* convert to short */

ashort = anint;

ptr = (char *) (&ashort) ;

bfwdcopy(place, ptr, 2) ;

)

/******* DAVID data type is float; file type is float but

data's ascii ***/

else if ((strncmp(file_format,"float",5) == 0) &&

(fpointer->type == TFLOAT))

(

"%* *f" 13 6 *(tl->buf_ptr +sprintf(temp, . , , ,

*OFFSET(tl,fpointer->id)));

bfwdcopy((char *)&afloat, (tl->buf_ptr +

*OFFSET(tl,fpointer->id)),

sizeof(float));

sprintf(temp,"%*.*f", eachfield-

>length,eachfield->nodecs, afloat);

copy no eof(place,temp,strlen(temp));

)
/****DAVID type is FLOAT and FILE type is binary float

(R4) ****/

else if ((strncmp(file_format,"r4",2)==0) && (fpointer-

>type==TFLOAT))

(
/* Both are binary so just byte copy one to other

*/
ptr = (char *) (tl->buf_ptr +

*OFFSET(tl,fpointer->id));

bfwdcopy(place,ptr,fpointer->length);

} /* end if item is float

Contract NAS5 30304 - Final Report Page 87



IlLustrations

/* here add code to decode other data types. */

else printf("\n item %s didn't match appropriate DAVID

data type",

eachfield->name);

/* Prepare for next iteration of field loop */

eachfield = eachfield->next;

cfree(file_format); /* JWF */

) /* now do next item */

if (fpointer == NULL)

errorcode = E CANT FIND ARBI FIELD;

else

(

*/

*/

/* now write the record. The contents are in datarec.

for (i = 0; i < input_length - i; i++)

{
c = *(datarec + i);

putc(c,cl->res_file_ptr);

)

c = NEW_LINE;

/* Put a newline on the end of the record for readability

/* NOTE: change DEFINE for NEW_LINE if don't want one.

Some files dont?*/

putc(c,cl->res_file_ptr);

}

/* Print the record for debugging

*(datarec+input_length-l) = EOS;

printf("kn the record just written is %s", datarec); */

/* Cleanup and return */

cfree(datarec); /* JWF */

cfree(temp); /* JWF */

return(errorcode);

} /* end file_insert */

Contract NAS530304 - Final Report Page 88



ILlustrations

Figure 7 - File Deassign

/* File is 62E.C ** GENERIC DEASSIGN CLUSTER */

*****************************************************

#include "chpt6std.h"

gdeasgncluster(vca,cca)

VCA *vca;

CCA *cca;

{

int errorcode;

CCA *cluster_ptr,*next_cluster;

***********************
/* Beginning of code */

***********************
errorcode = OK;

/*if (cca->structure >= FIRST_ARBI)

ARBI_FITS only

JWF - will do for

for now. */

if (cca->structure == ARBI_FITS)

errorcode = arbi_deasgncluster(vca,cca);

else

if ((errorcode == OK) && ((errorcode=david_deasgnclus-

ter(vca,cca))==OK))

errorcode=deassign_cluster(vca,cca); /* chpt 7 deassign */

if (errorcode == OK)

{
/* Delete cluster pointer from chain in VCA */

next_cluster=cluster_ptr=vca->clusters;

/* Find the cluster's position in the chain */

while (next_cluster != NULL)

{ if (next_cluster == cca) break;
else

{
cluster_ptr=next_cluster;

next_cluster=cluster_ptr->next;
}

)/* end of while */

if (cluster_ptr == next_cluster)

{
if (cluster_ptr == NULL) vca->clusters = NULL;

Contract NAS5 30304 - Final Report Page 89



ILLustrations

+

else vca->clusters = cluster_ptr->next;

)
else if (next_cluster == cca) cluster_ptr->next = cca->next;

)
else set_status(vca,errorcode);

return(errorcode);

} /* end of gdasgncluster */

****************************************************

/* File is 62EI.C ** DAVID DEASSIGN CLUSTER */

****************************************************

david_deasgncluster(vca,cca)

VCA *vca;

CCA *cca;

(
CCA *next cluster;

int errorcode;

***********************
/* Beginning of code */

***********************

/* Close the file, if this is the only assigned cca from file. */

next cluster=vca->clusters;

while (next_cluster != NULL)

if ((next_cluster .=' cca) && (next_cluster->file == cca->file))

break;

else next_cluster = next_cluster->next;

if (next_cluster == NULL) close_file(vca,cca->file);

/* Deallocate all the memory which was allocated by assign clus-

ter */

if (strncmp(cca->name,"DIRECTORY",9) == 0)

{ free_cca(cca); errorcode = OK; )
else

if (strncmp(cca->verify,CCA_VERIFY,sizeof(cca->verify))==0)

(
alloc_deassign(cca);
errorcode=OK;

)
else

errorcode=E NOT CCA;

Contract NAS5 30304 - Finat Report Page 90



lttustrations

return(errorcode);

) /* end of david_deasgncluster */

***************************************************************

/* File is 62E2.C ** ARBI DEASSIGN CLUSTER */
/* Code added 8/88 by MM to do the ARBI part of assign cluste*/

***************************************************************

arbi_deasgncluster(vca,cca)

VCA *vca;

CCA *cca;

{ /* begin function */

int errorcode = OK;

**********************
/* Code begins here */

**********************
FF AREA *file area;

AFIELD *eachfield, *next_one;

***************************************************

/* FILE *fopen();
int k;

char item[4];

*/

/* If a resident with a file, close the file (its ptr is in the

CCA) */
if (fclose(cca->res_file_ptr) != 0) errorcode = E_RES_FI-

LE CLOSE;

/* Cleanup -- Free allocated storage */

eachfield = cca->res area->firstfield;
next one = eachfield_>next;

while (eachfield != NULL)

(
cfree(eachfield);

eachfield = next_one;
if (eachfield != NULL)

next one = eachfield->next;

/* JWF */

/* JWF 02/01/90 */

cfree(cca->res_area); /* JWF */

Contract NAS5 30304 - Finat Report Page 91



ILLustrations

if (strncmp(cca->verify,CCA_VERIFY,sizeof(cca->verify))==0)

alloc_deassign(cca);
else

errorcode=E_NOT_CCA;

return(errorcode);

} /* end arbi_deasgncluster */

Contract NAS5 30304 - Final Report Page 92



Ittustrations

Figure 8 - Generic Template for Definition Generator

Note: Blank lines are for readability only! I

/********* This section defines the database ********/

@@invoke_dbms & /* these 3 commands bring up the

DBMS */

@@give_password @RUID @@separator @RPWD /* and give it the

definition */

/********** Above section defines the database *********/

***********************************************************

/**** Below section provides the database definition ***/

@@dbname_keyword @@dbname_prefix @DBNAME @@dbname_suffix

@@db left delim &
m

/* below is for relational DBMSS */

@BEGINTABLE<@@table_separator><@@table_left_ delim>

@@table_name_keywd @@tbname_prefix @TABLE_NAME
fix

/* above fields are for relational DBMSs */

&

@@tbname_suf-

@BEGINFIELD<@@field_separator><@@field_left_delim>&
<@@field rt delim>

@@field attribute left delim &

@@fieldZname_keywd @RFNAM @@field_attribute_separator &

@@field type_keywd @RFTYP &

@BEGINLENGTH<@@field_length_sep><@@field_length_left_delim>
&

<@@field_length rt delim> @RFLEN

@@field attribute_separator

@@field_size_keywd @RFLEN

@BEGINFPOS @@field_attribute_separator &

@@field_start_poskeyword @RFPOS @ENDFPOS

@BEGINFCOM @@field_attrib_sep &

@@field_comment_keywd @RFCOM @ENDFCOM &

@@field_attribute_right_delimiter &
@@field suffix

@ENDLENGTH &

&

Contract NAS530304 - Final Report Page 93



lttustrations

@ENDFIELD

@@field_terminator

@ENDTABLE

&

&

@@db_right_delim

@@db_terminator

@@exit /* this command exits the database */

ContractNAS530304 - Final Report
Page 94



Illustrations

COMMENTS :

Above is a generalized template. It was made to include all

possilities. Items may be absent for a specific DBMS, and order

of items may be different from the way they're specified above.

Keywords may either precede or follow the associated value.

Note: there are no longer default assumptions about carriage

returns; they will be specifically inserted into the DBMS-

dependent template as "\n"s.

Some of these fields are database type specific. For example,

PARENT only occurs in type 2 (hierarchical) databases. Network

stuff (owner, member) only appears in type 3 (network) databases.

Schema, file and area will not appear in type 1 (relational),

type 4 (micro) or type 5 (generic file) DBMSs.

The item "header" is for a description of an item that appears

before the loop for that item: e.g., FIELD DESCRIPTION. It'll

appear exactly once, no matter how many fields there are.

The field length information is filled in from the datatype

table. That table will accompany the template.

NOTE: The separators and delimiters appear in the template

exactly as they will in the final template, i.e., the @@ symbols

will be filled in with real items like "," rather than symbols
for those items.

Contract NAS5 30304 - F{nat Report Page 95



I ttustra¢ions

Figure 9 Defining an ORACLE database

SUFI userl/mypwd
CREATE TABLE courses

(dept char(4),

course char(9),

sec# number(2));

CREATE TABLE teachers

(id# number(4),

instruct char (i0) ,

dept char(4)) ;

CREATE TABLE students

(studid number(4),

studname char(30),

major char(4));

CREATE TABLE transcripts

(semester char(6),

year number(4),

studid number(4),

course char(9),

sec# number(2),

grade char (i));

EXIT

Contract NAS5 30304 - Finat Report Page 96



Ittustrations

Figure I0 - Generalized ORACLE Template

@BEGINTABLE<\n>

create @TABLENAME (\n

@BEGINFIELD<,\n>
@RFNAM = @RFTYP

@BEGINLENGTH<><><> @RFLEN @ENDLENGTH

@ENDFIELD )

@ENDTABLE

\n

Contract NAS5 30304 - Final Report Page 97



ll[_tnat|_

Figure ll GENEP_LIZED TEMPLATE FOR Type 2 Database Definition

Note: Blank lines are for readability only!!

/********* This section defines the database ********/

@@invoke dbms & /* these 3 commands bring up the

DBMS */

@@give_password @RUID @@separator @RPWD /* and give it the

definition */

/********** Above section defines the database *********/

*****************************************************************

/******* Below section provides the database definition ******/

@@dbname_keyword @@dbname_prefix @DBNAME @@dbname_suffix &

@@db_left_delim &

/******* Below 2 statements are for hierarchical/network DBMSs

@@file_name keyword @file_name @@file_name_terminator
&

@@area_name keyword @area_name @@area_name_terminator
&

/******* Above statements are for hierarchical/network DBMSs

***/

/* below fields are for hierarchical/network DBMSs */

@@table header /* mt takes care of this as text */ &

@ @BEGINTABLE< @ @table_separator>< @ @table_le ft_del im>&

<@@table rt delim

@@table attr left delim &

@@table_name_keywd @@tbname_prefix @TABLE_NAME @@tbname_suffix
&

@BEGINPAR @@table_attr_sep @@parent_keywd @PARENT_NAME @END-
PAR

@BEGINTLEN @@table attr_sep &

@@table_length_keyed @TABLE LENGTH @ENDTLEN

@BEGINTPOS @@table_attribute_sep &

@@table_start_pos keywd @TABLE_START_POS @ENDTPOS

@BEGINTCOM @@table_attr_sep &

Contract MASS 30304 - Final Report Page 98



!tt_trat{_s

@@table_comment_keywd @TABLE_COMMENT @ENDTCOM

@@table_attribute right delim

/* above fields are for hierarchical DBMSs */

&

/* below is for relational DBMSS */

@BEGINTABLE<@@table_separator><@@table_left_ delim> &

@@table_name_keywd @@tbname_prefix @TABLE_NAME @@tbname_suf-
fix

/* above fields are for relational DBMSs */

@BEGINFIELD<@@field_separator><@@fieldleft_delim>&
<@@field rt delim>

@@field attribute left delim

@@field name_keywd @RFNAM @@field_attribute_separator &

@@fieldjype_keywd @RFTYP &

@BEGINLENGTH<@@field_length_sep><@@field_length_left_delim>
&

@@field_comment_keywd @RFCOM @ENDFCOM

@@field attribute_right_delimiter &

@@field_suffix

@ENDFIELD

@@field_terminator
@ENDTABLE

<@@field_length rt delim> @RFLEN

@@field attribute_separator

@@fieldjize_keywd @RFLEN

@BEGINFPOS @@field attribute_separator &

@@field start_pos_ke_ord @RFPOS @ENDFPOS

@BEGINFCOM @@field_attrib_sep &

&

@ENDLENGTH &

&

&

&

/************* below-only for NETWORK/HIERARCHICAL DBMSs

*************/

@@network_header /* mt takes care of this as text to copy*/
&

@BEGINSET<@@set_sep><@@set_left_delim><@@set_right_delim> /*mt:

no*/ &

@@set_name_keyword @SET_OWNER_NAME @@set_name_sep @SET_MEM-
BER NAME &

/* note: in previous line, order can be reversed */

@@set_attribute left delim /* mt: no */ &

@@set_owner_keyword @SET_OWNER_NAME @@set_attribute_separator

@@set_member_keyword @SET MEMBER NAME &

@@set_attribute_right_delim /* mt: no */ &
@ENDSET &

&

Contract NAS530304 - Final Report Page 99



I L Lustration$

/********** above - only for NETWORK/HIERARCHICAL DBMSs

@@db_right_delim

@@db_terminator

@@exit /* this command exits the database */

Contract NAS5 30304 - Finat Report Page 100



Illustrations

COMMENTS :

Above is a generalized template. It was made to include all

possilities. Items may be absent for a specific DBMS, and order

of items may be different from the way they're specified above.

Keywords may either precede or follow the associated value.

Note: there are no longer default assumptions about carriage

returns; they will be specifically inserted into the DBMS-

dependent template as "\n"s.

Some of these fields are database type specific. For example,

PARENT only occurs in type II (hierarchical) databases. Network

stuff (owner, member) only appears in type III (network) data-

bases. Schema, file and area will not appear in type I (rela-

tional), type IV (micro) or type V (generic file) DBMSs.

The item "header" is for a description of an item that appears

before the loop for that item: e.g., FIELD DESCRIPTION. It'll

appear exactly once, no matter how many fields there are.

The field length information is filled in from the datatype

table. That table will accompany the template.

NOTE: 3/20/89

The separators and delimiters appear in the template exactly as

they will in the final template, i.e., the @@ symbols will be

filled in with real items like "," rather than symbols for those
items.

Contract NAS53030/+ - Finat Report Page 101



lllustrati_

Figure 12 Typical TEMPLATE FOR Type 2 Database

DBD NAME=@DBNAME-I \n

@BEGINTABLE<\n>

SEGM NAME=@TABLENAME ,PARENT=@PARENTNAME ,BYTES=@TABLELENGTH \n

@BEGINFIELD<\n>

FIELD NAME=@RFNAM

@BEGINLENGTH<><,BYTES=><> @RFLEN @ENDLENGTH

,START=@RFPOS

@ENDFIELD

@ENDTABLE

\n

Contract NAS5 30304 - Final R_rt Page 102



Append i xes

Appendixes

Appendix I - Installing Template Generator Software

The template generator is written using a software platform

called the Intelligence/Compiler, a product of Intelligence-

Ware, Inc. The user is supplied with a runtime version only.

The steps listed below explain what must be done to install
the

software.

i. The AUTOEXEC.BAT file in the root directory must be
modified so that the path is extended and so that a line is

added to set an environment variable for the Intelligence/Com-
piler. Include the following:

PATH = <whatever was in path previously>;C:\IC;

SET ICPATH=C:\IC

2. The CONFIG.SYS file in the root directory must be

modified to provide for enough files and buffers: (The num-

bers shown here are the minimum to be specified.)

FILES = 12

BUFFERS = 8

3. Make a new directory under the root. Call it IC. (If a

different directory name is used, change the modifications to

your AUTOEXEC.BAT accordingly.) The following set of files

are supplied to be put in the \IC directory:

ICX.EXE

ERRORS.SYS

HINSTALL.EXE
IC.BAT

IC.DD

IC-COLOR.EXE
ICP.EXE

4. Make three additional directories if you want to

generate all three types of templates: for defining a database

in a relational database language, for defining a database in

a hierarchical or network database language, and for database
queries.

Contract NAS5 30304 - Final Report Page 103



Appendixe$

The first directory will contain the module to run

sessions of type 1 and 2a (see overview). The module gener-

ates templates for defining databases in relational database

languages. I suggest this directory be called \IC\DAVID and

will refer to it below using this name. However, a different

directory name could be used.

The second directory will contain the module to run

sessions of type 1 and 2b. The module generates templates for

defining databases in hierarchical or network database lan-

guages. I suggest this directory be called \ICkDAVIDH and
will refer to it below using this name. However, a different

directory name could be used.

The third directory will contain the module to run

sessions of type 3 and 4. The module generates templates for

database queries. I suggest this directory be called \ICkDA-

VIDQ and will refer to it below using this name. However, a

different directory name could be used.

A unique set of files is supplied for each of the

three directories. The installation disks are clearly marked

indicating which files should be saved in \ICkDAVID, which in

\IC\DAVIDH, and which in \IC\DAVIDQ. All of these files are

of the form *.BAT or *.ICP or *.FRM or *.LST .

5. For each of the directories made in Step 4, there must

be a subdirectory called EXAMPLE. Therefore if in Step 4 you

created the directory called \IC\DAVID, there should now be a

directory called \IC\DAVID\EXAMPLE.

Similarly create \IC\DAVIDH\EXAMPLE and \ICkDAVIDQkEXAM-

PLE if indicated.

These directories will be used to save examples

entered during previous sessions so that they can be reused

and modified as desired. A few samples are included in the

installation disks and are clearly marked indicating which

files should be saved in \ICkDAVID\EXAMPLE, which in

\IC\DAVIDH\EXAMPLE, and which in \IC\DAVIDQ\EXAMPLE.

Contract NAS5 30304 - Firm[ Report Page 104



Appendixes

Appendix 2 - Running TGB

If you want to generate a template for a defining a database

in a relational database language:

1. Get into the directory \IC\DAVID.

2. First, run a session to generate log-on and log-off

templates. Start this session by typing DAVID0 (ending with

the number 0).

3. Second, run a session to generate the complete tem-

plate. Start this session by typing DAVID or BIGDAVID. DAVID

is appropriate for entering information about a database

language which is not too verbose: i.e. The language does not

use a lot of punctuation or long keywords, etc. BIGDAVID is

appropriate for more verbose languages. If you get an error

message saying you ran out of memory during a session started

by typing DAVID, rerun the session using BIGDAVID. DAVID is

somewhat faster, but BIGDAVID can be used for all cases.

4. At the end of the session there will be two new files

recorded to disk in the current directory. These files are

called TEMPLATE and TYPETABL. Before running another ses-

sion make copies of these files in another directory (possibly

renaming them), if they are to be saved for future use.

If you want to generate a template for a defining a database

in a hierarchical or network database language:

I. Change to the directory \ICkDAVIDH.

2. First, run a session to generate log-on and log-off

templates. Start this session by typing DAVIDH0 (ending with

the number 0).

3. Run a session to generate the complete template.

Start this session by typing DAVIDH or BIGDAVH or VBIGDAVH.

DAVIDH is appropriate for entering information about a data-

base language which is not too verbose: i.e. The language does

not use a lot of punctuation or long keywords, etc. BIGDAVH

is appropriate for more verbose languages and VBIGDAVH for

even more verbose languages. If you get an error message say-

ing you ran out of memory during a session, rerun the session

using a version capable of handling a more verbose language.
DAVIDH is faster than BIGDAVH which in turn is faster than

VBIGDAVH, but VBIGDAVH can be used for all cases.

Contract NAS5 30304 - Final Report Page 105



Apf)er_lixes

4. At the end of the session there will be two new files

recorded to disk in the current directory. These files are

called TEMPLATE and TYPETABL. Before running another session

make copies of these files in another directory (possibly

renaming them), if they are to be saved for future use.

If you want to generate a template for a database query:

i. Change to the directory \IC\DAVIDQ.

2. First, run a session to generate log-on and log-off

templates. Start this session by typing DAVIDQ0 (ending with

the number 0).

3. Second, run a session to generate the complete tem-

plate. Start this session by typing DAVIDQ.

4. At the end of the session there will be three new

files recorded to disk in the current directory. These files

are called TEMPLATE and BOOLTABL and LCTABL. Before running

another session make copies of these files in another direc-

tory (possibly renaming them), if they are to be saved for

future use.

Contract NAS5 30304 - Final Report Page 106



Al:_ixes

Appendix 3 - TGS Detailed Information

The software for each session is modularized so that it can

fit into available memory. If you are using a lot of memory

resident software, you might have to disable some of this

software to allow the Intelligence/Compiler software to run.

As each module is being loaded from disk, a load bar appears
at the bottom of your screen showing the progression of the
load.

The modules being loaded are identified on disk with the
extension *.ICP. Each module has a specific logical task to

perform in the reasoning process. When a module starts to
execute, messages usually appear on the screen telling the

user what that module is trying to do.

The tables below show the logical tasks performed by each mod-
ule. It should be noted that not all modules in a directory

are invoked during the same session.

Contract NAS5 30304 - Final Report Page 107



Apper_ixe$

MODULES in \IC\DAVID

DAVID0 Generates introductory and exit templates

DAVIDIA Elicits a sample statement from the user and parses
it

DAVIDIC Looks for:

I) database name keywords, table name keywords,

and field name keywords

2) various delimiters

DAVIDID Looks for:

i) things we call database delimiters

2) various separators, suffixes, and terminators

3) any extra lines which we can't account for

DAVIDIE Looks for:

i) things we call database delimiters

2) any extra lines appearing after the line

containing
the database name but before

the line describing the first table

3) something we call the database name suffix

DAVIDIF Looks for:

i) various things we call separators, suffixes,
and terminators

2) any extra lines appearing after the last table

description

DAVID2A Elicits information about field definitions from the

user

DAVID2B Constructs the field definition template

DAVID3A Generates a template for database definition

DAVID3B Elicits information about data types from the user

DAVID3C Generates the final TEMPLATE and TYPETABL

Contract NA$5 30304 - Final Report Page 108



Appendixes

MODULES in \IC\DAVIDH

DAVIDH0 Generates introductory and exit templates

DAVIDHIA Elicits a sample statement from the user and parses

it

DAVIDHIC Looks for:

i) database (or schema) name keywords, record name

keywords, and field name keywords

2) various delimiters

DAVIDHICl Looks for database (or schema) name keywords

DAVIDHIC2 Looks for record name keywords and associated deli-
miters

DAVIDHIC3 Looks for field name keywords and associated deli-
miters

DAVIDHID Looks for:

I) things we call database (or schema) delimiters

2) any extra lines appearing after the line containing

the database (or schema) name but before

the line describing the first record

3) various separators, suffixes, and terminators

4) any extra lines appearing after the last record

description

DAVIDHIE Looks for:

i) things we call database (or schema) delimiters

2) any extra lines appearing after the line containing

the database (or schema) name but before

the line describing the first record

3) something we call the database name suffix

DAVIDHIF Looks for:

i) various things we call separators, suffixes, and
terminators

2) any extra lines appearing after the last record

description

DAVIDHIX Deciphers any extra lines appearing after the line

containing the database (or schema) name

but before the line describing the first record

DAVIDHIZ Figures out how the user supplies information on

Contract NAS5 30304 - Firm[Report Page 109



Appendi xes

DAVIDH2A

DAVIDH2B

DAVIDH3A

DAVIDH3B

DAVIDH3C

parent-child links

Elicits information about field definitions

from the user

Constructs the field definition template

Generates a template for database definition

Elicits information about data types from the user

Generates the final TEMPLATE and TYPETABL

Contract NAS530304 - Fina[ Report Page 1t0



Appendixes

MODULES in \IC\DAVIDQ

DAVIDQ0 Generates introductory and exit templates

DAVIDQI Elicits query example from user ; Parses the query;

Separates example into initial, boolean, and ending
lines

DAVIDQ2 Makes a template from the initial lines

DAVIDQ3 Makes a template from the boolean lines

DAVIDQ3B Elicits information from user about Boolean Operators

and Linguistic Conventions; Generates the BOOLTABL and
LCTABL

DAVIDQ4 Makes a template from the ending lines

Generates the whole query template

Contract NAS530304 - Final Report Page 111



Append i xes

Appendix 4 - Table Documentation

To facilitate the creation of templates, the expert system

will create the following table which will subsequently be

read by the Interface Driver Program.

Type Conversion Table

REBIDENT TEMPLATE 8EPARATOR CORRESPOND IMIN MAX DEFAULT

DATA TYPE # (e.g..,:;} DAVID TYPE LEN LEN LENGTH

TYPE

RESIDENT DATA TYPE is columns 1-19

TEMPLATE TYPE is column 21

SEPARATOR is column 23

CORRESPONDING DATA TYPE is columns 25-34

MIN LEN is columns 36-38

MAX LEN is columns 40-42

DEFAULT LEN is columns 44-50

Contract NAS5 30304 - Fina( Report Page 112



Al_q:_endixes

DAVID Type Conversion Table

Values in the third column of the above table come from the

following table of possible DAVID data types:

DESCRIPTIONDAVID

DATA

TYPE

INT binary integer

CHAR character string

NUM character string containing

only numbers

FLOAT floating point

SCHAR single character

Contract NAS530304 - Final Report Page113



Append | xes

Length Parameter Table

Values in the second column of the table above come from the

following table of possible lengths for the template types:

TYPE DESCRIPTION

1 No length field

2 One length parameter

3 Two parameters, the first is total digits; the sec-

ond is the number of digits to the right of the

decimal point.

4 Two parameters, the first is the number of digits to

the left of the decimal point; the second is the

number digits to the right of the decimal point.

5 Two parameters, the first is the total number of

digits including one for the decimal point; the sec-

ond is the number of digits to the right of the

decimal point.

In cases 3, 4 and 5 above, there are several choices for the

separator between parameters. The possibilities are: , ; .
This information should be solicited from the user in the

interactive session.

Contract NAS5 30304 - Final Report Page 11/+



Appendixes

Boolean Operator Table

Boolean Your Precedence

Operation Operator

and

or

not

>

<

>=

<=

!=

II

(

)

Delimiters around lit-

erals

Left and right parens

are

used to override pre-

cedence

Boolean operation is columns 2-19

Your Operator is columns 22-30

Precedence Levels columns 38-47

Contract NAS5 30304 - Final Report Page 115



Appendixes

" "-- k

Linguistic Convention Table

Question Remark Answer
s

Spaces around operators Y or N

required?

Spaces around operators not Y or N

required?

Schematic qualified
field name:

Question is columns 1-40
Remarks is columns 42-49

Answer is columns 52-80

Contract NA$5 3030/+ - Final Report Page 116



Ap_e_ixes

Appendix 5 - Integration of Interface Driver Software

This section discusses how to integrate the interface drive
software into

DAVID and points out routines that may have to be modified
later. The sections is divided the same as the above section

on "program structure".

david.c

The main program is only a driver. To install it into

DAVID, the following changes have to be made.

Name of the template file:

We have been using TEST1.TMP as the default template

name. It should be changed to whatever the name stored
in the GSQL-ROW.

GSQL-ROW:

Pass GSQL-ROW to the main program instead of creating it

using create.c

Name of the type conversion file:

Change it to the correct name from TEST1.TBL.

gettemp.c

The naming scheme is DBMS followed by Operation Type.

the template files are called using other conventions,

change it accordingly.

If

tree.c

No change is necessary.

create.c

This module should be removed.

gettable.oh

The name changes are the same as gettemp.c.

Contract NAS5 30304 - Final Report Page 117



Al_.ndix.

buildht.o

If more information is needed to fill the template, the

function build hash table must be modified accordingly. The

pack_hash function is provided to store information in the
hash table.

typeconv.o & utility.o

No changes are necessary.

Contract NAS5 30304 - Final Report Page 118



Appendixes

_ppendix 6 - IDMS Code for First, Next , etc.

How do we get the first record:

/* READY AREA(area_name). */

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (37)

,AREA_NAME); /* a string of 16

characters */

IF (ERROR_STATUS <> '0000') THEN DO;

STATUS CODE = ERROR STATUS;

GOTO END STATUS;

END;

/* BIND RECORD(name). */

SEQUENCE = SEQUENCE + I;

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (48)

,RECORDNAME /* a string of 16

characters*/

,IN_OUT_RECORD); /* the actual record */

IF (ERROR STATUS <> '0000') THEN DO;

STATUS_CODE = ERROR_STATUS;
GOTO END STATUS;

END;

/* OBTAIN FIRST RECORD(name) AREA(area_name). */

SEQUENCE = SEQUENCE + i;

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (19)

,RECORDNAME /* a string of 16

character*/

,AREANAME /* a string of 16

characters*/

,IDBMSCOM (43));

IF (ERROR_STATUS = '0307') THEN STATUS_CODE =

ERROR STATUS;

How do we get the next record:

/* OBTAIN NEXT RECORD(name) AREA(area_name). */

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (ii)

,RECORDNAME /* a string of 16

Contract NAS5 30304 -Fina[ Report Page 119



Appendixes

characters */

,AREANAME /* a string of 16

characters */

,IDBMSCOM (43)) ;

IF (ERROR_STATUS = '0307") THEN STATUS_CODE =
ERROR STATUS ;

How do we close IDMS:

/* FINISH. */

SUBSCHEMA_CTRL.DML_SEQUENCE = SEQUENCE;

CALL IDMS (SUBSCHEMA_CTRL, IDBMSCOM (02));

IF (ERROR_STATUS <> '0000') THEN STATUS_CODE =

ERROR_STATUS;

Appendix 7 - SUBSTITUTING COMMAND N_MES

For coaands beginning with ,'@,,

NAME MEANING

@ s chema_NAME

@file_NAME

@area_NAME

@dbname

@begintables

@table NAME

@parent_NAME

@table_length

@table_position
@table comment

@endtables

@beginfields
@rfnam

@rftyp

@rflen

@RFSIZ

@sfield_NAME

@sfield_type

@sfield length

name of database schema

name of physical file upon which data-
base sits

name of physical area for database

database name

start of repeating table info
name of table in database

name of parent table

length of table (usually in bytes)

starting position of table in database
comment about table

end of repeating table info

start of repeating field info

name of field in database (formerly

called column)

datatype of field in database

length of field in database

size of field (length =)

name of source field (used only in

Contract MASS30304 - Final Report Page 120



Appendixes

@sfieldposition queries)

@sfield comment datatype of source field (used only in

@@sfield_position queries)

@sfield_comment length of source field (used only in

@RFPOS

@RFCOM

@endfields

@beginsets

@set_NAME

@set_owner_NAME
@set member NAME

@endsets

queries)

starting position of a field
comment about field

starting position of a field
comment about field

starting position of a field
comment about field

end of repeating field info
start of set info

name of set of records

name of owner of set

name of member of set

end of set info

COMMENTS: Some of the naming conventions have changed.

They include:

-- the word column was changed to field.

confusing.

Column is too

-- rather than rfield_NAME, sfield_NAME, I used simply

field_NAME for the result fields; this way, the definition

generators don't have to be concerned with "source" and

"result", which have no meaning in definitions.

In this scheme, then, the result fields will be simply
"field NAME".

field NAME

field sname

field rname

-- items were added, such as "sets" (used in network

databases) and

"schemas" and "areas" (used in many big dbmss).

Contract NAS5 30304 - Final Report Page 121





i. Report No. 2. Government

Accession No.

4. Title and Subtitle

!A Generalized Strategy for

Building Resident Database

Interfaces

7. Authors

Ken Wanderman & Marsha Moroh

9. Performing Organization Name and
Address

Ken Wanderman & Associates, Inc
160 Bement Avenue

Staten Island, NY 10310

12. Sponsoring Agency Name and Address

3. Recipients Cat.

No.

5. Report Date

May 12, 1990

6. Performing Org.

Code

n/a

8. Performing Org

Report Number

n/a

I0. Work Unit No.

II. Contract No.

NAS5 30304

13. Type of Report/

Dr. Barry E. Jacobs

Code 634, NASA

Goddard Space Flight Center

Greenbelt, MD 20771

Period Covered

Final/

May,1988 - May,1990

14. Sponsoring

Agency Code 634

15. Supplementary Notes n/a

16. Abstract

We have developed a statratgy for building resdient interfaces

to host heterogeous distributed database management systems and

have used the strategy to construct several interfaces. We

have developed a set of guide lines for users to construct
their own interfaces.

17. Key Words interface, 18. Distribution Statement

heterogeneous distributed DBMS

19. Security Clas- 20. Security Classif 21. No. of Pages

sif. (page) 133

U U




