# MISSION ANAIISSISFOR L.ASER INTERFEROM ETER SPACE ANTENNA (LISA) 

\author{

1. Hechler', W.M. lolkner ${ }^{2}$ <br> 12SOC; Robert-I~o.w\}i Strasse 5, D64293 Darmstadt ${ }^{2}$ Iet Propulsion Laboratory, California Institut e of Technology, Pasadena, CA 91109, USA
}

## ABSTRACT

The interplanetary orbits of three pairs of spaceprobes carrying laser interferometer antennae aredesigned such that their mutual distances, i.e. the lengths of the interfcrometer arms, remain nearly constant. The pairs move relative to each other in an equilateral triangle. Fcasible probe masses arc computed for a scenario with an Arianc S launchinto a ' (icostationary' Transfer Orbit and a fucloptimum three-burn transfer from this ( GT () to the triangular motion. The relative motion is perturbedoy planctary gravity, 1 Iowever, the arm ratedifferences degrading the interferometer accuracy can be kept below certain limits by choosing optimum initial conditions and $/$ or by controlling them in a fuel optimum way. I Inally, the achicvable orbit determination accuracy is given for systems processing two-way range and Doppler data collected on ground and/or Laser data gained on board the probes,

## INTRODUCTION

Thel-ISA project is basically a pair of Michelson interferometersmountedon 3 pairs of' spaceprobes flying in orbits such that their relative motion forms an equilateral triangle. In that way gravitational waves emerging from different sources in our galaxy might be detected by observing, their In fuence on the interferometer arms toasub-Angstrom precision in the frequency band 104117 to 10 lliz. It became clear during the I. ISA assessment study (ESASCJ $(94) 6,1994)$ that long enough interferometer arms in a sufficiently quiet environment can only be realised in deep space and under the condition that nongravitational forces are compensated for instance bya Jieldlimission Ilectric I'repulsion System (IIEPS) exhausting cacsjum with a speed of 60
$\mathrm{km} / \mathrm{s}$. For details on the experiment we refer to the LISA Pre-Phase A Report (Bender ct al., 1996).

## BASIC ORBITAI. CONFIGURATION

The three pairs of the 61 . ISA probes shall move in orbits in which their mutual distances (d), i.c. the arm lengths of the interferometer, arc kept as constant as possible. The distance between the probes of a pair is $200-300 \mathrm{~km}$. The distances to the liarthand the orbital configuration shall be such that the design of the attitude control and of the Earth-spacecraft communication becomesfeasible and that the perturbations of the arm lengths stay below tolerable limits.

The above requirements basically are met by putting the pairs in heliocentric orbits with diameter $\mathrm{D}=2 \mathrm{AU}$, eccentricity $\left.\mathrm{c}=\mathrm{d}^{\prime}(\mathrm{D}) \sqrt{3}\right)$ and inclination w.r.t. the ecliptic $\mathrm{i}^{=} \mathrm{d} / \mathrm{I}$ ) (sec also LISA assessment study report, 1994), The 3 pairs will form an equilateral triangle with a rncan side length $\mathrm{d}=2 \mathrm{c} \sqrt{3} \mathrm{AU}$ if the orbital nodes arc separated by $120^{\circ}$ and if the true anomalies and arguments of perihelion arc chosen such that each spacecraft has its maximum distance from the ecliptic when it is at perihelion ( 2 solutions!).

This triangle rotates once pcr year about its centre whit]] is moving in the ecliptic plane at a longitude $\lambda$ behind the mean position of the larth. The plane formed by the triangle is inclined by $60^{\circ}$ to the ecliptic. Figure 1 depicts the orbital configuration for the case with perihclia above the ecliptic plane.


## ARIANE . 5 LAUNCl I, GTO TO TRIANGIL: TRANSFIE ANI BASIEI NI ORBITS

The probe pairs arc supposed to be put by an Ariane S into a common orbit from which they arc manocuvred by means of 3 Propulsion M odules ( $\mathrm{l}_{\mathrm{tr}}=312 \mathrm{~s}$ ) into the interplanetary target orbits.

This common orbit could be an interplanetary trajectory or an Earthorbit. A direct launch into an internlanctary trajectory is not always more attractive from a mass point of view than a transfer via a special liarth orbit, namely the 'Geostationary' Transfer Orbit (GTO) (1 Iechler, 1993). This is a consequence of the Arianc 5 specific design and of the constraints imposed on its ascent trajectory.
L.ISA shall usc an Arianc 5 in a triple launch configuration in which a usable mass of 4880 kg can be delivered into the GTO (Cornclisse, 1994). 'l'he achievable probe masses after arrival in the 6 individual orbits, i.e. at Begin Of Mission (BOM), arc then be calculated by minimizing the $\Delta \mathrm{V}$-requirement for the GTO to triangle transfer taking into account that about $65 \mathrm{~m} / \mathrm{s}$ arc nccded for the annihilation of the navigation uncertaintics, for the attitude control manocuvres and for orbit manocuvres during the final delivery into the individual mission orbits. The maximum masses arc functions of the launch date. Some results of above calculations are shown in the following figures.


Fig. 2. AV as function of launch date for $\lambda=20^{\circ}, d=5 \times 10^{\circ} \mathrm{km}$


Fig. 3. Average $\Delta V$-requireme $n t$ for the GTO to BOM transfer as function of arm length d and of delay angle $\lambda$
Figures 2 and 3 visualise the following facts.

- Thefuel nccded for the transfer is quite differcnt for the three different pairs (Figure 2). Notice that this necessitates a pair specific design of the PMs. Although the total achievable mass at BOM varies by less then $10 \%$ between its minimum for launches around New Year and its maximum for launches in the middle of the year the seasonal launch window has been constrained to April - October in order to keep the maximum $\Delta V$-requirement for a single pair below $2110 \mathrm{~m} / \mathrm{s}$.
- The average $\Delta \mathrm{V}$-requirement for the transfer is mainly a function of the arm length d and the delay angle $\lambda$ (Figure 3). For $\lambda=15^{\circ}$, $\mathrm{d}=3 \times 10^{6} \mathrm{~km}$ the. average_ probe mass at BOM would become 471 kg and it would be 335 kg yet for $\lambda=40^{\circ}, \mathrm{d}=7 \times 10^{6} \mathrm{~km}$.

The orbits about the Sun arc perturbed by the gravity of other bodies in the solar system. The lengths of the interferometer arms do not remain constant. The most unwelcome perturbations arc due to the Earth/M oon gravity. They decrease with increasing $\lambda$. and with decreasing d.large delay angles and small triangles would be desirable from the stability point of view.

However, the experiment requires an arm length of $\mathrm{d}=\mathrm{S} 10^{6} \mathrm{~km}$, This and the feasible masses at BOM even would permit delay angles above $40^{\circ}$ (Iigure 3). Unfortunately, the study of the communications problem (distance Earth - probe, ISA and S/C antenna size(s) and power) reveals that delay angles $\lambda>20^{\circ}$ arc not feasible (Bender et al., 1996).

1 Ience, $\mathrm{d}=5106 \mathrm{~km}$ for $\lambda=20^{\circ}$ define the feasible orbits of the three corners _of the trianglc, i.c. our baseline orbits. These orbits will be used throughout the following considerations

## ARM RATEDIIFERIENCES AND THEIR CONTROL.

Perturbations and higher order effects of the orbital eccentricity. change the arm lengths $\mathrm{d}_{\mathrm{i}}$ and also their rates $\mathrm{d}_{\mathrm{i}}, \mathrm{i}=1,2,3$. In particular the resulting 'natural' Arm Rate Differences (ARD) $\mathrm{v}_{\mathrm{ij}}=\mathrm{d}_{1}-\mathrm{d}_{1,} \mathrm{i} \neq \mathrm{j}=1,2,3$ set limits to the performance of the interferometer. The following two types of configuration stability arc to bc considcred.

Case 1: Only onc single ARI), c.g.| $\mathrm{v}_{12} \mid$, must be constrained.

Case II: The extreme value of the ARI)s between al] three arms, i.e. Max. $\left\{\left|v_{12},\left|v_{13} 1,\left|v_{21}\right|\right\}\right.\right.$, has to bc constrained.

For a given observation period, T, the natural ARIscan be minimised by an appropriate choice of the initial states of the probes. If the natural ARI)s are not tolerable they must be controlled by means of the IEEPS. The experiment is interrupted by this control since the probes cannot be kept 'drag-free' anymore. Wc thus seek after a fuel minimum control of the motion of the corners of the triangle that keeps the ARD$)_{s}\left|v_{i 1}\right|$ below a specified tolerance for all $t \in(0, T)$.

The attitude control must not be interrupted during the ARD-control manocurres since the link between the spacecraft must not get lost. 1 Ience the pointing directions of the thrusters arc prescribed. The spacecraft accelerations along these directions arc almost constant because the probe mass will remain ncarly constant: the high specific impulse $I_{s_{p}} \simeq 6000 \mathrm{~s}$ of the FDEPS allows to realise the control by a few grammes of cacsium. Furthermore, the required velocity corrections arc 4 orders of magnitudes smaller than the spacecaft velocity. Under above conditions, the underlying low thrust control problem can beconverted into a linear optimisation problem (1 lechler, 1981). The determination of the optimum initial states can easily be included in the optimisation process (IIechler, 1993).

Figure 4 shows the $\Delta V$-requirements for such a fuel optimum ARI)-control for both the cases 1 and 11 . Since the results were computed for a worst case thruster configuration with only 6 nozzles per probe the resulting control may need up to $50 \%$ more fuel than a control with a thruster system allowing ommi-directional burns.

Casc 11, i.e. the complete control of all the ARI)s in the triangle, will demand much more fuel then the control of a single arm-rate difference. But the fucl consumption is not our prime concern in this case. This rather is the weak FIEP-thrustlevel of $100 \mu \mathrm{~N}$, because it is much to small for producing the required velocity changes in a sufficiently short time interval.

The situation is more promising in the case 1 : a small fuel consumption goes along with a tolerable amount of manocuvres. For the worst case, i.e. for a tolerance of $0,05 \mathrm{~m} / \mathrm{s}$ of the single ARI), the $\Delta V$-requirement per year is only $1.3 \mathrm{~m} / \mathrm{s}$. Suppose a probe mass is 300 kg then the yearly average of the cacsium consumption pcr probe will stay below 2.2 gr. The detailed results show that the longest lotal burn time of any of the 100 VN -thrusters and thus the total experiment interruption time will be 18 clays.


Fig. 4. $\Delta \mathrm{V}$-requirement for the control of arm rate differences

If the ARI)s are not controlled but the inital states arc chosen in an optimum way the following results were obtained for above baseline mission. In the case 1, the natural ARD)s can be constraint to $3.6 \mathrm{~m} / \mathrm{s}$ for an observation period of five years. The optimum rates drop below $0.7 \mathrm{~m} / \mathrm{s}$ for observation periods below 2 years, and below $0.3 \mathrm{~m} / \mathrm{s}$ for observation periods below 1 year. In the case 11, the natural ARDs will cxcecd $7 \mathrm{~m} / \mathrm{s}$ for observation periods as short as I year. Recall, that larger delay angles, $\lambda$, essentially could improve the situation.

## ORBIT DETERMINATION REQUIREMENTS AND ACCURACY

The orbit determination requirements are different for the three phases of the mission, i.e. the transfer phase (around 13 months, I'M ) between launch and arrival at the triangle corners, the delivery phase ( 3 months, PM + possibly FEEPS) during which the probes arc manocuvredintotheir individual states and attitudes at BOM and the operational phase (up to 5 years, FEEPSS) with the arm control manocuvres. Table 1 gives a summary of the orbit determination requirements as they were worked out during the assessment phase.

The anext Table 2 shows the achievable orbit determination accuracies using the following tracking Systems,
I. (iround based radio tracking system with following properties,

Onc X-band station with position errors below 3 cm ; Two-way range data (noise: $<2 \mathrm{~m}(1 \sigma)$; bias: $<10 \mathrm{~m}$ ) -1 two-way Doppler data (max. error: < $0.1 \mathrm{~mm} / \mathrm{s}$ for 60 s averaging) scheduled every 30 minutes; 1 onosphere zenith delay after calibration by means of GJ'S signals: $\leqslant 3 \mathrm{~cm}$; Troposphere zenith delay after modelling: $\leq 4 \mathrm{~cm}$; Iarth orbit orientation error: $\leq 25$ nrad and position error: $\leq 10 \mathrm{~km}$,

1 t is important to notice that above assumptions on lonos $J>h c r c-e r r o r s ~ a n d ~ r a d i o ~ d a t a ~ n o i s e ~ a n d ~ b i-~$ ases only could be met by the ISSA Multi Purpose Tracking System after a fow enhancoments and/or modifications (X-bandiGl'S-calibration, highly stable frequency standards).

## 11. On board l.aser tracking system

Provides relative distances from roundtrip laser phase for each arm and between the collocated pairs (noise $<0.1 \mathrm{~mm}$; phase bias cstimated; schedulc: every 30 minutes)
' 1 'aide I: Required mbit determination accuracies

| Phase | Accuracy ( $0-\mathrm{rms}$ ) | Considered |
| :---: | :---: | :---: |
| Iransfer | position: 100 km velocity: $1 \mathrm{~m} / \mathrm{s}$ | manoeuvre dispersions |
| Delivery | $\begin{aligned} & \text { position: } \\ & 100^{\prime \prime} \mathrm{km}-+<10 \mathrm{~km} \\ & \text { velocity: } \\ & 1 \mathrm{~m} / \mathrm{s} \rightarrow<10 \mathrm{~cm} / \mathrm{s} \end{aligned}$ | stability of configuration, atlitude acquisition, natural ARD |
| ミxperiment | position: $\leq 12 \mathrm{~km}$ velocity: $2 \mathrm{rim} / \mathrm{s}$ arm-length: $\leq 100 \mathrm{~m}$ | attitude keeping, modelling of known gravity signals |

Table 2: Achievable orbit determination accuracies Mode $=$ tracking, mode $(R=$ Radio, $\mathrm{I}=\mathrm{I}$, aser $)$ Arc = data arc (days)

| Case |  | Accuracy (o-rms) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mock | Arc | Pos. <br> $(\mathrm{km})$ | Vel. <br> $(\mathrm{mm} / \mathrm{s})$ | Arm 1 <br> $(\mathrm{m})$ | Arm2 <br> $(\mathrm{m})$ |
| R | 16 | 11.5 | 1.9 | 1486 | 5790 |
| $\mathrm{R}+\mathrm{I}$. | 8 | 10.5 | 1.9 | 52 | 383 |
| $\mathrm{R}+\mathrm{I}$. | 16 | 11.5 | 2.1 | 17 | 122 |

The comparison of requirements and achievable accuracies in above tables reveals the following essential facts:

- ])uring transfer and delivery phase the well established orbit determination from ground by means of radio tracking data is accurate enough for navigating the 6 probes into the desired states and attitudes.
- Juring the experiment the required accurate knowledge of the arm lengths necessitates the incorporation of l.aser tracking data collected on board the probes in the orbit determination process.


## CONCIUSION

Threc pairs of spacecraft can be flown in interplanetary orbits such that they form a rather stable equilateral triangular configuration at relative distances up to a few million kilometres. This allows to build a unique Laser interferometer Space Antcmmafor the detection of gravitational waves. The distances, i.c. the lengths of interferometer arms, ase perturbed by planctary gravity and higher order eccentricity cffects. Two of these arm lengths can becontrolled to the required level of accuracy by a time minimum orbit control strategy which is tolerable from the experiment and fuel point of view. A complete 3 -arm control dots not seem to be feasible.
European facilities, i.c. the Arianc $S$ launcher and slighly enhancedl:SA $S$-band net with its 15 m dishes, would allow to realise a I.ISA mission with interferometer arm lengths of $5 \times 10^{6} \mathrm{~km}$ and a triangle centre at a mean longitude $20^{\circ}$ away from the IVarth.

## RIDIERINCIS

Bender, P., el al., I.I SA Prc-Phase A Report, Max- Planck-lnstitut f. Quantenoptik Report No. 208, (iarching ( 1996 )
1.1 SA Assessment Study Report, ISASCI(94)6 (1994)

Cornclisse, J. W., 1.1 SA: Technical Assessment of Corncrstone Proposal. ISSA/ESTEC Doc. I.ISA,IWC-001, Noordwijk (1994)

I lechler, J., Interplanctary l.I SA Mission by restartable Arianc $S$ 1,9, I.ISA study note, ISSA/ESOC (1993)
1 Iechler, I:, Treibstoffminimale Ubergänge zwi schenbenachbarten Bahnen, THIDarmstadt (1981)

The research described in this paper was, in part, carried out by the let Propulsion laboratory, Californialnstitute of Technology, under a contract with the National Aeronautics and Space Administration.

