
HOOMD
0.8.0

Generated by Doxygen 1.5.7.1

Mon Dec 22 10:16:19 2008

CONTENTS i

Contents

1 Main Page 1

2 Installation Guide 1

2.1 System Requirements for executing HOOMD on a GPU 2

2.2 Installing HOOMD in Windows . 2

2.3 Installing HOOMD in Linux . 3

2.4 Installing HOOMD in Mac OS X . 5

3 Quick Start Tutorial 6

4 Example Scripts 12

4.1 Example 1: Using dump files . 12

4.2 Example 2: Using IMD . 13

4.3 Example 3: Using the polymer generator 14

4.4 Example 4: Using arbitrary input files 15

5 Index of Script Commands 17

6 XML File Format 18

6.1 Overview . 18

6.2 Simulation box specification . 20

6.3 Particle positions . 20

6.4 Particle images . 21

6.5 Particle velocities . 21

6.6 Particle types . 22

6.7 Bonds between particles . 22

6.8 Walls in the simulation box . 23

7 Command line options 23

8 File Conversion Scripts 25

8.1 HOOMD XML→ LAMMPS input 25

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

CONTENTS ii

8.2 HOOMD XML→ LAMMPS dump 25

8.3 Other formats . 26

9 Compiling HOOMD 26

9.1 Software Prerequisites . 26

9.2 Building on Windows . 27

9.3 Building on linux . 29

9.4 Building on Mac OSX . 31

9.5 Build options . 33

9.6 Installing Software Prerequisites on Windows 34

9.6.1 Visual Studio . 34

9.6.2 Python . 35

9.6.3 Boost . 35

9.6.4 CUDA . 37

9.6.5 CMake . 37

9.6.6 Subversion . 37

9.7 Installing Software Prerequisites on Linux 37

9.7.1 Python . 38

9.7.2 Boost . 38

9.7.3 Compiler . 39

9.7.4 CMake . 39

9.7.5 CUDA . 40

9.7.6 Subversion . 41

9.8 Installing Software Prerequisites on Mac OS X 41

10 License 44

11 Credits 45

12 Namespace Documentation 48

12.1 Package hoomd_script . 48

12.1.1 Detailed Description . 49

12.1.2 Function Documentation . 49

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

CONTENTS iii

12.2 Package hoomd_script.analyze . 51

12.2.1 Detailed Description . 52

12.3 Package hoomd_script.bond . 52

12.3.1 Detailed Description . 52

12.4 Package hoomd_script.dump . 52

12.4.1 Detailed Description . 53

12.5 Package hoomd_script.force . 53

12.5.1 Detailed Description . 53

12.6 Package hoomd_script.globals . 53

12.6.1 Detailed Description . 54

12.7 Package hoomd_script.init . 54

12.7.1 Detailed Description . 55

12.7.2 Function Documentation . 55

12.8 Package hoomd_script.integrate . 58

12.8.1 Detailed Description . 58

12.9 Package hoomd_script.pair . 59

12.9.1 Detailed Description . 59

12.10Package hoomd_script.update . 60

12.10.1 Detailed Description . 60

12.11Package hoomd_script.wall . 61

12.11.1 Detailed Description . 61

13 Class Documentation 61

13.1 bdnvt Class Reference . 61

13.1.1 Detailed Description . 61

13.1.2 Member Function Documentation 62

13.2 coeff Class Reference . 63

13.2.1 Detailed Description . 63

13.2.2 Member Function Documentation 64

13.3 constant Class Reference . 65

13.3.1 Detailed Description . 65

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

CONTENTS iv

13.3.2 Member Function Documentation 66

13.4 dcd Class Reference . 67

13.4.1 Detailed Description . 67

13.4.2 Member Function Documentation 68

13.5 fene Class Reference . 68

13.5.1 Detailed Description . 68

13.5.2 Member Function Documentation 69

13.6 group Class Reference . 71

13.6.1 Detailed Description . 71

13.7 harmonic Class Reference . 71

13.7.1 Detailed Description . 71

13.7.2 Member Function Documentation 72

13.8 imd Class Reference . 74

13.8.1 Detailed Description . 74

13.8.2 Member Function Documentation 74

13.9 lj Class Reference . 76

13.9.1 Detailed Description . 76

13.9.2 Member Function Documentation 77

13.10lj Class Reference . 78

13.10.1 Detailed Description . 78

13.10.2 Member Function Documentation 79

13.11log Class Reference . 80

13.11.1 Detailed Description . 80

13.11.2 Member Function Documentation 82

13.12mol2 Class Reference . 84

13.12.1 Detailed Description . 84

13.12.2 Member Function Documentation 84

13.13msd Class Reference . 85

13.13.1 Detailed Description . 85

13.13.2 Member Function Documentation 86

13.14nlist Class Reference . 88

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

1 Main Page 1

13.14.1 Detailed Description . 88

13.14.2 Member Function Documentation 88

13.15npt Class Reference . 89

13.15.1 Detailed Description . 89

13.15.2 Member Function Documentation 89

13.16nve Class Reference . 91

13.16.1 Detailed Description . 91

13.16.2 Member Function Documentation 91

13.17nvt Class Reference . 92

13.17.1 Detailed Description . 92

13.17.2 Member Function Documentation 92

13.18rescale_temp Class Reference . 93

13.18.1 Detailed Description . 93

13.18.2 Member Function Documentation 94

13.19sort Class Reference . 96

13.19.1 Detailed Description . 96

13.19.2 Member Function Documentation 97

13.20xml Class Reference . 99

13.20.1 Detailed Description . 99

13.20.2 Member Function Documentation 99

13.21zero_momentum Class Reference 102

13.21.1 Detailed Description . 102

13.21.2 Member Function Documentation 102

1 Main Page

Welcome to the user documentation for HOOMD!

1. Installation Guide

2. Quick Start Tutorial

3. Example Scripts

4. Index of Script Commands

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

2 Installation Guide 2

5. XML File Format

6. Command line options

7. File Conversion Scripts

8. Compiling HOOMD

9. License

10. Credits

If you are looking for the developer documentation that used to be here,
you can download it for the latest released version of HOOMD from
http://www.ameslab.gov/hoomd/download.html . You can also build it
from the source code by following the instructions in Compiling HOOMD.

2 Installation Guide

Contents:

• System Requirements for executing HOOMD on a GPU

• Installing HOOMD in Windows

• Installing HOOMD in Linux

• Installing HOOMD in Mac OS X

2.1 System Requirements for executing HOOMD on a GPU

• OS: Linux, Mac OS X, Windows Vista, or Windows XP

– Note: Mac OS X versions older than 10.5.4 are not supported

• CPU: Any x86 or x86_64 processor

• RAM: At least 1GB is recommended

• GPU: Any CUDA capable card: http://www.nvidia.com/object/cuda_-
home.html

– Recommended (listed here in the rough order of performance expected,
see http://www.ameslab.gov/hoomd/benchmarks.html for
actual performance numbers):

* GTX 280 (fastest)

* Tesla 10 series

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ameslab.gov/hoomd/download.html
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://www.ameslab.gov/hoomd/benchmarks.html

2.2 Installing HOOMD in Windows 3

* GTX 260

* Tesla 800 series

* 8800 GTX

* 8800 GTS 512MB

* 8800 GT

– NOTE! Some board manufacturers sell Factory Over-clocked boards.
These may work fine in games where a few bit errors just change the color
of an onscreen pixel slightly, but GPGPU applications are extremely sen-
sitive to such errors. HOOMD and other CUDA apps are known to crash
on over-clocked GPUs.

• Motherboard: 16x PCIe slot for the graphics card.

– If you are installing the card in a second slot, double check you mother-
board manual first. Many motherboards will decrease the slots to 8x with 2
cards installed. While HOOMD will still run in such a configuration, it is
not recommended for performance reasons.

• Power supply: Check with the GPU manufacturer for the power supply require-
ments for your GPU. If you have a store-bought system, its power supply is likely
inadequate and will require upgrading.

2.2 Installing HOOMD in Windows

1. Download the HOOMD installer from http://www.ameslab.gov/hoomd

2. Install Python 2.5 using the installer at
http://www.python.org/download/

3. Install the corresponding drivers for your GPU. Go to
http://www.nvidia.com and select download drivers.

• Note: The HOOMD download page lists compatible driver version(s).

• Laptop users, see
http://forums.nvidia.com/index.php?showtopic=58191

4. Uninstall any previous version of HOOMD before continuing

5. Double click on the HOOMD installer and follow the on screen steps

HOOMD should now show up on your Start menu and the .hoomd file type is regis-
tered to execute the script when you double click on one. The command hoomd can
also be run on the command line to start the HOOMD python interpreter.

The start menu includes links to benchmark scripts for checking the perfor-
mance of your setup as well as some live demos that are fun to watch.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ameslab.gov/hoomd
http://www.python.org/download/
http://www.nvidia.com
http://forums.nvidia.com/index.php?showtopic=58191

2.3 Installing HOOMD in Linux 4

In order to visualize the demos, you must have VMD 1.8.6 installed:
http://www.ks.uiuc.edu/Research/vmd/

Check out the Quick Start Tutorial to learn how to use HOOMD.

2.3 Installing HOOMD in Linux

1. Before you download HOOMD, check which python version you have by run-
ning

python -V

in a terminal.

2. Download the matching HOOMD package from
http://www.ameslab.gov/hoomd

3. Install the NVIDIA CUDA Toolkit using the installer from
http://www.nvidia.com/object/cuda_get.html

• Note: Make sure you install the toolkit version listed on the HOOMD
download page.

• Add /usr/local/cuda/lib to LD_LIBRARY_PATH (can be modified similar
to PATH below)

4. Install the corresponding drivers for your GPU. Go to
http://www.nvidia.com and select download drivers.

• Note: The drivers must match with the CUDA toolkit you installed. The
HOOMD download page lists compatible driver version(s).

5. Extract the HOOMD package using your favorite tool or by running

tar -xvjpf hoomd-0.7.1-Linux-x86_64-Python2.5.tar.bz2

in a terminal (modify the filename to match the one you downloaded of course).

• Note: If you extract this package in /opt as root, it will be installed in a
system directory for any user on the system to run. If you prefer/need to
have your own local copy, just extract to your home directory.

6. Below, replace EXTRACTED_LOCATION with the location you ex-
tracted HOOMD to, i.e. /home/joaander/software/hoomd-0.7.1-Linux-x86_64-
Python2.5

7. Add EXTRACTED_LOCATION/bin to your $PATH. See
http://www.newlinuxuser.com/howto-add-a-directory-to-my-path-statementvariable/
for instructions. You will probably need to log out and back in for the path
setting to take effect.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ks.uiuc.edu/Research/vmd/
http://www.ameslab.gov/hoomd
http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com
http://www.newlinuxuser.com/howto-add-a-directory-to-my-path-statementvariable/

2.4 Installing HOOMD in Mac OS X 5

After installation is complete, run

hoomd

in any terminal. You should see something like this:

Python 2.4.4 (#1, Nov 4 2007, 17:29:36)
[GCC 4.1.2 (Gentoo 4.1.2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Press CTRL-D to exit.

To test your installation further, you can execute benchmark scripts th check the perfor-
mance of your setup or run some live demos that are fun to watch. You will find them in
EXTRACTED_LOCATION/share/hoomd For example, to run the polymer benchmark
on the GPU:

cd EXTRACTED_LOCATION/share/hoomd/benchmarks/
./polymer_bmark.hoomd --mode=gpu

Note: to visualize the live demos, you need to have VMD 1.8.6 installed:
http://www.ks.uiuc.edu/Research/vmd/

Check out the Quick Start Tutorial to learn how to use HOOMD.

2.4 Installing HOOMD in Mac OS X

1. Download the HOOMD package from http://www.ameslab.gov/hoomd

2. Install the NVIDIA CUDA Toolkit using the installer from
http://www.nvidia.com/object/cuda_get.html

• Note: Make sure you install the toolkit version listed on the HOOMD
download page.

• Note: Make sure to select the Customize button and ensure that CUDAKext
is selected.

• Add /usr/local/cuda/lib to DYLD_LIBRARY_PATH (see instructions for
PATH below)

3. Make sure that the Apple Software Update tool has installed all updates related
to the video drivers.

4. Extract the HOOMD package using your favorite tool or by running

tar -xvjpf hoomd-0.8.0-Darwin-i386-Python2.5.tar.bz2

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ks.uiuc.edu/Research/vmd/
http://www.ameslab.gov/hoomd
http://www.nvidia.com/object/cuda_get.html

3 Quick Start Tutorial 6

in a terminal (modify the filename to match the one you downloaded of course).

• Note: If you extract this package in /opt as root, it will be installed in a
system directory for any user on the system to run. If you prefer/need to
have your own local copy, just extract to your home directory.

5. Below, replace EXTRACTED_LOCATION with the location you extracted
HOOMD to, i.e. /home/joaander/software/hoomd-0.8.0-Darwin-i386-Python2.5

6. Add EXTRACTED_LOCATION/bin to your $PATH. See
http://www.newlinuxuser.com/howto-add-a-directory-to-my-path-statementvariable/
for instructions. You will probably need to log out and back in for the path
setting to take effect.

After installation is complete, run

hoomd

in any terminal. You should see something like this:

Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Press CTRL-D to exit.

To test your installation further, you can execute benchmark scripts th check the perfor-
mance of your setup or run some live demos that are fun to watch. You will find them in
EXTRACTED_LOCATION/share/hoomd For example, to run the polymer benchmark
on the GPU:

cd EXTRACTED_LOCATION/share/hoomd/benchmarks/
./polymer_bmark.hoomd --mode=gpu

Note: to visualize the live demos, you need to have VMD 1.8.6 installed:
http://www.ks.uiuc.edu/Research/vmd/

Check out the Quick Start Tutorial to learn how to use HOOMD.

3 Quick Start Tutorial

Example script

So you have HOOMD installed. Now what!?

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.newlinuxuser.com/howto-add-a-directory-to-my-path-statementvariable/
http://www.ks.uiuc.edu/Research/vmd/

3 Quick Start Tutorial 7

Let’s start with the classic MD simulation, the Lennard-Jones liquid. Place N particles
randomly in a box and allow them to interact with the following potential between pairs
of particles:

V (r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]

To configure HOOMD to perform this simulation, a simple Python script must be writ-
ten.

from hoomd_script import *

create 100 random particles of name A
init.create_random(N=100, phi_p=0.01, name=’A’)

specify Lennard-Jones interactions between particle pairs
lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

integrate at constant temperature
integrate.nvt(dt=0.005, T=1.2, tau=0.5)

run 10,000 time steps
run(10e3)

If you don’t know Python, don’t worry. You can learn everything about it that
you need to know for HOOMD scripts here. Of course if you did know more
Python (which is a full-fledged object oriented programming language: tutorials at
http://www.python.org) then you could make use of its capabilities in setting
up complicated simulations.

Running the example

For now, copy and paste the above code into a file test.hoomd. Assuming you have
installed HOOMD, you can run the simulation script from the command line:

$ hoomd test.hoomd

And you should see output that looks something like this:

HOOMD 0.8.0
Compiled: Tue Oct 28 08:33:32 CDT 2008
Copyright, 2008, Ames Laboratory Iowa State University

http://www.ameslab.gov/hoomd/
This code is the implementation of the algorithms discussed in:

Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset - ’General
Purpose Molecular Dynamics Fully Implemented on Graphics Processing
Units’, Journal of Computational Physics 227 (2008) 5342-5359

test.hoomd:004 | init.create_random(N=100, phi_p=0.01, name=’A’)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.python.org

3 Quick Start Tutorial 8

test.hoomd:007 | lj = pair.lj(r_cut=3.0)
test.hoomd:008 | lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)
test.hoomd:011 | integrate.nvt(dt=0.005, T=1.2, tau=0.5)
test.hoomd:014 | run(10e3)
starting run **
Time 00:00:00 | Step 10000 / 10000 | TPS 41990.9 | ETA 00:00:00
Average TPS: 41976.2

-- Neighborlist stats:
449 updates / 20 forced updates
n_neigh_min: 0 / n_neigh_max: 10 / n_neigh_avg: 2.23
bins_min: 0 / bins_max: 4 / bins_avg: 1.5625
run complete **

That’s it! You’ve just run your first simulation with HOOMD.

Understanding the output

The first few lines of output are just a header notifying you which version of HOOMD
you are running and when it was compiled along with a link to the website and the
reference to the paper discussing the algorithms used in HOOMD.

The simulation output starts at:

test.hoomd:004 | init.create_random(N=100, phi_p=0.01, name=’A’)

Each hoomd_script command prints the file and line where it was run along with the
entire text of the command. This can be potentially very useful in debugging problems
as it will allow you to hone in on the command in the script that is producing the error
message.

When a run() command is executed, HOOMD steps the simulation forward that many
time steps. While it is doing so, it periodically prints out status lines like the one seen
above.

Time 00:00:00 | Step 10000 / 10000 | TPS 41990.9 | ETA 00:00:00

• Time is the total time spent (so far) in the current simulation in HH:MM:SS
(totaled over multiple run() commands)

• Step current / final prints the current time step the simulation is at and the final
time step of the run()

• TPS is the current rate (in Time steps Per Second) at which the simulation is
progressing.

• ETA is the estimated time to completion of the current run() in HH:MM:SS

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

3 Quick Start Tutorial 9

Since this run was so short, only one line was printed at the end. Modify the script to
run a few million time steps and run it to see what happens in longer simulations. Or
just see here...

Time 00:00:10 | Step 488501 / 10000000 | TPS 48850.1 | ETA 00:03:14
Time 00:00:20 | Step 976312 / 10000000 | TPS 48781.1 | ETA 00:03:04
Time 00:00:30 | Step 1462718 / 10000000 | TPS 48640.5 | ETA 00:02:55
Time 00:00:40 | Step 1950647 / 10000000 | TPS 48792.8 | ETA 00:02:44
Time 00:00:50 | Step 2436905 / 10000000 | TPS 48625.4 | ETA 00:02:35
Time 00:01:00 | Step 2924701 / 10000000 | TPS 48779.5 | ETA 00:02:25
Time 00:01:10 | Step 3410821 / 10000000 | TPS 48612 | ETA 00:02:15

The final bit of output at the end of the run prints statistics from various parts of the
computation. In this example, only the neighbor list prints statistics.

-- Neighborlist stats:
449 updates / 20 forced updates
n_neigh_min: 0 / n_neigh_max: 10 / n_neigh_avg: 2.23
bins_min: 0 / bins_max: 4 / bins_avg: 1.5625

Differently configured simulation scripts may print additional information here.

Dissecting the script

1. The first line of every HOOMD job script (except for comment lines starting
with #) must be

from hoomd_script import *

This line takes the python code of hoomd_script, compiles it and loads it in so it
can be used. hoomd_script contains the code for commands such as init.create_-
random() which is why this line must be first.

2. After hoomd_script has been imported, the system must be initialized before
any other command can be executed. In this example, we create a 100 random
particles named A.

init.create_random(N=100, phi_p=0.01, name=’A’)

Here is a good point to call attention to one of HOOMD’s nifty features. You
can name a particle type anything you want. If you want to name a particular
particle type ’My ridiculously long particle type name’, be my guest. HOOMD
doesn’t care one way or another as it just stores the string you give it. Just be
warned that some software packages only handle names up to a certain length,
so some information may be lost when they load mol2 (dump.mol2) or xml
(dump.xml) files written by HOOMD.

Documentation for init.create_random

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

3 Quick Start Tutorial 10

3. The next line specifies the pair force between particle pairs in the simulation. In
the example, we create a Lennard-Jones pair force with a cutoff radius of 3.0.

lj = pair.lj(r_cut=3.0)

This line has the structure variable=command which saves the result of the
command for later modification (see why on the next line of the script). In
HOOMD, any number of forces can be specified, even zero if that is what you
need (use a separate line and variable name for each one). All specified forces
are added together during the simulation.
Documentation for pair.lj

4. The parameters of the force must also be specified before the simulation is run()
(you will get an error if you forget). The next line sets the parameters epsilon,
sigma, and alpha for the Lennard-Jones force between particles of types A and
A.

lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

The example script only has a single particle type in the simulation, so one line
is sufficient. In more complicated simulations with more than one particle type
every unique pair must be specified (i.e. ’A’-’A’, ’A’-’B’, and ’B’-B’). Use one
line like that above for each pair.

5. After that, we choose the integrator to move particles forward in time. Unlike
with the forces, there is only one integrator (specifying another will overwrite
the first). Also, there must be one integrator. If you try running the simulation
without one HOOMD will print an error message. Here, we create a Nosé-
Hoover thermostat and set the timestep dt to be 0.005, the temperature target T
at 1.2 and the parameter tau to 0.5.

integrate.nvt(dt=0.005, T=1.2, tau=0.5)

After the initialization and before the run() command, the order in which com-
mands are called doesn’t matter. The NVT integrator could just as easily been
specified before the pair force.
Documentation for integrate.nvt

6. Finally, the run command actually takes the job settings previously specified and
runs the simulation through time.

run(10e3)

This simple example only runs for 10,000 steps but real simulations might be run
for 10’s of millions, spending days of computation time in this single command.
There is no limit that there be a single run command in a given script. If your
simulation needs to turn off a certain force or change integrators and then con-
tinue, you can do that. Just execute the commands to make the changes after the
first run and before the second.
Documentation for run()

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

3 Quick Start Tutorial 11

The anatomy of a hoomd_script command

The init line is as good an example as any.

init.create_random(N=100, phi_p=0.01, name=’A’)

Parts of the command

• init - The package. Every command is in its own package to keep it organized

• . - Python syntax needed to access a member of the package

• create_random - The command name to run

• (- Python required syntax to note the start of an argument list

• N=100, phi_p=0.01, name=’A’ - Arguments (more on these below)

•) - Python required syntax to note the end of an argument list

• <enter> - Python required syntax to execute the command

About the arguments

Multiple arguments of the form name=value are separated by commas. Whitespace
is ignored so name = value works too. The order of arguments doesn’t matter (as
long as you specify them by name). I.e. all of the following are identical:

init.create_random(N=100, name=’A’, phi_p=0.01)
init.create_random(phi_p = 0.01, N = 100, name = ’A’)
init.create_random(phi_p=0.01, name=’A’, N=100)

Check the documentation for a specific command to see what the arguments are and
what they mean (i.e. see init.create_random). Here is a copy of the documentation for
init.create_random:

init.create_random
(N,

phi_p,
name = "A",
min_dist = 1.0

)

Parameters:
N Number of particles to create
phi_p Packing fraction of particles in the simulation box
name Name of the particle type to create
min_dist Minimum distance particles will be separated by

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

4 Example Scripts 12

First of all, notice in the header for the command that some arguments are listed with
an = sign, like name="A". This means that argument has a default value associated
with it. If you are happy with the default value, you don’t need to specify that argument
in the list. In our example, we have always been setting name=’A’ anyways so using

init.create_random(N=100, phi_p=0.01)

is identical.

Those arguments that are listed without the = sign (N, phi_P here) have no default value
and must be specified. Python will give you an error if you don’t.

init.create_random() doesn’t have any optional arguments, but some commands do.
Optional arguments will be labeled as such and have a default value of None. The
documentation for any optional arguments will clearly indicate what occurs when you
do or do not specify it in the argument list.

Where to go from here

This quick tutorial is only the tip of the iceberg. There are a lot more resources in the
documentation.

• Find out how to control what resources HOOMD uses to execute simulations:
Command line options

• Page through the list of all commands you can use to define a simulation: Index
of Script Commands

• Examine more complicated scripts that illustrate typical usage scenarios: Exam-
ple Scripts

• Learn how to compile HOOMD so you can modify the code to suit your needs:
Compiling HOOMD

4 Example Scripts

Examples:

• Example 1: Using dump files

The simulation trajectory is written to a file which can be viewed in visualization
software such as VMD

• Example 2: Using IMD

A running simulation is connected to VMD which displays the current system
state updated in real-time

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

4.1 Example 1: Using dump files 13

• Example 3: Using the polymer generator

The polymer generator can generate complicated initial conditions for bead-
spring polymer systems

• Example 4: Using arbitrary input files

None of the built-in generators works for you? Write an input file describing the
initial condition and load it in.

4.1 Example 1: Using dump files

This simple example is a simple adaptation of the quick start script. It performs a
simulation of a Lennard-Jones liquid, dumping snapshots of the system every 100 time
steps.

from hoomd_script import *

create 1000 random particles of name A
init.create_random(N=1000, phi_p=0.01, name=’A’)

specify Lennard-Jones interactions between particle pairs
lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

integrate at constant temperature
integrate.nvt(dt=0.005, T=1.2, tau=0.5)

dump a .mol2 file for the structure information
dump.mol2(filename=’example1.mol2’)

dump a .dcd file for the trajectory
dump.dcd(filename=’example1.dcd’, period=100)

run 10,000 time steps
run(10e3)

Running this quick simulation should result in two output files being generated in the
current working directory: example.mol2 and example.dcd. The .mol2 file gen-
erated by dump.mol2 contains the particle names and coordinates at time step 0. If
there were any bonds specified, they would be included too. VMD or other applica-
tions can read in the .mol2 to obtain this information.

dump.dcd includes snapshots of the system state (particle position coordinates only)
written every 100 time steps. This file can be loaded into visualization software such
as VMD and played as a movie or read for analysis purposes.

If you have VMD installed, you can load up the entire simulation trajectory by running

vmd example1.mol2 example1.dcd

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

4.2 Example 2: Using IMD 14

on the command line or by loading these files using VMD’s GUI. For the best visual-
ization, open VMD’s Graphical Representation menu and set the Drawing Method to
VDW. The default of lines will draw a seemingly random line through the simulation
box. This is actually a dummy bond between particles 0 and 1, as VMD refuses to load
a MOL2 file without any bonds specified in it.

4.2 Example 2: Using IMD

Here is the same simulation as Example 1, this time configured for real-time display
in VMD using the IMD interface.

from hoomd_script import *

create 1000 random particles of name A
init.create_random(N=1000, phi_p=0.01, name=’A’)

specify Lennard-Jones interactions between particle pairs
lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

integrate at constant temperature
integrate.nvt(dt=0.005, T=1.2, tau=0.5)

dump a .mol2 file for the structure information
dump.mol2(filename=’example2.mol2’)

setup the IMD server
analyze.imd(port=54321, period=500)

run a very long time so the simulation can be watched in VMD
run(1e9)

Start the simulation running in HOOMD, then load up VMD. Inside VMD, create a
new molecule and load the file example2.mol2 generated at the beginning of the
simulation. Then go to the VMD command window and run the commnand

imd connect localhost 54321

The particles in the display window should begin moving. The display is of the current
state of the simulation, updated in real-time. Again, the best visualization is obtained
by setting the Drawing Method to VDW in VMD’s Graphical Representation menu.

Switch back to the terminal where HOOMD is running and press CTRL-C to kill the
simulation. It is set to run for an extremely long time on purpose to allow ample time
to launch VMD and issue the imd command.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

4.3 Example 3: Using the polymer generator 15

4.3 Example 3: Using the polymer generator

Here is a more complicated script that generates a system of bead-spring polymers
which self-assemble into a hex phase when run for a few million time steps. The poly-
mers are A6B7A6 block copolymers in an implicit solvent. The script also shows a few
examples of how writing python code in the script can be handy: here the concentration
phi_P is a parameter and math operations are performed to calculate the length of the
box.

For more information on the model in this script, see

"Micellar crystals in solution from molecular dynamics simulations"

J. Chem. Phys. 128, 184906 (2008); DOI:10.1063/1.2913522

http://link.aip.org/link/?JCPSA6/128/184906/1

Any of the polymer systems in the paper could be easily run just by changing a few
parameters in this script.

from hoomd_script import *
import math

parameters
phi_P = 0.25
n_poly = 600
T = 1.2
polymer1 = dict(bond_len=1.2, type=[’A’]*6 + [’B’]*7 + [’A’]*6,

bond="linear", count=n_poly)

perform some simple math to find the length of the box
N = len(polymer1[’type’]) * polymer1[’count’];
L = math.pow(math.pi * N / (6.0 * phi_P), 1.0/3.0);

generate the polymer system
init.create_random_polymers(box=hoomd.BoxDim(L), polymers=[polymer1],

separation=dict(A=0.35, B=0.35), seed=12);

force field setup
harmonic = bond.harmonic()
harmonic.set_coeff(’polymer’, k=330.0, r0=0.84)
lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=0.0)
lj.pair_coeff.set(’A’, ’B’, epsilon=1.0, sigma=1.0, alpha=0.0)
lj.pair_coeff.set(’B’, ’B’, epsilon=1.0, sigma=1.0, alpha=1.0)

dump every 100,000 steps
dump.mol2(filename="example3.mol2");
dump.dcd(filename="example3.dcd", period=100000);

integrate NVT for a bunch of time steps
integrate.nvt(dt=0.005, T=T, tau=0.5)
run(2000)

uncomment the next run() command if you have a few hours to spare
running this on a GPU the resulting dump files should show the

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://link.aip.org/link/?JCPSA6/128/184906/1

4.4 Example 4: Using arbitrary input files 16

polymers self-assembling into the hex phase
run(10e9)

4.4 Example 4: Using arbitrary input files

Of course, HOOMD is not limited by the built-in random initial condition generators
used in the previous example. You can load in an arbitrary initial condition from a
formatted xml file. Here is a simple example demonstrating most of the types of data
that can be input (see XML File Format for full documentation of this format):

<?xml version="1.0" encoding="UTF-8"?>
<hoomd_xml>
<configuration time_step="0">
<box units="sigma" Lx="10" Ly="10" Lz="10"/>
<!-- Setup the initial condition to place all particles in a line -->
<position units="sigma">
-3 0 0
-2 0 0
-1 0 0
0 0 0
1 0 0
2 0 0
3 0 0
</position>
<!-- Name the first 3 particles A and the rest B -->
<type>
A
A
A
B
B
B
B
</type>
<!-- Bond the particles together into a polymer chain -->
<bond>
polymer 0 1
polymer 1 2
polymer 2 3
polymer 3 4
polymer 4 5
polymer 5 6
</bond>
<!-- Give the particles a little kick with an initial velocity -->
<velocity units="sigma/tau">
1 2 3
3 2 1
1 0 0
0 1 0
0 0 1
-1 -2 -3
-3 -2 -1
</velocity>
</configuration>

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

5 Index of Script Commands 17

</hoomd_xml>

Copy and paste this data to a file example4.xml. The initial conditions can be read into
a simulation using the command init.read_xml as shown in the example script below.

from hoomd_script import *
import math

read in the file
init.read_xml(filename="example4.xml")

example4.xml defines a single polymer: use the same force field as in example 3
force field setup
harmonic = bond.harmonic()
harmonic.set_coeff(’polymer’, k=330.0, r0=0.84)
lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=0.0)
lj.pair_coeff.set(’A’, ’B’, epsilon=1.0, sigma=1.0, alpha=0.0)
lj.pair_coeff.set(’B’, ’B’, epsilon=1.0, sigma=1.0, alpha=1.0)

dump every few steps
dump.mol2(filename="example4.mol2");
dump.dcd(filename="example4.dcd", period=10);

integrate NVT for a bunch of time steps
integrate.nvt(dt=0.005, T=1.2, tau=0.5)
run(2000)

5 Index of Script Commands

Click on an individual command in the list to go to its documentation. Click on the
package link at the beginning of each list to get a general overview of all commands in
that package.

Initialization commands (init):

• init.read_xml - Reads initial system state from an XML file.

• init.create_random - Generates N randomly positioned particles of the same type.

• init.create_random_polymers - Generates any number of randomly positioned
polymers of configurable types.

Pair forces (pair):

• pair.lj - Lennard-Jones pair force.

• nlist - Interface for controlling neighbor list parameters.

Bond forces (bond):

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

5 Index of Script Commands 18

• bond.harmonic - Harmonic bond forces.

• bond.fene - FENE bond forces.

Wall forces (wall):

• wall.lj - Lennard-Jones wall force.

Other forces (force):

• force.constant - Constant force.

Integration methods (integrate):

• integrate.nve - NVE Integration via Velocity-Verlet.

• integrate.nvt - NVT Integration via the Nosé-Hoover thermostat.

• integrate.bdnvt - NVT integration via Brownian dynamics.

• integrate.npt - NPT Integration via the Nosé-Hoover thermostat, Anderson baro-
stat.

Change particle or system properties during each time step (update):

• update.rescale_temp - Rescales particle velocities.

• update.zero_momentum - Zeroes system momentum.

• update.sort - Sorts particles in memory to improve cache coherency.

Real time analysis of data (analyze):

• analyze.imd - Sends simulation snapshots to VMD in real-time.

• analyze.log - Logs a number of calculated quanties to a file.

• analyze.msd - Calculates the mean-squared displacement of groups of particles
and logs the values to a file.

File output for offline analysis (dump):

• dump.xml - Writes simulation snapshots in the HOOMD XML format.

• dump.mol2 - Writes a simulation snapshot in the MOL2 format.

• dump.dcd - Writes simulation snapshots in the DCD format.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6 XML File Format 19

Define groups of particles:

• group_all - Groups all particles.

• group_tags - Groups particles by tag.

• group_type - Groups particles by type.

6 XML File Format

6.1 Overview

Both init.read_xml and dump.xml work with the same XML file format for specifying
the system of particles. The format requires a minimal amount of meta-information
in an easy to understand human-readable format. One of the key advantages of using
XML is that it is also easily machine readable and commonly used, so many parsers
exist for it.

The basic outline of a HOOMD xml file looks like this

<?xml version="1.0" encoding="UTF-8"?>
<hoomd_xml>
<!-- this is a comment, you can put as many of these in the file

wherever you wish to. -->
<configuration time_step="0">

<!-- data nodes go here -->
</configuration>
</hoomd_xml>

The first line of the file

<?xml version="1.0" encoding="UTF-8"?>

is just something that must be there to identify that this is an XML file.

The second and last lines signify the start and end of the root node hoomd_xml. The
contents of the root node is between these begin and end markers.

<hoomd_xml>
<!-- contents of root node -->

</hoomd_xml>

Inside the root node is the configuration node.

<configuration time_step="0">
<!-- data nodes go here -->

</configuration>

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6.2 Simulation box specification 20

time_step="0" is an attribute assigned to the configuration node. You can leave if
off if you want and the time step will default to 0. It is used as the initial time step in
the simulation when read by init.read_xml. In files written by HOOMD, time_step
will be set to the value of the time step when the system snapshot was taken.

A number of data nodes can be included as part of the configuration and in any order.

• box (Simulation box specification)

• position (Particle positions)

• image (Particle images)

• velocity (Particle velocities)

• type (Particle types)

• bond (Bonds between particles)

• wall (Walls in the simulation box)

Detailed documentation for each node is below.

6.2 Simulation box specification

The <box> node defines the dimensions of the simulation box which particles are
placed in.

dump.xml always writes this node.

init.read_xml requires this node be specified.

Example:

<box units="sigma" Lx="5.1" Ly="9.6" Lz="15.8"/>

Attributes:

• units Currently unused. Potentially used for a future feature in HOOMD sup-
porting different units for length, energy, etc...

• Lx Box length in the x direction

• Ly Box length in the y direction

• Lz Box length in the z direction

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6.3 Particle positions 21

6.3 Particle positions

The <position> node sets the position of each particle in the simulation.

dump.xml optionally writes this node.

init.read_xml requires this node be specified.

Example:

<position units="sigma">
-1.45 2.21 1.56
8.76 1.02 5.60
5.67 8.30 4.67
</position>

Attributes:

• units Currently unused. Potentially used for a future feature in HOOMD sup-
porting different units for length, energy, etc...

In between the begin and end markers <position> and </position> is a series of float-
ing point numbers in plain-text separated by whitespace. These are read in order x0
y0 z0 x1 y1 z1 x2 y2 z2 ... x(N-1) y(N-1) z(N-1). Note that you do not need to spec-
ify the number of particles anywhere, just add as many as you want and init.read_xml
will count them. The particular form of the whitespace used does not matter (space,
tab, newline, etc...), the example above uses spaces between x, y, and z and newlines
between particles merely to make it more easily human-readable.

All particles must be in the box: x > -Lx/2.0 and x < Lx/2.0 and similarly for y and z.

6.4 Particle images

The <image> node sets the box image for each particle in the simulation.

dump.xml optionally writes this node.

init.read_xml does not require this node.

When used in an input file, the images specified are used as the initial condition for the
simulation.

Example:

<image>
-1 -5 12
18 2 -10
13 -5 0
</velocity>

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6.5 Particle velocities 22

The format of the node data is the same as for <position> (see Particle positions),
except that the values must be integers. If specifying both position and image in an
input file, be certain to include the same number of particles in each, or init.read_xml
will generate an error.

Image flags are used to track the movement of particles across the periodic boundary
conditions. To unwrap the position of a single particle and see its trajectory as if it did
not wrap around the boundary, compute

x + ix * Lx

where x is the particle coordinate, ix is the image and Lx is the box dimension.

6.5 Particle velocities

The <velocity> node sets the velocity of each particle in the simulation.

dump.xml optionally writes this node.

init.read_xml does not require this node.

When used in an input file, the velocities specified are used as the initial condition for
the simulation.

Example:

<velocity units="sigma/tau">
-0.5 -1.2 0.4
0.6 2.0 0.01
-0.4 3.0 0.0
</velocity>

Attributes:

• units Currently unused. Potentially used for a future feature in HOOMD sup-
porting different units for length, energy, etc...

The format of the node data is the same as for <position> (see Particle positions). If
specifying both position and velocity in an input file, be certain to include the same
number of particles in each, or init.read_xml will generate an error.

6.6 Particle types

The <type> node sets the type name of each particle in the simulation.

dump.xml optionally writes this node.

init.read_xml requires this node be specified.

Example:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6.7 Bonds between particles 23

<type>
A
long_type_name
A
</type>

The format of the node data is similar to that of <position> (see Particle positions),
except that only one type is specified for each particle. A particle type can be any string
you want that does not include whitespace (as whitespace is used to signify the next
particle in the list). Internally, HOOMD assigns no meaning whatsoever to the value
of the string you specify so name your particles in ways that are meaningful to you.
When performing tasks such as setting the coefficients of a pair force, the type strings
given are simply matched up to those specified in the xml file.

If specifying both position and type in an input file, be certain to include the same
number of particles in each, or init.read_xml will generate an error.

6.7 Bonds between particles

The <bond> node specifies any number of bonds between particles in the simulation.

dump.xml optionally writes this node.

init.read_xml does not require this node

Example:

<bond>
polymer 0 1
backbone 1 2
</bond>

The above example creates a bond of type polymer between particle 0 and 1 and one
of type backbone between 1 and 2. The general format is type0 idx_a0 idx_b0 type1
idx_a1 idx_b1 where type is any string without whitespace, idx_a is the index of
the first particle in the bond and idx_b is the index of the second particle in the bond.
Each field is separated from the next by whitespace (any number of spaces, tabs, or
newlines).

Specifying the bonds themselves doesn’t result in any additional forces on particles.
For that, you must specify a bond force (see bond).

A typical usage would list many bonds of the same type. Coefficients for the associ-
ated bond force can be set separately for each bond type by name (for example, see
bond.harmonic).

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

6.8 Walls in the simulation box 24

6.8 Walls in the simulation box

The <wall> node specifies any number of walls in the simulation box. Walls have no
meaning unless a wall force such as wall.lj is specified in the simulation.

dump.xml optionally writes this node.

init.read_xml does not require this node

Example:

<wall>
<coord ox="1.0" oy="2.0" oz="3.0" nx="4.0" ny="5.0" nz="6.0"/>
<coord ox="7.0" oy="8.0" oz="9.0" nx="10.0" ny="11.0" nz="-12.0"/>
</wall>

Every wall is specified by a plane. The vector (ox, oy, oz) is the origin, a point in the
plane and (nx, ny, nz) is the normal.

7 Command line options

Controlling where a simulation is executed

Any simulation in HOOMD can be run on the CPU or GPU. To control which, set the
-mode option on the script command line. Valid settings are cpu and gpu.

hoomd some_script.hoomd --mode=cpu

When -mode is set to gpu and no other options are specified, HOOMD runs on the
first GPU (number 0) in the system. This may not be desirable if another GPU in
the system is faster or a simulation is already running on GPU 0 (HOOMD will run
correctly with more than one simulation on a GPU as long as there is enough memory,
but the performance penalty is severe). You can select which GPU to run on using the
-gpu command line option.

hoomd some_script.hoomd --gpu=1

Note that specifying -gpu implies -mode=gpu. To find out which id is as-
signed to each GPU in your system, download the CUDA SDK for your sys-
tem from http://www.nvidia.com/object/cuda_get.html and run the
deviceQuery sample.

Multiple GPUs can be selected to run on by specifying a comma separated list:

hoomd some_script.hoomd --gpu=0,1

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.nvidia.com/object/cuda_get.html

8 File Conversion Scripts 25

Any number of GPUs can be specified in the list.

If you run a script without any options

hoomd some_script.hoomd

HOOMD first checks if there are any GPUs in the system. If it finds one or more, it
runs on GPU 0. If none are found, it runs on the CPU.

Controlling error checking on the GPU

Detailed error checking is off by default to enable the best performance. If you have
trouble that appears to be caused by the failure of a calculation to run on the GPU, you
can run with GPU error checking enabled to check for any errors returned by the GPU.

To do this, run the script with the -gpu_error_checking command line option:

hoomd some_script.hoomd --gpu_error_checking

You can always run

hoomd some_script.hoomd --help

to get a full list of the available command line options some of which may not be listed
here.

8 File Conversion Scripts

A number of file conversion scripts for converting between HOOMD’s XML format
and other formats are provided in the hoomd/bin directory. These scripts should already
be in your PATH and executable from the command line.

8.1 HOOMD XML→ LAMMPS input

hoomd2lammps_input.py converts a HOOMD XML file to the LAMMPS input
format. It handles positions, velocities, and bonds (if present in the XML file). To run,
execute the script on the command line:

hoomd2lammps_input.py input_file.xml output_file.data

Here is the output of the above command when run on
share/hoomd/demos/micelle.xml:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

8.2 HOOMD XML→ LAMMPS dump 26

Found 9500 particles
Mapped particle types:
{’A’: 1, ’B’: 2}
Found 9000 bonds
Mapped bond types:
{’polymer’: 1}

The script notifies you how many particles, velocities and bonds it reads. Types must
be handled in a special way: HOOMD reads types by name, but LAMMPS requires a
positive integer from 1 to the number of types. hoomd2lammps_input.py scans
the input XML and automatically assigns an integer to every type in the order in which
they first appear. The output

Mapped particle types:
{’A’: 1, ’B’: 2}

is telling you that type A is labeled 1 in the LAMMPS file and type B is labeled 2.
The bond type name to integer id conversion is performed in the same manner as the
particle types.

8.2 HOOMD XML→ LAMMPS dump

hoomd2lammps_dump.py converts a series of HOOMD XML files into the
LAMMPS dump format. The output file will be formatted as if generated from the
LAMMPS command dump 1 all atom. The use of scaled coordinates in the output can
be disabled on the command line by specifying the option -noscale.

Say you have an entire series of dump files from dump.xml in the current working
directory. Then

hoomd2lammps_dump.py -o dump.lammpstrj *.xml

will read them all in and write the LAMMPS dump file dump.lammpstrj. HOOMD
writes dump files with the time step zero-padded in the file name, so ∗.xml will list all
dump files in time step order. Any number of files can be specified on the command
line.

The particle type name to type id handling is the same as in hoomd2lammps_-
input.py: HOOMD XML -> LAMMPS input

8.3 Other formats

If you need to convert to a different format, open one of the existing scripts and see if it
can be modified for your needs. The scripts are written in python and the code is easy
to read and modify.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9 Compiling HOOMD 27

9 Compiling HOOMD

Table of contents:

• Software Prerequisites

• Building on Windows

• Building on linux

• Building on Mac OSX

• Build options

9.1 Software Prerequisites

HOOMD requires a number of prerequisite software packages and libraries to be com-
piled.

• Python >= 2.3

• boost >= 1.32.0

• CMake >= 2.6.0

– >= 2.6.1 is recommended on Windows due to an annoying bug in 2.6.0

• Compiler to build source

– gcc on Linux

– Visual Studio Express 2005 on Windows XP

– all code is standard c++ and should work on nearly any other (recent) com-
piler

– note: Visual Studio 9 (aka 2008) does not currently work because of in-
compatibilities with boost and CUDA

• CUDA Toolkit and the appropriate NVIDIA display driver:

– optional, but needed to enable GPU support

• Subversion

• Doxygen >= 1.5.6

– optional but needed if you wish to build the detailed developer documenta-
tion

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.2 Building on Windows 28

Links:

Python - http://www.python.org/

Boost - http://www.boost.org/

CMake - http://www.cmake.org/

CUDA - http://developer.nvidia.com/object/cuda.html

Subversion - http://subversion.tigris.org/

Doxygen - http://www.stack.nl/∼dimitri/doxygen/manual.html

9.2 Building on Windows

1. Install prerequisite software

Click for detailed instructions: Installing Software Prerequisites on Windows

2. Get source code

• Option 1) download and unpack source code from:
http://www.ameslab.gov/hoomd/

• Option 2) Get the latest development source with subversion This command (as-
suming you’ve installed the command line svn tools)

$ svn co https://svn2.assembla.com/svn/hoomd/trunk hoomd

will create a directory hoomd in your current working directory which will con-
tain the current development version of the source code. You can perform the
same operation by right clicking a folder and choosing "SVN Checkout..." when
using TortoiseSVN.

Developers with commit access planning to make changes to the code must use option
2.

3. Run CMake

You should now have a directory hoomd on your hard drive with a subdirectory src
containing the source code. CMake must be run to generate the visual studio project
that will compile HOOMD.

1. Start cmake-gui

2. Set C:\Users\joaander\hoomd\src (modifying to match the location of your
hoomd src directory) in the box labeled "Where is the Source code".

3. Set C:\Users\joaander\hoomd\msvc (again, modified to mach the location of
your hoomd directory) in the box labeled "Where to build the binaries"

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.python.org/
http://www.boost.org/
http://www.cmake.org/
http://developer.nvidia.com/object/cuda.html
http://subversion.tigris.org/
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.ameslab.gov/hoomd/

9.3 Building on linux 29

4. You should now have a screen that looks like this:

5. Click configure and a dialog pops up:

6. Select the IDE you installed (most likely Visual Studio 8 2005) and click OK.

7. After a short wait while CMake should display a screen that looks like this: If
you received an error message instead, it is possible that you are missing one of
the prerequisite software packages or it is installed to a non-standard location.
In the second case, you can click on the text box with CMAKE-SOMETHING-
NOTFOUND in it and specify the full path to the corresponding file or directory.

8. You can configure any of the build options on this screen to your liking. See
Build options for more information on what these options do.

9. Click configure several times until all the red options turn white. Then click
generate the create project file.

10. Close CMake

4. Compile HOOMD

Open up the HOOMD.sln project in visual studio. Press F7 (or use the GUI build
button) to build all executables. You can also make a single target the active project
(right click and choose set as startup project) and press F7 to build only it.

Source can be modified in visual studio, but any files added to the project must be
done via CMake. In most cases, a file can be added simply by placing it in the proper
directory and then rerunning CMake.

If you have a system with more than 1 CPU core, you can greatly improve the
performance of the build by making use of all cores. In VS2005, navigate to the
menu item Tools->Options. In the left tab, select Projects And Solutions->Build
and Run. Set the value for the maximum number of parallel project builds to
be the total number of CPU cores in your system. There is more information at
http://msdn2.microsoft.com/en-us/library/y0xettzf.aspx .

9.3 Building on linux

1. Install prerequisite software

Click for detailed instructions: Installing Software Prerequisites on Linux

2. Get source code

• Option 1) download and unpack source code from:
http://www.ameslab.gov/hoomd/

• Option 2) Get the latest development source with subversion This command

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://msdn2.microsoft.com/en-us/library/y0xettzf.aspx
http://www.ameslab.gov/hoomd/

9.3 Building on linux 30

$ svn co https://svn2.assembla.com/svn/hoomd/trunk hoomd

will create a directory hoomd in your current working directory which will con-
tain the current development version of the source code.

3. Run CMake

CMake needs to be run to generate the make files to compile HOOMD.

$ cd hoomd
$ mkdir bin
$ cd bin
$ cmake-gui ../src

Note: If you are logged into the system remotely, you can launch the text mode tool
ccmake instead of cmake-gui. Press "h" for help on using the text mode tool or see
http://www.cmake.org/HTML/RunningCMake.html

You will then see a screen that looks like this:

Click configure. You should now see a screen like this: Choose your preferred build
environment and click OK. This guide assumes that "Unix Makefiles" was chosen.

Now you should see a screen like this:

If you are building with GPU support enabled, check the ENABLE_CUDA box.

To generate the makefiles now, click configure several times until all the red settings
turn white, then click generate.

You can also scroll down the list of options. Setting the checkbox options will control
whether certain features are compiled in. You must click configure after any change.
Note that in some cases, changing an option to ON will cause other options to ap-
pear. Some options controlled by changing text strings. See Build options for more
information on what these options do.

It is possible that some of your libraries may be in non-standard paths. If this is the
case, CMake will report an error after you click configure. The offending library will
be labeled something like CMAKE_LIB_NOTFOUND. If you know where the library
is, you can specify the full path here and click configure again.

Make sure to click generate again after you make any changes. When you are done,
close cmake-gui.

4. Compile HOOMD

CMake generated make files for make. Just run

$ make -j4

in the bin directory to compile everything. This documentation will even be generated
if ENABLE_DOXYGEN is selected. The -j4 option lets make compile 4 files at once.
It’s best to set the value to twice the number of CPU cores in your system.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.cmake.org/HTML/RunningCMake.html

9.4 Building on Mac OSX 31

5(option a). Install to your home directory (so only you can run it)

Re-enter the CMake options screen:

$ cmake-gui ../src

Set the CMAKE_INSTALL_PREFIX option to a directory of your choice: i.e.
/home/joeuser/software/hoomd. Configure, configure and generate again as you did
before. When you are back at the command line, execute:

$ make install

to install HOOMD to the path you specified.

To run HOOMD, either execute /home/joeuser/software/hoomd/bin/hoomd or add
/home/joeuser/software/hoomd/bin to your $PATH and run hoomd.

5(option b). Install to a system directory (so any user can run it)

Note: You must be root do do this (or run the "make install" command with sudo).
Re-enter the CMake options screen:

$ cmake-gui ../src

Set the CMAKE_INSTALL_PREFIX option to /opt/hoomd Configure, configure and
generate again as you did before. When you are back at the command line, execute:

$ make install

to install HOOMD to the path you specified.

To make the command hoomd available on the $PATH for users, you can either add
/opt/hoomd/bin to the system $PATH or make a soft link /usr/bin/hoomd pointing to
/opt/hoomd/bin/hoomd.

9.4 Building on Mac OSX

1. Install prerequisite software

Click for detailed instructions: Installing Software Prerequisites on Mac OS X

2. Get source code

• Option 1) download and unpack source code from:
http://www.ameslab.gov/hoomd/

• Option 2) Get the latest development source with subversion This command

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ameslab.gov/hoomd/

9.4 Building on Mac OSX 32

$ svn co https://svn2.assembla.com/svn/hoomd/trunk hoomd

will create a directory hoomd in your current working directory which will con-
tain the current development version of the source code.

3. Run CMake

First, click on the CMake icon to run CMake. Enter the location where you extracted
the HOOMD source code in the "Where is the source code box". Specify where you
want the binaries built in the "Where to build the binaries box" (usually in a directory
called bin next to the source code). You should now have a screen that looks like this:

Click configure and CMake will ask you about the build environment. You have two
options here. If there is a particular code editor you prefer and you want to compile
by running make on the command line, select Unix Makefiles and press enter. If you
would rather use XCode as an IDE, select XCode and press enter.

You will then see a screen that looks like this: (this image was captured using the Unix
Makefiles generator. Your screen may be slightly different if you chose Xcode)

If you are building with GPU support enabled, check the ENABLE_CUDA box.

To generate the makefiles (or XCode project) now, click configure several times until
all the red settings turn white, then click generate.

You can also scroll down the list of options. Setting the checkbox options will control
whether certain features are compiled in. You must click configure after any change.
Note that in some cases, changing an option to ON will cause other options to ap-
pear. Some options controlled by changing text strings. See Build options for more
information on what these options do.

It is possible that some of your libraries may be in non-standard paths. If this is the
case, CMake will report an error after you click configure. The offending library will
be labeled something like CMAKE_LIB_NOTFOUND. If you know where the library
is, you can specify the full path here and click configure again.

Make sure to click generate again after you make any changes. When you are done,
close cmake-gui.

4. Compile HOOMD

If you generated make files, just run

$ make -j4

in the bin directory to compile everything and generate this documentation. The -j4
option lets make compile 4 files at once. It’s best to set the value to twice the number
of CPU cores in your system.

If you generated an XCode project, open it in XCode and click the build button to
compile HOOMD. Note that while source code can be edited via XCode, any files

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.5 Build options 33

added to the project must be done with CMake, not the XCode project management.
In most cases, this can be done by simply adding the file to the proper directory and
rerunning CMake.

5(option a). Install to your home directory (so only you can run it)

Re-enter the CMake options screen:

$ cmake-gui ../src

Set the CMAKE_INSTALL_PREFIX option to a directory of your choice: i.e.
/home/joeuser/software/hoomd. Configure, configure and generate again as you did
before. When you are back at the command line, execute:

$ make install

(or build the INSTALL target in XCode) to install HOOMD to the path you specified.

To run HOOMD, either execute /home/joeuser/software/hoomd/bin/hoomd or add
/home/joeuser/software/hoomd/bin to your $PATH and run hoomd.

5(option b). Install to a system directory (so any user can run it)

Note: You must be root do do this (or run the "make install" command with sudo).
Re-enter the CMake options screen:

$ cmake-gui ../src

Set the CMAKE_INSTALL_PREFIX option to /opt/hoomd Configure, configure and
generate again as you did before. When you are back at the command line, execute:

$ make install

(or build the INSTALL target in XCode) to install HOOMD to the path you specified.

To make the command hoomd available on the $PATH for users, you can either add
/opt/hoomd/bin to the system $PATH or make a soft link /usr/bin/hoomd pointing to
/opt/hoomd/bin/hoomd.

9.5 Build options

Here is a list of all the build options that can be changed by CMake.

• CMAKE_BUILD_TYPE - sets the build type (Makefile generation only,
XCode and Visual Studio can change the build type from within their GUIs)

– Debug - Compiles debug information into the library and executables. En-
ables asserts to check for programming mistakes. HOOMD will run very
slow if compiled in Debug mode, but problems are easier to identify.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.5 Build options 34

– Release - All compiler optimizations are enabled and asserts are removed.
Recommended for production builds: required for any benchmarking.

• ENABLE_DOXYGEN - enables the generation of detailed user and developer
documentation

– Requires doxygen to be installed

• SINGLE_PRECISION - Controls precision

– When set to ON, all calculations are performed in single precision.

– When set to OFF, all calculations are performed in double precision.

– Must be set to ON to enable the ENABLE_CUDA option (GPUs are single
precision)

• ENABLE_CUDA - Enable compiling of the GPU accelerated computations us-
ing CUDA

– Requires the CUDA Toolkit to be installed

• ENABLE_STATIC - Controls the compiling and linking of static libraries

– When set to ON, libhoomd is compiled as a static library and all other
libraries (i.e. boost) are linked statically if possible.

– When set to OFF, libhoomd is compiled as a dynamic library and all other
libraries are linked dynamically if possible.

– Note: ENABLE_STATIC=OFF is not supported on windows.

– Note 2: ENABLE_STATIC defaults ON and can only be set off from the
command line and when configuring a clean build directory. Example:

ccmake -D ENABLE_STATIC=OFF ../src

• ENABLE_VALGRIND - (Linux only) Runs every unit test through valgrind
for hardcore testing/debugging. If used with CUDA, device emulation mode is
recommended.

There are a few options for controlling the CUDA compilation.

• CUDA_BUILD_CUBIN - Enables a display of register usage for each kernel
compiled.

• CUDA_BUILD_TYPE - Controls device/emulation builds

– Device - will compile all GPU kernels to run on the GPU hardware

– Emulation - will compile all GPU kernels in a CPU emulation mode. This
emulation mode is very slow, but does allow developers without G80 cards
to compile and test changes to GPU-related code. Actual kernel develop-
ment is not recommended without a hardware device to run on.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.6 Installing Software Prerequisites on Windows 35

• NVCC_USER_FLAGS - Allows additional flags to be passed to nvcc.

– If you are building HOOMD for execution solely on G200 and newer
GPUs, set NVCC_USER_FLAGS to -arch;sm_13;-DARCH_SM13 to take
advantage of the hardware features present in those GPUs. This boosts
HOOMD’s overall performance.

9.6 Installing Software Prerequisites on Windows

9.6.1 Visual Studio

First things first, you will need a compiler to build C++ applications. If you
don’t already have one, that is not a problem. You can download and in-
stall a fully featured IDE and compiler, Visual C++ Express 2005 from here:
http://www.microsoft.com/express/2005/ . (note, if you search around
you will find that there is a newer express verion, 2008, but it is not currently supported
by NVIDIA CUDA, has problems with the current version of boost and thus should not
be used).

After installing Visual C++ Express, you absolutely, positively, most certainly
MUST install Service Pack 1 for it. This can be done using Windows Update or by
accessing Help->Update from within Visual Studio.

If you install the express edition, you must also follow the link from
http://www.microsoft.com/express/2005/ to download the Windows
Platform SDK (ignore that the platform sdk says it is for windows 2003 server, it
works on XP). If you get an option, the preferred installation path is C:\Program
Files\Microsoft Platform SDK.

Only a few options need to be activated for the install, namely the Windows Core
SDK, and only those components you really need for your architecture as shown in
this screenshot (shown for the x86 32-bit arch).

All other installation options can be disabled (not all shown).

After installing the SDK, you need to set some paths. Open Visual Studio and select the
Tools menu and then select Options... Navigate to the section Projects and Solutions
-> VC++ Directories. As shown in this image: (yours may look slightly different
from this one).

Using the upper right drop down box labeled "Show directories for" add

C:\Program Files\Microsoft Platform SDK\bin to Executables

C:\Program Files\Microsoft Platform SDK\include to Include files

and C:\Program Files\Microsoft Platform SDK\lib to Library files

These are accomplished in the image above with the environment variable, but you do
not need to do the same, just type in the full path where you installed the platform SDK

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.microsoft.com/express/2005/
http://www.microsoft.com/express/2005/

9.6 Installing Software Prerequisites on Windows 36

directly or use the file chooser dialog box.

Note: If you intend to build installer packages to be redis-
tributed, make sure that the registry key [HKEY_LOCAL_-
MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0;InstallDir] is set properly
(typically C:\Program Files (x86)\Microsoft Visual Studio 8\Common7\IDE). You
need this to get proper installation of the VS redistributable dlls required to run
HOOMD on user’s machines.

9.6.2 Python

Download and install python binaries from http://www.python.org. If you
choose to download the boost binaries (below), you must install python version 2.5.1.
If you plan to build boost from source, you can install any version of python you like,
as long as it is newer than 2.3.

9.6.3 Boost

Option 1: Install binaries. Easy, but it only supports version 2.5.x of python (for
boost 1.35.0, this may differ for the other boost versions, depending on which version
of python boost-consulting compiled them against).

Download the boost 1.35.0 installer from here
http://www.boostpro.com/products/free . When you run it, you
will get an option screen that looks like this: Select the options as indicated. You may
also be interested in the "Multithread, Debug DLL" and "Multithread, DLL" versions
of the libraries, but only select those options if you are an expert HOOMD developer
and really know all the implications in linking HOOMD to boost dynamically.

Option 2: Compile from source. Difficult, but enables the use of any supported
version of python. These instructions are really only intended for advanced users and
developers that will be building statically linked builds for download.

Download the source code from http://www.boost.org. This document as-
sumes you have downloaded boost 1.34.1 (these instructions are known not to work for
1.35 without modifications which will be added eventually). Additionally, you must
download and install python before continuing. Instructions are above.

Download the source code for

bzip: http://www.bzip.org/downloads.html

zlib: http://www.zlib.net/

The full instructions for building boost are here:
http://www.boost.org/more/getting_started/windows.html. A
summary of the commands needed are listed below.

1. Download bjam: http://sourceforge.net/project/showfiles.php?group_-

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.python.org.
http://www.boostpro.com/products/free
http://www.boost.org.
http://www.bzip.org/downloads.html
http://www.zlib.net/
http://www.boost.org/more/getting_started/windows.html.
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=72941
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=72941

9.6 Installing Software Prerequisites on Windows 37

id=7586&package_id=72941 You will need the file boost-jam-3.1.16-1-
ntx86.zip

2. Extract everything to a nice place. These instructions assume that boost,
zlib and bzip2 are all extracted to c:\libraries and bjam.exe is extracted to
c:\libraries\bjam.exe .

3. To compile, first open a build environment: Start->Microsoft Platform SDK->Open
Build Environment Window->Windows XP 32-bit Build Environment->Set Windows
XP 32-bit Build Environment (Retail)

4. In the terminal window that opens, cd to the extracted boost_1_34_1 directory and
run the following command, then wait a long time for everything to compile. It is
easiest to copy the entire command as one line and paste it (right click and choose
paste in the command line window). If you extracted anything to different locations,
you will need to change the values in the command line.

C:\libraries\bjam.exe --toolset="msvc" -sNO_COMPRESSION=
-sNO_BZIP2= -sNO_ZLIB= -sBZIP2_SOURCE="c:\libraries\bzip2-1.0.4"
-sZLIB_SOURCE="c:\libraries\zlib-1.2.3" python=2.5 stage

Note: bjam will NOT give any errors if any paths are specified incorrectly. Adding
–debug-configuration to the end of the command line will provide some information,
but not enough to really tell what is going on. The only way to be certain that bzip
and zlib are being compiled in is to check at the end for compiled libraries containing
zlib and bzip2 in their file names (it is easiest to check after the install step below).
Fortunately, if a path is entered incorrectly, you can just rerun this command with the
modified path and it will only recompile what is needed so it won’t take very long.

Then, run the next command (below). It will install boost header files and libraries into
c:\opt (you can change the location by changing the value after –prefix).

C:\libraries\bjam.exe --toolset="msvc" -sNO_COMPRESSION= -sNO_BZIP2=
-sNO_ZLIB= -sBZIP2_SOURCE="c:\libraries\bzip2-1.0.4"

-sZLIB_SOURCE="c:\libraries\zlib-1.2.3" python=2.5
--prefix=c:\opt install

For CMake to find your newly compiled boost libraries, you must set the environment
variable BOOST_ROOT to c:\opt (or wherever you installed boost).

9.6.4 CUDA

Download and install the latest toolkit from http://www.nvidia.com/object/cuda_-
get.html#windows. There is no need to install the SDK. If you have a CUDA
capable graphics card, you will also need the driver listed on that page in order to
execute HOOMD on the GPU. If you do not have a CUDA capable graphics card, you
can still install the toolkit and compile HOOMD in CPU emulation mode. It is quite
slow, but developers can use it to test any code they work on that touches GPU classes.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=72941
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=72941
http://www.nvidia.com/object/cuda_get.html#windows.
http://www.nvidia.com/object/cuda_get.html#windows.

9.7 Installing Software Prerequisites on Linux 38

9.6.5 CMake

Download the latest CMake installer from here:
http://www.cmake.org/HTML/Download.html

9.6.6 Subversion

TortoiseSVN is a nice graphical interface to subversion that integrates into the windows
explorer. Download from here: http://tortoisesvn.net/

If you prefer a command line, you can download one from here:
http://www.sliksvn.com/en/download

There is nothing against installing both. One useful reason to do this is to enable
HOOMD executables to report the svnversion they were compiled from. This can only
be done if the command line tool is installed.

9.7 Installing Software Prerequisites on Linux

This page assumes that you have a standard terminal window open. Commands to run
will be indicated as below:

$ echo hello
hello

" $ " indicates a shell prompt. As demonstrated above, if you type "echo hello", then
you should see the same output obtained above on the next line: "hello"

The process for installing software/libraries differs from linux distribution to distribu-
tion. In Gentoo (http://www.gentoo.org/)

$ emerge python

would install python. Look at your linux distribution’s documentation to find how to
install packages on your system (i.e. yum, apt-get, up2date, or another). You may need
to "su -" to become root before installing.

9.7.1 Python

First, check if python is already installed

$ python -V
Python 2.4.4

Make sure that the version is 2.3 or greater. If you get

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.cmake.org/HTML/Download.html
http://tortoisesvn.net/
http://www.sliksvn.com/en/download
http://www.gentoo.org/

9.7 Installing Software Prerequisites on Linux 39

bash: python: command not found

or have a version older than 2.3, you will need to upgrade/install python. Note that
you will also need the python development libraries which some distributions might
separate into into python-devel or some such. The existence of the python development
package can be tested by checking the output of

$ ls /usr/include/python2.X/Python.h
/usr/include/python2.X/Python.h

where X is replaced with the major version of python that you have (i.e. For python
2.4.4 above, X would be 4). If this returned

ls: cannot access /usr/include/python2.X/Python.h: No such file or directory

then you do not have the python development libraries installed.

9.7.2 Boost

First, check if boost is already installed

$ grep BOOST_LIB_VERSION /usr/include/boost/version.hpp
// BOOST_LIB_VERSION must be defined to be the same as BOOST_VERSION
#define BOOST_LIB_VERSION "1_34_1"

Make sure that the version is 1_32_0 or newer. If you get

grep: /usr/include/boost/version.hpp: No such file or directory

then boost is not installed. You can upgrade/install boost with your distribution’s pack-
age manager. You may need to install the boost-static package to get the static libraries
needed by HOOMD.

If your distribution doesn’t have a new enough version of boost, you can build it by
hand. Go to http://www.boost.org , download the latest source code and un-
pack it. cd to the source directory and run

$ mkdir /home/user/software
$./configure --with-python-version=2.5 --prefix=/home/user/software/

By default, only shared libraries are built. HOOMD expects static libraries by default,
so open up Makefile in your favorite text editor and make the following change (for
building boost 1.35 or newer):

BJAM_CONFIG=variant=release threading=multi link=shared,static

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.boost.org

9.7 Installing Software Prerequisites on Linux 40

Then you can build and install boost with the following commands.

$ make
$ make install

Be prepared to wait a while: boost takes a long time to compile.

Before running ccmake or cmake-gui, set the following environment variables to the
location where you installed boost:

$ export BOOST_ROOT=/home/joaander/software
$ ccmake ../src # or run cmake-gui
... continue with build instructions ...

9.7.3 Compiler

These instructions test for the installation of gcc. Other C++ compilers can be used if
you wish, though compilations with CUDA enabled are only supported with gcc.

Test if g++ is installed.

$ g++ --version
$ g++ (GCC) 4.1.2 (Gentoo 4.1.2)

Any version should do. If you get

bash: g++: command not found

then you will need to install gcc using your distributions package management system.

9.7.4 CMake

It is not very likely that your linux distribution includes CMake by default, but check
anyways.

$ cmake --version
cmake version 2.6-patch 1

Make sure the version is 2.6 or later. If you have an old version or get

bash: cmake: command not found

then you will need to upgrade/install CMake. Try your distributions package manager
first. I.e. in Gentoo

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.7 Installing Software Prerequisites on Linux 41

$ emerge cmake

If your distribution does not have a cmake package, then you can install it into your
home directory by hand. First, download cmake-2.6.1-Linux-i386.tar.gz from the
Downloads section at http://www.cmake.org. Unpack the tarball to any loca-
tion you prefer: this example assumes you are installing it to the ${HOME}/software

$ mkdir ~/software
$ mv cmake-2.6.1-Linux-i386.tar.gz ~/software/
$ cd ~/software
$ tar -xvzf cmake-2.6.1-Linux-i386.tar.gz

Then you need to put the bin directory for cmake into your path. If you use bash for a
shell you can do this by editing ∼/.bashrc. Look for a line with PATH=... and add the
cmake directory to the end separated by a colon. If you can’t find the line, create it like
so.

PATH=$PATH:$HOME/software/cmake-2.6.1-Linux-i386/bin
export PATH

Restart your bash shell (or open a new one) and try the version check above to test your
installation.

9.7.5 CUDA

Even if you do not have the needed graphics hardware to run, you can still install the
CUDA toolkit and run executables in emulation mode. The emulation is slow, but
will allow you to develop and test any changes you make that affect any of the ∗GPU
classes.

CUDA is quite new and it is not likely that there is a
package available through your linux distribution. Go to
http://developer.nvidia.com/object/cuda.html#downloads
and download the latest CUDA toolkit for you architecture and linux distribution. If
your distribution isn’t listed, pick one that looks close, it will likely work. To install,
simply go to the directory where you downloaded the toolkit and run:

$ bash NVIDIA_CUDA_Toolkit_2.0_rhel5_x86_64.run

Note, this example lists a specific file: change the command to match the file that you
downloaded. The file is a self-unpacking and installing script. Just accept the default
location if you have root access to install, or install to ∼/CUDA or anywhere else you
please.

Open up ∼/.bashrc in your favorite text editor and add the following line:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.cmake.org.
http://developer.nvidia.com/object/cuda.html#downloads

9.8 Installing Software Prerequisites on Mac OS X 42

export LD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH
export PATH=$PATH:/usr/local/cuda/bin

Change the paths on these lines if you did not install to the default location.

If you have a CUDA capable graphics card, you will also need the proper graphics
driver version. See the CUDA webpage linked to above for more information.

If you wish, you can download the CUDA SDK from the same website and compile
the example files to test your CUDA installation. The CUDA SDK is not required to
compile or run HOOMD, however.

9.7.6 Subversion

Subversion is used for version control. You need to install it if you have commit ac-
cess and are going to work on active development of HOOMD, or if you just want to
download and compile the latest and greatest version.

First, see if you already have subversion installed.

$ svn --version
svn, version 1.4.4 (r25188)

If you get

-bash: svn: command not found

then you will need to install it with your distribution’s package manager.

9.8 Installing Software Prerequisites on Mac OS X

Here are detailed instructions on installing the prerequisite software for Mac OS X.
They list everything that needs to be done from a clean install of the operating system.
If you have already installed something listed here, you can skip it of course.

This page assumes that you have a standard terminal window open in some cases.
Commands to run will be indicated as below:

$ echo hello
hello

" $ " indicates a shell prompt. As demonstrated above, if you type "echo hello", then
you should see the same output obtained above on the next line: "hello"

1. Install XCode

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

9.8 Installing Software Prerequisites on Mac OS X 43

Mac OS X doesn’t come with a c++ compiler. You need to download and install XCode
from here: http://developer.apple.com/tools/xcode/ Install version
2.5 if you have Mac OS X 10.4, or 3.0 if you have Mac OS X 10.5.

2. Install python

If you are running Mac OS X 10.4, you need to download and install the latest version
of python (2.5.1) from http://www.python.org/download/ . Users on 10.5
(Leopard) probably skip this step.

3. Download and compile boost

Building boost is a fairly complicated and time consuming process.

Start by downloading boost_1_36_0.tar.bz2 from http://www.boost.org/.
Extract the tarball and configure boost for building with the following commands.

$ tar -xjf boost_1_36_0.tar.bz2
$ cd boost_1_36_0
$./configure
lding Boost.Jam with toolset darwin...
tools/jam/src/bin.macosxx86/bjam
-n Detecting Python version...
2.5
-n Detecting Python root...
/System/Library/Frameworks/Python.framework/Versions/2.5
-n Unicode/ICU support for Boost.Regex?...
not found.
Generating Boost.Build configuration in user-config.jam...
Generating Makefile...

Users who downloaded and installed python from www.python.org may need to run
the configure command with the following argument in order for python to properly be
detected.

$./configure --with-python=/Library/Frameworks/Python.framework/Versions/Current/bin/python

Now, the default settings from configure generate unoptimized boost libraries. We can’t
have that since HOOMD is all about speed, so open the Makefile

$ open Makefile

You need to make the following change (for building boost 1.35 or newer):

BJAM_CONFIG=variant=release threading=multi link=shared,static

Now, run the command

$ make

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://developer.apple.com/tools/xcode/
http://www.python.org/download/
http://www.boost.org/.

9.8 Installing Software Prerequisites on Mac OS X 44

and wait a long time for everything to compile. At the end, you should see a message
saying

...updated 747 targets...

Now, you are ready to install the library (requires administrator privleges).

$ sudo make install

After typing in your password and a considerably shorter wait, you should see

...updated 7079 targets...

again. Boost is now installed.

You can delete the boost_1_34_1 directory now if you wish. It might be worth saving
for a little while until you have compiled HOOMD and know everything is working so
that you won’t need to go through all the setup steps again. A common error may be
to forget the "sudo" in the last command which will result in boost not being installed
and no obvious error message as to why. Just run the command again with the sudo if
this is the case.

4. CMake

Download and install the CMake 2.6.1 or newer dmg from
http://www.cmake.org/.

5. CUDA

Even if you do not have the needed graphics hardware to run, you can still install the
CUDA toolkit and run executables in emulation mode. The emulation is slow, but
will allow you to develop and test any changes you make that affect any of the ∗GPU
classes.

Go to http://developer.nvidia.com/object/cuda.html#downloads
and download the latest CUDA toolkit. Double-click on the downloaded package to
install it.

One more step needs to be performed so that applications can find the CUDA libraries.
Open up ∼/.bash_profile in your favorite text editor and add the following line:

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH
export PATH=$PATH:/usr/local/cuda/bin

Change the paths on these lines if you did not install to the default location.

If you wish, you can download the CUDA SDK from the same website and compile
the example files to test your CUDA installation. The CUDA SDK is not required to
compile or run HOOMD, however.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.cmake.org/.
http://developer.nvidia.com/object/cuda.html#downloads

10 License 45

6. Subversion

Subversion is used for version control. You need to install it if you have commit ac-
cess and are going to work on active development of HOOMD, or if you just want to
download and compile the latest and greatest version.

Subversion is included in Mac OS X 10.5 and newer. If you are building HOOMD on
an older version, subversion on Mac OS X is most easily installed from the dmg from
here: http://downloads.open.collab.net/binaries.html

7. Doxygen

If you want to build this documentation from source, you will need
to install Doxygen. There is a dmg available for download at
http://www.stack.nl/∼dimitri/doxygen/ .

10 License

Highly Optimized Object-Oriented Molecular Dynamics (HOOMD) Open
Source Software License
Copyright (c) 2008 Ames Laboratory Iowa State University
All rights reserved.

Redistribution and use of HOOMD, in source and binary forms, with or
without modification, are permitted, provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names HOOMD’s
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND
CONTRIBUTORS ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://downloads.open.collab.net/binaries.html
http://www.stack.nl/~dimitri/doxygen/

11 Credits 46

11 Credits

HOOMD Developers:

Joshua Anderson, ISU and Ames Lab - primary developer

• Initial code architecture design

• Neighbor list generation

• Lennard-Jones forces

• Harmonic bond forces

• NVE and NVT integration

• hoomd_script design & implementation

• hoomd_xml file format design & implementation

• MOL2 & DCD file format writers

• Random polymer generator

• IMD interface for VMD

• Documentation

• analyze.log design and implementation

• analyze.msd implementation

Alex Travesset, ISU and Ames Lab - his advisor

• Electrostatic forces

Rastko Sknepnek, ISU and Ames Lab - additional development

• NPT integration

Carolyn Phillips, University of Michigan - additional development

• FENE bond forces

• Shifted LJ forces

• Testing and debugging HOOMD on Mac OS X systems

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

11 Credits 47

Source code

Sockets code from VMD is used for the IMDInterface to VMD
(http://www.ks.uiuc.edu/Research/vmd/) - Used under the VMD
License

This software includes code developed by the Theoretical and Computational Bio-
physics Group in the Beckman Institute for Advanced Science and Technology at the
University of Illinois at Urbana-Champaign.

XML parsing is performed with XML.c from
http://www.applied-mathematics.net/tools/xmlParser.html -
Used under the BSD License

Copyright (c) 2002, Frank Vanden Berghen

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of the Frank Vanden Berghen nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

FindCUDA.cmake (http://www.sci.utah.edu/∼abe/FindCuda.html)
has been modified slightly and is used as part of the build system - Used under the
MIT License

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.ks.uiuc.edu/Research/vmd/
http://www.applied-mathematics.net/tools/xmlParser.html
http://www.sci.utah.edu/~abe/FindCuda.html

11 Credits 48

Copyright (c) 2007

Scientific Computing and Imaging Institute, University of Utah

License for the specific language governing rights and limitations under Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and asso-
ciated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

Saru is used for random number generation - Used under the following license

Copyright (c) 2008 Steve Worley < m a t h g e e k@(my last name).com >

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFT-
WARE.

Libraries

(distributed in a linked binary form if you downloaded a HOOMD static build)

boost - Used under the Boost Software License, Version 1.0
(http://www.boost.org/LICENSE_1_0.txt)

zlib - Used under the zlib license (http://www.zlib.net/zlib_-
license.html)

bzip2 - Used under the bzip2 license (http://www.bzip.org)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

http://www.boost.org/LICENSE_1_0.txt
http://www.zlib.net/zlib_license.html
http://www.zlib.net/zlib_license.html
http://www.bzip.org

12 Namespace Documentation 49

12 Namespace Documentation

12.1 Package hoomd_script

Base module for the user-level scripting API.

Packages

• package analyze
Commands that analyze the system and provide some output.

• package bond
Commands that specify bond forces.

• package dump
Commands that dump particles to files.

• package force
Other types of forces.

• package globals
Global variables.

• package init
Data initialization commands.

• package integrate
Commands that integrate the equations of motion.

• package pair
Commands that create forces between pairs of particles.

• package update
Commands that modify the system state in some way.

• package wall
Commands that specify wall forces.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.1 Package hoomd_script 50

Classes

• class group
Defines a group of particles.

Functions

• def run
Runs the simulation for a given number of time steps.

• def group_type
Groups particles by type.

• def group_tags
Groups particles by tag.

• def group_all
Groups all particles.

12.1.1 Detailed Description

Base module for the user-level scripting API.

hoomd_script provides a very high level user interface for executing simulations us-
ing HOOMD. This python module is designed to be imported into python with "from
hoomd_script import ∗"

More details to add later...

12.1.2 Function Documentation

12.1.2.1 def hoomd_script.group_all ()

Groups all particles.

Creates a particle group from all particles in the simulation. The group can then be used
by other hoomd_script commands (such as analyze.msd) to specify which particles
should be operated on.

Particle groups can be combined in various ways to build up more complicated
matches. See group for information and examples.

Examples:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.1 Package hoomd_script 51

all = group_all()

12.1.2.2 def hoomd_script.group_tags (tag_min, tag_max = None)

Groups particles by tag.

Parameters:

tag_min First tag in the range to include (inclusive)

tag_max Last tag in the range to include (inclusive)

The second argument (tag_max) is optional. If it is not specified, then a single particle
with tag=tag_min will be added to the group.

Creates a particle group from particles that match the given tag range. The group can
then be used by other hoomd_script commands (such as analyze.msd) to specify which
particles should be operated on.

Particle groups can be combined in various ways to build up more complicated
matches. See group for information and examples.

Examples:

half1 = group_tags(0, 999)
half2 = group_tags(1000, 1999)

12.1.2.3 def hoomd_script.group_type (type)

Groups particles by type.

Parameters:

type Name of the particle type to add to the group

Creates a particle group from particles that match the given type. The group can then
be used by other hoomd_script commands (such as analyze.msd) to specify which par-
ticles should be operated on.

Particle groups can be combined in various ways to build up more complicated
matches. See group for information and examples.

Examples:

groupA = group_type(’A’)
groupB = group_type(’B’)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.2 Package hoomd_script.analyze 52

12.1.2.4 def hoomd_script.run (tsteps, profile = False)

Runs the simulation for a given number of time steps.

Parameters:

tsteps Number of timesteps to advance the simulation by

profile Set to true to enable detailed profiling

Examples:

run(1000)
run(10e6)
run(10000, profile=True)

Execute the run() command to advance the simulation forward in time. During the run,
all previously specified analyzers, dumps, updaters and the integrators are executed
every so many time steps as specified by their individual periods.

After run() completes, you may change parameters of the simulation (i.e. temperature)
and continue the simulation by executing run() again. Time steps are added cumula-
tively, so calling run(1000) and then run(2000) would run the simulation up to time
step 3000.

run() cannot be executed before the system is initialized. In most cases, it also doesn’t
make sense to execute run() until after pair forces, bond forces, and an integrator have
been created.

When profile is True, a detailed breakdown of how much time was spent in each portion
of the calculation is printed at the end of the run. Collecting this timing information
can slow the simulation on the GPU by ∼5 percent, so only enable profiling for testing
and troubleshooting purposes.

12.2 Package hoomd_script.analyze

Commands that analyze the system and provide some output.

Classes

• class imd
Sends simulation snapshots to VMD in real-time.

• class log
Logs a number of calculated quanties to a file.

• class msd

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.3 Package hoomd_script.bond 53

Calculates the mean-squared displacement of groups of particles and logs the values
to a file.

12.2.1 Detailed Description

Commands that analyze the system and provide some output.

An analyzer examines the system state in some way every period time steps and gener-
ates some form of output based on the analysis. Check the documentation for individual
analyzers to see what they do.

12.3 Package hoomd_script.bond

Commands that specify bond forces.

Classes

• class harmonic
Harmonic bond forces.

• class fene
FENE bond forces.

12.3.1 Detailed Description

Commands that specify bond forces.

Bonds add forces between specified pairs of particles and are typically used to model
chemical bonds. Bonds between particles are set when an input XML file is read
(init.read_xml) or when an another initializer creates them (like init.create_random_-
polymers)

By themselves, bonds that have been specified in an input file do nothing. Only when
you specify a bond force (i.e. bond.harmonic), are forces actually calculated between
the listed particles.

12.4 Package hoomd_script.dump

Commands that dump particles to files.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.5 Package hoomd_script.force 54

Classes

• class xml
Writes simulation snapshots in the HOOMD XML format.

• class mol2
Writes a simulation snapshot in the MOL2 format.

• class dcd
Writes simulation snapshots in the DCD format.

12.4.1 Detailed Description

Commands that dump particles to files.

Commands in the dump package write the system state out to a file every period time
steps. Check the documentation for details on which file format each command writes.

12.5 Package hoomd_script.force

Other types of forces.

Classes

• class constant
Constant force.

12.5.1 Detailed Description

Other types of forces.

This package contains various forces that don’t belong in any of the other categories

12.6 Package hoomd_script.globals

Global variables.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.7 Package hoomd_script.init 55

Variables

• particle_data = None;
Global variable that holds the ParticleData shared by all parts of hoomd_script.

• system = None;
Global variable that holds the System shared by all parts of hoomd_script.

• list forces = []
Global variable that tracks the all of the force computes specified in the script so far.

• integrator = None;
Global variable tracking the last _integrator set.

• neighbor_list = None;
Global variable tracking the system’s neighborlist.

• list loggers = []
Global variable tracking all the loggers that have been created.

12.6.1 Detailed Description

Global variables.

To present a simple procedural user interface, hoomd_script needs to track many vari-
ables globally. These are stored here.

User scripts are not intended to access these variables. However, there may be some
special cases where it is needed. Any variable defined here can be accessed in a user
script by prepending "globals." to the variable name. For example, to access the global
ParticleData, a user script can access globals.particle_data .

12.7 Package hoomd_script.init

Data initialization commands.

Functions

• def read_xml
Reads initial system state from an XML file.

• def create_random

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.7 Package hoomd_script.init 56

Generates N randomly positioned particles of the same type.

• def create_random_polymers
Generates any number of randomly positioned polymers of configurable types.

12.7.1 Detailed Description

Data initialization commands.

Commands in the init package initialize the particle system. Initialization via any of
the commands here must be done before any other command in hoomd_script can be
run.

See also:

Quick Start Tutorial

12.7.2 Function Documentation

12.7.2.1 def hoomd_script.init.create_random (N, phi_p, name = "A", min_dist
= 0.7)

Generates N randomly positioned particles of the same type.

Parameters:

N Number of particles to create

phi_p Packing fraction of particles in the simulation box

name Name of the particle type to create

min_dist Minimum distance particles will be separated by

Examples:

init.create_random(N=2400, phi_p=0.20)
init.create_random(N=2400, phi_p=0.40, min_dist=0.5)

N particles are randomly placed in the simulation box. The dimensions of the created
box are such that the packing fraction of particles in the box is phi_p. The number
density n is related to the packing fraction by n = 6/π ·φP assuming the particles have
a radius of 0.5. All particles are created with the same type, given by name.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.7 Package hoomd_script.init 57

12.7.2.2 def hoomd_script.init.create_random_polymers (box, polymers, sepa-
ration, seed = 1)

Generates any number of randomly positioned polymers of configurable types.

Parameters:

box BoxDim specifying the simulation box to generate the polymers in

polymers Specification for the different polymers to create (see below)

separation Separation radii for different particle types (see below)

seed Random seed to use

Any number of polymers can be generated, of the same or different types, as specified
in the argument polymers. Parameters for each polymer, include bond length, particle
type list, bond list, and count.

The syntax is best shown by example. The below line specifies that 600 block copoly-
mers A6B7A6 with a bond length of 1.2 be generated.

polymer1 = dict(bond_len=1.2, type=[’A’]*6 + [’B’]*7 + [’A’]*6,
bond="linear", count=600)

Here is an example for a second polymer, specifying just 100 polymers made of 4 B
beads bonded in a branched pattern

polymer2 = dict(bond_len=1.2, type=[’B’]*4,
bond=[(0, 1), (1,2), (1,3), (3,4)] , count=100)

The polymers argument can be given a list of any number of polymer types specified
as above. count randomly generated polymers of each type in the list will be generated
in the system.

In detail:

• bond_len defines the bond length of the generated polymers. This should not
necesarily be set to the equilibrium bond length! The generator is dumb and
doesn’t know that bonded particles can be placed closer together than the sepa-
ration (see below). Thus bond_len must be at a minimum set at twice the value
of the largest separation radius. An error will be generated if this is not the case.

• type is a python list of strings. Each string names a particle type in the order that
they will be created in generating the polymer.

• bond can be specified as "linear" in which case the generator connects all parti-
cles together with bonds to form a linear chain. bond can also be given a list if
python tuples (see example above). Each tuple in the form of (a,b) specifies that
particle a of the polymer be bonded to particle b.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.7 Package hoomd_script.init 58

separation must contain one entry for each particle type specified in polymers (’A’ and
’B’ in the examples above). The value given is the separation radius of each particle of
that type. The generated polymer system will have no two overlapping particles.

Examples:

init.create_random_polymers(box=hoomd.BoxDim(35),
polymers=[polymer1, polymer2],
separation=dict(A=0.35, B=0.35));

init.create_random_polymers(box=hoomd.BoxDim(31),
polymers=[polymer1],
separation=dict(A=0.35, B=0.35), seed=52);

init.create_random_polymers(box=hoomd.BoxDim(18,10,25),
polymers=[polymer2],
separation=dict(A=0.35, B=0.35), seed=12345);

With all other parameters the same, create_random_polymers will always create the
same system if seed is the same. Set a different seed (any integer) to create a different
random system with the same parameters. Note that different versions of HOOMD
may generate different systems even with the same seed due to programming changes.

Note:

1. For relatively dense systems (packing fraction 0.4 and higher) the simple ran-
dom generation algorithm may fail to find room for all the particles and print an
error message. There are two methods to solve this. First, you can lower the
separation radii allowing particles to be placed closer together. Then setup inte-
grate.nve with the limit option set to a relatively small value. A few thousand time
steps should relax the system so that the simulation can be continued without the
limit or with a different integrator. For extremely troublesome systems, generate
it at a very low density and shrink the box with the command ___ (which isn’t
written yet) to the desired final size.
2. The polymer generator always generates polymers as if there were linear chains.
If you provide a non-linear bond topology, the bonds in the initial configuration
will be stretched significantly. This normally doesn’t pose a problem for harmonic
bonds (bond.harmonic) as the system will simply relax over a few time steps, but
can cause the system to blow up with FENE bonds (bond.fene).
3. While the custom bond list allows you to create ring shaped polymers, testing
shows that such conformations have trouble relaxing and get stuck in tangled con-
figurations. If you need to generate a configuration of rings, you may need to write
your own specialized initial configuration generator that writes HOOMD XML in-
put files (see XML File Format). HOOMD’s built-in polymer generator attempts
to be as general as possible, but unfortunately cannot work in every possible case.
4. The bond type is named ’polymer’ must be used in specifying bond coefficients
in command such as bond.harmonic

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.8 Package hoomd_script.integrate 59

12.7.2.3 def hoomd_script.init.read_xml (filename)

Reads initial system state from an XML file.

Parameters:

filename File to read

Examples:

init.read_xml(filename="data.xml")
init.read_xml(filename="directory/data.xml")

All particles, bonds, etc... are read from the XML file given, setting the initial condition
of the simulation. After this command completes, the system is initialized allowing
other commands in hoomd_script to be run. For more details on the file format read by
this command, see XML File Format.

12.8 Package hoomd_script.integrate

Commands that integrate the equations of motion.

Classes

• class nvt
NVT Integration via the Nosé-Hoover thermostat.

• class npt
NPT Integration via the Nosé-Hoover thermostat, Anderson barostat.

• class nve
NVE Integration via Velocity-Verlet.

• class bdnvt
NVT integration via Brownian dynamics.

12.8.1 Detailed Description

Commands that integrate the equations of motion.

Commands beginning with integrate. specify the integrator to use when advancing
particles forward in time. By default, no integrator is specified. An integrator can
specified anywhere before executing the run() command, which will then use the last

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.9 Package hoomd_script.pair 60

integrator set. If a number of integrators are created in the script, the last one is the
only one to take effect. For example:

integrate.nvt(dt=0.005, T=1.2, tau=0.5)
integrate.nve(dt=0.005)
run(100)

In this example, the nvt integration is ignored as the creation of the nve integrator
overwrote it.

However, it is valid to run() a number of time steps with one integrator and then replace
it with another before the next run().

Some integrators provide parameters that can be changed between runs. In order to
access the integrator to change it, it needs to be saved in a variable. For example:

integrator = integrate.nvt(dt=0.005, T=1.2, tau=0.5)
run(100)
integrator.set_params(T=1.0)
run(100)

This code snippet runs the first 100 time steps with T=1.2 and the next 100 with T=1.0

12.9 Package hoomd_script.pair

Commands that create forces between pairs of particles.

Classes

• class coeff
Defines pair coefficients.

• class nlist
Interface for controlling neighbor list parameters.

• class lj
Lennard-Jones pair force.

12.9.1 Detailed Description

Commands that create forces between pairs of particles.

Generally, pair forces are short range and are summed over all non-bonded particles
within a certain cutoff radius of each particle. Any number of pair forces can be defined

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.10 Package hoomd_script.update 61

in a single simulation. The net force on each particle due to all types of pair forces is
summed.

Pair forces require that parameters be set for each unique type pair. Coefficients are set
through the aid of the coeff class. To set this coefficients, specify a pair force and save
it in a variable

my_force = pair.some_pair_force(arguments...)

Then the coefficients can be set using the saved variable.

my_force.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=0.0)
my_force.pair_coeff.set(’A’, ’B’, epsilon=1.0, sigma=1.0, alpha=0.0)
my_force.pair_coeff.set(’B’, ’B’, epsilon=1.0, sigma=1.0, alpha=1.0)

This example set the parameters epsilon, sigma, and alpha (which are used in pair.lj).
Different pair forces require that different coefficients are set. Check the documentation
of each to see the definition of the coefficients.

See also:

Quick Start Tutorial

12.10 Package hoomd_script.update

Commands that modify the system state in some way.

Classes

• class sort
Sorts particles in memory to improve cache coherency.

• class rescale_temp
Rescales particle velocities.

• class zero_momentum
Zeroes system momentum.

12.10.1 Detailed Description

Commands that modify the system state in some way.

When an updater is specified, it acts on the particle system each time step to change it
in some way. See the documentation of specific updaters to find out what they do.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

12.11 Package hoomd_script.wall 62

12.11 Package hoomd_script.wall

Commands that specify wall forces.

Classes

• class lj
Lennard-Jones wall force.

12.11.1 Detailed Description

Commands that specify wall forces.

Walls can add forces to any particles within a certain distance of the wall. Walls are
created when an input XML file is read (read.xml).

By themselves, walls that have been specified in an input file do nothing. Only when
you specify a wall force (i.e. wall.lj), are forces actually applied between the wall and
the particle.

13 Class Documentation

13.1 bdnvt Class Reference

13.1.1 Detailed Description

NVT integration via Brownian dynamics.

integrate.bdnvt performs constant volume, fixed average temperature simuation based
on a NVE simulation with added damping and stochastic heat bath forces.

The total added force ~F is
~F = −γ · ~v + ~Frand

where ~v is the particle’s velocity and ~Frand is a random force with magnitude chosen
via the fluctuation-dissipation theorem to be consistent with the specified drag (gamma)
and temperature (T).

For poor initial conditions that include overlapping atoms, a limit can be specified to
the movement a particle is allowed to make in one time step. After a few thousand
time steps with the limit set, the system should be in a safe state to continue with
unconstrained integration.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.1 bdnvt Class Reference 63

Note:

With an active limit, Newton’s third law is effectively not obeyed and the system
can gain linear momentum. Activate the update.zero_momentum updater during
the limited bdnvt run to prevent this.

Public Member Functions

• def __init__
Specifies the BD NVT integrator.

• def set_params
Changes parameters of an existing integrator.

• def set_gamma
Sets gamma parameter for a particle type.

13.1.2 Member Function Documentation

13.1.2.1 def __init__ (self, dt, T, limit = None, seed = 0)

Specifies the BD NVT integrator.

Parameters:

dt Each time step of the simulation run() will advance the real time of the system
forward by dt

T Temperature of the simuation T

limit (optional) Enforce that no particle moves more than a distance of limit in a
single time step

seed Random seed to use for the run. Otherwise identical simulations with differ-
ent seeds set will follow different trajectories.

Examples:

integrate.bdnvt(dt=0.005, T=1.0, seed=5)
integrator = integrate.bdnvt(dt=5e-3, T=1.0, seed=100)
integrate.bdnvt(dt=0.005, T=1.0, limit=0.01)

13.1.2.2 def set_gamma (self, a, gamma)

Sets gamma parameter for a particle type.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.2 coeff Class Reference 64

Parameters:

a Particle type

gamma γ for particle type (see below for examples)

set_gamma() sets the coefficient γ for a single particle type, identified by name.

The gamma parameter determines how strongly a particular particle is coupled to the
stochastic bath. The higher the gamma, the more strongly coupled: see integrate.bdnvt.

If gamma is not set for any particle type will automatically default to 1.0. It is not
an error to specify gammas for particle types that do not exist in the simulation. This
can be useful in defining a single simulation script for many different types of particles
even when some simulations only include a subset.

Examples:

bd.set_gamma(’A’, gamma=2.0)

13.1.2.3 def set_params (self, dt = None, T = None)

Changes parameters of an existing integrator.

Parameters:

dt New time step (if set)

T New temperature (if set)

To change the parameters of an existing integrator, you must save it in a variable when
it is specified, like so:

integrator = integrate.bdnvt(dt=0.005, T=1.0)

Examples:

integrator.set_params(dt=0.007)
integrator.set_params(T=2.0)

13.2 coeff Class Reference

13.2.1 Detailed Description

Defines pair coefficients.

All pair forces use coeff to specify the coefficients between different pairs of particles
indexed by type. The set of pair coefficients is a symmetric matrix defined over all
possible pairs of particle types.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.2 coeff Class Reference 65

There are two ways to set the coefficients for a particular pair force. The first way is to
save the pair force in a variable and call set() directly. To see an example of this, see
the documentation for the package pair or the Quick Start Tutorial

The second method is to build the coeff class first and then assign it to the pair force.
There are some advantages to this method in that you could specify a complicated set
of pair coefficients in a separate python file and import it into your job script.

Example (file force_field.py):

from hoomd_script import *
my_coeffs = coeff();
my_coeffs.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=0.0)
my_coeffs.set(’A’, ’B’, epsilon=1.0, sigma=1.0, alpha=0.0)
my_coeffs.set(’B’, ’B’, epsilon=1.0, sigma=1.0, alpha=1.0)

Example job script:

from hoomd_script import *
import force_field

.....
my_force = pair.some_pair_force(arguments...)
my_force.pair_coeff = force_field.my_coeffs

Public Member Functions

• def set
Sets parameters for one type pair.

13.2.2 Member Function Documentation

13.2.2.1 def set (self, a, b, coeffs)

Sets parameters for one type pair.

Parameters:

a First particle type in the pair

b Second particle type in the pair

coeffs Named coefficients (see below for examples)

Calling set() results in one or more parameters being set for a single type pair. Particle
types are identified by name, and parameters are also added by name. Which parame-
ters you need to specify depends on the pair force you are setting these coefficients for,
see the corresponding documentation.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.3 constant Class Reference 66

All possible type pairs as defined in the simulation box must be specified before exe-
cuting run(). You will receive an error if you fail to do so. It is not an error, however,
to specify coefficients for particle types that do not exist in the simulation. This can be
useful in defining a force field for many different types of particles even when some
simulations only include a subset.

There is no need to specify coefficients for both pairs ’A’,’B’ and ’B’,’A’. Specifying
only one is sufficient.

Examples:

coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0)
coeff.set(’B’, ’B’, epsilon=2.0, sigma=1.0)
coeff.set(’A’, ’B’, epsilon=1.5, sigma=1.0)

Note:

Single parameters can be updated. If both epsilon and sigma have already been
set for a type pair, then executing coeff.set(’A’, ’B’, epsilon=1.1) will update the
value of epsilon and leave sigma as it was previously set.

13.3 constant Class Reference

13.3.1 Detailed Description

Constant force.

The command force.constant specifies that a constant force should be added to every
particle in the simulation.

Public Member Functions

• def __init__
Specify the constant force.

• def set_force
Change the value of the force.

• def disable
Disables the force.

• def enable
Enables the force.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.3 constant Class Reference 67

13.3.2 Member Function Documentation

13.3.2.1 def __init__ (self, fx, fy, fz)

Specify the constant force.

Parameters:

fx x-component of the force

fy y-component of the force

fz z-component of the force

Examples:

force.constant(fx=1.0, fy=0.5, fz=0.25)
const = force.constant(fx=0.4, fy=1.0, fz=0.5)

13.3.2.2 def disable (self) [inherited]

Disables the force.

Examples:

force.disable()

Executing the disable command will remove the force from the simulation. Any run()
command executed after disabling a force will not calculate or use the force during the
simulation. A disabled force can be re-enabled with enable()

To use this command, you must have saved the force in a variable, as shown in this
example:

force = pair.some_force()
... later in the script
force.disable()

13.3.2.3 def enable (self) [inherited]

Enables the force.

Examples:

force.enable()

See disable() for a detailed description.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.4 dcd Class Reference 68

13.3.2.4 def set_force (self, fx, fy, fz)

Change the value of the force.

Parameters:

fx New x-component of the force

fy New y-component of the force

fz New z-component of the force

Using set_force() requires that you saved the created constant force in a variable. i.e.

const = force.constant(fx=0.4, fy=1.0, fz=0.5)

Example:

const.set_force(fx=0.2, fy=0.1, fz=-0.5)

13.4 dcd Class Reference

13.4.1 Detailed Description

Writes simulation snapshots in the DCD format.

Every period time steps a new simulation snapshot is written to the specified file in
the DCD file format. DCD only stores particle positions but is decently space efficient
and extremely fast to read and write. VMD can load 100’s of MiB of trajectory data in
mere seconds.

Use in conjunction with dump.mol2 so that VMD has information on the particle names
and bond topology.

Due to constraints of the DCD file format, once you stop writing to a file via disable(),
you cannot continue writing to the same file, nor can you change the period of the
dump at any time. Either of these tasks can be performed by creating a new dump file
with the needed settings.

Public Member Functions

• def __init__
Initialize the dcd writer.

• def disable
Disables the analyzer.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.5 fene Class Reference 69

13.4.2 Member Function Documentation

13.4.2.1 def __init__ (self, filename, period)

Initialize the dcd writer.

Parameters:

filename File name to write to

period Number of time steps between file dumps

Examples:

dump.dcd(filename="trajectory.dcd", period=1000)

dcd = dump.dcd(filename"data/dump.dcd", period=1000)

13.4.2.2 def disable (self) [inherited]

Disables the analyzer.

Examples:

analyzer.disable()

Executing the disable command will remove the analyzer from the system. Any run()
command executed after disabling an analyzer will not use that analyzer during the
simulation. A disabled analyzer can be re-enabled with enable()

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyzer.some_analyzer()
... later in the script
analyzer.disable()

13.5 fene Class Reference

13.5.1 Detailed Description

FENE bond forces.

The command bond.fene specifies a fene potential energy between every bonded pair
of particles in the simulation.

V (r) = −kr20 ln

(
1−

(
r

r0

)2
)

+ VWCA(r)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.5 fene Class Reference 70

where ~r is the vector pointing from one particle to the other in the pair and

VWCA(r) = 4ε
[(
σ
r

)12 − (σr)6] r < 2
1
6σ

= 0 r ≥ 2
1
6σ

Coefficients k, r0, ε and σ must be set for each type of bond in the simulation using
set_coeff().

Note:

Specifying the bond.fene command when no bonds are defined in the simulation
results in an error.

Public Member Functions

• def __init__
Specify the fene bond force.

• def set_coeff
Sets the fene bond coefficients for a particular bond type.

• def disable
Disables the force.

• def enable
Enables the force.

13.5.2 Member Function Documentation

13.5.2.1 def __init__ (self)

Specify the fene bond force.

Example:

fene = bond.fene()

13.5.2.2 def disable (self) [inherited]

Disables the force.

Examples:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.5 fene Class Reference 71

force.disable()

Executing the disable command will remove the force from the simulation. Any run()
command executed after disabling a force will not calculate or use the force during the
simulation. A disabled force can be re-enabled with enable()

To use this command, you must have saved the force in a variable, as shown in this
example:

force = pair.some_force()
... later in the script
force.disable()

13.5.2.3 def enable (self) [inherited]

Enables the force.

Examples:

force.enable()

See disable() for a detailed description.

13.5.2.4 def set_coeff (self, bond_type, k, r0, sigma, epsilon)

Sets the fene bond coefficients for a particular bond type.

Parameters:

bond_type Bond type to set coefficients for
k Coefficient k in the force
r0 Coefficient r0 in the force
sigma Coefficient σ in the force
epsilon Coefficient ε in the force

Using set_coeff() requires that the specified bond force has been saved in a variable.
i.e.

fene = bond.fene()

Examples:

fene.set_coeff(’polymer’, k=30.0, r0=1.5, sigma=1.0, epsilon= 2.0)
fene.set_coeff(’backbone’, k=100.0, r0=1.0, sigma=1.0, epsilon= 2.0)

The coefficients for every bond type in the simulation must be set before the run() can
be started.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.6 group Class Reference 72

13.6 group Class Reference

13.6.1 Detailed Description

Defines a group of particles.

group should not be created dirctly in hoomd_script code. The following methods can
be used to create particle groups.

• group_all()

• group_type()

• group_tags()

The above methods assign a descriptive name based on the criteria chosen. That name
can be easily changed if desired:

groupA = group_type(’A’)
groupA.name = "my new group name"

Once a group has been created, it can be combined with others to form more compli-
cated groups. To create a new group that contains the intersection of all the particles
present in two different groups, use the & operator. Similarly, the | operator creates a
new group that is the a union of all particles in two different groups.

Examles:

create a group containing all particles in group A and those with
tags 100-199
groupA = group_type(’A’)
group100_199 = group_tags(100, 199);
group_combined = groupA | group100_199;

create a group containing all particles in group A that also have
tags 100-199
groupA = group_type(’A’)
group100_199 = group_tags(100, 199);
group_combined = groupA & group100_199;

13.7 harmonic Class Reference

13.7.1 Detailed Description

Harmonic bond forces.

The command bond.harmonic specifies a harmonic potential energy between every
bonded pair of particles in the simulation.

V (r) =
1
2
k (r − r0)2

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.7 harmonic Class Reference 73

where ~r is the vector pointing from one particle to the other in the pair.

Coefficients k and r0 must be set for each type of bond in the simulation using set_-
coeff().

Note:

Specifying the bond.harmonic command when no bonds are defined in the simu-
lation results in an error.

Public Member Functions

• def __init__
Specify the harmonic bond force.

• def set_coeff
Sets the harmonic bond coefficients for a particular bond type.

• def disable
Disables the force.

• def enable
Enables the force.

13.7.2 Member Function Documentation

13.7.2.1 def __init__ (self)

Specify the harmonic bond force.

Example:

harmonic = bond.harmonic()

13.7.2.2 def disable (self) [inherited]

Disables the force.

Examples:

force.disable()

Executing the disable command will remove the force from the simulation. Any run()
command executed after disabling a force will not calculate or use the force during the
simulation. A disabled force can be re-enabled with enable()

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.7 harmonic Class Reference 74

To use this command, you must have saved the force in a variable, as shown in this
example:

force = pair.some_force()
... later in the script
force.disable()

13.7.2.3 def enable (self) [inherited]

Enables the force.

Examples:

force.enable()

See disable() for a detailed description.

13.7.2.4 def set_coeff (self, bond_type, k, r0)

Sets the harmonic bond coefficients for a particular bond type.

Parameters:

bond_type Bond type to set coefficients for

k Coefficient k in the force

r0 Coefficient r0 in the force

Using set_coeff() requires that the specified bond force has been saved in a variable.
i.e.

harmonic = bond.harmonic()

Examples:

harmonic.set_coeff(’polymer’, k=330.0, r0=0.84)
harmonic.set_coeff(’backbone’, k=100.0, r0=1.0)

The coefficients for every bond type in the simulation must be set before the run() can
be started.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.8 imd Class Reference 75

13.8 imd Class Reference

13.8.1 Detailed Description

Sends simulation snapshots to VMD in real-time.

analyze.imd listens on a specified TCP/IP port for connections from VMD. Once that
connection is established, it begins transmitting simulation snapshots to VMD every
period time steps.

To connect to a simulation running on the local host, issue the command

imd connect localhost 54321

in the VMD command window (where 54321 is replaced with the port number you
specify for analyze.imd

See also:

Example Scripts

Public Member Functions

• def __init__
Initialize the IMD interface.

• def disable
Disables the analyzer.

• def enable
Enables the analyzer.

• def set_period
Changes the period between analyzer executions.

13.8.2 Member Function Documentation

13.8.2.1 def __init__ (self, port, period)

Initialize the IMD interface.

Parameters:

port TCP/IP port to listen on

period Number of time steps between file dumps

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.8 imd Class Reference 76

Examples:

analyze.imd(port=54321, period=100)
imd = analyze.imd(port=12345, period=1000)

13.8.2.2 def disable (self) [inherited]

Disables the analyzer.

Examples:

analyzer.disable()

Executing the disable command will remove the analyzer from the system. Any run()
command executed after disabling an analyzer will not use that analyzer during the
simulation. A disabled analyzer can be re-enabled with enable()

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyzer.some_analyzer()
... later in the script
analyzer.disable()

13.8.2.3 def enable (self) [inherited]

Enables the analyzer.

Examples:

analyzer.enable()

See disable() for a detailed description.

13.8.2.4 def set_period (self, period) [inherited]

Changes the period between analyzer executions.

Parameters:

period New period to set

Examples:

analyzer.set_period(100);
analyzer.set_period(1);

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.9 lj Class Reference 77

While the simulation is running, the action of each analyzer is executed every period
time steps.

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyze.some_analyzer()
... later in the script
analyzer.set_period(10)

13.9 lj Class Reference

13.9.1 Detailed Description

Lennard-Jones pair force.

The command pair.lj specifies that a Lennard-Jones type pair force should be added to
every non-bonded particle pair in the simulation.

The force ~F is

~F = −∇V (r) r < rcut

= 0 r ≥ rcut

where

V (r) = 4ε
[(σ

r

)12

− α
(σ
r

)6
]

and ~r is the vector pointing from one particle to the other in the pair.

The following coefficients must be set per unique pair of particle types. See pair or the
Quick Start Tutorial for information on how to set coefficients.

• ε - epsilon

• σ - sigma

• α - alpha

Example:

lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

The cuttoff radius rcut is set once when pair.lj is specified (see __init__())

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.9 lj Class Reference 78

Public Member Functions

• def __init__
Specify the Lennard-Jones pair force.

• def disable
Disables the force.

• def enable
Enables the force.

13.9.2 Member Function Documentation

13.9.2.1 def __init__ (self, r_cut)

Specify the Lennard-Jones pair force.

Parameters:

r_cut Cuttoff radius (see documentation above)

Example:

lj = pair.lj(r_cut=3.0)
lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

Note:

Pair coefficients for all type pairs in the simulation must be set before it can be
started with run()

13.9.2.2 def disable (self) [inherited]

Disables the force.

Examples:

force.disable()

Executing the disable command will remove the force from the simulation. Any run()
command executed after disabling a force will not calculate or use the force during the
simulation. A disabled force can be re-enabled with enable()

To use this command, you must have saved the force in a variable, as shown in this
example:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.10 lj Class Reference 79

force = pair.some_force()
... later in the script
force.disable()

13.9.2.3 def enable (self) [inherited]

Enables the force.

Examples:

force.enable()

See disable() for a detailed description.

13.10 lj Class Reference

13.10.1 Detailed Description

Lennard-Jones wall force.

The command wall.lj specifies that a Lennard-Jones type wall force should be added to
every particle in the simulation.

The force ~F is

~F = −∇V (r) r < rcut

= 0 r ≥ rcut

where

V (r) = 4ε
[(σ

r

)12

− α
(σ
r

)6
]

and ~r is the vector pointing from the wall to the particle parallel to the wall’s normal.

The following coefficients must be set for each particle type using set_coeff().

• ε - epsilon

• σ - sigma

• α - alpha

Example:

lj.set_coeff(’A’, epsilon=1.0, sigma=1.0, alpha=1.0)

The cutoff radius rcut is set once when wall.lj is specified (see __init__())

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.10 lj Class Reference 80

Public Member Functions

• def __init__
Specify the Lennard-Jones wall force.

• def set_coeff
Sets the particle-wall interaction coefficients for a particular particle type.

• def disable
Disables the force.

• def enable
Enables the force.

13.10.2 Member Function Documentation

13.10.2.1 def __init__ (self, r_cut)

Specify the Lennard-Jones wall force.

Parameters:

r_cut Cutoff radius

Example:

lj_wall = wall.lj(r_cut=3.0);

Note:

Coefficients must be set with set_coeff() before the simulation can be run().

13.10.2.2 def disable (self) [inherited]

Disables the force.

Examples:

force.disable()

Executing the disable command will remove the force from the simulation. Any run()
command executed after disabling a force will not calculate or use the force during the
simulation. A disabled force can be re-enabled with enable()

To use this command, you must have saved the force in a variable, as shown in this
example:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.11 log Class Reference 81

force = pair.some_force()
... later in the script
force.disable()

13.10.2.3 def enable (self) [inherited]

Enables the force.

Examples:

force.enable()

See disable() for a detailed description.

13.10.2.4 def set_coeff (self, particle_type, epsilon, sigma, alpha)

Sets the particle-wall interaction coefficients for a particular particle type.

Parameters:

particle_type Particle type to set coefficients for

epsilon Coefficient ε in the force

sigma Coefficient σ in the force

alpha Coefficient α in the force

Using set_coeff() requires that the specified wall force has been saved in a variable. i.e.

lj_wall = wall.lj(r_cut=3.0)

Examples:

lj_wall.set_coeff(’A’, epsilon=1.0, sigma=1.0, alpha=1.0)
lj_wall.set_coeff(’B’, epsilon=1.0, sigma=2.0, alpha=0.0)

The coefficients for every particle type in the simulation must be set before the run()
can be started.

13.11 log Class Reference

13.11.1 Detailed Description

Logs a number of calculated quanties to a file.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.11 log Class Reference 82

analyze.log can read a variety of calculated values, like energy and temperature, from
specified forces, integrators, and updaters. It writes a single line to the specified out-
put file every period time steps. The resulting file is suitable for direct import into a
spreadsheet, MATLAB, or other software that can handle simple delimited files.

Quantities that can be logged at any time:

• num_particles - Number of particles in the system

• volume - Volume of the simulation box

• temperature - Temperature of the system

• pressure - Pressure of the system

• kinetic_energy - Total kinetic energy of the system

• potential_energy - Total potential energy of the system

• conserved_quantity - Conserved quantity for the current integrator (the actual
definition of this value depends on which integrator is being used in the current
run()

• time - Wall-clock running time from the start of the log in seconds

The following quantities are only available of certain forces have been specified (as
noted in the parantheses)

• pair_lj_energy (pair.lj) - Total Lennard-Jones potential energy

• bond_fene_energy (bond.fene) - Total fene bond potential energy

• bond_harmonic_energy (bond.harmonic) - Total harmonic bond potential en-
ergy

• wall_lj_energy (wall.lj) - Total Lennard-Jones wall energy

• nvt_xi (integrate.nvt) - ξ value in the NVT integrator

• nvt_eta (integrate.nvt) - η value in the NVT integrator

Public Member Functions

• def __init__
Initialize the log.

• def set_params
Change the parameters of the log.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.11 log Class Reference 83

• def disable
Disables the analyzer.

• def enable
Enables the analyzer.

• def set_period
Changes the period between analyzer executions.

13.11.2 Member Function Documentation

13.11.2.1 def __init__ (self, filename, quantities, period, header_prefix = ”)

Initialize the log.

Parameters:

filename File to write the log to

quantities List of quantities to log

period Quantities are logged every period time steps

header_prefix (optional) Specify a string to print before the header

Examples:

logger = analyze.log(filename=’mylog.log’, period=100,
quantities=[’pair_lj_energy’])

analyze.log(quantities=[’pair_lj_energy’, ’bond_harmonic_energy’,
’kinetic_energy’], period=1000, filename=’full.log’)

analyze.log(filename=’mylog.log’, quantities=[’pair_lj_energy’],
period=100, header_prefix=’#’)

analyze.log(filename=’mylog.log’, quantities=[’bond_harmonic_energy’],
period=10, header_prefix=’Log of harmonic energy, run 5\n’)

By default, columns in the log file are separated by tabs, suitable for importing as a tab-
delimited spreadsheet. The delimiter can be changed to any string using set_params()

The header_prefix can be used in a number of ways. It specifies a simple string that
will be printed before the header line of the output file. One handy way to use this is to
specify header_prefix=’#’ so that gnuplot will ignore the header line automatically.
Another use-case would be to specify a descriptive line containing details of the current
run. Examples of each of these cases are given above.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.11 log Class Reference 84

13.11.2.2 def disable (self) [inherited]

Disables the analyzer.

Examples:

analyzer.disable()

Executing the disable command will remove the analyzer from the system. Any run()
command executed after disabling an analyzer will not use that analyzer during the
simulation. A disabled analyzer can be re-enabled with enable()

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyzer.some_analyzer()
... later in the script
analyzer.disable()

13.11.2.3 def enable (self) [inherited]

Enables the analyzer.

Examples:

analyzer.enable()

See disable() for a detailed description.

13.11.2.4 def set_params (self, quantities = None, delimiter = None)

Change the parameters of the log.

Parameters:

quantities New list of quantities to log (if specified)
delimiter New delimiter between columns in the output file (if specified)

Using set_params() requires that the specified logger was saved in a variable when
created. i.e.

logger = analyze.log(quantities=[’pair_lj_energy’,
’bond_harmonic_energy’, ’nve_kinetic_energy’],
period=1000, filename="’full.log’)

Examples:

logger.set_params(quantities=[’bond_harmonic_energy’])
logger.set_params(delimiter=’,’);
logger.set_params(quantities=[’bond_harmonic_energy’], delimiter=’,’);

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.12 mol2 Class Reference 85

13.11.2.5 def set_period (self, period) [inherited]

Changes the period between analyzer executions.

Parameters:

period New period to set

Examples:

analyzer.set_period(100);
analyzer.set_period(1);

While the simulation is running, the action of each analyzer is executed every period
time steps.

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyze.some_analyzer()
... later in the script
analyzer.set_period(10)

13.12 mol2 Class Reference

13.12.1 Detailed Description

Writes a simulation snapshot in the MOL2 format.

At the first time step run() after initializing the dump, the state of the particles at that
time step is written to the file in the MOL2 file format. The intended usage is to
generate a single structure file that can be used by VMD for reading in particle names
and bond topology Use in conjunction with dump.dcd for reading the full simulation
trajectory into VMD.

Public Member Functions

• def __init__
Initialize the mol2 writer.

13.12.2 Member Function Documentation

13.12.2.1 def __init__ (self, filename)

Initialize the mol2 writer.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.13 msd Class Reference 86

Parameters:

filename File name to write to

Examples:

dump.mol2(filename="structure.mol2")

13.13 msd Class Reference

13.13.1 Detailed Description

Calculates the mean-squared displacement of groups of particles and logs the values to
a file.

analyze.msd can be given any number of groups of particles. Every period time steps,
it calculates the mean squared displacement of each group (referenced to the particle
positions at the time step the command is issued at) and prints the calculated values out
to a file.

The mean squared displacement (MSD) for each group is calculated as:

〈|~r − ~r0|2〉

The file format is the same convient delimited format used by analyze.log

Public Member Functions

• def __init__
Initialize the msd calculator.

• def set_params
Change the parameters of the msd analysis.

• def disable
Disables the analyzer.

• def enable
Enables the analyzer.

• def set_period
Changes the period between analyzer executions.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.13 msd Class Reference 87

13.13.2 Member Function Documentation

13.13.2.1 def __init__ (self, filename, groups, period, header_prefix = ”)

Initialize the msd calculator.

Parameters:

filename File to write the data to
groups List of groups to calculate the MSDs of
period Quantities are logged every period time steps
header_prefix (optional) Specify a string to print before the header

Examples:

msd = analyze.msd(filename=’msd.log’, groups=[group1, group2],
period=100)

analyze.log(groups=[group1, group2, group3], period=1000,
filename=’msd.log’, header_prefix=’#’)

analyze.log(filename=’msd.log’, groups=[group1], period=10,
header_prefix=’Log of group1 msd, run 5\n’)

A group variable (groupN above) can be created by any number of group creation
functions. see group for a list.

By default, columns in the file are separated by tabs, suitable for importing as a tab-
delimited spreadsheet. The delimiter can be changed to any string using set_params()

The header_prefix can be used in a number of ways. It specifies a simple string that
will be printed before the header line of the output file. One handy way to use this is to
specify header_prefix=’#’ so that gnuplot will ignore the header line automatically.
Another use-case would be to specify a descriptive line containing details of the current
run. Examples of each of these cases are given above.

13.13.2.2 def disable (self) [inherited]

Disables the analyzer.

Examples:

analyzer.disable()

Executing the disable command will remove the analyzer from the system. Any run()
command executed after disabling an analyzer will not use that analyzer during the
simulation. A disabled analyzer can be re-enabled with enable()

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.13 msd Class Reference 88

analyzer = analyzer.some_analyzer()
... later in the script
analyzer.disable()

13.13.2.3 def enable (self) [inherited]

Enables the analyzer.

Examples:

analyzer.enable()

See disable() for a detailed description.

13.13.2.4 def set_params (self, delimiter = None)

Change the parameters of the msd analysis.

Parameters:

delimiter New delimiter between columns in the output file (if specified)

Using set_params() requires that the specified msd was saved in a variable when cre-
ated. i.e.

msd = analyze.msd(filename=’msd.log’, groups=[group1, group2], period=100)

Examples:

msd.set_params(delimiter=’,’);

13.13.2.5 def set_period (self, period) [inherited]

Changes the period between analyzer executions.

Parameters:

period New period to set

Examples:

analyzer.set_period(100);
analyzer.set_period(1);

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.14 nlist Class Reference 89

While the simulation is running, the action of each analyzer is executed every period
time steps.

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyze.some_analyzer()
... later in the script
analyzer.set_period(10)

13.14 nlist Class Reference

13.14.1 Detailed Description

Interface for controlling neighbor list parameters.

A neighbor list should not be directly created by you. One will be automatically created
whenever a pair force is specified. The cutoff radius is set to the maximum of that set
for all defined pair forces.

Any bonds defined in the simulation are automatically used to exclude bonded particle
pairs from appearing in the neighbor list.

Public Member Functions

• def set_params
Change neighbor list parameters.

13.14.2 Member Function Documentation

13.14.2.1 def set_params (self, r_buff = None, check_period = None)

Change neighbor list parameters.

Parameters:

r_buff (if set) changes the buffer radius around the cutoff

check_period (if set) changes the period (in time steps) between checks to see if
the neighbor list needs updating

set_params() changes one or more parameters of the neighbor list. r_buff and check_-
period can have a significant effect on performance. As r_buff is made larger, the
neighbor list needs to be updated less often, but more particles are included leading to
slower force computations. Smaller values of r_buff lead to faster force computation,
but more often neighbor list updates, slowing overall performance again. The sweet

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.15 npt Class Reference 90

spot for the best performance needs to be found by experimentation. The default of
r_buff = 0.8 works well in practice for Lennard-Jones liquid simulations.

As r_buff is changed, check_period must be changed correspondingly. The neighbor
list is updated no sooner than check_period time steps after the last update. If check_-
period is set too high, the neighbor list may not be updated when it needs to be.

For safety, the default check_period is 1 to ensure that the neighbor list is always up-
dated when it needs to be. Increasing this to an appropriate value for your simulation
can lead to performance gains of approximately 2 percent.

check_period should be set so that no particle moves a distance more than r_buff/2.0
during a the check_period. If this occurs, a dangerous build is counted and printed in
the neighbor list statistics at the end of a run().

A single global neighbor list is created for the entire simulation. Change parameters
by using the built-in variable nlist.

Examples:

nlist.set_params(r_buff = 0.9)
nlist.set_params(check_period = 11)
nlist.set_params(r_buff = 0.7, check_period = 4)

13.15 npt Class Reference

13.15.1 Detailed Description

NPT Integration via the Nosé-Hoover thermostat, Anderson barostat.

integrate.npt performs constant pressure, constant temperature simulations using the
standard Nosé-Hoover thermosta/Anderson barostat.

Public Member Functions

• def __init__
Specifies the NPT integrator.

• def set_params
Changes parameters of an existing integrator.

13.15.2 Member Function Documentation

13.15.2.1 def __init__ (self, dt, T, tau, P, tauP)

Specifies the NPT integrator.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.15 npt Class Reference 91

Parameters:

dt Each time step of the simulation run() will advance the real time of the system
forward by dt

T Temperature set point for the Nosé-Hoover thermostat

P Pressure set point for the Anderson barostat

tau Coupling constant for the Nosé-Hoover thermostat.

tauP Coupling constant for the barostat

τ is related to the Nosé mass Q by

τ =

√
Q

gkBT0

where g is the number of degrees of freedom, and T0 is the temperature set point (T
above).

Examples:

integrate.npt(dt=0.005, T=1.0, tau=0.5, tauP=1.0, P=2.0)
integrator = integrate.npt(tau=1.0, dt=5e-3, T=0.65, tauP = 1.2, P=2.0)

13.15.2.2 def set_params (self, dt = None, T = None, tau = None, P = None,
tauP = None)

Changes parameters of an existing integrator.

Parameters:

dt New time step delta (if set)

T New temperature (if set)

tau New coupling constant (if set)

P New pressure (if set)

tauP New barostat coupling constant (if set)

To change the parameters of an existing integrator, you must save it in a variable when
it is specified, like so:

integrator = integrate.npt(tau=1.0, dt=5e-3, T=0.65)

Examples:

integrator.set_params(dt=0.007)
integrator.set_params(tau=0.6)
integrator.set_params(dt=3e-3, T=2.0, P=1.0)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.16 nve Class Reference 92

13.16 nve Class Reference

13.16.1 Detailed Description

NVE Integration via Velocity-Verlet.

integrate.nve performs constant volume, constant energy simulations using the standard
Velocity-Verlet method. For poor initial conditions that include overlapping atoms, a
limit can be specified to the movement a particle is allowed to make in one time step.
After a few thousand time steps with the limit set, the system should be in a safe state
to continue with unconstrained integration.

Note:

With an active limit, Newton’s third law is effectively not obeyed and the system
can gain linear momentum. Activate the update.zero_momentum updater during
the limited nve run to prevent this.

Public Member Functions

• def __init__
Specifies the NVE integrator.

• def set_params
Changes parameters of an existing integrator.

13.16.2 Member Function Documentation

13.16.2.1 def __init__ (self, dt, limit = None)

Specifies the NVE integrator.

Parameters:

dt Each time step of the simulation run() will advance the real time of the system
forward by dt

limit (optional) Enforce that no particle moves more than a distance of limit in a
single time step

Examples:

integrate.nve(dt=0.005)
integrator = integrate.nve(dt=5e-3)
integrate.nve(dt=0.005, limit=0.01)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.17 nvt Class Reference 93

13.16.2.2 def set_params (self, dt = None)

Changes parameters of an existing integrator.

Parameters:

dt New time step (if set)

To change the parameters of an existing integrator, you must save it in a variable when
it is specified, like so:

integrator = integrate.nve(dt=0.005)

Examples:

integrator.set_params(dt=0.007)
integrator.set_params(dt=3e-3)

13.17 nvt Class Reference

13.17.1 Detailed Description

NVT Integration via the Nosé-Hoover thermostat.

integrate.nvt performs constant volume, constant temperature simulations using the
standard Nosé-Hoover thermostat.

Public Member Functions

• def __init__
Specifies the NVT integrator.

• def set_params
Changes parameters of an existing integrator.

13.17.2 Member Function Documentation

13.17.2.1 def __init__ (self, dt, T, tau)

Specifies the NVT integrator.

Parameters:

dt Each time step of the simulation run() will advance the real time of the system
forward by dt

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.18 rescale_temp Class Reference 94

T Temperature set point for the Nosé-Hoover thermostat
tau Coupling constant for the Nosé-Hoover thermostat.

τ is related to the Nosé mass Q by

τ =

√
Q

gkBT0

where g is the number of degrees of freedom, and T0 is the temperature set point (T
above).

Examples:

integrate.nvt(dt=0.005, T=1.0, tau=0.5)
integrator = integrate.nvt(tau=1.0, dt=5e-3, T=0.65)

13.17.2.2 def set_params (self, dt = None, T = None, tau = None)

Changes parameters of an existing integrator.

Parameters:

dt New time step delta (if set)
T New temperature (if set)
tau New coupling constant (if set)

To change the parameters of an existing integrator, you must save it in a variable when
it is specified, like so:

integrator = integrate.nvt(tau=1.0, dt=5e-3, T=0.65)

Examples:

integrator.set_params(dt=0.007)
integrator.set_params(tau=0.6)
integrator.set_params(dt=3e-3, T=2.0)

13.18 rescale_temp Class Reference

13.18.1 Detailed Description

Rescales particle velocities.

Every period time steps, particle velocities are rescaled by equal factors so that they are
consistent with a given temperature in the equipartition theorem 〈1/2mv2〉 = kBT .

update.rescale_temp is best coupled with the NVE integrator.

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.18 rescale_temp Class Reference 95

Public Member Functions

• def __init__
Initialize the rescaler.

• def set_params
Change rescale_temp parameters.

• def disable
Disables the updater.

• def enable
Enables the updater.

• def set_period
Changes the period between updater executions.

13.18.2 Member Function Documentation

13.18.2.1 def __init__ (self, T, period = 1)

Initialize the rescaler.

Parameters:

T Temperature set point

period Velocities will be rescaled every period time steps

Examples:

update.rescale_temp(T=1.2)
rescaler = update.rescale_temp(T=0.5)
update.rescale_temp(period=100, T=1.03)

13.18.2.2 def disable (self) [inherited]

Disables the updater.

Examples:

updater.disable()

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.18 rescale_temp Class Reference 96

Executing the disable command will remove the updater from the system. Any run()
command executed after disabling an updater will not use that updater during the sim-
ulation. A disabled updater can be re-enabled with enable()

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.disable()

13.18.2.3 def enable (self) [inherited]

Enables the updater.

Examples:

updater.enable()

See disable() for a detailed description.

13.18.2.4 def set_params (self, T = None)

Change rescale_temp parameters.

Parameters:

T New temperature set point

To change the parameters of an existing updater, you must have saved it when it was
specified.

rescaler = update.rescale_temp(T=0.5)

Examples:

rescaler.set_params(T=2.0)

13.18.2.5 def set_period (self, period) [inherited]

Changes the period between updater executions.

Parameters:

period New period to set

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.19 sort Class Reference 97

Examples:

updater.set_period(100);
updater.set_period(1);

While the simulation is running, the action of each updater is executed every period
time steps.

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.set_period(10)

13.19 sort Class Reference

13.19.1 Detailed Description

Sorts particles in memory to improve cache coherency.

Every period time steps, particles are reordered in memory based on a Hilbert curve.
This operation is very efficient, and the reordered particles significantly improve per-
formance of all other algorithmic steps in HOOMD.

The reordering is accomplished by placing particles in spatial bins bin_width distance
units wide. A Hilbert curve is generated that traverses these bins and particles are re-
ordered in memory in the same order in which they fall on the curve. Testing indicates
that a bin width equal to the particle diameter works well, though it may lead to ex-
cessive memory usage in extremely low density systems. set_params() can be used to
increase the bin width in such situations.

Because all simulations benefit from this process, a sorter is created by default. If
you have reason to disable it or modify parameters, you can use the built-in variable
sorter to do so after initialization. The following code example disables the sorter.
The init.create_random command is just an example, sorter can be modified after any
command that initializes the system.

init.create_random(N=1000, phi_p=0.2)
sorter.disable()

Public Member Functions

• def __init__
Initialize the sorter.

• def set_params

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.19 sort Class Reference 98

Change sorter parameters.

• def disable
Disables the updater.

• def enable
Enables the updater.

• def set_period
Changes the period between updater executions.

13.19.2 Member Function Documentation

13.19.2.1 def __init__ (self)

Initialize the sorter.

Users should not initialize the sorter directly. One in created for you when any initial-
ization command from init is run. The created sorter can be accessed via the built-in
variable sorter.

By default, the sorter is created with a bin_width of 1.0 and an update period of 500
time steps. The period can be changed with set_period() and the bin width can be
changed with set_params()

13.19.2.2 def disable (self) [inherited]

Disables the updater.

Examples:

updater.disable()

Executing the disable command will remove the updater from the system. Any run()
command executed after disabling an updater will not use that updater during the sim-
ulation. A disabled updater can be re-enabled with enable()

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.disable()

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.19 sort Class Reference 99

13.19.2.3 def enable (self) [inherited]

Enables the updater.

Examples:

updater.enable()

See disable() for a detailed description.

13.19.2.4 def set_params (self, bin_width = None)

Change sorter parameters.

Parameters:

bin_width New bin width (if set)

Examples:

sorter.set_params(bin_width=2.0)

13.19.2.5 def set_period (self, period) [inherited]

Changes the period between updater executions.

Parameters:

period New period to set

Examples:

updater.set_period(100);
updater.set_period(1);

While the simulation is running, the action of each updater is executed every period
time steps.

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.set_period(10)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.20 xml Class Reference 100

13.20 xml Class Reference

13.20.1 Detailed Description

Writes simulation snapshots in the HOOMD XML format.

Every period time steps, a new file will be created. The state of the particles at that
time step is written to the file in the HOOMD XML format.

See also:

XML File Format

Public Member Functions

• def __init__
Initialize the hoomd_xml writer.

• def set_params
Change xml write parameters.

• def disable
Disables the analyzer.

• def enable
Enables the analyzer.

• def set_period
Changes the period between analyzer executions.

13.20.2 Member Function Documentation

13.20.2.1 def __init__ (self, filename, period)

Initialize the hoomd_xml writer.

Parameters:

filename Base of the time name

period Number of time steps between file dumps

Examples:

dump.xml(filename="atoms.dump", period=1000)
xml = dump.xml(filename="particles", period=1e5)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.20 xml Class Reference 101

A new file will be created every period steps. The time step at which the file is created
is added to the file name in a fixed width format to allow files to easily be read in
order. I.e. the write at time step 0 with filename="particles" produces the file
particles.0000000000.xml

By default, only particle positions are output to the dump files. This can be changed
with set_params().

13.20.2.2 def disable (self) [inherited]

Disables the analyzer.

Examples:

analyzer.disable()

Executing the disable command will remove the analyzer from the system. Any run()
command executed after disabling an analyzer will not use that analyzer during the
simulation. A disabled analyzer can be re-enabled with enable()

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyzer.some_analyzer()
... later in the script
analyzer.disable()

13.20.2.3 def enable (self) [inherited]

Enables the analyzer.

Examples:

analyzer.enable()

See disable() for a detailed description.

13.20.2.4 def set_params (self, position = None, image = None, velocity =
None, type = None, wall = None, bond = None)

Change xml write parameters.

Parameters:

position (if set) Set to True/False to enable/disable the output of particle positions
in the xml file

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.20 xml Class Reference 102

image (if set) Set to True/False to enable/disable the output of particle images in
the xml file

velocity (if set) Set to True/False to enable/disable the output of particle velocities
in the xml file

type (if set) Set to True/False to enable/disable the output of particle types in the
xml file

wall (if set) Set to True/False to enable/disable the output of walls in the xml file

bond (if set) Set to True/False to enable/disable the output of bonds in the xml file

Using set_params() requires that the dump was saved in a variable when it was speci-
fied.

xml = dump.xml(filename="particles", period=1e5)

Examples:

xml.set_params(type=False)
xml.set_params(position=False, type=False, velocity=True)
xml.set_params(type=True, position=True)
xml.set_params(position=True, wall=True)
xml.set_params(bond=True)

13.20.2.5 def set_period (self, period) [inherited]

Changes the period between analyzer executions.

Parameters:

period New period to set

Examples:

analyzer.set_period(100);
analyzer.set_period(1);

While the simulation is running, the action of each analyzer is executed every period
time steps.

To use this command, you must have saved the analyzer in a variable, as shown in this
example:

analyzer = analyze.some_analyzer()
... later in the script
analyzer.set_period(10)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.21 zero_momentum Class Reference 103

13.21 zero_momentum Class Reference

13.21.1 Detailed Description

Zeroes system momentum.

Every period time steps, particle velocities are modified such that the total linear mo-
mentum of the system is set to zero.

update.zero_momentum is intended to be used when the NVE integrator has the limit
option specified, where Newton’s third law is broken and systems could gain mo-
mentum. However, nothing prevents update.zero_momentum from being used in any
HOOMD script.

Public Member Functions

• def __init__
Initialize the momentum zeroer.

• def disable
Disables the updater.

• def enable
Enables the updater.

• def set_period
Changes the period between updater executions.

13.21.2 Member Function Documentation

13.21.2.1 def __init__ (self, period = 1)

Initialize the momentum zeroer.

Parameters:

period Momentum will be zeroed every period time steps

Examples:

update.zero_momentum()
zeroer= update.zero_momentum(period=10)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

13.21 zero_momentum Class Reference 104

13.21.2.2 def disable (self) [inherited]

Disables the updater.

Examples:

updater.disable()

Executing the disable command will remove the updater from the system. Any run()
command executed after disabling an updater will not use that updater during the sim-
ulation. A disabled updater can be re-enabled with enable()

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.disable()

13.21.2.3 def enable (self) [inherited]

Enables the updater.

Examples:

updater.enable()

See disable() for a detailed description.

13.21.2.4 def set_period (self, period) [inherited]

Changes the period between updater executions.

Parameters:

period New period to set

Examples:

updater.set_period(100);
updater.set_period(1);

While the simulation is running, the action of each updater is executed every period
time steps.

To use this command, you must have saved the updater in a variable, as shown in this
example:

updater = update.some_updater()
... later in the script
updater.set_period(10)

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

Index
__init__

hoomd_script::analyze::imd, 74
hoomd_script::analyze::log, 82
hoomd_script::analyze::msd, 86
hoomd_script::bond::fene, 69
hoomd_script::bond::harmonic, 72
hoomd_script::dump::dcd, 68
hoomd_script::dump::mol2, 84
hoomd_script::dump::xml, 99
hoomd_script::force::constant, 66
hoomd_script::integrate::bdnvt, 62
hoomd_script::integrate::npt, 89
hoomd_script::integrate::nve, 91
hoomd_script::integrate::nvt, 92
hoomd_script::pair::lj, 77
hoomd_script::update::rescale_-

temp, 94
hoomd_script::update::sort, 97
hoomd_script::update::zero_-

momentum, 102
hoomd_script::wall::lj, 79

create_random
hoomd_script::init, 55

create_random_polymers
hoomd_script::init, 55

disable
hoomd_script::analyze::imd, 75
hoomd_script::analyze::log, 82
hoomd_script::analyze::msd, 86
hoomd_script::bond::fene, 69
hoomd_script::bond::harmonic, 72
hoomd_script::dump::dcd, 68
hoomd_script::dump::xml, 100
hoomd_script::force::constant, 66
hoomd_script::pair::lj, 77
hoomd_script::update::rescale_-

temp, 94
hoomd_script::update::sort, 97
hoomd_script::update::zero_-

momentum, 102
hoomd_script::wall::lj, 79

enable
hoomd_script::analyze::imd, 75
hoomd_script::analyze::log, 83
hoomd_script::analyze::msd, 87
hoomd_script::bond::fene, 70
hoomd_script::bond::harmonic, 73
hoomd_script::dump::xml, 100
hoomd_script::force::constant, 66
hoomd_script::pair::lj, 78
hoomd_script::update::rescale_-

temp, 95
hoomd_script::update::sort, 97
hoomd_script::update::zero_-

momentum, 103
hoomd_script::wall::lj, 80

group_all
hoomd_script, 49

group_tags
hoomd_script, 50

group_type
hoomd_script, 50

hoomd_script, 48
group_all, 49
group_tags, 50
group_type, 50
run, 50

hoomd_script.analyze, 51
hoomd_script.bond, 52
hoomd_script.dump, 52
hoomd_script.force, 53
hoomd_script.globals, 53
hoomd_script.init, 54
hoomd_script.integrate, 58
hoomd_script.pair, 59
hoomd_script.update, 60
hoomd_script.wall, 61
hoomd_script::analyze::imd, 74

__init__, 74
disable, 75
enable, 75
set_period, 75

INDEX 106

hoomd_script::analyze::log, 80
__init__, 82
disable, 82
enable, 83
set_params, 83
set_period, 83

hoomd_script::analyze::msd, 85
__init__, 86
disable, 86
enable, 87
set_params, 87
set_period, 87

hoomd_script::bond::fene, 68
__init__, 69
disable, 69
enable, 70
set_coeff, 70

hoomd_script::bond::harmonic, 71
__init__, 72
disable, 72
enable, 73
set_coeff, 73

hoomd_script::dump::dcd, 67
__init__, 68
disable, 68

hoomd_script::dump::mol2, 84
__init__, 84

hoomd_script::dump::xml, 99
__init__, 99
disable, 100
enable, 100
set_params, 100
set_period, 101

hoomd_script::force::constant, 65
__init__, 66
disable, 66
enable, 66
set_force, 66

hoomd_script::group, 71
hoomd_script::init

create_random, 55
create_random_polymers, 55
read_xml, 57

hoomd_script::integrate::bdnvt, 61
__init__, 62
set_gamma, 62

set_params, 63
hoomd_script::integrate::npt, 89

__init__, 89
set_params, 90

hoomd_script::integrate::nve, 91
__init__, 91
set_params, 91

hoomd_script::integrate::nvt, 92
__init__, 92
set_params, 93

hoomd_script::pair::coeff, 63
set, 64

hoomd_script::pair::lj, 76
__init__, 77
disable, 77
enable, 78

hoomd_script::pair::nlist, 88
set_params, 88

hoomd_script::update::rescale_temp, 93
__init__, 94
disable, 94
enable, 95
set_params, 95
set_period, 95

hoomd_script::update::sort, 96
__init__, 97
disable, 97
enable, 97
set_params, 98
set_period, 98

hoomd_script::update::zero_momentum,
102

__init__, 102
disable, 102
enable, 103
set_period, 103

hoomd_script::wall::lj, 78
__init__, 79
disable, 79
enable, 80
set_coeff, 80

read_xml
hoomd_script::init, 57

run
hoomd_script, 50

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

INDEX 107

set
hoomd_script::pair::coeff, 64

set_coeff
hoomd_script::bond::fene, 70
hoomd_script::bond::harmonic, 73
hoomd_script::wall::lj, 80

set_force
hoomd_script::force::constant, 66

set_gamma
hoomd_script::integrate::bdnvt, 62

set_params
hoomd_script::analyze::log, 83
hoomd_script::analyze::msd, 87
hoomd_script::dump::xml, 100
hoomd_script::integrate::bdnvt, 63
hoomd_script::integrate::npt, 90
hoomd_script::integrate::nve, 91
hoomd_script::integrate::nvt, 93
hoomd_script::pair::nlist, 88
hoomd_script::update::rescale_-

temp, 95
hoomd_script::update::sort, 98

set_period
hoomd_script::analyze::imd, 75
hoomd_script::analyze::log, 83
hoomd_script::analyze::msd, 87
hoomd_script::dump::xml, 101
hoomd_script::update::rescale_-

temp, 95
hoomd_script::update::sort, 98
hoomd_script::update::zero_-

momentum, 103

Generated on Mon Dec 22 10:16:19 2008 for HOOMD by Doxygen

	Main Page
	Installation Guide
	System Requirements for executing HOOMD on a GPU
	Installing HOOMD in Windows
	Installing HOOMD in Linux
	Installing HOOMD in Mac OS X

	Quick Start Tutorial
	Example Scripts
	Example 1: Using dump files
	Example 2: Using IMD
	Example 3: Using the polymer generator
	Example 4: Using arbitrary input files

	Index of Script Commands
	XML File Format
	Overview
	Simulation box specification
	Particle positions
	Particle images
	Particle velocities
	Particle types
	Bonds between particles
	Walls in the simulation box

	Command line options
	File Conversion Scripts
	HOOMD XML LAMMPS input
	HOOMD XML LAMMPS dump
	Other formats

	Compiling HOOMD
	Software Prerequisites
	Building on Windows
	Building on linux
	Building on Mac OSX
	Build options
	Installing Software Prerequisites on Windows
	Visual Studio
	Python
	Boost
	CUDA
	CMake
	Subversion

	Installing Software Prerequisites on Linux
	Python
	Boost
	Compiler
	CMake
	CUDA
	Subversion

	Installing Software Prerequisites on Mac OS X

	License
	Credits
	Namespace Documentation
	Package hoomd_script
	Detailed Description
	Function Documentation

	Package hoomd_script.analyze
	Detailed Description

	Package hoomd_script.bond
	Detailed Description

	Package hoomd_script.dump
	Detailed Description

	Package hoomd_script.force
	Detailed Description

	Package hoomd_script.globals
	Detailed Description

	Package hoomd_script.init
	Detailed Description
	Function Documentation

	Package hoomd_script.integrate
	Detailed Description

	Package hoomd_script.pair
	Detailed Description

	Package hoomd_script.update
	Detailed Description

	Package hoomd_script.wall
	Detailed Description

	Class Documentation
	bdnvt Class Reference
	Detailed Description
	Member Function Documentation

	coeff Class Reference
	Detailed Description
	Member Function Documentation

	constant Class Reference
	Detailed Description
	Member Function Documentation

	dcd Class Reference
	Detailed Description
	Member Function Documentation

	fene Class Reference
	Detailed Description
	Member Function Documentation

	group Class Reference
	Detailed Description

	harmonic Class Reference
	Detailed Description
	Member Function Documentation

	imd Class Reference
	Detailed Description
	Member Function Documentation

	lj Class Reference
	Detailed Description
	Member Function Documentation

	lj Class Reference
	Detailed Description
	Member Function Documentation

	log Class Reference
	Detailed Description
	Member Function Documentation

	mol2 Class Reference
	Detailed Description
	Member Function Documentation

	msd Class Reference
	Detailed Description
	Member Function Documentation

	nlist Class Reference
	Detailed Description
	Member Function Documentation

	npt Class Reference
	Detailed Description
	Member Function Documentation

	nve Class Reference
	Detailed Description
	Member Function Documentation

	nvt Class Reference
	Detailed Description
	Member Function Documentation

	rescale_temp Class Reference
	Detailed Description
	Member Function Documentation

	sort Class Reference
	Detailed Description
	Member Function Documentation

	xml Class Reference
	Detailed Description
	Member Function Documentation

	zero_momentum Class Reference
	Detailed Description
	Member Function Documentation

