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Abstract
The thermal conductivity of several single-wall carbon nanotubes has been
calculated over a temperature range of 100–500 K using molecular dynamics
simulations with the Tersoff–Brenner potential for C–C interactions. In all
cases, starting from similar values at 100 K, the thermal conductivities show
a peaking behaviour before falling off at higher temperatures. The peak
position shifts to higher temperatures for nanotubes with larger diameters
and no significant dependence on the tube chirality is observed. It is shown
that this phenomenon is due to the onset of Umklapp scattering, which shifts
to higher temperatures for nanotubes with larger diameters.

The discovery of carbon nanotubes (CNT) by Iijima et al [1–3],
and subsequent observations of CNTs unique mechanical
and electronic properties have initiated intensive research on
these quasi-one-dimensional structures. CNTs are related to
both graphite and diamond, which are known for their high
thermal conductivities. Consequently, CNTs or composites
based on CNTs are also proposed to be attractive for heat
transport management in ULSI (ultra-large-scale integration)
chips and other miniature device components due to highly
directional heat flow in CNTs. Not much has been studied
about the thermal conductivities of CNTs. A few recent
experiments have been reported on mats of compressed
ropes of CNTs [4]. By assuming that both thermal and
electrical conductivities follow the same rules for transport,
values of thermal conductivity of CNTs ranging from 1750
to 5850 W mK−1 have been extrapolated from experimental
measurement on mats of nanotube ropes [4]. The experimental
results, however, are difficult to interpret due to possibly
deformed nanotubes and pockets of trapped voids in the mat
samples.

Using molecular dynamics (MD) simulations with the
Tersoff–Brenner bond order potential for C–C bonding
interaction [5], we examine the temperature dependence
of thermal conductivity of single-wall CNTs. A peaking
behaviour in the thermal conductivity, as a function of
temperature, is observed. The peak position shifts to higher
temperatures for CNTs with larger diameters, while no
significant dependence on tube chirality is seen. The results

are explained in terms of the onset behaviour of Umklapp
scattering, which lowers the thermal conductivity at higher
temperatures and is strongly dependent on the nanotube radius.

The MD simulations use the Tersoff–Brenner bond-
order potential [5] and solve Hamilton’s classical equations
of motion with a predictor–corrector algorithm with a
fixed timestep of 0.5 fs. The lengths of the single-wall
nanotube (SWNT) and graphene sheet are chosen to be
between 151 and 221 Å, with the number of atoms ranging from
1800 to 5400. Both armchair ((5, 5), (8, 8), (10, 10), (12, 12)
and (15, 15)) and zigzag (10, 0) SWNTs are simulated. The
aspect ratio (length/diameter) in all the simulations is chosen
to be between 10 and 20, depending on the nanotube diameter,
to maintain a reasonable heat flow between the hot and cold
regions of the nanotube. To simulate heat flow from a hot to
a cold region, the nanotube is divided into N equal segments
as shown in figure 1(a). The instantaneous temperature Ti

in a segment i is determined from the kinetic energies of the
atoms within the segment. The left end segment 1 is set at
the temperature of a cold bath, and a hot bath is set at the
middle segment at N/2 + 1 to allow the use of a periodic
boundary condition along the nanotube axis [6]. The atoms
in the boundary segments interact with the atoms in the rest
of the tube and at equilibrium a thermal flux is maintained via
energy exchange between the hot and cold regions. The heat
flux in a thermally equilibrated segment is calculated according
to
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Figure 1. (a) Simulation system of a nanotube of a given length is
divided into N equal segments with a cold bath simulated at
segment 1 and a hot bath at segment N/2 + 1. (b) Temperature
profile along a (10, 10) nanotube at (starting from the bottom)
100–500 K equilibrium temperatures.

where A is the cross-sectional area of the SWNT taken to
be an annular ring of thickness 3.4 Å, �t is the timestep
taken to be 0.5 fs, and NB is the number of atoms in the
boundary layers. vk and v′

k are the velocities of the atoms
in the boundary layers (hot and cold slabs) before and after
scaling, respectively. The equation essentially computes the
change in energy per unit cross-section and divides it by
the time-step to compute the flux. Figure 1(b) shows the
final temperature distribution within a (10, 10) SWNT at five
different equilibrium temperatures. The thermal conductivity
κ is determined from the procedure outlined in [6].

The thermal conductivities are calculated at temperatures
from 100–500 K. The thermal conductivity of (10, 10)
nanotube, as shown in figure 2, increases slowly up to
300 K and then shows a peak at 400 K followed by a
drop at 500 K. To see if the quantization of the phonons
along the circumference was responsible for this behaviour,
the calculations were repeated for a section of single layer
graphene sheet with width equal to the circumference of the
(10, 10) nanotube and the length the same as the nanotube.
Periodic boundary conditions were applied along the width of
the sheet resulting in the quantization of phonons similar to
the nanotube. The calculated thermal conductivity for this
sheet (figure 2), thus shows the same behaviour as that of
the (10, 10) nanotube. The idea of using periodic boundary
conditions on flat sections of graphene sheets to predict
physical characteristics of cylindrical nanotubes is the same as
that used by Benedict et al [7] in calculating the heat capacity
of nanotubes. Moreover, the results will be significantly
different if a large section of a graphene sheet without any
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Figure 2. Thermal conductivity of a (10, 10) nanotube (solid
circles) as compared with that of a single graphene layer (solid
squares) containing the same number of atoms.
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Figure 3. Phonon spectrum of the (10, 10) nanotube calculated
from the Fourier transform of the velocity auto-correlation function
generated during the simulations.

periodic boundary conditions along the width is used in the
above simulation. A detailed investigation for the in- and out-
of-plane thermal conductivity bulk graphite in comparison with
that of a multi-wall nanotube is currently under investigation
and will be published elsewhere [8]. The suitability of the
Tersoff–Brenner potential for these simulations is checked by
comparing the phonon spectrum computed using the velocity–
velocity autocorrelation generated during the simulation with
the experimental in-plane graphite phonon modes. The phonon
spectrum for the (10, 10) nanotube, in figure 3, shows a
strong peak around 50 THz which is characteristic of the
graphite phonon spectrum. The broadened spectral peak
at 50 THz significantly overlaps with the smaller radius
dependent on the smaller peak at 28 THz due to radial
enhancement in the (10, 10) nanotube. The experimentally
measured in-plane thermal conductivity of pyrolytic graphite
in the temperature range 100–300 K is reported to be between
500–3000 W mK−1 [9, 10]. Most of the reported results for
SWNTs in this paper are within the experimentally measured
range of in-plane thermal conductivity values.

The dependence of the thermal conductivity on the radii
of nanotubes of the same chirality (armchair nanotubes) is
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Figure 4. (a) Thermal conductivity of (5, 5)—solid circles;
(10, 10)—solid squares; and (15, 5)—solid triangles, nanotubes of
different diameters. (b) Thermal conductivity of (5, 5)—solid
circles, and (10, 0)—open triangles, nanotubes.

shown in figure 4(a) for (5, 5), (10, 10) and (15, 15) nanotubes.
The temperature dependence of the thermal conductivities of
(8, 8) and (12, 12) nanotubes was also calculated and follows
the same behaviour as described below. As shown in the
figure, the values of the thermal conductivity at 100 K for all
armchair SWNTs are close to each other. As the temperature
is increased, the thermal conductivity increases by different
rates for different tubes, up to a maximum value followed
by a decrease to lower values at higher temperatures. Within
the resolution of the temperature dependence reported in this
paper, the peak values of the thermal conductivity of (5, 5),
(10, 10) and (15, 15) SWNT occur at 300, 400, and 450 K,
respectively.

The dependence of thermal conductivity on the tube
chirality, via a comparison of (5, 5) and (10, 0) nanotubes, is
shown in figure 4(b). These CNTs have the same diameter and
so should not be affected by the strong diameter dependence
as described above. The qualitative temperature dependence
in the two cases is the same. The thermal conductivity of
both peaks at 300 K. At lower temperatures, the thermal
conductivity of the (5, 5) nanotube drops faster than that of
the (10, 0) nanotube. This difference can be explained by the
stretching strain behaviour of sigma bonds as a graphene sheet

is rolled up to make a nanotube [11,12]. In armchair nanotubes
the sigma bond along the circumference is strongly strained,
while in zigzag nanotubes the sigma bond along the tube axis
has the least strain. The excess strain along the circumference
in armchair nanotubes can limit the phonon mean free path due
to scattering and lower the thermal conductivity.

The diameter dependence of the peak positions of the
armchair nanotubes in figure 4(a) is explained next. The drop
in the thermal conductivity beyond its peak value is generally
attributed to the increased role of resistive phonon–phonon
interactions known as Umklapp processes (U-processes) [4].
In some scenario the U-processes also refer to electron–phonon
scattering, we note, however, that by U-processes we refer
strictly to phonon–phonon scattering processes where the final
state wavevector lies outside the Brillouin zone edge. These
involve large wavevector phonons and lead to 1/T dependence
in thermal conductivity at high temperatures. In a typical U-
process, randomization of the heat flow direction [13] occurs
and the net heat flux along the axis is reduced. Whether
the final phonon exceeds the Brillouin zone boundary or not
depends on the magnitude of the phonon wavevector, i.e.
axial, radial, and azimuthal components. The axial component
remains independent of the tube diameter, whereas the radial
and azimuthal components show strong dependence on the
tube diameter. Therefore, in our discussion of the Umklapp
process, we will focus on the latter two with the assumption that
in a real system, simulated using the dynamic method, there
is coupling between the three components and randomization
of heat energy along the axial direction is possible through
the excitation of U-processes along the radial and azimuthal
components. We note that in model Hamiltonian based
approaches this coupling is generally ignored and a complete
separation of the modes within a harmonic approximation is
assumed. The cyclic boundary condition around a nanotube
leads to the following condition:

nλ = πd (2)

where n is an integer, λ is the wavelength, and d is the nanotube
diameter. The maximum allowed wavelength is obtained by
setting n = 1 which also determines the minimum allowed
wavevector qmin according to,

qmin = 2π

λmax
= 2

d
. (3)

Therefore, it follows that the minimum wavevectors vary
inversely with the tube diameter. In other words, the minimum
wavevectors in small diameter SWNTs are larger than those
in large diameter SWNTs and closer to the reciprocal lattice
vector needed for a U-process. The overall magnitude of
the phonon wavevector depends on the magnitude of all
three components of the wavevector. The axial component
has the same distribution for all the nanotubes, however,
the radial and azimuthal components tend to favour long
wavevectors for small diameter nanotubes. Consequently,
at any given temperature, the probability of U-processes is
higher in SWNTs with smaller diameters as compared to
tubes with larger diameters. Since, the U-processes cause
a drop in thermal conductivity from their peak value, these
peaks will occur at lower temperatures in small diameter
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nanotubes. This is consistent with the results in figure 4(a)
where thermal conductivity peaks shift to higher temperatures
for CNTs of larger diameter and there is no dependence on
tube chirality.

The above features in the thermal conductivity, explained
due to the onset of U-processes, also indicate a dominant
role of radial phonons as a mechanism for heat transport in
SWNTs. The presence of strong radial phonons in both zigzag
and armchair SWNTs have been described earlier by the static
lattice dynamics calculations of Charlier et al [14] and Rao et al
[15]. They have developed an experimentally parametrized
(proportional to 1/D) dependence of radial phonon frequency
on nanotube diameters [15]. Their experimental results
indicate that the frequency of radial phonons shifts to lower
values for CNTs of larger diameters. This allows the thermal
conductivity peaks to occur at higher temperatures for large
diameter nanotubes before being suppressed by phonon–
phonon scattering or U-processes.

In summary, we have investigated the temperature
dependence of thermal conductivity of SWNTs near room
temperature (100–500 K). The electronic contribution to
the thermal conductivity in graphene sheets and CNTs, at
these temperatures, is expected to be negligible due to the
low density of free charge carriers [4, 16]. For example,
Benedict et al [7] showed that phonon contribution was
dominant down to 0 K and that the phonon contribution to
the heat capacity was 10 000 times larger than the electronic
contribution. The thermal conduction at these temperatures
is found to be strongly dependent on the diameter of the
nanotube with no dependence on the tube chirality. The
thermal conductivity for all nanotubes exhibits a peaking
behaviour as a function of temperature, and the peak position
shifts to higher temperatures for larger diameter SWNTs. This
behaviour is attributed to a combination of factors; the onset
behaviour of Umklapp scattering; and the fact that heat is
carried mainly through radial phonons. Both of these factors
have strong tube radius dependence and weak or no chirality
dependence.

Our simulation results, and the above discussion,
demonstrate the possibility of developing specific materials
for thermal transport management that could be optimized for
applications in a particular temperature range. For example,
(5, 5) nanotubes provide the highest thermal conductivity
at room temperature, as compared to (10, 10) and (15, 15)
nanotubes. A weak dependence of the temperature behaviour
of the CNT thermal conductivity on their chiralities, for
tubes of the same diameter, is probably desirable from an
applications’ perspective, since at present it is not possible
to produce nanotubes of a given chirality in a controlled
manner.

A precise knowledge of CNT thermal conductivity will
be useful in designing efficient thermal transport management
materials and devices specially suited for micro- and nano-
scale applications. Our work is a first step in that direction.
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Note added. The thermal conductivity of a (10, 10) nanotube
using the same Tersoff–Brenner potential [5] and a thermal current
correlation function method has been recently reported by Che
et al [17]. They calculate the thermal conductivity of a constant
diameter nanotube as a function of defect and vacancy concentration,
whereas our work explores the temperature dependence of the thermal
conductivity as a function of tube diameter and chirality. The tube
length (22 nm) used in our work for all diameters is also shown to be
enough to achieve convergence in the paper of Che et al [17].
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