
Xbert Bit Error Rate Tester

Fermilab ESE Group
Document # xxxxx (Preliminary version. Not for distribution.)
Author: Don Husby
Printed: 13-Mar-02
Revised: 21-Oct-97
Also available on the WWW as:
http:// www-ese.fnal.gov/projects/svx/bert/Xbert.htm
Corrections / revisions to document shown in bold underline type. Additional
information regarding script files added to end of document, NGW 03/06/02

Introduction
The XBERT is a general-purpose Bit Error Rate Tester for high speed links.
It can generate and check arbitrary data patterns as large as 32K by 32 bits at
speeds up to 63.5 Mwords/Sec.

As shown in Fig 1, the Xbert consists of three modules: a transmitter (Tbert),
a receiver (Rbert), and a PC host interface (Pbert). The Tbert sends a
continuous pattern out through the test link. The Rbert receives the pattern
and checks it. The Pbert controls the other two modules via a 1-MHz
electrically-isolated serial link. This three-card architecture allows the
transmitting end of a test-link to be electrically and physically isolated from
the receiving end.

Since the circuitry is implemented using FPGAs, it can be easily modified to
accommodate most types of clocking and handshake protocols. The standard
50-pin single-ended ECL connector should be sufficient to support most links.
When timing is critical, the Xbert circuitry can be customized and placed on

the same PC board as the link circuitry. The specifications section lists links
that are currently supported.
The user interface software runs under MS-Dos (or in a Dos window) and
allows the user to configure and monitor the Xbert. Basic operations include

creating and loading test patterns, starting and stopping a test, monitoring
error statistics, and setting operating characteristics such as clock speed.

Contents
(double-click on the page numbers to go to that item)

Introduction... 1
User Guide ... 2

Installation..2
Installing the Pbert..................................2
Installing the software.............................2
Installing the Tbert and Rbert.................2

User Interface ...3
Startup ..3
Display Screen..3
Commands..4

Notes on Supported Links6
ECL 50-Pin Connector6
Finisar / G-link6
SVX GRT Quad G-link receiver (Qbert)7
TTL-Level Xbert8

Interfacing Guide.................................. 9
Daughterboard Adapter9

Transmitter Signals.................................9
Receiver Signals9
Clocking Schemes10
Mechanical ...10

Integrated Adapter10
Debugging Guide................................. 11

Common Elements....................................11
Control Link Protocol...........................11
Power Connector11
FPGA files..11

PBERT ...12
TBERT ...12
RBERT...12
Software..13

Hardware Register Formats13
Program Flow.......................................13
Subroutine Descriptions14
Error Messages14

Appendix L: Logbook......................... 16
Appendix W: Windows issues............ 16

Installing under Win9516
Registering the xbr file type16

Appendix S: Sample scripts 17

Fig 1 Xbert block diagram

PBERT: PC Host card
TBERT: Transmitter card
RBERT: Receiver card

Specifications

Pattern length 32K Words
Pattern width 1 to 32 bits
Word rate 16 to 63.5 MHz
 variable by 0.5 MHz
Host Computer MS-Dos PC with
 16-bit ISA slot
Supported Links:

 ECL 50-pin connector
 Finisar / G-Link adapter.
 SVX GRT Quad G-link receiver (TTL)
 TTL Xbert

PBERT
1 Mbs control

links (RS-485)

 TBERT Test Link

 RBERT Test Link

 2
User Guide

Installation
Use the following simple steps to install the Xbert.
1) Set the Pbert I/O base address and install in a free 16-bit ISA slot in your PC.
2) Copy the software and supporting files to an appropriate directory on your hard drive.
3) Setup Tbert and Rbert and connect them to Pbert via 8-wire control links.
4) Power up PC, Tbert and Rbert, and run xbert.exe.

Installing the Pbert
Before installing the Pbert, set its base address via the dip-switch (Fig 2). The Pbert requires 16
bytes of I/O register space on a 16-byte boundary. The default base address of 310 should be
used whenever possible. If an address other than 310 is used, then the environment variable
XBERT_BASE should be set to the proper value by adding the following line to your
autoexec.bat file:

 SET XBERT_BASE=### (Where ### is the base address)

If you’re running under Windows95, you can check for free I/O space and reserve I/O space
using the Control Panel/System applet (See Appendix W).

Installing the software
The latest software for the Xbert can be found at the web site:

http://www-ese.fnal.gov/eseproj/svx/bert/soft.htm
The software includes the user interface program (xbert.exe) and a number of data files. All of
these files should be copied to a directory on your hard disk. The software should be run from
that directory. Under Windows95, you can register the .xbr type so that clicking on a .xbr script
will automatically start xbert.exe (See Appendix W).

Xbert.exe uses several types of data files:

*.XCF Xbert Chip files. These are configuration files for the Xbert gate arrays. The default

chip files are xbert_p.xcf, xbert_t.xcf, and xbert_r.xcf. Other link types may require
different xcf files.

*.PAT Pattern Files. These are user-generated pattern files. Note that many useful patterns

are built-in to the software and do not require PAT files.

*.XBR Xbert script files. These are startup scripts that contain configuration information.

You can create scripts that automatically setup the Xbert, load patterns, and run tests.
An XBR script can be specified on the command line when xbert.exe is started.

Installing the Tbert and Rbert
Depending on your test requirements, the Tbert and Rbert can be installed in separate boxes
with separate power supplies, or they can reside in the same box and share a power supply.
Install all cables and link adapters before turning on the power.

There is one jumper on the Rbert that inverts the received strobe. Fig 5 shows how to configure
the jumper for true or inverted clocking.

Figure 5A shows the actual jumper configuration for changing the clock polarity on the
ecl Rbert. NGW – 03/06/02

Fig 2 Pbert Base Address Setting

Fig 3 Pbert connector locations
Rbert Control Link
Tbert Control Link
Auxiliary Control Links
Base Address Dipswitch

Fig 4 Rbert/Tbert connectors.
Power Connector
G-Link Adapter
50-Pin ECL
Clock Jumper
Control Link

Fig 5 Rbert clock inversion jumper

 True Clock Inverted Clock

Shown with default setting = 310h

PC Address bits

1
2 Register Select
3
4
5
6 Base Address
7
8
9

Unused

On
1
2
3
4
5
6
7
8

Fig5A Rbert clock inversion jumper

True clock Inverted clock

 Xbert User Guide 3

User Interface

Startup
Under DOS: Xbert.exe should be run from the directory in which
it was installed. It can be started by simply typing “XBERT” at a
DOS prompt. An optional startup script (.xbr file) can be
specified on the command line. If no startup script is specified,
then Xbert tries to execute commands from xbert.xbr.

Under Windows: The user interface can be started by double-
clicking on the xbert.exe icon or by double-clicking on a .xbr
script file icon. If you click on an xbr file, Xbert will execute that
startup script. If you click on Xbert.exe, it will try to run the
Xbert.xbr startup script. Note that if you are running Xbert for
the first time, windows may respond with the “Start With” dialog
box. See appendix W for instructions on how to register the .xbr
file type.

The startup script configures the hardware and other test
parameters. The typical startup script should have the following
elements:
1) Specify chip files (.xcf) to configure the programmable gate

arrays. (This step is required and should be done first).
2) Configure clock hardware (Speed, edge, etc.)
3) Set flag names and handshake protocol.
4) Configure pattern
5) Load Pattern

During startup several sanity checks are made on the hardware to
insure that it is working properly. The debugging guide lists
error messages and possible causes.

Display Screen
Figure 5 shows the display screen immediately after a typical
startup. The following describes elements of the display screen:

1 Hardware flags show the current status of the remote

modules. Flag names are highlighted if the flag is on. Flag
names are user-defined and can be associated with any bit of the
16-bit Tbert or Rbert status word. A description of the status
word can be found in the FLAG command description below.

2 Error statistics include the total number of errors, the total
number of words transferred, the error rate (errors per word) and
the total test time.

3 Clock configuration includes clock speed and synchronization
settings. See the CLOCK command description below for more
details.

4 Chip files are the names of the firmware files that are
currently downloaded into the Tbert and Rbert. If the names are
dimmed, then the files have not been successfully loaded.

5 Port and Dev indicate which of the 4 control ports and which
of the four links are selected. The Pbert has 4 control link ports.
Some versions of the Tbert or Rbert may have control up to four
devices. Currently, the software supports the selection of Port
and Device, but does not support the running of tests on more
than one port or device at the same time.

6 Pattern indicates the name of the currently loaded pattern. If
the name is dim, then the pattern has not been successfully
loaded. The mask indicates which of the 32 bits in the pattern
word are being used. The offset indicates the number of words
required by the receiver before it should start checking the
pattern. See the Pattern, Mask, and Offset commands below for
more details.

7 The Log area contains detailed error and status messages. It
is a scrolling window. Each message is preceded by the current
date and time. Messages can also be sent to a log file by using
the Logfile command.

8 Commands are displayed in the command window.

Fig 6 Xbert Display Screen
╔═ Status ═══╗
║ TBERT: RUN_T READY_T RESET_T DIV1_T M20_T FILL_FRAME ║
║ RBERT: RUN_R READY_R RESET_R DIV1_R M20_R SYNCED ║
║ 0 Errors / 0.0e+00 Words =0.0e-00 E/W (0 Days 0.00 Hours) ║
╠═ Configuration ══╣
║ Clock: 44.0 MHz sync dav_free one_edge ║
║ Chip: tbert.xcf / rbert.xcf Port=0 Dev=0 ║
║Pattern: =random Mask: 0000FFFF.FFFF0000 Offset: 1 ║
╠═ Log ══════ TEST3.LOG ══╣
║0820 11:34:16 Reading commands from glink.xbr ║
║0820 11:34:16 Log file TEST3.LOG opened ║
║0820 11:34:16 Loading file PBERT.XCF ║
║0820 11:34:16 Loading file TBERT.XCF ║
║0820 11:34:16 Loading file RBERT.XCF ║
║0820 11:34:16 Sanity check: System appears to be working ║
║0820 11:34:16 Pattern successfully transferred to remote modules ║
║0820 11:34:16 RUN 44Mhz tbert.xcf rbert.xcf =random[000FFFFF.00000000] ║
╚══╝
> handshake READY_R
> offset 1
> mask 000FFFFF
> pattern random
> run

1

2

3

54

6

7

8

 Xbert User Guide 4
Commands
Commands can be entered from the keyboard or they can be used
in a .xbr script file.

Configuration and Control Commands
stop [f5] Stop the test
run [f6] Start the test
clear [f7] Clear errors
load [f8] Load the current pattern into the remote modules
check [f4] Check the current pattern at the remote modules
help [f1] Display help file
exit [alt-x] or [alt-f4] Exit program

source <file>[.xbr]
 Accept further commands from <file>. Default file type is

.xbr. If executed from a script, then the current file is closed
and the new one is opened.

logfile <file>[.log] ["new"]
 Open <file> as a log file. If “new” then start a new file,

otherwise append to existing file. If no file is specified, then
the log file is closed. Default file type is .log.

chip <xmit bit file> <recv bit file> <pbert_file>[.xcf]
 Configure FPGAs with these files. This resets and

reconfigures the whole system. The default type is .xcf.

port 0-3
 Set the Pbert control-link port. Port 0 is the default phone-

jack. Ports 1-3 are on the auxiliary control link connector.
Currently, software only supports one port at a time.

dev 0-3
 Select one of four link devices. Some versions of the Tbert

or Rbert may control as many as four test links. This
command selects which link to use. In particular, this is used
with the GRT to select which of 4 G-link receivers is
checked.

xrmask 1-3
 Turns off the transmitter or receiver to aid in debugging or

remote tests.
 1 Transmit only. Ignore the receiver.
 2 Receive only. Ignore the transmitter.
 3 Normal. Transmitter and receiver are both used.

burst <limit>
 Number of errors in 3 seconds that is considered a fatal link

problem. When this limit is reached, the link is reset and
patterns are checked and reloaded if necessary. If this
happens twice, a fatal error is declared, and the whole system
is reset and re-configured. If burst is set to 0, then no burst
detection is done.

Clock <speed> two_edge/one_edge async/sync dav_hold/dav_free
PLL/Xtal Rising/Falling

 Set clock speed and configuration. The speed can be any
number from 16.0 to 63.5. The other flags determine how
the clock is used by the receiver: (See Clocking Schemes in
the User Guide for more information).

 two_edge Data is valid on both edges of the clock. This can
be used in parallel links so that the clock signal
has the same bandwidth as the data signals.

 one_edge Data is valid at the rising edge of the clock.
 sync The clock is synchronous and runs continuously

even when no data is transmitted.
 async The clock only transitions when valid data is sent.
 dav_hold Latch the data-available signal on its first

transition. Used when DAV is embedded in the
test data.

 dav_free DAV should be used to qualify every data word.
 Rising Output data is clocked on TCLK rsing edge
 Falling Output data is clocked on TCLK falling edge
 PLL Enable PLL clock generator
 Xtal Disable PLL clock generator

Pattern commands
pattern <file>[.pat] / random / seq / alt / pspike / nspike
 Generate a test pattern from a file or from one of the pre-

programmed patterns, and apply the current mask, offset,
davbit, and clkbit settings. Preprogrammed patterns include:

 random Random data. This uses the rand() function and

is always the same random pattern.
 seq Sequential. Bits 14:0 and 29:15 contain the

word’s address.
 alt Alternating. Words alternate from all 0 to all 1.
 pspike Positive spike. All words are zero except for

location 1 which is all ones.
 nspike Negative spike. All words are ones except for

location 0 which is all zero.

offset <offset> This sets the pattern offset at the receiver.
When data starts coming into the receiver, it may be
necessary to toss out one or two words in order to
synchronize the memory pattern to the incoming pattern.
The offset tells how many words to ignore.

mask <valid> <set>
 Pattern mask. This determines the word width and sets the

unused bits to a known state. The first hex number specifies
which bits are valid - all other bits are set to zero unless they
are set in the <set> field.

clkbit 0-31 or -1
 This allows one of the bits in the data to be used as a two-

edged clock. When specified, the bit is forced to an
alternating 0/1 pattern.

davbit 0-31 or –1 <inv>
 This allows one of the data bits to be used as a Data-

Available signal. When used, this bit is forced to a 0 at
location 0 and a 1 at location 1. All other locations are set
by the pattern type. If the Inv is specified, then the davbit is
active low instead of high.

davoffset <offset> This controls how many words occur before
the davbit is toggled. The davbit is toggled on word
offset+1.

load [f8] Load the current pattern into the remote modules

list <location>
 Lists 10 lines of the pattern starting at <location>

 Xbert User Guide 5
Flag and Handshake Commands
The Tbert and Rbert each have a 16-bit status word. Some of the
bits in the status word are user defined and depend on the link
being tested. The Xbert software allows you to assign arbitrary
names to these flags and to specify how they are used in startup
handshake sequences.

flag <flag number> <Name>
 Assigns a name to one of the general purpose flags. The

Tbert and Rbert each have 4 general purpose inputs and 4
general purpose outputs. The flags are displayed in the order
that they are named. The following table lists flag numbers
and their function in the status word. See information on
specific links for detailed bit usage. Numbers are in
hexidecimal.

 Bits Function
 Tbert Rbert
 3:0 13:10 General-purpose output handshake signals
 7:4 17:14 General-purpose input handshake signals
 8 18 Data Link ready to send/receive data
 9 18 Data Link Error
 A 1A Control-link error
 B 1B Data compare error - Received wrong data.
 C 1C Run – Data link test is running
 D 1D Data Available
 E 1E Error – one of the error bits is on

 Note that the Link_Ready flag is special. It is a fast

hardware trigger that will stop the transmitter or receiver
immediately. It’s polarity can be set in hardware by putting
a slash (/) in front of its name.

handshake flag, flag … = [/]flag [/]flag …
 Specifies a step in the startup handshake sequence. Each

step is a kind of if-then statement: “wait for the input flags to
match the specified state then set the output flags as specified
and then move to the next step.” After the last step is
satisfied, then the Tbert will start sending data on the link.

 If an input flag name is preceded by a / then it must be low to
match the condition. If an output flag is preceded by a / then
it is driven low when the condition is matched. If no input
flags are specified then the condition is always matched.

 Note that the handshake sequence is done in software. The
maximum speed for executing a handshake step is 40
microseconds (limited by the speed of the control link)

new_flags
 Clears the existing flag definitions.
new_handshake
 Clears the existing handshake definition.

Example Startup Script.

logfile test3.log // Open Log file
chip tbert.xcf rbert.xcf pbert.xcf // Load new FPGA files
clock 44 one_edge sync dav_free // Set clock parameters
new_flags // Clear existing definitions
flag C RUN_T // Define RUN flag
flag 8 READY_T // Transmitter ready
flag 0 RESET_T // Transmitter reset
flag 2 DIV1_T // PLL speed
flag 3 M20_T // 16/20 bit select
flag 1 FILL_FRAME // Fill frame control
flag 1C RUN_R // Receiver RUN
flag 18 READY_R // Receiver ready
flag 10 RESET_R // Receiver Reset
flag 11 DIV1_R // PLL speed
flag 12 M20_R // 16/20 bit select
flag 5 SYNCED // Receiver is synchronized
new_handshake // Define a new handshake sequence
handshake /DIV1_T /DIV1_R M20_T M20_R = // Set operating modes
handshake /RESET_R /RESET_T /FILL_FRAME = // Reset devices
handshake RESET_T = // Release transmitter
handshake RESET_R = READY_T // When Transmitter syncs, release Receiver
handshake FILL_FRAME = SYNCED // When Receiver syncs, send FF1
handshake READY_R // Last step - wait for receiver ready
offset 1 // G-link requires 1 extra word
mask 000FFFFF // G-link is 20 bits wide
pattern random // Generate pattern
load // Load pattern
run // Start the test

 Xbert User Guide 6

Notes on Supported Links

ECL 50-Pin Connector
The 50-pin connector is intended to be used with adapter cards and very short
cables. It has 32 data bits, strobe, and some handshake signals. It also has pins
that supply +/- 5 volts. Signal levels are 100K ECL.

Using the loopback test cable for the ECL Bert
Only use the loopback cable that is supplied with the Xbert. It has been modified
so that it doesn’t pass the +/- 5 volt power and so that asserts the READY signal.
Other cables will not work properly. If you need to make a loopback cable, simply
cut the outer 2 wires on each edge of the cable, and short wires 33 and 34 together.
If you’re using the startup script shown at the end of this document, short
wires 33 and 31 together on the transmitter end of the loopback cable instead
of pins 33 and 34.

To run a loopback test, use the LOOPBACK.XBR startup script, or use the loopback
script at the end of this document. See the Interfacing Guide for a complete
description of signal names and functions.

Finisar / G-link
Finisar G-link modules connect directly to the Rbert and Tbert via 60-pin high-
density connectors. The G-link uses a single-edged, synchronous, inverted clock.
The Rbert clock jumper (Fig 5) should be set to “inverted” and the startup script
should set the clock to SYNC, ONE_EDGE, and DAV_FREE.

As shown in Fig 8 the Xbert has access to handshake lines as well as the 16/20-bit
word width selection (M20SEL) and one of the PLL clock range signals (DIV1).
Fig 10 shows how the handshake signals should be sequenced at startup. Table 1
shows available operating speeds and word widths. Note that the G-link
specification says that the maximum word rate in 20-bit mode is 62.5 MHz. This
rate can be exceeded if external cooling is used.

To run a test with the Finisar / G-link module, use the GLINK16.XBR , GLINK20.XBR
startup script, or use the startup script at the end of this document.

Fig 7 ECL 50-pin connector pinouts
 Transmitter Receiver

 +5V 50 49 +5V +5V 50 49 +5V
 D31 48 47 D30 D31 48 47 D30
 D29 46 45 D28 D29 46 45 D28
 D27 44 43 D26 D27 44 43 D26
 D25 42 41 D24 D25 42 41 D24
 D23 40 39 D22 D23 40 39 D22
 D21 38 37 D20 D21 38 37 D20
 GPI3 36 35 GPO3 GPO3 36 35 GPI3
 GPO0 34 33 READY GPO0 34 33 READY
 GPI2 32 31 GPO1 GPO2 32 31 GPI1
 GND 30 29 GND GND 30 29 GND
 STB+ 28 27 STB- STB+ 28 27 STB-
 GND 26 25 GND GND 26 25 GND
 DAV 24 23 GND DAV 24 23 GND
 D19 22 21 D18 D19 22 21 D18
 D17 20 19 D16 D17 20 19 D16
 D15 18 17 D14 D15 18 17 D14
 D13 16 15 D12 D13 16 15 D12
 D11 14 13 D10 D11 14 13 D10
 D9 12 11 D8 D9 12 11 D8
 D7 10 9 D6 D7 10 9 D6
 D5 8 7 D4 D5 8 7 D4
 D3 6 5 D2 D3 6 5 D2
 D1 4 3 D0 D1 4 3 D0
 -5V 2 1 -5V -5V 2 1 -5V

Fig 8 Connections from Xbert to Finisar

Fig 9 G-Link / Finisar Connector pinouts

Table 1 Finisar/G-link Operating Speeds

Width (M20SEL) DIV1=0 DIV1=1
16-Bit (0) 42-63.5 16-25 MHz
20-Bit (1) 35-62.5 16-21 MHz

Fig 10 G-link Startup Handshake

 RESET_T Release Trans.
 LOCKED Xmit PLL locked
 RESET_R Release Receiver
 STAT1 PLL Freq. Lock
 FF Send Fill Type 1
 STAT0 PLL Phase Lock
 (RUN) Start Test

Data Finisar
STB G-Link
DAV Receive
RESET
DIV1
M20SEL
STAT0
STAT1

Data Finisar
STB G-Link
DAV Transmit
RESET
FF
DIV1
M20SEL
LOCKED

Data
Tbert STB

DAV
GPO0
GPO1
GPO2
GPO3

READY

Data
Rbert STB

DAV
GPO0
GPO2
GPO3

READY
GPI1

Receiver

 Gnd (D) 31 1 Vcc (D)
 DIV1 32 2 DIV0
 ERR 33 3 Gnd (E)
 D 1 34 4 D 0
 D 3 35 5 D 2
 D 5 36 6 D 4
 D 7 37 7 D 6
 Gnd (E) 38 8 D 8
 D 10 39 9 D 9
 D 12 40 10 D 11
 D 14 41 11 D 13
 D 16 42 12 D 15
 D 18 43 13 D 17
 Gnd (E) 44 14 Gnd (E)
 CAV~ 45 15 D 19
 LinkRdy~ 46 16 Flag
 LoopEn 47 17 FF
 Active 48 18 DAV~
 FDis 49 19 Rx_Sig_Det
 Gnd (E) 50 20 Strb-
 Eqen 51 21 Strb+
 Opt_Pwr 52 22 SimClk-
 Sys2 53 23 SimClk+
 Sys1 54 24 Stat1
 FlagSel 55 25 Gnd (E)
 VEE 56 26 Stat0
 VEE 57 27 M20Sel
 SmRst1~ 58 28 VTT
 SmRst2~ 59 29 VTT
 Gnd (E) 60 30 Gnd (D)

Transmitter

 Gnd (E) 31 1 Gnd (D)
 Lock 32 2 VTT
 M20sel 33 3 VTT
 Vee (E) 34 4 Flagsel
 Vee (E) 35 5 Gnd (E)
 CAV~ 36 6 DAV~
 Strb+ 37 7 FF
 Strb- 38 8 ED
 Flag 39 9 D 0
 Gnd (E) 40 10 D 1
 D 2 41 11 D 3
 D 4 42 12 D 5
 D 6 43 13 D 7
 D 8 44 14 D 9
 D 10 45 15 Gnd (E)
 D 12 46 16 D 11
 D 14 47 17 D 13
 D 16 48 18 D 15
 D 18 49 19 D 17
 Gnd (E) 50 20 D 19
 NC2 51 21 Gnd (E)
 Ofc_Stat 52 22 DIV1
 Reset~ 53 23 Loopen
 DIV0 54 24 Opt Pwr
 CS~ 55 25 SYS1
 SI 56 26 Ready
 SO 57 27 NC3
 SCLK 58 28 SYS2
 Gnd (E) 59 29 Vcc (D)
 Gnd (D) 60 30 NC1

 Xbert User Guide 7
SVX GRT Quad G-link receiver (Qbert)
This is a special adapter created to test the G-Link Fiber Receiver Transition Board
(GRT). Documentation for the GRT can be found on the ESE web site at:

http://www-ese.fnal.gov/eseproj/svx/vrb/vrb.htm

The Qbert uses the standard Rbert hardware with a 4-way switch at the front end.
This allows the Qbert to select one of four G-links from the GRT card. The length
of the Qbert has been extended to accommodate the GRT power connector and data
connector.

To run a test with the Qbert, attach a Finisar transmitter to the Tbert and connect its
optical cable to one of the G-Link receivers on the GRT. Execute the QBERT.XBR
startup script. Select one of the four G-links using the DEV command and start the
test using the RUN command.

Since the GRT doesn’t use the G-link handshake signals, the handshake protocol is
“open loop” and must rely on timed steps. The Transmitter’s FF signal should be
asserted unconditionally one step after the receiver RESET is released.

Fig 11 GRT Quad G-link Receiver

Fig 12 GRT J3 Data Connector Pinout
PIN A B C D E

 Link OLink OLink OLink O Link 2Link 2Link 2Link 2
1 D0 GND rsrv GND D0
2 D1 D2 rsrv D2 D1
3 GND D3 rsrv D3 GND
4 D5 D4 rsrv D4 D5
5 D6 GND rsrv GND D6
6 D7 D8 rsrv D8 D7
7 GND D9 rsrv D9 GND
8 D11 D10 rsrv D10 D11
9 D12 GND rsrv GND D12
10 D13 D14 rsrv D14 D13
11 GND D15 rsrv D15 GND
12 D16 D16 rsrv D16 D16
13 D17 GND rsrv GND D17
14 D17 D18 rsrv D18 D17
15 GND D18 rsrv D18 GND
16 D19 D19 rsrv D19 D19
17 CAV* GND rsrv GND CAV*
18 DAV* READY* rsrv READY* DAV*
19 GND READY* rsrv READY* GND
20 STRB GND rsrv GND STRB
21 STRB* ERROR rsrv ERROR STRB*
22 GND ERROR rsrv ERROR GND

 Link 1Link 1Link 1Link 1 LinLinLinLink 3k 3k 3k 3
23 (GND) GND rsrv GND (GND)
24 (GND) (GND) rsrv (GND) (GND)
25 GND (GND) rsrv (GND) GND
26 CAV* GND rsrv GND CAV*
27 DAV* READY* rsrv READY* DAV*
28 GND READY* rsrv READY* GND
29 STRB GND rsrv GND STRB
30 STRB* ERROR rsrv ERROR STRB*
31 GND ERROR rsrv ERROR GND
32 D0 GND rsrv GND D0
33 D1 D2 n/c D2 D1
34 GND D3 n/c D3 GND
35 D5 D4 n/c D4 D5
36 D6 GND (GND) GND D6
37 D7 D8 (GND) D8 D7
38 GND D9 (GND) D9 GND
39 D11 D10 (GND) D10 D11
40 D12 GND (GND) GND D12
41 D13 D14 n/c D14 D13
42 GND D15 n/c D15 GND
43 D16 D16 n/c D16 D16
44 D17 GND n/c GND D17
45 D17 D18 n/c D18 D17
46 GND D18 RESET* D18 GND
47 D19 D19 MODID D19 D19

Fig 13 GRT J0 Power Connector
PIN Z A B C D E F

1 Gnd +5V +5V +5V +5V +5V Gnd
2 Gnd rsrvd rsrvd +5V rsrvd rsrvd Gnd
3 Gnd rsrvd rsrvd rsrvd rsrvd rsrvd Gnd
4 Gnd Vt User User User User Gnd
5 Gnd Vt User User User User Gnd
6 Gnd RET_ZT User User User User Gnd
7 Gnd AREF_AT User User User User Gnd
8 Gnd RET_ZT User User User User Gnd
9 Gnd Vz User User User User Gnd
10 Gnd Vz User User User User Gnd
11 Gnd -5.2V (Vy) User User User User Gnd
12 Gnd -5.2V (Vy) User User User User Gnd
13 Gnd RET_XY User User User User Gnd
14 Gnd AREF_XY User User User User Gnd
15 Gnd RET_XY User User User User Gnd
16 Gnd -5.2V (Vx) User User User User Gnd
17 Gnd -5.2V (Vx) User User User User Gnd
18 Gnd rsrvd User User User User Gnd
19 Gnd rsrvd User User User User Gnd

RESET

GLINK 3

GLINK 2

GLINK 1

GLINK 0
SWITCH

Data
STB
DAV
READY
ERROR

Data
Rbert STB

DAV
READY

GPI1
GPO0

 Xbert User Guide 8
TTL-Level Xbert

The TTL Xbert is almost identical to the ECL version except that it
has TTL-level signals. Connector pinouts are shown in Fig 14 TTL
Xbert Transmitter connectors and Fig 17.

Using the loopback test cable for the TTL Bert

Simlar to the ECL loopback cable, except that the wires to pins
49 and 50 are cut, and you need to jumper wires 41 to 43 on both
the transmitter and receiver connectors.

 Some of the timing relationships of the signals are also different,
since TLL is somewhat slower technology. Timing diagrams will be
included in the Interfacing Guide when they are available.

Fig 14 TTL Xbert Transmitter connectors

Fig 15 Jumper Settings for TTL R-bert Clock
The jumper block allows independent selection of the
clock source for the FPGA and input register.
The input register can be configured as an edge-triggered
register, a latch, or a buffer.

Fig 16 Jumper Settings for TTL T-bert Clock
J3 allows you to select the on board PLL or Crystal as the
system clock source.

Note also that the software clock modes allow selection of
PLL/XTAL and RISING/FALLING. Selecting XTAL
will disable the PLL output. Selecting FALLING will
invert the output clock (TCLK) relative to the output
register’s clock.

Fig 17 TTL Xbert reciever connectors

50-Pin connector

 D0 1 2 GND
 D2 3 4 D1
 D4 5 6 D3
 D6 7 8 D5
 D8 9 10 D7
 GND 11 12 D9
 D10 13 14 D11
 D12 15 16 D13
 D14 17 18 D15
 D16 19 20 D17
 D18 21 22 GND
 D20 23 24 D19
 D22 25 26 D21
 D24 27 28 D23
 D26 29 30 D25
 GND 31 32 D27
 D28 33 34 D29
 D30 35 36 D31
 DAV 37 38 GND
 GND 39 40 TCLK+
 RDY 41 42 GND
 CNT1 43 44 CNT2
 STAT1 45 46 STAT2
 GND 47 48 GND
 +5V 49 50 +5V

50-Pin connector

 D0 1 2 GND
 D2 3 4 D1
 D4 5 6 D3
 D6 7 8 D5
 D8 9 10 D7
 GND 11 12 D9
 D10 13 14 D11
 D12 15 16 D13
 D14 17 18 D15
 D16 19 20 D17
 D18 21 22 GND
 D20 23 24 D19
 D22 25 26 D21
 D24 27 28 D23
 D26 29 30 D25
 GND 31 32 D27
 D28 33 34 D29
 D30 35 36 D31
 DAV 37 38 GND
 GND 39 40 RCLK50
 RDY 41 42 GND
 STAT1 43 44 STAT2
 CNT1 45 46 CNT2
 GND 47 48 GND
 +5V 49 50 +5V

60-Pin connector

 D0 31 1 GND
 D2 32 2 D1
 D4 33 3 D3
 D6 34 4 D5
 GND 35 5 D7
 D8 36 6 D9
 D10 37 7 D11
 D12 38 8 GND
 D14 39 9 D13
 D16 40 10 D15
 D18 41 11 D17
 GND 42 12 D19
 D20 43 13 D21
 D22 44 14 D23
 D24 45 15 D25
 D26 46 16 GND
 D28 47 17 D27
 D30 48 18 D29
 DAV 49 19 D31
 GND 50 20 GND
 TCLK+ 51 21 TCLK-
 GND 52 22 GND
 RDY 53 23 CNT0
 CNT2 54 24 CNT1
 GND 55 25 CNT3
 STAT0 56 26 STAT1
 STAT2 57 27 STAT3
 GND 58 28 GND
 +5V 59 29 +5V
 nc 60 30 nc

60-Pin connector

 D0 31 1 GND
 D2 32 2 D1
 D4 33 3 D3
 D6 34 4 D5
 GND 35 5 D7
 D8 36 6 D9
 D10 37 7 D11
 D12 38 8 GND
 D14 39 9 D13
 D16 40 10 D15
 D18 41 11 D17
 GND 42 12 D19
 D20 43 13 D21
 D22 44 14 D23
 D24 45 15 D25
 D26 46 16 GND
 D28 47 17 D27
 D30 48 18 D29
 DAV 49 19 D31
 GND 50 20 GND
 RCLK+ 51 21 RCLK-
 GND 52 22 GND
 RDY 53 23 CNT0
 CNT 2 54 24 CNT1
 GND 55 25 CNT 3
 STAT 0 56 26 STAT1
 STAT 2 57 27 STAT 3
 GND 58 28 GND
 +5V 59 29 +5V
 nc 60 30 nc

Gnd
Reg LE

Vcc
Reg Clk FPGA Clk

RCLK-
RCLK50

RCLK+

Registered

Latched

Buffer

Input Register Mode

Edge Select

Rising Edge

Falling

Clock Source

J3
PLL

Xtal
Clock Note that the pinout of CNT[3:0] and STAT[3:0]

shown here is different from earlier documents. This is
the correct pinout as of May, 1998

 9
Interfacing Guide

There are two ways to interface a new link type to the Xbert.
Daughterboard: If the link can use ECL signal levels and has
minimal space and power requirements, then it can be attached as
an adapter card to the ECL 50-pin Connector. Integrated: If it
needs TTL level signals or has very tight timing requirements,
then a link interface can be integrated with the Xbert circuitry and
placed on a custom PC card.

Daughterboard Adapter
Fig 7 shows the pinouts for the 50-pin ECL connector. All
signals are 100K ECL levels. Outputs are terminated with 510
Ohms to VEE. Inputs are terminated with 100 Ohms to -2.5V,
except for STB on the Rbert which is a differential signal and is
terminated with 100 Ohms across STB+ and STB-.

Transmitter Signals
STB The strobe is a free-running clock that sets the data

word rate. It is synchronous to DATA and DAV. Fig
19 shows the relationship between STB, DATA, and
DAV for the Tbert.

DATA The 32 DATA lines are synchronized to the STB via a
registered TTL-to-ECL converter. Their timing is such
that they should meet a 10ns setup time and 0ns hold
time relative to a 16ns STB signal. While a test is
starting, the DATA lines contain the contents of pattern
word 0 until DAV- is asserted.

DAV- This indicates that data is valid. It is active low. It has
the same timing as DATA. This signal remains high
until all of the handshake requirements are met and a
run signal is sent to the Tbert. When the first valid
data word is sent, DAV- drops low and stays low until
an error occurs or the test is stopped.

READY This signal is an active-high input. It signals when the
test link is synchronized and ready to accept data. If
this signal goes low after DAV is low, then the
transmitter is stopped and the Data_link_error flag (bit
9) is set in the status register.

GPO[3:0] These are general-purpose software-controlled outputs.
They are controlled using the handshake commands.
GPO2 is not available on the 50-pin connector.

GPI[3:0] These are general-purpose input flags. They can be
used by the handshake commands. GPI0 and GPI1 are
not available on the 50-pin connector.

+5V,-5V These are power supply pins. A daughterboard should
not draw more than 4 amps from them. They should
not be used with a cable.

Receiver Signals
STB Timing requirements for the STB, DAV, and DATA

signals are shown in Fig 18. Also see the discussion on
clocking schemes below.

DATA 32 data inputs. Since these are terminated to -2.5V,
any unused inputs should be left floating. Use the
MASK command to mask off unused inputs.

DAV- This active-low signal can be used to qualify the STB
signal. It also has an internal latch that allows it to be
used as a start-of-test signal (see clocking schemes).

READY This signals when the test link is synchronized and
ready to accept data. If this signal goes low after the
test has started, then the receiver is stopped, the current
data word and pattern address are latched, and the
Data_link_error flag (bit 25) is set in the status register.

GPO[3:0] General-purpose outputs. GPO1 is not available on the
50-pin connector.

GPI[3:0] general-purpose inputs. GPI0 and GPI2 are not
available on the 50-pin connector.

Fig 18 Receiver clock timing

Fig 19 Transmitter Timing

XCLK
STB

DATA

0.4ns
1.4ns

4.0ns
2.0ns

5ns
RCLK

STB
DAV-

Dual Edged

RCLK
STB

DAV-

Single Edged

8ns
3ns

STB

DAV-

RCLK

DATA

XCLK

DATA
DAV-

Pattern
RAM

STB+
STB-

50-Pin
Connector

TTL

to
ECL
REG

.

15ns
5ns

STB

DAV-

RCLK

DATA

 Interfacing Guide 10
Clocking Schemes
The Rbert can handle several variations on the clock/data
relationship. These variations are controlled by three flags (See
the CLOCK command) and the Clock Inversion Jumper (Fig 5).
Variations include:

Single Edged:
Data is sampled near the falling edge of the STB. This is
typically used for links that re-synchronize data at the receiver.
Data can change on the rising STB and has at least ½ clock
cycle to settle.

Dual Edged:
Data is sampled 5-10ns after either clock edge. This can be used
with parallel links that don’t re-synchronize data. The clock is
embedded in the pattern and so has the same bandwidth as the
data bits and very little skew relative to the data bits. The
Clkbit command will set a selected pattern bit to be a dual-edged
clock.

Synchronous:
The clock is a constant frequency and does not stop. Valid data
is indicated by a low on DAV-. This is typical of serial links.

Asynchronous:
The clock transitions only when valid data is sent or when the
link is active. DAV- is not necessary, but it may be used to
qualify data.

DAV Hold:
Some links may not have a DAV signal. In this case, a signal is
needed to indicate the start of a test. A selected data bit can be
used for this purpose by tying it to the DAV- pin. The first
transition on the data bit will be latched and used to gate the
clock.
Use the Davbit command to embed a DAV signal into a pattern.
Note that since the first transition occurs on word 1, the Offset
command should be used to make sure the receive pattern is
aligned correctly with the received data.

DAV Free:
The DAV- signal is not latched internally and is used to qualify
every clock.

Mechanical
To fit in the standard Xbert box, an adapter card should have the
dimensions shown in Fig 20.

The connector should be a standard 50-pin .1” female header.
(3M part #?????? Fermilab stock #??????)

Integrated Adapter
All of the signals described in the Daughterboard Adapter
section are available for use by an integrated adapter. The
signals can be TTL or ECL levels. The TTL-level data lines
from the Tbert come directly from the pattern RAM chip and
have an 8ns clock to output delay.

The TTL circuits of the Tbert and Rbert require +5V. An on
board 3.3V converter is used for the memory chip and could
supply an extra 500ma of 3.3V to other devices. The -5V
supply is not necessary if no ECL circuits are used.

The total size of an integrated adapter should be 3.9 x 9.9 inches
in order to fit in the standard Xbert box.

Fig 20 Adpater card dimensions

Fig 21 DAV-HOLD timing

Fig 22 TTL Tbert timing
XCLK
DATA

8.0ns
2.0ns

STB
DATA

(internal DAV-)
RCLK

Word 1Word 0

0“

Top View
Mechanical Drawing to be

added later 0“

0“

0“

Side view

XCLK

DATA

DAV-

Pattern
RAM

 11
Debugging Guide

This section contains a map of the hardware and software
modules with a brief description of each. Schematics are all in
PDF format.

Common Elements

Control Link Protocol
The control link is a 1MHz serial link that connects the Pbert to
the Tbert and Rbert. Words are transmitted in 39-bit frame:

Bit Function
0 Start bit - Active high
1-32 Data bits
33-36 Register address bits
37 Parity bit - Forces total frame parity to even.
38 Stop bit - Active low

The control link is also used to configure the remote FPGAs. A
1 millisecond high break signal causes reset to be asserted and
the FPGA is prepared for initialization (Fig 23). Then each
configuration data bit is sent as a single 3-bit frame that includes
a start bit, a data bit, and a stop bit (Fig 24).

The SERIN.PAL handles the serial stream during configuration.
It implements a 1ms RC timer to detect break signals and a 4-bit
counter to detect 1us bit cells.

Power Connector
The Tbert and Rbert
each have a 4-pin power
connector.

FPGA files
Fpga files are developed using Workview/Office and Orca
Foundry 7.1. Source files are in the Xbert/fpga directory.
Routed FPGA files are in the Xbert/fpga/routed directory. Do
not make any changes in the routed directory unless you are sure
you know what you are doing.

Reading the FPGA schematics
The schematics contain a large number of function generator
symbols. A function generator is a single output pin associated
with a logic equation. They come it two varieties: combinatorial
(UFUNC) and registered (QFUNC). The QFUNC can take
attributes to specify register control signals.

Compiling FPGA schematics
If you need to make minor changes to the FPGAs, you can edit
and re-compile the FPGA schematics. Editing schematics
requires the Workview/Office software to be installed.
Compiling schematics requires the ORCA Foundry software to
be installed. Each FPGA file has an associated .bat file for
compiling, place, and route. The .bat files should be run in a
DOS window.

To compile a schematic to an un-routed .ncd file, use the .bat
file with the CHECK option. This creates a mapping log file
(.mog) which should be checked for error messages and resource
usage. Resource usage should be close to that in Table 2. If it’s
much less, then check the .mrp file for reports of removed logic.
To place and route, use the PAR or PARG option. The PARG

option uses the existing part as a guide and works best if minor
changes were made to the schematics. If major changes are
made, then the PAR option should be used. The router makes
several attempts and saves them in a separate folder (T1.dir,
R1.dir, or P1.dir). A summary file (*.par) lists the results. The
best result should be tested before moving it to the routed folder.

To create a bit file, use the BIT option.

Fig 23 FPGA reset and initialization.

 Serial In
 Reset-
 Init-

Fig 24 FPGA configuration bits

Serial In
 CCLK
 DIN

Fig 25 Power connector.

 +5V 1
 GND 2
 -5.2V 3
 GND 4

Fig 26 Function generator symbols

UFUNC: U=<equation> Output

QFUNC: Q=<equation> Registered_Output

Qfunc Attributes:
 K=<clock_signal> Default clock name is “CLK”
 CE=<clock_enable>
 RD=<reset_direct> Asynchronous reset
 SD=<reset_direct> Asynchronous set
 RS=<reset_direct> Synchronous reset
 SS=<reset_direct> Synchronous set

Table 2 FPGA resource usage

 PFUs TBUFs External PICs
TBERT 79 107 68
RBERT
PBERT 84 64 49

configuration bits1ms

500us 1ms

Stop Data Start

1us

 Debugging Guide 12
PBERT
Board Level Schematic
The Pbert consists of an ISA connector, an ISA address decode
PAL, an FPGA, and several RS-485 drivers for the control link.

ISA Address Decode Pal (Current Checksum = 73AE)

FPGA Schematics:
PBERT Top level schematic.
SERINH Serial input port (Control Link).
SEROFIF Serial output port with FIFO.

TBERT
Board Level Schematic

FPGA Schematics:
TBERT Top level schematic
CLKSPEED Clock speed control circuit
SERIN Serial input port (Control Link).
SEROUT Serial output port.

RBERT
Board Level Schematic

Clock PAL

FPGA Schematics:
RBERT Top level schematic
RCMP Comparator Pipeline.
CMP_REG Comparator register primitive.
SERIN Serial input port (Control Link).
SEROUT Serial output port.

Fig 27 TBERT block diagram

Fig 28 RBERT block diagram

32

Ready
Status
Control

 Link
 Circuitry

Data

Clock
Dav- Synchronous

SRAM

32

FPGA

Address
Sequencer

Control
Link

Compare

FLAGS

4

4

15

T
R
A
N
S
L
A
T
O
R
S

32

Ready
Status
Control
Dav-

 Link
Circuitry

Clock

Data

Clock

Generator Synchronous
SRAM

32

FPGA

Address
Sequencer

Control
Link

FLAGS

4

4

15

T
R
A
N
S
L
A
T
O
R
S

Clock
PAL

 Debugging Guide 13
Software
The software was developed using Borland C 5.0. To build a
new version, use the makefile, Xbert.mak, or the ide file
Xbert.ide. The following source files are needed:

Xbert.c Main source code.
Box.c Routines for drawing boxes and menus.
Xbert.h Include file for register definitions.
Box.h Box include file.
Bit2brt.c Source code for fpga bit-file converter

Hardware Register Formats

Pbert registers
The Pbert is essentially a dual serial link controller. Its registers
are used to send and receive 36-bit words from the Tbert and
Rbert. Each word consists of 32 data bits and 4 address bits
which specify the remote Tbert or Rbert register.
 The Pbert has eight 16-bit registers starting at the location
set by the base address dipswitch.

Writeable Pbert registers
To send a data word requires three writes: two 16-bit halves of
the data word and one 4-bit write to set the remote register
address and send it out the serial link.
Offset Name Function
 0 Lconfig Local configuration (reset, parity enable, etc.)
 2 SendX Set 4-bit register address and send current data to Tbert.
 4 SendR Send Rbert
 6 SendXR Send to both
 a DataX Set transmitter data for Tbert 16 bits at a time.
 c DataR Set transmitter data for Rbert 16 bits at a time.
 e DataXR Set transmitter data for Both 16 bits at a time.

Readable Pbert registers
A remote module sends the contents of one of its registers when
it receives a read request (remote registers 8-f). That data is
saved in the 32-bit Xdata or Rdata register. When there is no
request, the remote modules send status and cycle count. These
are saved in the Xcycle, Rcycle, Xstatus, and Rstatus registers:
Offset Name Function
 0 Xcycle Tbert cycle count
 2 Xstat Tbert Status
 4,6 Xdata 32-bit Tbert Data
 8 Rcycle Rbert cycle count
 a Rstat Rbert Status
 c,e Rdata 32-bit Rbert data

Lconfig register bit definitions
Mask Name Function
001 Break Send break signal (Reset remote modules - clear FPGA)
002 Parity Disable parity - (used to download FPGA)
004 ErClr Clear Pbert Errors (overrun / parity errors)
008 Reset Clear Pbert FPGA and prepare to reload
0e0 ChSel Channel select - Select channels 0-3 or use 4 for loopback.
100 SetCh Set Channel - must be 1 to change the ChSel field.

Status register bit definitions (Xstat, Rstat)
Bits 3:0 are local to the Pbert interface:
0001 Sempty No Status received since last read.
0002 Rempty No data received since last read.
0004 Full Control link output FIFO is full.
0008 C_err Control link got an error.
Bits 15:4 come from the remote module
00f0 Gpi[3:0] State of Gpi inputs
0100 Ready Link ready
0200 Lnk_Err Link Error
0400 Si_Err Control Link Error at remote end.
0800 Cmp_Err Compare Error
1000 Run Run/Idle state
2000 Dav Data available is asserted
8000 Error One of the Error bits is on.

Remote writeable registers
 1 State Set operating state (Run, Stop, Flags)
 2 Config Set clock configuration
 4 Wram Write 32 bits to RAM using internal Addr pointer
 5 Cram Compare 32 bits to RAM. Set Cmp_Err if different.
 6 Wram+ Write to RAM and increment Addr
 7 Cram+ Compare to RAM and increment Addr

Remote readable registers
 9 Eword Send tha data word that caused a compare error (RBERT only)
 A Addr Send contents of Addr in bits 14:0
 C Rram Read from RAM and send 32-bit data
 E Rram+ Read from RAM and increment Addr

Remote register #1: State register bits
 0001 Idle Set device to Idle
 0002 Run Start test
 0010 ErClr Clear Errors
 0020 AdClr Clear Addr register to 0
 0040 CyClr Clear Cycle counter to 0
 0080 GpoSet Set Gpo outputs
 0f00 Gpo[3:0] State of Gpo outputs
 1000 SoHold Hold Serial link

Remote register #2: Clock configuration register
 7f0000 Clock speed from 16.0 to 63.5mhz in .5mhz steps.
 000030 Receiver device select - Select one of 4 devices.
 000004 ASYNC
 000002 DAV_HOLD
 000001 TWO_EDGE

Program Flow
The main program loop does three things:
Check for fatal: if some routine has detected a fatal error, it sets

the global Fatal flag. Try to re-initialize all of the
hardware.

Decode status: update status and statistics display. Log errors.
Accept command: Characters are accepted from the keyboard

one at a time without interrupting the main loop. The
command is processed when enter is pressed.

 Debugging Guide 14
Subroutine Descriptions

Hardware access macros:
Xcycle Return current hardware cycle count
Rcycle
Xstat Return Current hardware status
Rstat
Xdata Return Current Data
Rdata
Lconfig(Dat) Set local configuration
SendX(Reg,Dat) Send Data to remote register
SendR(Reg,Dat)
SendXR(Reg,Dat)
WaitX Wait for serial link FIFO to be un-full
WaitR
WaitXR

Subroutines:
void Plog(char *S) Print to log
Plog1(T,V) Formatted Plog with 1 variable
Plog2(T,V1,V2) Formatted with two variables

void ABox(int X1, int Y1, int X2, int Y2, int Type)
 Draw an ASCII box (Type= single or double)

void More(char *File)

Display a file

void Set_port(int N)

Set serial port to 0-3 or local (4)

void NameFlag(int F, char *N)

Attach a user-supplied name to a flag

void Set_ext(char *Name, char *Ext, int Flag)

Set or force file extension

void Pattern(char *Type)

Make a pattern

int Parse(char *S)

Split line into words

void Clink_msg(char *T, char M, int S)

Decode control link errors

long Valid_Status(char *Txt)

Fetch a valid status from the remotes

int ReadReg(int Reg, int Rx)

Read a remote register and place in DataX or DataR
global

int Sanity_check(int Level)

 Level 0: All 1: Local only

void ComFile(char *F)

Open command file

FILE * OpenFile(char *Name)

Open bit file

int Load_bit(void)

Reset and load ORCA chips, Do a sanity check. Return
0 if successful. Update Loaded global.

int Load_pat(int Check)

Load or check pattern into remote modules

(Check=1) => Check only
 (Check=2) => Load then check
 (Check=3) => Check then load if necc.

void Draw_screen(int Level)

Draw boxes and fill in configuration data

int Decode_Status(char *Txt)

Detect and log errors and bursts. Do handshake steps.
Update flags and statistics on screen

int Make_Idle(void)
Make remotes idle. Return 0 if success

void Run(void)
void Stop(void)
void Clear(void)

Error Messages
%s <RT>bert Control link error.
 When trying to access a remote module, there was a data-

overrun or parity error. This is probably due to a
program error, but could be caused by faulty connections.

%s Not Receiving status from <RT>bert.
 The remote modules should report their status every 80

microseconds. This error indicates that the remote
module has probably failed.

%s <RT>bert Control link error at remote end.
 The remote module received a parity error or overrun

error. This is probably due to noise, but could be a
program error.

There is a fatal control link error.
 A permanent control-link problem makes it impossible to

communicate with the remote modules. The software will
attempt to re-initialize the system.

Invalid register (%d) in ReadReg
Parameter error in ReadReg (Rx=%d)
 These two messages indicate a software error. You

should find the programmer and smack him in the head.
ReadReg failed
 The software issued a read request but never got a

response. This indicates a hardware problem.
Couldn't set <TR>bert to idle.
 Wrote to the Idle bit, but the status won’t change.
Sanity Check Data Error: %s: expect %lx, got %lx
 The sanity check first checks that it can send data in local

loopback mode, and then tries to write and read the
remote memory. If these fail, it indicates a hardware
problem.

Local sanity check failed with error status %x
 This indicates a problem either the control-link hardware.

Since this is mostly in the FPGA, the system should be re-
initialized.

Remote Sanity check failed
 Sanity check of remote modules failed.
Timeout while loading PBERT bit file. Check Hardware
 The very first step of initializing the Pbert has failed.

This indicates the Pbert is missing or has the wrong base
address.

 Debugging Guide 15
Pattern file is wrong size

A pattern file must be exactly 128Kbytes.
Unrecognized pattern type [name]
 The = character is used to indicate standard pattern types,

however the name is not recognized. If you want to load
a pattern file, don't include the =.

Load_pat: No pattern has been specified
 Load has been requested before a pattern has been set.
Check <TR>bert: Adr=%4.4x Got %8.8lx Expect 8.8lx
 The pattern at the remote node got corrupted.
data tsync rsync Adr=#### Got=######## Expect=########
 Link error. This was caused by the link being tested.
Burst error....
 Several link errors in a row. The software will check the

pattern in case this was caused by a corrupted pattern.
Fatal burst error....
 Several more link errors. The software will reset and

reload the FPGA files.
Attempting to re-initialize
 If a fatal error occurs, then the system is reset and re-

initialized.
Program Halt. Press ENTER to continue
 If too many fatal errors, then stop and wait for user

intervention.
Invalid clock speed [%s]
 The clock speed must be 16.0 to 63.5 MHz.
Unknown clock configuration [%s]
 One of the clock configuration words is mis-spelled.
Handshake: Flag <xxx> not found
 A Flag name was mis-spelled or never named.
Unrecognized command [%s]
 A command was misspelled

 Appendices 16
Appendix L: Logbook
This is a history of changes and notes on debugging.

Appendix W: Windows issues
The Xbert software can be run in a DOS window under
Microsoft Windows 95. There are a couple of features of
Win95 that make using the Xbert easier.

Installing under Win95
Win95 monitors I/O space usage and attempts to keep track of
all devices and possible conflicts. When installing the Xbert,
you can look at the I/O map to find and reserve free I/O space.

To bring up the I/O map, do the following:
Click on the Start button and select Settings ! Control-Panel.
Double-click on System and select Device-Manager. Double-
Click on Computer and select the Input/Output button. The
map displays used I/O locations.

The default Xbert location is 310. If you have already run
the Xbert software, the locations might be listed as “In use by
unknown device”. If the software was previously installed, the
locations might be listed as “Reserved by System”.

To reserve space:
It’s not necessary to reserve space, but doing so will mark that
space so that other plug-n-play devices don’t try to use it. Bring
up the I/O map as described above. Verify that the locations
that you want to reserve are available. Click on the Reserve-
Resources tab and select Input/Output then Add. Enter the
range (e.g. 310 to 31f). Select OK and re-boot when requested.
This might also be a good time to install the Pbert board. To do
this, do not select re-boot, but exit and then do a normal
windows shut-down. Make sure the base address switch setting
agrees with the reserved space.

Registering the xbr file type
You can associate the xbr file type with Xbert.exe by simply
double-clicking on a xbr file. This brings up the “Open With”
dialog box. Select “Other” and brows for Xbert.exe. Double-
click on Xbert.exe. In the description box, type the words
“Xbert script file”. Make sure the “Always use this program”
box is checked. Finally, click OK to start the script.

You can examine and change the file-type registry by using the
view !!!! options !!!! file types menu in any explorer window.
For more help on this, see the win95 help topic “registering file
types”.

 Appendices 17
Appendix S: Sample scripts
NGW- 03/06/02
 The first script file below is used to test the Bert transmitter
to receiver connection using a loopback cable. It will work with
either the TTL or ECL Bert. You should have a 40Mhz TTL xtal
in the transmitter socket. If you don’t have a 40Mhz TTL xtal
available, you can use other speeds or declare the clock source
as PLL instead of XTAL. You must change the clock parameter
in the script file to reflect the new clock speed.

For the TTL bert transmitter / receiver:

1. The transmitter’s J3 “clock select” jumper must be set for
XTAL if using an xtal or to PLL if not using an xtal.

2. The receiver’s clock select jumpers must be set for
“rising edge” and “registered mode”. See figure 15 on
page 8 of the Xbert manual.

For the ECL Bert transmitter / receiver:

1. The Bert receiver clock inversion jumpers (J4, J3) must
be set to “inverted” (jumpers are perpendicular to the
bottom of the Bert receiver).

logfile loopback.log // Open Log file
xrmask 3 // Enable both transmitter and receiver
chip xbert.xcf rbert.xcf pbert.xcf // Load new FPGA files
clock 40 xtal dav_hold async // Set clock parameters
burst 3 // Max number of errors before bert reset
new_flags // Clear existing flag definitions
flag C TRUN // Define RUN flag
flag 8 /TREADY // Transmitter ready
flag 0 TRESET // Transmitter reset
flag 1C RRUN // Receiver RUN
flag 18 /RREADY // Receiver ready
flag 10 RRESET // Receiver Reset
flag 16 /NULL
new_handshake // Define a new handshake sequence
handshake RRESET TRESET =
handshake = RREADY TREADY
mask ffffffff // All 32 bits of data are tested
davbit 0 // DAV bit is at location 0 of the data
offset 0 // No offset
pattern =seq // Set the data pattern to sequential
load // load the pattern
run // Start the test

This next script file is used to test GLINKs. GLINK tests are
only performed on ECL Bert boards. GLINK tests should run
overnite, with the fiber cable running through the attenuator box.
The attenuator box should be set for 6db.

logfile glink.log
xrmask 3
chip xbert.xcf rbert.xcf pbert.xcf
clock 53 xtal rising one_edge sync dav_free
burst 0
new_flags
flag c TRUN
flag 8 TREADY
flag 0 /TRESET
flag 2 TDIV1
flag 3 TM20
flag 1 FILL_FRAME
flag 1c RRUN
flag 18 RREADY
flag 10 /RRESET
flag 12 RDIV1
flag 13 RM20
flag 15 SYNCED
flag 16 /NULL
new_handshake
handshake /TDIV1 /RDIV1 TM20 RM20 =
handshake TRESET RRESET /FILL_FRAME =
handshake /TRESET =
handshake /RRESET = TREADY
handshake FILL_FRAME = SYNCED
handshake = RREADY
handshake /NULL
mask fffff
pattern =random
load
run

	Introduction
	User Guide
	Installation
	Installing the Pbert
	Installing the software
	Installing the Tbert and Rbert

	User Interface
	Startup
	Display Screen
	Commands

	Notes on Supported Links
	ECL 50-Pin Connector
	Finisar / G-link
	SVX GRT Quad G-link receiver (Qbert)
	TTL-Level Xbert
	Using the loopback test cable for the TTL Bert

	Interfacing Guide
	Daughterboard Adapter
	Transmitter Signals
	Receiver Signals
	Clocking Schemes
	Mechanical

	Integrated Adapter

	Debugging Guide
	Common Elements
	Control Link Protocol
	Power Connector
	FPGA files

	PBERT
	TBERT
	RBERT
	Software
	Hardware Register Formats
	Program Flow
	Subroutine Descriptions
	Error Messages

	Appendix L: Logbook
	Appendix W: Windows issues
	Installing under Win95
	Registering the xbr file type

	Appendix S: Sample scripts

