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Driving ecosystem models with satellite data, concept for
NASA Global Habitability, 1983
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Figure 2. Organizational diagram ol a proposed model of net primary production for a coniferous forest. All driving
variables are derived from satellite data. Potential linkages to a global carbon model are shown by dashed lines ( Running,
1984).



NDVI Related to Photosynthesis

MADISON 1984
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Original FOREST-BGC flow diagram, emphasizing dual
time steps, critical role of LAI, C-H20O-N interactions,
and remote sensing applications, 1988
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Figure 1.2. Compartment flow diagram for the FOREST-BGC ecosystem simulation model. This diagram illustrates
the state variables of carbon, water, and nitrogen, the critical mass flow linkages, the combined daily
and annual time resolution, and the daily meteorological data required for executing the model. The
major variables and underlying principles associated with the model were developed specifically for
application at multiple time and space scales, and for compatibility with remote-sensed definition of key
ecosystem properties.
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GEOSS
(Global Earth Observation System of Systems)
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Terrestrial Carbon Monitor
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DYNAMIC GLOBAL LAND TRANSITIONS

[Human control] [Biophysically controlled]
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MODIS Fire Detection YD 211-220, 2006




GLOBAL Generalized Disturbance Index
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MOD12Q2: Global Vegetation Phenology
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First global products for
vegetation phenology based
on MODIS EVI data released
for 2001-2004
* Identifies key transition
dates in growing season
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Developing an Integrated MODIS-SeaWinds Phenology Measure
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Map (a) of the statistical correspondence
(r2) between growing season 8-day
composite MODIS LAI (MOD15A2) and
SeaWinds Ku band backscatter for
January 2000 through August 2002 for
North America. Statistical
correspondence is lower where LAT
seasonal variability is small (e.g.,
evergreen forests) and where biomass is
low (arid and semiarid shrublands). The
combined information from MODIS and
SeaWinds may provide an improved
measure of vegetation phenology that
is less constrained by atmospheric
aerosol contamination (e.g., clouds,
smoke) and solar illumination effects.

Source: Frolking, S., T. Milliman, K.C. McDonald, J. Kimball, M. Zhao, and M. Fahnestock, 2006. J. Geophys. Res. 111, doi:10.1029/2005JD006588.



MODIS ANNUAL LAND NPP
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Potential climate limits to plant growth derived from long-term
monthly statistics of minimum temperature, cloud cover and rainfall.

Water = 40%, Temperature = 33%, Radiation = 27%
Nemani et al., Science June 6t 2003




Global Effective Growing Season Length
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Jolly, Nemani, Running. Global Change Biology 2005



Seasonal Growing Season Constraints
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GPP = Light X Conversion Efficiency
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FLUX TOWER BASED VALIDATION FOR MODIS GPP/NPP
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MODIS GPP Validation with Fluxnet
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Uncertamtles from Algorithm and BPLUT

e Assume ratio
of NPP:GPP =
0.47 across all
biomes
(Waring et al.,
1998)
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Grassland, Vaira Ranch, CA, 2001

MODIS GPP = 1134.86 gC m™ Tower GPP = 776.37 gC m™
Biome-BGC GPP = 614.64 gC m™

12 | | | | | | | | | | | |
——  NODIS
——y = TOWeEer
10 | —=—a== Biome-BGC |
T ~ X
= 1Y 11
6 ) 4 | ]
5 PN
|
& 4 - /‘-' /"] I| R i
(D /V | \ I\
Novr ) * : Ih
2 ) J I\
\ ' o\
v e -
O .-!’.-.|‘l I I I \ I Rl

O 30 60 90 120 150 180 210 240 270 300 330 360
Julian Day



Seasonal Light Use Efficiency
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Dynamic recalibration of satellite GPP algorithm with flux tower data

recompute monthly

GPP (gC m~ d™")
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LUE, . estimates by PFT versus LUE, . in BPLUT
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Sensor webs

A sensor web is a coherent set of distributed “nodes”, interconnected by a
communications fabric, that collectively behave as a single, dynamically
adaptive, observing system.




GEOSS - Integrated Biospheric Monitoring concept for Global GPP

GPP =

f (PAR) x >
Emax

recompute monthly

MOD17AZ (GPP) over Globe, May 1 - May 8, 2003
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