
Providing effective access to shared resources: a COIN
approach

Stéphane Airiau
Sandip Sen

Mathematical & Computer Sciences Dept
600 South College Avenue

Tulsa, OK 74104

{stephane,sandip}@ens.utulsa.edu

David H. Wolpert
Kagan Tumer

NASA Ames Research Center
MS 269-2

Moffett Field, CA94035

{dhw,kagan}@email.arc.nasa.gov

ABSTRACT
Managers of systems of shared resources typically have many
separate goals. Examples are efficient utilization of the re-
sources among its users and ensuring no user’s satisfaction
in the system falls below a preset minimal level. Since such
goals will usually conflict with one another, either implicitly
or explicitly the manager must determine the relative impor-
tance of the goals, encapsulating that into an overall utility
function rating the possible behaviors of the entire system.
Here we demonstrate a distributed, robust, and adaptive
way to optimize that overall function. Our approach is to
interpose adaptive agents between each user and the sys-
tem, where each such agent is working to maximize its own
private utility function. In turn, each such agent’s func-
tion should be both relatively easy for the agent to learn to
optimize, and “aligned” with the overall utility function of
the system manager — an overall function that is based on
but in general different from the satisfaction functions of the
individual users. To ensure this we enhance the COllective
INtelligence (COIN) framework to incorporate user satisfac-
tion functions in the overall utility function of the system
manager and accordingly in the associated private utility
functions assigned to the users’ agents. We present exper-
imental evaluations of different COIN-based private utility
functions and demonstrate that those COIN-based functions
outperform some natural alternatives.

1. INTRODUCTION
One of the key problems confronting the designers of large-
scale, distributed agent applications is control of access to
shared resources. In order for the system to function well,
access to these shared resources must be coordinated to elim-
inate potential problems like deadlock, starvation, livelock
and other forms of resource contention. Without proper
coordination, both individual user satisfaction and overall
system performance can be significantly impaired.

As hand-coded, static procedures are likely to be brittle in
complex environments, we are interested in flexible, adap-
tive, scalable approaches to the resource sharing problem [2].
One approach is to use distributed machine learning-based
agents each of which works exclusively to increase the sat-
isfaction of its associated user. While this is appealing, in-
dividual learners optimizing the “satisfaction” utility func-
tions of their users typically will not coordinate their activi-
ties and may even work at cross-purposes, thereby degrading
the performance of the entire system. Well-known cases of
this problem of global shared resources include the Tragedy
of the Commons [4]. Such problems highlight the need for
careful design of the utility functions each of the learning
agents work to optimize. In general, this means having each
agent use a utility function that differs from the satisfaction
function of its associated user [11]. In addition to ensuring
that the private utility functions of the agents do not induce
them to work at cross-purposes though, it is also necessary
that those functions can be readily optimized in an adaptive
manner, despite high noise levels in the environment.

The field of mechanism design, originating in game the-
ory and economics, appears to address this problem. How-
ever it suffers from restrictions that diminish its suitability
for problems — like the ones considered here — involving
bounded-rational, non-human, noisy agents, where the vari-
ables controlled by the agents and even the number of agents
can be varied [15]. In contrast, the COllective INtelligence
(COIN) framework is explicitly formulated to address such
problems without such restrictions [16, 11, 14]. In particu-
lar, its mathematics derives private utility functions to pro-
vide the individual learning agents that are learnable, in ad-
dition to inducing the agents not to work at cross-purposes.
Such functions are designed both so that the agents can
perform well at maximizing them, and so that as they do
this the agents also “unintentionally” improve the provided
“world utility” function rating behavior of the entire system.

In the past, COIN techniques have been used for world util-
ity functions that are fully exogenous, in that they do not
reflect any satisfaction functions of a set of users of the sys-
tem nor how best to accommodate those satisfaction func-
tions. While achieving far superior performance in the do-
mains tested to date than do conventional approaches like
greedy agents and team games [10, 16, 13], these tests do not
assess how well COIN-based systems perform in situations

like shared resource problems, in which the world utility is
not fully exogenous. In this paper we start by reviewing
the mathematics of collective intelligence. We then test the
techniques recommended by that mathematics on shared re-
source problems, using a world utility function that reflects
the satisfaction levels of the individual users of the system,
and in particular trades off concern that no individual’s sat-
isfaction be too low with concern that the overall system
behave efficiently. We demonstrate that in such domains
COIN techniques also far outperform approaches like team
games. We also validate some quantitative predictions of
the COIN mathematics concerning how the world utility is
affected by various modifications to the COIN techniques.

2. BACKGROUND ON COLLECTIVE IN-
TELLIGENCE

The “COllective INtelligence” framework (COIN) concerns
the design of large distributed collectives of self-interested
agents where there exists a world utility function measur-
ing the performance of the entire collective. The empha-
sis of the research is on the inverse problem: given a set
of self-interested agents and a world utility function, how
should a designer configure the system, and in particular
set the private utility functions of the agents so that, when
all agents try to optimize their functions, the entire col-
lective performs better. In this section, we introduce the
mathematics of designing collectives. Because of space lim-
itations, the concepts cannot be justified or elaborated in
any detail; references to other papers with such details are
provided.

2.1 Central Equation
Let ζ be an arbitrary space whose elements z give the joint
move of all agents in the collective system. We wish to
search for the z that maximizes the provided world utility
function G(z). In addition to G we are concerned with pri-
vate utility functions {gη}, one such function for each agent
η controlling zη. We use the notationˆη to refer to all agents
other than η.

We need a way to “calibrate” the utility functions so that
the value assigned to a joint action z reflects the ranking
of z relative to all the other possible joint actions in ζ. We
denote as intelligence the result of this calibration process.
The intelligence can be considered to be the percentile of
states that would have resulted in having a worse utility
(if 99% of the available actions lead to a worse utility, the
agent made a smart decision). In the COIN framework, the
“intelligence for η at z with respect to U” is defined by:

Nη,U (z) ≡

∫

dµzˆη (z
′)Θ[U(z)− U(z′)] , (1)

where Θ is the Heaviside function 1, and where the subscript
on the (normalized) measure dµ indicates it is restricted to
z′ sharing the same non-η components as z. There is no
particular constraint on the measure µ other than reflecting
the type of system (whether ζ is countable or not, if not,
what coordinate system is being used...).

1The Heaviside function is defined to equal 1 when its ar-
gument is greater or equal to 0, and to 0 otherwise.

As system designer, our uncertainty concerning the state of
the system is reflected in a probability distribution P over ζ.
Our ability to control the system consists of setting the value
of some characteristic of the collective, which is denoted as
its design coordinate. For instance, the design coordinate
can be setting the private utility functions of the agents.
For a value s of the design coordinate, our analysis revolves
around the following central equation for P (G | s), which
follows from Bayes’ theorem:

P (G | s) = (2)
∫

d ~NGP (G | ~NG , s)

︸ ︷︷ ︸

explore vs. exploit

∫

d ~NgP (~NG | ~Ng, s)
︸ ︷︷ ︸

factoredness

P (~Ng | s)
︸ ︷︷ ︸

learnability

,

where ~Ng and ~NG are the intelligence vectors of the agents
with respect to the private utility gη of η and the world
utility G, respectively.

Note that Nη,gη (z) = 1 means that agent η is fully rational
at z, in that its move maximizes the value of its utility, given
the moves of the agents. In other words, a point z where
Nη,gη (z) = 1 for all agents η is one that meets the definition
of a game-theory Nash equilibrium. On the other hand, a z
at which all components of ~NG = 1 is a maximum G along
all coordinates of z. So if we can get these two points to be
identical, then if the agents do well enough at maximizing
their private utilities we are assured we will be near an axis-
maximizing point for G.

To formalize this, consider our decomposition of P (G | s).

• learnability: if we can choose the global coordinate s
so that the third conditional probability in the inte-
grand is peaked around vectors ~Ng all of whose com-
ponents are close to 1 (that is agents are able to learn
their tasks), then we have likely induced large (private
utility function) intelligences. Intuitively, this ensures
that the private utility functions have high “signal-to-
noise”.

• factoredness: by choosing s, if we can also have the
second term be peaked about ~NG equal to ~Ng (that is
the private utility and the world utility are aligned),

then ~NG will also be large. It is in the second term
that the requirement that the private utility functions
be “aligned with G” arises. Note that our desired form
for the second term in Equation 2 is assured if we have
chosen private utilities such that ~Ng equals ~NG exactly
for all z. Such a system is said to be factored.

• Finally, if the first term in the integrand is peaked
about high G when ~NG is large, then our choice of s
will likely result in high G, as desired.

On the other hand, unless one is careful, each agent will
have a hard time discerning the effect of its behavior on
its private utility when the system is large. Typically, each
agent has a horrible “signal-to-noise” problem in such a sit-
uation. This will result in a poor term three in the central

equation. For instance, consider a collective provided by
the human economy. A team game in that example would
mean that every citizen gets the national GDP as her/his
reward signal, and tries to discern how best to act to maxi-
mize that reward signal. At the risk of understatement, this
would provide the individual members of the economy with
a difficult reinforcement learning task.

In this paper, we concentrate on the second and third terms,
and show how to simultaneously set them to have the desired
form in the next section. Hence, the research problem is to
choose s so that the system both has good learnabilities for
its agents, and is factored.

Mechanism design might, at first glance, appear to provide
us techniques for solving this version of the inverse problem.
However while it can be viewed as addressing the second
term, the issue of learnability is not studied in mechanism
design. Rather mechanism design is almost exclusively con-
cerned with collectives that are at (a suitable refinement of)
an exact Nash equilibrium [6]. That means that every agent
is assumed to be performing as well as is theoretically possi-
ble, given the behavior of the rest of the system. In setting
private utilities and the like on this basis, mechanism design
ignores completely the issue of how to design the system so
that each of the agents can achieve a good value of its pri-
vate utility (given the behavior of the rest of the system). In
particular it ignores all statistical issues related to how well
the agents can be expected to perform for various candidate
private utilities.

Such issues become crucial as one moves to large systems,
where each agent is implicitly confronted with a very high-
dimensional reinforcement learning task. It is its ignoring of
this issue that means that mechanism design scales poorly to
large problems. In contrast, the COIN approach is precisely
designed to address both learnability issues as well as term
2.

2.2 Wonderful Life Utility and Aristocrat Util-
ity

As an example of the foregoing, any “team game” in which
all private utility functions equal G is factored [1]. How-
ever as illustrated above in the human economy example,
team games often have very poor forms for term 3 in Equa-
tion 2, forms which get progressively worse as the size of
the collective grows. This is because for such private util-
ity functions each agent η will usually confront a very poor
“signal-to-noise” ratio in trying to discern how its actions
affect its utility gη = G, since so many other agent’s actions
also affect G and therefore dilute η’s effect on its own private
utility function.

We now focus on algorithms based on private utility func-
tions {gη} that optimize the signal/noise ratio reflected in
the third term of the central equation, subject to the require-
ment that the system be factored. We will introduce two
utility functions satisficing this criteria, namely the Won-
derful Life Utility (WLU) and the Aristocrat Utility (AU)

To understand how these algorithms work, say we are given
an arbitrary function f(zη) over agent η’s moves, two such
moves zη

1 and zη
2, a utility U , a value s of the design coor-

dinate, and a move by all agents other than η, zˆη. Define
the associated learnability by

Λf (U ; zˆη, s, zη
1
, zη

2) ≡ (3)
√

[E(U ; zˆη, zη1)− E(U ; zˆη, zη2)]2
∫
dzη[f(zη)V ar(U ; zˆη, zη)]

.

The expectation values in the numerator are formed by
averaging over the training set of the learning algorithm
used by agent η, nη. Those two averages are evaluated ac-
cording to the two distributions P (U |nη)P (nη|zˆη, zη

1) and
P (U |nη)P (nη|zˆη, zη

2), respectively. (That is the meaning
of the semicolon notation.) Similarly the variance being
averaged in the denominator is over nη according to the
distribution P (U |nη)P (nη|zˆη, zη).

The denominator in Equation 4 reflects how sensitive U(z) is
to changing zˆη. In contrast, the numerator reflects how sen-
sitive U(z) is to changing zη. So the greater the learnability
of a private utility function gη, the more gη(z) depends only
on the move of agent η, i.e., the better the associated signal-
to-noise ratio for η. Intuitively then, so long as it does not
come at the expense of decreasing the signal, increasing the
signal-to-noise ratio specified in the learnability will make it
easier for η to achieve a large value of its intelligence. This
can be established formally: if appropriately scaled, g′η will
result in better expected intelligence for agent η than will gη
whenever Λf (g

′
η; zˆη, s, zη

1, zη
2) > Λf (gη; zˆη, s, zη

1, zη
2)

for all pairs of moves zη
1, zη

2[14].

One can solve for the set of all private utilities that are
factored with respect to a particular world utility. Unfor-
tunately though, in general a collective cannot both be fac-
tored and have infinite learnability for all of its agents [14].
However consider difference utilities, of the form

U(z) = β[G(z)−D(zˆη)] (4)

Any difference utility is factored [14]. In addition, for all
pairs zη

1, zη
2, under benign approximations, the difference

utility maximizing Λf (U ; zˆη, s, zη
1, zη

2) is found by choos-
ing

D(zˆη) = Ef (G(z) | zˆη, s) , (5)

up to an overall additive constant, where the expectation
value is over zη. We call the resultant difference utility the
Aristocrat utility (AU), loosely reflecting the fact that it
measures the difference between a agent’s actual action and
the average action. If each agent η uses an appropriately
rescaled version of the associated AU as its private utility
function, then we have ensured good form for both terms 2
and 3 in Equation 2.

Using AU in practice is sometimes difficult, due to the need
to evaluate the expectation value. Fortunately there are
other utility functions that, while being easier to evaluate
than AU , still are both factored and possess superior learn-
ability to the team game utility, gη = G. One such private
utility function is the Wonderful Life Utility (WLU). The
WLU for agent η is parameterized by a pre-fixed clamping
parameter CLη chosen from among η’s possible moves:

WLUη ≡ G(z)− G(zˆη, CLη) . (6)

WLU is factored no matter what the choice of clamping pa-
rameter. Furthermore, while not matching the high learn-
ability of AU , WLU usually has far better learnability than
does a team game, and therefore (when appropriately scaled)
results in better expected intelligence [11, 16, 14].

3. PROBLEM DEFINITION
Let consider a set of users and a set ofm shared resources/machines.
Different users have different task loads, each task being of
one of T types. Any machine can perform any task type, but
different machines have different processing speeds for each
task types. A given user sends all of its tasks of a particular
type to a specific machine but can send tasks of different
types to different machines. So each user must decide, for
each j ∈ T , to what machine Aj

i to send all of its tasks of
type j.

We consider a batch mode scenario, in which every user
submits all of its tasks, the machines complete their tasks,
and the associated overall performance of the system is as-
certained. Each machine works by grouping all the tasks
sent to it by type, and performs all tasks of one type con-
tiguously before returning them to the associated users and
then switching to the next type. The order of processing
different task types is fixed for any given machine. Each
type is performed at a speed specific to the machine.

3.1 Satisfaction functions of users
User i has a personal “satisfaction” utility function, Hi,
which is an inverse function of the time that the user has
to wait for all of his tasks to finish. The user may be less
willing to wait for certain task types compared to others.
The user can provide feedback or his model of satisfaction
to the system manager.

We indicate the completion time of the tasks of type j sub-
mitted by user i to machine Aj

i by CT
j
i .

The functions defined below measure dissatisfaction rather
than satisfaction, in that they are monotonically increasing
functions of the delay. So the goal for agent i is to maximize
Hi = −Di, where Di is defined as one of the following:
• the maximum delay for user i, Di = maxj∈{1..T} CT

j
i ,

• an importance-weighted combination of the time of com-
pletion of all the tasks of the user, Di =

∑T

j=1
αjCT

j
i .

D ≡ {Di} is the set of the dissatisfactions of all users.

3.2 De£nition of the World Utility Function G
The world utility function measures the performance of the
overall system. It is the responsibility of the system designer
to set this function. He might decide to measure perfor-
mance by measuring some characteristics of the use of the
resource only (e.g. the load distribution or the idle time).
The system designer might also incorporate user preferences
to measure the performance of the system. In our simula-
tions, we have focused on that aspect by defining the world
utility function as a function of the dissatisfactions of all
users. This assumes that either the users have provided a
model of their preferences to the system designer or that
the system designer has modeled them. In the former case,
users may be allowed to update their model.

We have experimented with the following world utilities:

• Avoid hurting any user: minimize G(Di) = maxiDi.

• Minimize a linear combination of the satisfaction of indi-
vidual users where the weight associated with a user rep-
resents the importance of that particular user: G(Di) =
∑

i wiDi.

• To have high average satisfaction without any user’s satis-
faction being low, minimize G(Di) = β ∗ σD +

∑

i wiDi, σD
being the variance in the dissatisfactions.

3.3 Agent learning algorithms
Once the measure of dissatisfaction of each agent and the
performance metric of the overall system have been defined,
the remaining question is how to improve the performance.
In the experiments, we want to answer the question: what
is the function that each self interested agent has to im-
prove? We refer to this function as the private utility
for the agent. In other words, given the agents’ satisfaction
model and the performance metric of the system, we want
to be able to tell the agents that the best way to improve the
performance of the system (which include their own prefer-
ences) is to optimize a certain private utility. If they decide
to optimize other criteria, the performance of the system
will not be as good as if they follow the recommendation.

We compared performance ensuring from four private util-
ity functions for the agents, the last two being those recom-
mended by the COIN framework:
• a team game; each agent’s utility equals G, i.e. by choosing
its action, each agent is trying to optimize the performance
of the overall system (the agent only focuses on the result
of the team, it does not consider its own performance);
• a greedy game: each agent i’s private utility is Hi (the
agent focuses only on its performance);
• AU; to compute AU for an agent i ∈ U , we need to evaluate
G−

∑T

j=1
G(i, j) where G(i, j) denotes the world utility when

agent i sends its job to machine j while all other agents send
their jobs to the same machines they actually used. Thus,
we need to re-evaluate the completion times of all machines
m when the other agents maintain their decision while agent
i sending its load to m). See [14] for a discussion of efficient
evaluation of AU;
• WLU; to compute WLU for agent i, we chose to clamp to
“null” the action of i. Hence, WLUi = G −G(i, ∅). Thus we
only need to evaluate what the completion time of the ma-
chine chosen by i would be if η did not send any load to that
machine. See [14] for a discussion of efficient evaluation of
AU.

We had each agent use an extremely simple reinforcement
learning algorithm in our experiments, so that performance
more accurately reflects the quality of the agents’ utility
functions rather than the sophistication of the learning scheme.
In this paper, each agent is “blind”, knowing nothing about
the environment in which it operates, and observing only
the utility value it gets after an iteration of the batch pro-

cess. The agents each used a modified version a Boltz-
mann learning algorithm to map the set of such utility val-
ues to a probability distribution over the (finite) set of pos-
sible moves, a distribution that is then sampled to select
the agent’s move for the next iteration. Each agent tries
to learn the estimated reward R̄i corresponding to the ac-
tion i. An agent will choose the action i with probabil-

ity Pi =
e−βR̄i

∑

all actions j e
−βR̄j

. The parameter β is the inverse

temperature. During round r, if the action i is chosen,
the update of the estimated reward for action i is R̄i =
∑

j∈Ci

e−α(r−j)
∑

k∈Ci
e−α(r−k)

Rj , where Ci denotes the set of rounds

where action i was chosen, and Rj denotes the reward re-
ceived at the end of the round j. The data aging parameter
α models the importance of the choices made in the previous
rounds. In our modification, rather than have the expected
utility value for each possible move of an agent be a uniform
average of the utilities that arose in the past when it made
that move, we exponentially discount moves made further
into the past, to reflect the non-stationarity of the system.

4. EXPERIMENTS
We experiment with a domain where users are sending differ-
ent types of printing jobs to a shared pool of heterogeneous
printers. The different types of printing jobs may represent
different kind of printing operations (for instance, printing
black & white, printing in color) Though each printer is
able to process any job type, a given printer processes jobs
of different types at different speeds. For each printer, we
randomly choose the speed of processing each task type, and
processing occurs in the order of decreasing speed.

Each user has a load of printing jobs to perform. We as-
sign one agent to handle all tasks of a given type for a given
user, and its job is to select a printer to which these tasks
would be sent. Each run starts with an initial sequence of
iterations in which the agents make purely random moves to
generate data for the learning algorithms. We then succes-
sively “turn on” more and more of those algorithms i.e., at
each successive iteration, a few more agents start to make
their moves based on their learning algorithm and associ-
ated data rather than randomly. We start each agent with a
high Boltzmann temperature, usually 10, and decrease it at
each iteration by multiplying it by a decay factor. We refer
to a temperature schedule as slow when the decay factor is
large (for instance 99%), and refer to the schedule as fast
when the decay factor is small (for instance 70%). We use
an aging parameter in forming expectation values of 0.1.

In the experiments reported here, the dissatisfaction of a
given user is Di =

∑T

j=1
αjCT

j
i where the αj are randomly

chosen and remain the same throughout the learning pro-
cess. We used 10 users, 8 types and 6 machines.

4.1 Results
We first considered the case where the World Utility Func-
tion G is computed as the maximum of the dissatisfaction
of the user, i.e., G = maxiDi. The goal is to minimize the
maximum dissatisfaction among the users. The decay fac-
tor used is 0.99. In Fig. 1 we provide performance for the
different agent utility functions averaged over 10 runs. The
performances achieved by AU and WLU are similar, and

0

50

100

150

200

0 100 200 300 400 500 600

W
or

ld
 U

til
ity

 G

iterations

comparaison between Greedy, Team Game, AU and WLU
 temperature schedule uses a decay of 99%

Greedy

Team Game

WLU and AU

Figure 1: Comparison between different agent util-
ities when G = maxiDi

dominate that of both Team Game and Greedy agent utili-
ties. We found that at the end of the learning process, the
standard deviation in G for AU and WLU is small (respec-
tively 2.1 and 1.08) whereas it is large for Greedy and Team
Game (respectively 14.4 and 24). This corroborates the rea-
soning that signal to noise is too large when we use Greedy
or Team Game, and therefore the learning agents are not
able to determine the impact of their actions on their utility
functions. In contrast, as discussed above, AU and WLU are
designed to have good signal to noise, which enables them
to reach better (and more consistent) performance levels.

Note that with the greedy approach G worsens as each agent
learns how to maximize its utility. This is an example of a
tragedy of the commons: since the Greedy utility is not
factored with respect to G, the associated Nash equilibrium
— achieved as the agents learn more — has poor G.

In Fig. 2, G is instead the weighted sum of the dissatisfaction
of the users, i.e., G =

∑

i wiDi. In figure 3 it is the sum of
all the users dissatisfactions with the standard deviation of
those dissatisfactions, i.e., G = β∗σD+

∑

iDi (we have used
β = 1). The decay factor used in these experiments is 0.99.
In all cases, AU and WLU achieve comparable performance,
and outperform team game.

Although the asymptotic performance of the team game is
not as good as that of AU or WLU, in both of these exper-
iments team game performs better than AU or WLU in the
early phase of the learning. In addition the convergence in
time of G for AU and WLU is slower in these experiments.
This is consistent with COIN theory, which says that simply
changing to a more learnable utility function may actually
lead to worse performance if the learning temperature is not
changed simultaneously. Intuitively, to achieve their better
signal to noise ratios, AU and WLU shrink both the signal
and the noise, and therefore need both to be rescaled up-
ward. In the context of Boltzmann learning algorithms, this
is equivalent to lowering their temperatures.

To investigate this issue, in a second set of experiments
we used different decay factors and faster schedules. In

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700

W
or

ld
 U

til
ity

 G

iterations

comparaison with temperature decay = 99%

using Team Game

using AU
using WLU

using Greedy

using Team Game

using AU
using WLU

using Greedy

Figure 2: Comparison between different reward in
the case where G =

∑

i wiDi.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700

W
or

ld
 U

til
ity

 G

iterations

comparaison with temperature decay = 99%

using Team Game

using AU
using WLU

using Greedy

Figure 3: Performances for G = σ +
∑

iDi.

Fig. 4 we present the asymptotic world utility value for
Team Game, AU, and WLU for different decay factors and
starting temperatures. In the experiments plotted we used
G =

∑

i wiDi, but we observed the same phenomena with
the other G discussed above: the team game never outper-
forms AU or WLU. Moreover, if for each time-algorithm pair
we used the schedule that is optimal for that pair, then is no
time t at which the performance of the team game is better
than the performance of AU/WLU. Fig. 5 illustrates this,
showing that with a fast schedule having a decay factor of
0.65, AU and WLU converge faster than team game.

In addition to these advantages, we found that the perfor-
mance with the team game is more sensitive to the change
in temperature schedule, again in accord with COIN theory.
Indeed, although convergence to asymptotia is faster for all
agent utilities with the faster schedule (see Fig. 5), from
Fig. 4 we see that both average asymptotic performance and
its standard deviation are substantially for the team game
for the faster schedule. In contrast, AU and WLU do not
suffer as much from the switch to a faster schedule.

5

10

15

20

25

30

35

40

45

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
 a

fte
r

co
nv

er
ge

nc
e

temperature decay

Comparaison with different temperature decay

Team Game

WLU

AU

Figure 4: Different decay factors (G =
∑

i wiDi).

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

G

iterations

comparaison with temperature decay = 65%

decay 65% using Team Game

decay 99% using Team Game

decay 65% using AU

decay 65% using WLU

Figure 5: Performance for G =
∑

i wiDi.

We also investigated the scaling properties of these approaches
as one increases the size of the system and found that AU
and WLU scale up much better than the team game ap-
proach, again in accord with COIN theory. Intuitively, the
larger the system, the worse the signal-to-noise problems
with utilities like team games, and therefore the greater the
gain in using a utility like AU or WLU that corrects for it.
In Fig. 6, we used a fixed number of types, 8, and a fixed
ratio of 1 machine for 5 users. We increased the number
of users from 5 to 25. For each data point, we considered
a few scenarios (different machine configurations, different
loads distributed to users, etc.) and performed 10 runs for
each scenario. Each point represents the average over the
scenarios. The use of AU and WLU yield comparable re-
sults, and the difference in performance between them and
Team Game increases with the number of agents.

Since in general one cannot compute the best possible G
value, we cannot make absolute performance claims. Nonethe-
less, both in terms of performance and scaling, use of WLU
or AU is clearly preferable to a team game or greedy ap-
proach, for several different choices for G.

5. RELATED WORK

20

40

60

80

100

120

140

160

180

40 60 80 100 120 140 160 180 200

G
 (

av
er

ag
ed

 o
ve

r
10

 r
un

s)

Number of Agents

Problems of different sizes
 	 8 types, 1 machine for 5 users

G
AU

WLU

Figure 6: Scaling properties for G =
∑

iDi.

Multiagent system researchers have studied balancing of load
across shared resources with different decision-making pro-
cedures. These approaches include the following:
• Studying chaotic nature of resource loads when each agent
uses a greedy selection procedures [5].
• Effect of limited knowledge on system stability [7, 9].
• Market mechanisms for optimizing quality-of-service [17].
• Using reinforcement learning to balance loads [8].
• Social dilemma problems that arise when individual agents
try to greedily exploit shared resources [3, 11].
• Distinguishing easy vs. difficult resource allocation [12].

The typical assumption in most of this work is that each user
has an atomic load to send to one of several equivalent re-
sources. Our work addresses a more general scenario where
a user has multiple task loads and resources are heteroge-
neous. So not only may the decisions of the users conflict,
but decisions for different tasks taken by the same user can
interfere with each other. Also, we explicitly handle the
issue of user satisfaction metrics (something awkward to in-
corporate in load-balancing, for example) and variability in
the world utility, and use the COIN procedure to ensure
that the combination of individual user satisfaction metrics
are optimized. The combination can include weights for dif-
ferent users and also, if necessary, reduce disparate levels of
satisfaction from the outcome by minimizing the standard
deviation of satisfaction. With the COIN procedure, all of
this is done using very simple agents, in a highly paralleliz-
able fashion, with no modeling of the underlying dynamics
of the system.

6. DISCUSSION
The COIN framework has been applied to many domains,
including domains requiring sequence of actions. In these
cases, the world utility function was decided first, and then
the local utility function of each agent was derived from it.
This paper differs in two main ways from the COIN appli-
cations studied so far. First, agents have preferences repre-
sented by a dissatisfaction function. In previous work, the
individual in the system did not have any intrinsic prefer-
ences. Secondly, the world utility is based upon the prefer-
ences of users and a system administrator. The main con-

tribution of the paper is to show that the users, in order
to achieve satisficing performance of the overall system, had
better prefer to optimize COIN based private utilities. The
results demonstrate that even in the case where the world
utility function is not exogenous, the previously superiority
of COIN technique holds. In particular, the utilities AU
and WLU outperform locally greedy approaches and more
importantly, the Team Game approach, in terms of aver-
age performance, variability in performance, and robustness
against changes to the parameters of the agent’s learning al-
gorithm. Moreover, these improvements grow dramatically
as the system size is increased, an extremely important con-
sideration in future applications.

We are currently experimenting with aggregating several
printing decisions under the jurisdiction of one agent. This
would reduce the number of agents in the system, and pos-
sibly both speed up the convergence of the performance and
improve it. In particular we will investigate different kind
of aggregations, e.g., based on users, based on task types,
crossing both, etc. There is also the interesting possibility
of learning the best aggregation of decisions into individual
agents.

7. REFERENCES
[1] R. H. Crites and A. G. Barto. Improving elevator

performance using reinforcement learning. In D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systems -
8, pages 1017–1023. MIT Press, 1996.

[2] E. H. Durfee. Scaling up coordination strategies. IEEE
Computer, 34(7):39–46, July 2001.

[3] N. S. Glance and T. Hogg. Dilemmas in
computational societies. In First International
Conference on Multiagent Systems, pages 117–124,
Menlo Park, CA, 1995. AAAI Press/MIT Press.

[4] G. Hardin. The tragedy of the commons. Science,
162:1243–1248, 1968.

[5] J. O. Kephart, T. Hogg, and B. A. Huberman.
Dynamics of computational ecosystems: Implications
for DAI. In M. N. Huhns and L. Gasser, editors,
Distributed Artificial Intelligence, volume 2 of
Research Notes in Artificial Intelligence. Pitman, 1989.

[6] D. C. Parkes. iterative combinatorial auctions: Theory
and practice, 2001.

[7] S. K. Rustogi and M. P. Singh. Be patient and
tolerate imprecision: How autonomous agents can
coordinate effectively. In Proceedings of the
International Joint Conference on Artificial
Intelligence, pages 512–517, 1999.

[8] A. Schaerf, Y. Shoham, and M. Tennenholtz. Adaptive
load balancing: A study in multiagent learning.
Journal of Artificial Intelligence Research, 2:475–500,
1995.

[9] S. Sen, N. Arora, and S. Roychowdhury. Using limited
information to enhance group stability. International
Journal of Human-Computer Studies, 48:69–82, 1998.

[10] K. Tumer, A. K. Agogino, and D. H. Wolpert.
Learning sequences of actions in collectives of
autonomous agents. In Proceedings of the First
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 378–385, New York:
NY, 2002. ACM Press.

[11] K. Tumer and D. H. Wolpert. Collective intelligence
and braess’ paradox. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, pages
104–109, Menlo Park, CA, 2000. AAAI Press.

[12] H. van Dyke Parunak, S. Brueckner, J. Sauter, and
R. Savit. Effort profiles in multi-agent resource
allocation. In Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 248–255, New York: NY,
2002. ACM Press.

[13] D. H. Wolpert, S. Kirshner, C. J. Merz, and
K. Tumer. Adaptivity in agent-based routing for data
networks. In Proc. of the 4th International Conference
on Autonomous Agents, pages 396–403, 2000.

[14] D. H. Wolpert and K. Tumer. Optimal payoff
functions for members of collectives. Advances in
Complex Systems, 4(2/3):265–279, 2001.

[15] D. H. Wolpert and K. Tumer. Beyond mechanism
design. In H. G. et al., editor, Proceedings of
International Congress of Mathematicians. Qingdao
Publishing, 2002.

[16] D. H. Wolpert, K. R. Wheeler, and K. Turner.
General principles of learning-based multi-agent
systems. In Proceedings of the Third International
Conference on Autonomous Agents, pages 77–83, New
York: NY, 1999. ACM Press.

[17] H. Yamaki, Y. Yamauchi, and T. Ishida.
Implementation issues on market-based qos control. In
Proceedings of the Third International Conference on
Multi-Agent Systems, pages 357–364, 1998.

