# **Program Description**

# A PC Program



# **RESFEN 3.1**

for Calculating the Heating and Cooling Energy Use of Windows in Residential Buildings

Windows and Daylighting Group Building Technologies Program Environmental Energy Technologies Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 USA

© 1997-1999 Regents of the University of California

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

#### DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

# **RESFEN 3.1:** Program Description

A PC Program for Calculating the Heating and Cooling Energy Use of Windows in Residential Buildings

> Robin Mitchell Joe Huang Dariush Arasteh Robert Sullivan Windows and Daylighting Group Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720

> > Santosh Phillip Gabel Associates Berkeley, California 94703

> > > August 1999

© Regents of the University of California

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

| 1. | INTRODUCTION                                                                            | 1-1        |
|----|-----------------------------------------------------------------------------------------|------------|
|    | <ul><li>1.1. Overview</li><li>1.2. Changes from RESFEN 3.0</li></ul>                    | 1-1<br>1-1 |
| 2. | QUICK START                                                                             | 2-1        |
| 3. | INSTALLATION                                                                            | 3-1        |
|    | 3.1. Hardware Requirements                                                              |            |
|    | 3.2. Setup                                                                              |            |
|    | 3.3. Running RESFEN 3.1                                                                 |            |
|    | 3.4. Troubleshooting                                                                    |            |
| 4. | PROGRAM DESCRIPTION                                                                     | 4-1        |
|    | 4.1. Overview                                                                           | 4-1        |
|    | 4.2. Steps to complete a RESFEN run:                                                    |            |
|    | 4.3. Toolbar                                                                            |            |
|    | 4.4. Pull-Down Menus                                                                    |            |
|    | 4.4.1. $\underline{\Gamma}$ Inc                                                         |            |
|    | 4.4.2. <u>Eu</u> ut                                                                     |            |
|    | 4.4.4. Calculate                                                                        |            |
|    | 4.4.5. View                                                                             |            |
|    | 4.4.6. Help                                                                             | 4-6        |
|    | 4.5. House Data                                                                         | 4-7        |
|    | 4.6. Window Data                                                                        |            |
|    | 4.7. Results                                                                            |            |
|    | 4.7.1. Whole House                                                                      |            |
|    | 4.7.2. Window Annual Energy                                                             |            |
|    | 4.7.4. Window Peak Demand                                                               |            |
| 5. | EXAMPLES                                                                                | 5-1        |
|    | 5.1. Example 1: Window Selection in a Heating Climate, Madison WI                       |            |
|    | 5.2. Example 2: Window Selection in a Cooling Climate, Phoenix AZ                       |            |
|    | 5.3. Example 3: Window Selection in a Mixed Heating and Cooling Climate, Kansas City MO |            |
| 6. | TECHNICAL REFERENCE                                                                     | 6-1        |
|    | 6.1. Locations Available for Analysis with RESFEN 3.1                                   | 6-1        |
|    | 6.2. RESFEN Modeling Assumptions                                                        |            |
|    | 6.3. Foundation Types by Location                                                       | 6-5        |
|    | 6.4. Simulation Envelope Insulation Values                                              |            |
|    | 6.5. Making Custom WINDOW 4.1 Libraries                                                 | 6-8        |
|    |                                                                                         |            |

| 6.5.1. Make WINDOW 4.1 Window Library Files           |  |
|-------------------------------------------------------|--|
| 6.5.2. Name the DOE-2 DAT File                        |  |
| 6.5.3. Move WINDOW 4.1 Libraries to RESFEN Directory  |  |
| 6.5.4. Select the WINDOW 4.1 Window Library in RESFEN |  |
| 6.6. RESFEN Window Library Documentation              |  |
| 6.7. Resources                                        |  |
| 6.7.1. Books                                          |  |
| 6.7.2. Organizations                                  |  |
| 6.8. References                                       |  |
|                                                       |  |

# 7. ACKNOWLEDGEMENTS

# 1.1. Overview

Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

A computer tool such as RESFEN can help consumers and builders pick the most energy-efficient and cost-effective window for a given application, whether it is a new home, an addition, or a window replacement. It calculates heating and cooling energy use and associated costs as well as peak heating and cooling demand for specific window products. Users define a specific "scenario" by specifying house type (single-story or two-story), geographic location, orientation, electricity and gas cost, and building configuration details (such as wall, floor, and HVAC system type). Users also specify size, shading, and thermal properties of the window they wish to investigate. The thermal properties that RESFEN requires are: U-factor, Solar Heat Gain Coefficient, and air leakage rate. RESFEN calculates the energy and cost implications of the window compared to an insulated wall. The relative energy and cost impacts of two different windows can be compared.

RESFEN 3.0 was a major improvement over previous versions because it performs hourly calculations using a version of the DOE 2.1E (LBL 1980, Winkelmann et al. 1993) energy analysis simulation program. RESFEN 3.1 incorporates additional improvements including input assumptions for the base case buildings taken from the National Fenestration Rating Council (NFRC) Annual Energy Subcommittee's efforts.

Table 6-2 lists the input assumptions used in RESFEN 3.1, along with those from the previous version. These assumptions are reviewed continually and may be refined in future versions to more accurately reflect typical building configurations and operation.

Update information, future releases, and program information about RESFEN and other software tools (such as WINDOW, THERM, and Optics) from the Windows and Daylighting Group at LBNL can be found on the World Wide Web at URL: <u>http://windows.lbl.gov</u>, in the Software section. To obtain RESFEN, WINDOW, or THERM, check the web site first to see if it is downloadable; if not, fax your shipping address and phone number to "RESFEN 3.1 Software Request" at (510) 486-4089.

# 1.2. Changes from RESFEN 3.0

The significant changes that differentiate RESFEN 3.1 from RESFEN 3.0 are listed below. Some of these changes affect program results. Engineering judgement suggests that the results obtained from RESFEN 3.1 are more accurate than the results from version 3.0. As a result, it is strongly recommended that all users switch to version 3.1.

Whole House Results: RESFEN 3.0 evaluated the energy impact of windows compared to a windowless insulated wall. In RESFEN 3.1, analysis results for the whole house (energy consumption from all the envelope components of the building, including windows on all orientations, walls, roofs, and foundations) are also presented. Whole house results are calculated during a DOE2 simulation that is automatically generated by RESFEN when you press either of the calculation buttons. Results for only windows, by orientation, are still included and are useful for looking at specific cases where different windows may perform more efficiently depending on the direction they are facing. See Section 4.7, "Results" for more information on this feature.

- NFRC Input Assumptions: For each set of RESFEN 3.1 results, many input assumptions are made including insulation levels in the building envelope and HVAC equipment efficiencies. The assumptions in RESFEN 3.1 are the same as those used in the National Fenestration Rating Council (NFRC) Annual Energy Rating Subcommittee efforts. These assumptions are documented in Table 6.2.
- **Building Floor Area:** It is now possible to input the floor area of the building being modeled, up to 4,000 square feet. Many assumptions, such as wall area, internal gain, infiltration rates, and internal mass, depend on the floor area, and the program automatically changes these values when the floor area changes.
- **Location-based Defaults:** The following values are defaulted based on location: foundation type, electricity cost, and gas cost. The foundation types that appear in the Foundation List depend on location, reflecting that common building practice is different based on geographical areas.
- **Skylights:** A column has been added in the Window Data section for skylights. These are modeled as vertical glazing in the roof of the building, with solar heat gain reduced by 50% to account for skylight-well effects. This correction factor is a placeholder; research is ongoing to improve the skylight well solar gain correction.
- **Toolbar:** A toolbar has been added below the menu for the most commonly used functions, including **Print** and **Calc**. See *Section 4* for a more complete description.
- File Format: The format and name of the RESFEN input files has changed from RESFEN 3.0. The extension for RESFEN 3.1 is "RSF" rather than "BSE". RESFEN 3.1 can read BSE files but RESFEN 3.0 cannot read the RESFEN 3.1 RSF files. If you open a RESFEN 3.0 BSE file check the input values very carefully because some of the information may not translate correctly, in particular the Solar Gain Reduction choices, the electricity and gas costs, the house type, and foundation type.

# 2. QUICK START

- Install the RESFEN program (see Chapter 3, "Installation").
- When the program is installed, **double click** on the RESFEN icon.



Figure 2-1. Click on the RESFEN icon in the Programs list.

- The program will start with the input values contained in an input file called "default.rsf".
- Change any input values that are not correct for the case you wish to model. For example, you can change the location to another city, change the HVAC system type, or input another window type. When you change an input value, the Calculate button becomes active and the values in the Results tabs are set to zero.

| When RESFEN starts, it open                         | ns the —                       |                                                                                                                                                                                                                                              |            |             |            |           |          |  |
|-----------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|-----------|----------|--|
| input file <b>default.rsf</b> .                     | BESEEN - default B             | SE.                                                                                                                                                                                                                                          |            |             |            |           |          |  |
| After you have changed the va                       | late View Options H            | elo                                                                                                                                                                                                                                          |            |             |            |           |          |  |
| use the File/Save As menu to                        | 77 <u>-</u>                    | -+                                                                                                                                                                                                                                           |            |             |            | 1         |          |  |
| your input to another file name                     | e.                             |                                                                                                                                                                                                                                              |            |             |            |           |          |  |
|                                                     | House Data                     | Window Data                                                                                                                                                                                                                                  | Marth      | Enot        | South      | West      | Skuliabt |  |
|                                                     | Location:                      | Window Tupe                                                                                                                                                                                                                                  | User spec  | User spec   | LUser spec | User spec |          |  |
| Ī                                                   |                                | Window (ft2)                                                                                                                                                                                                                                 | 75.00      | 75.00       | 75.00      | 75.00     | 0.00     |  |
|                                                     |                                | U-factor                                                                                                                                                                                                                                     | 0.49       | 0.49        | 0.49       | 0.49      | 0.65     |  |
|                                                     | I-Story New Frame              | SHGC                                                                                                                                                                                                                                         | 0.56       | 0.56        | 0.56       | 0.56      | 0.50     |  |
|                                                     | Foundation Type                | Cfm/ft2                                                                                                                                                                                                                                      | 0.30       | 0.30        | 0.30       | 0.30      | 0.30     |  |
|                                                     |                                | Solar Gain Reduction                                                                                                                                                                                                                         | Typical ,  | , Typical   | Typical    | Typical   | None     |  |
|                                                     | HVAU System Type               |                                                                                                                                                                                                                                              | <u> </u>   | ,           |            | . J       |          |  |
| Change the values in any of                         |                                | Results                                                                                                                                                                                                                                      |            |             |            |           |          |  |
| these input boxes to model vour specific situation. | Total Area<br>Floor (ft2) 2000 | Total Area         Whole House         Window Annual Energy         Window Energy Cost         Window Peak Energy           Floor (ft2)         2000         Vindow         Vindow Annual Energy         Vindow Energy         Vindow Energy |            |             |            |           |          |  |
|                                                     | Window (ft2) 300               | Energy Tot                                                                                                                                                                                                                                   | als        |             | Total Cost |           |          |  |
|                                                     | Elec Cost: Gas Cost:           | Cooling 0                                                                                                                                                                                                                                    |            | Cooling (\$ | ) 0        |           |          |  |
|                                                     | \$/kWh \$/Therm                | Heating 0                                                                                                                                                                                                                                    | (MBtu)     | Heating (\$ | ) 0        |           |          |  |
|                                                     | 0.118 - 0.70 -                 | ,<br>Eneray per                                                                                                                                                                                                                              | ft2        | Total (\$   | ) 0        |           |          |  |
|                                                     | Description                    | Cooling 0                                                                                                                                                                                                                                    |            |             | ,          |           |          |  |
|                                                     | Base Case House                | Heating                                                                                                                                                                                                                                      | (kBhu/ft2) |             |            |           |          |  |
|                                                     |                                |                                                                                                                                                                                                                                              | (REGURAL)  |             |            |           |          |  |
| · · · · ·                                           |                                |                                                                                                                                                                                                                                              |            |             |            |           |          |  |
|                                                     |                                |                                                                                                                                                                                                                                              |            |             |            |           |          |  |
|                                                     |                                | Τ                                                                                                                                                                                                                                            |            |             |            |           |          |  |
|                                                     | Wher                           | n you change inp                                                                                                                                                                                                                             | out values | s, the resu | ults boxes | will be   |          |  |
|                                                     | reset                          | to "0. until vou r                                                                                                                                                                                                                           | ecalculate | e the resu  | ults.      |           |          |  |

Figure 2-2. Change input values as needed for your building.

You can change the Window Data section either by entering all the values for each orientation by hand or by picking windows from a library of predetermined generic window products. Since this library was created with the WINDOW 4.1 software, it is called the WINDOW 4.1 library. This library contains values for typical casement windows, but these values can be used for sliders and fixed windows because their properties are essentially the same. See Section 6.5, "Making Custom WINDOW 4.1 Libraries" for detailed information about making your own libraries.



*Figure 2-3.* Use the WINDOW 4.1 library to select windows for your building.

Press the Calculate button -- the single lightning bolt calculates only Whole House results, and the double lightning bolt calculates both Whole House and Window Orientation results.



Figure 2-4. There are two calculation options, accessed with the lightning bolt toolbar buttons.

An hourly simulation using DOE2 will be performed, which may take a few seconds for **the Whole House** only calculation, or up to a few minutes for the **Whole House** + **4** Orientations calculation, depending on the speed of your computer. When the calculation is finished, the values in the **Results** tabs will be updated.



The Whole House + 4 Orientations calculation

produces results for the Whole House as well as the four window orientations, which are displayed on the **Window Annual Energy**, **Window Energy Cost**, and **Window Peak Energy** tabs. The results for the four window orientations are relative to a standard insulated wall for each orientation.

| Basulte      |       |               |              |               |             |          |
|--------------|-------|---------------|--------------|---------------|-------------|----------|
| Whole House  | Wind  | Jow Annual Er | nergy Windov | v Energy Cost | Window Peak | Energy   |
|              |       | North         | East         | South         | West        | Skylight |
| Cooling(kWh/ | /ft2) | 4.70          | 9.74         | 8.27          | 10.73       | 0.00     |
| Heating(kBtu | /ft2) | 12.13         | 2.27         | -14.08        | 6.94        | 0.00     |
| Cooling(k)   | √h)   | 352           | 731          | 620           | 804         | 0        |
| Heating(M    | Btu)  | 0.91          | 0.17         | -1.06         | 0.52        | 0.00     |
|              |       |               |              |               |             |          |
|              |       |               |              |               |             | Graphs   |

1

*Figure 2-5.* The two calculation options are used to calculate different types of results.

#### 3.1. Hardware Requirements

First, make sure your computer system meets these specifications:

- 100% IBM-compatible pentium or higher with a math co-processor. A 400 MHz pentium computer will take about 9 seconds to perform a whole house simulation, and 16 seconds to perform a whole house + four orientations simulation.
- At least 16 MB of random access memory (RAM), configured as extended memory. 32 MB of RAM is
  preferred for optimum operation.
- Microsoft Windows 95<sup>TM</sup>, Windows 98<sup>TM</sup> or Windows NT<sup>TM</sup>.
- Hard disk drive with at least 10 megabytes of available disk space.
- Monitor and mouse.
- Optional: Printer supported by Microsoft Windows 95<sup>TM</sup>, Windows 98<sup>TM</sup>, or Windows NT<sup>TM</sup> (serial, parallel, or shared over a network).

#### 3.2. Setup

The installation program is provided on CD. Diskettes are available upon request by emailing <u>RESFENHelp@lbl.gov</u> or by faxing Software Request at (510) 486-4089.

- 1. Insert the installation CD into the CD-ROM drive on your computer.
- 2. In Microsoft Windows 95<sup>TM</sup>, Windows 98<sup>TM</sup>, or Windows NT<sup>TM</sup>, if your computer doesn't automatically recognize the CD and start the installation process, click the **Start** toolbar button and select **Run**:



Figure 3-1. Pick Run from the Start toolbar.

In the **Run** window, type

<CDROM drive>:setup.exe

where <CDROM> is the drive letter of the CD-ROM drive on your machine, such as "D:" or "E:"

Press the **OK** button in the **Run** dialog box.



Figure 3-2. Type <drive letter>:setup and press OK.

3. The initial RESFEN Setup window will appear..



Figure 3-3. The initial RESFEN Setup window.

4. When the initial **Setup** window has finished, a Welcome window will display. Click the **Next** button to proceed with the installation, or **Cancel** to stop.



Figure 3-4. The initial RESFEN Setup window.

5. The **Software License Agreement** window will display next. Read through the license and make sure you agree to all the terms before proceeding. To proceed with the installation, click on the **Yes** button, or click on **No** to stop.

| Software License Agreer                                                                                                                                                                               | nent                                                                                                                                                        |                                                                                                        |                                                                                      | ×                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|
| Please read the the rest of the a                                                                                                                                                                     | following License Agr<br>greement.                                                                                                                          | eement. Pres                                                                                           | is the PAGE DC                                                                       | )WN key to see              |
| RESFEN END USER LI<br>This License Agreement (<br>of the University of Califor<br>of the Ernest Orlando Law<br>Road, Berkeley, CA 9472<br>obtaining this software on<br>(collectively, "you" or "Lice | CENSE AGREEMEN<br>the "Agreement") is ei<br>nia, Department of En<br>rrence Berkeley Natio<br>0 ("Berkeley Lab"), ar<br>behalf of a legal entit<br>ænsee"). | T Version: 3<br>ntered into by<br>lergy contract<br>nal Laboratory<br>nd your compa<br>y, or you as ar | 1.1<br>The Regents<br>operators<br>y, 1 Cyclotron<br>any, if you are<br>h individual | *                           |
| <ol> <li>LICENSE GRANT. Sut<br/>U.S. Department of Energ<br/>accept, a non-exclusive,<br/>install and use the version<br/>entitled "RESFEN," in exclusion.</li> </ol>                                 | iject to receipt by Berl<br>y approvals, Berkeley<br>non-transferable, royal<br>i noted above of the c<br>ecutable code format                              | keley Lab of a<br>Lab grants yo<br>ty-free perpet<br>computer softw<br>only, together                  | ny required<br>ou, and you her<br>ual license to<br>vare program<br>with any         | eby                         |
| Doyou accept all the term<br>will close. To install RESP                                                                                                                                              | s of the preceding Lic<br>EN 3.1, you must acc                                                                                                              | ense Agreem<br>ept this agree<br>< <u>B</u> ack                                                        | ent? If you cho<br>ment.<br><u>Y</u> es                                              | ose No, Setup<br><u>N</u> o |

Figure 3-5. The initial RESFEN Setup window.

6. The **Readme Information** window will display next. This window contains general information about how to get more information about the program, as well as general information about how to start the program and anything that has changed in the program that is not included in manual.

| Readme Information |                                                                                                                                                                                                       | ×       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                    | Information:                                                                                                                                                                                          |         |
|                    | RESFEN Release Notes, Version 3.10<br>Thank you for your interest in RESFEN 3.10<br>How to reach us.<br>Web:<br>                                                                                      | <b></b> |
|                    | http://windows.lbl.gov/software/software.html<br>Go to the RESFEN section and you will see<br>information about the program, including<br>information that we weren't able to put into the<br>manual. |         |
|                    | Fax: 510-486-4089, ATTN: RESFEN Help<br>E-mail: RESFENHelp@lbl.gov<br>◀                                                                                                                               | ▼<br>↓↓ |
|                    | < <u>B</u> ack <u>Next &gt;</u>                                                                                                                                                                       | Cancel  |

Figure 3-6. The initial RESFEN Setup window.

7. The **Choose Destination Location** window will display next. The default directory where the program will be installed is C:\Program File\RESFEN. However, if you want to install the program in another directory on your computer, you can use the **Browse** button to specify the location.

Press the Next button when you are satisfied with the Destination Directory.



*Figure 3-7. Choose Destination Location* screen. A different location can be selected using the *Browse* button. Press *Next* when you are satisfied with the Destination Directory.

8. The next screen to display is the **Select Program Folder**, which specifies a default folder for the program icons and allows you to define an alternate folder name.

Press the Next button when you are satisfied with the Program Folder name.



Figure 3-8. Use the default folder name "RESFEN" or specify a new folder name. Then press Next to go to the next screen.

9. Setup will automatically install RESFEN into the specified destination directory on your computer.

| Decompressing Files In C.\Program Files\RESFEN 31\Weathr<br>brbtmy2.bin |
|-------------------------------------------------------------------------|
| 19 %                                                                    |
|                                                                         |

*Figure 3-9.* Setup will decompress and copy the program files into the specified destination directory.

10. Setup will automatically put a RESFEN Icon in the **Programs** menu accessed from the **Start** button.



Figure 3-10. Program icon to run RESFEN.

### 3.3. Running RESFEN 3.1

To run RESFEN 3.1, click on the Windows95<sup>TM</sup>, Windows98<sup>TM</sup> or WindowsNT<sup>TM</sup> **Start** button, go to the **Programs** menu, and single click on the **RESFEN 3.1** icon:



Figure 3-11. Click on Start / Programs / RESFEN 3.1

A "splash" screen, shown in Figure 3-10, is briefly displayed when you start the program.



Figure 3-12. RESFEN Splash Screen

The main program screen appears and starts with an input file called "default.rsf", as shown in Figure 3-13.

| 📑 RESFEN - single.RSF          |                           |                                         |               |                |             | _ 🗆 X       |
|--------------------------------|---------------------------|-----------------------------------------|---------------|----------------|-------------|-------------|
| File Edit Library Calculat     | te <u>V</u> iew Options H | elp                                     |               |                |             |             |
| BB <b>5 5</b>                  |                           |                                         |               |                |             |             |
| House Data                     | Window Data               |                                         |               | 1              | 1           |             |
| Location:                      |                           | North                                   | East          | South          | West        | Skylight    |
| AZ Phoenix 💌                   | Window Type               | User spec 🖕                             | User spec 🚽   | User spec 🖕    | User spec   | User spec 🕌 |
| ,<br>House Tupe                | Window (ft2)              | 57.82                                   | 57.82         | 57.82          | 57.82       | 0.00        |
| 1-Story New Frame              | U-factor                  | 1.31                                    | 1.31          | 1.31           | 1.31        | 1.31        |
| Foundation Tune                | SHGC                      | 0.74                                    | 0.74          | 0.74           | 0.74        | 0.74        |
| Slab-on-Grade                  | Cfm/ft2                   | 0.65                                    | 0.65          | 0.65           | 0.65        | 0.00        |
| HVAC Sustem Tune               | Solar Gain Reduction      | Typical 📮                               | Typical 📮     | Typical 📮      | Typical     | Vone V      |
| Gas Furnace / AC 💌             | Results                   |                                         |               |                |             |             |
| Total Area<br>Floor (ft2) 1540 | Whole House Win           | dow Annual En                           | ergy   Window | Energy Cost∫ ∖ | Vindow Peak | Energy      |
| Window (ft2) 231               | Energy Tot                | als                                     |               | Total Cost     |             |             |
| Elec Cost: Gas Cost:           | Cooling 5746              | (kWh)                                   | Cooling (\$)  | 344.79         |             |             |
| \$/kWh \$/Therm                | Heating 7.96              | (MBtu)                                  | Heating (\$)  | 55.73          |             |             |
| 0.060 🔽 0.70 💌                 | Eneray per                | ft2                                     | Total (\$)    | 400.52         | ·           |             |
| Description                    | Cooling 373               | (kW/b/#2)                               |               |                |             |             |
| Enter a description here       | Useting 5.10              | (((((((((((())))))))))))))))))))))))))) |               |                |             |             |
|                                | Heating 5.17              | (KBtu/ft2)                              |               |                |             |             |
|                                |                           |                                         |               |                |             |             |
|                                |                           |                                         |               |                |             |             |
|                                |                           |                                         |               |                |             | 11.         |

Figure 3-13. Main RESFEN screen.

# 3.4. Troubleshooting

When you first run the program after installing it, the results may show as zeros after the first calculation. If you have this problem, close the program, run it again, and the problem should go away.

Please send E-mail to <u>RESFENhelp@lbl.gov</u>, or send a fax to (510) 486-4089 if you have any trouble running the program.

#### 4.1. Overview

RESFEN is a program with a simple user interface, shown in Figure 4-1, tied to a powerful analytical tool, DOE-2 (Lawrence Berkeley Laboratory, 1980; Winkelmann, 1993). The RESFEN main screen has several components:

- Main Menu
- Toolbar
- House Data input section
- Window Data input section
- Results section



Figure 4-1. Components of the Main RESFEN Screen

### 4.2. Steps to complete a RESFEN run:

The primary steps to complete a RESFEN calculation are:

- Describe your building scenario by entering the appropriate input values in the House Data section
- Describe the windows in your building by entering the appropriate input values in the Window Data section
- Click on one of the lightning bolt tool buttons to do either a Whole House or Whole House + 4 Orientations calculation.
- View the answers in the **Results** section when the simulation has finished.

The following sections of this chapter describe the program in detail.

#### 4.3. Toolbar

RESFEN 3.1 has a toolbar with buttons for the most commonly used functions, shown below.





#### 4.4. Pull-Down Menus

Each menu can be accessed with the mouse, by pointing and clicking on the menu choice, or with the keyboard, by pressing the **Alt** key and then typing the first letter of the menu name. For example, **Alt-F** would access the **File** menu. To select a menu choice, you can click on the choice with your mouse, type the underlined character of each menu choice, or use the **Up** and **Down** arrow keys. Keyboard shortcuts are indicated to the right of the menu item when available.

#### 4.4.1. <u>F</u>ile

The **File** menu is used to manipulate the RESFEN input files, to print the current screen, and to exit the program. Each set of input values on the main screen makes up a file, and different input configurations can be saved with different file names, so you can retrieve the input values as well as the results by opening the files that you save. RESFEN automatically opens the input file named "default.rsf" when the program starts. You can make changes to this file and save the changes to a new file name. RESFEN automatically adds the "RSF" extension to the file name that you provide.

| File Edit       | Library     | Calculate |
|-----------------|-------------|-----------|
| <u>0</u> pen    | (           | Ctrl+O    |
| <u>S</u> ave    | (           | Ctrl+S    |
| Save <u>A</u> s |             |           |
| Compare         | То          | Þ         |
| Print Scre      | ee <u>n</u> |           |
| Print File.     | . (         | Ctrl+P    |
| Export as       | : Text      |           |
| <u>E</u> xit    | (           | Ctrl+F4   |

Figure 4-3. The File menu

<u>O</u>pen

Open a previously saved file. The **Open** dialog box only looks for files with the **RESFEN** file extension "rsf".

#### (Ctrl+O)

Four files, which can be used as templates for new input files, are included with the RESFEN program:

- **Default.rsf:** this is the file that opens automatically when the program starts.
- Single.rsf: this file has clear, single-glazed windows on all four orientations.
- **Double.rsf:** this file has clear, double-glazed windows on all four orientations.
- **Triple.rsf:** this file has clear, triple-glazed windows on all four orientations.

| Open               |                     |   |   |          | ? ×                  |
|--------------------|---------------------|---|---|----------|----------------------|
| Look <u>i</u> n:   | 🔁 Resfen31          | • | £ | <b>d</b> | 9-9-<br>9-9-<br>9-9- |
| 🚞 Data             | johnruntest.RSF     |   |   |          |                      |
| 📄 exe              | nfrc900.RSF         |   |   |          |                      |
| 📃 Weathr           | single.RSF          |   |   |          |                      |
| 🔄 🕘 default.rsf    | triple.RSF          |   |   |          |                      |
| doc.RSF            |                     |   |   |          |                      |
| double.RS          | iF                  |   |   |          |                      |
|                    |                     |   |   |          |                      |
| I                  |                     |   |   |          |                      |
| File <u>n</u> ame: |                     |   |   |          | <u>O</u> pen         |
| Files of type:     | RESFEN File (*.RSF) |   | • |          | Cancel               |
|                    | C Open as read-only |   |   |          |                      |

Figure 4-4. The File Open dialog box.

<u>Save</u> Save the current input configuration, with the current file name, for later access. (Ctrl+S)

*Save <u>As</u>* Save the current input configuration with another file name. You can use this feature to develop different modeling scenarios and save them for future use. RESFEN 3.1 supports the Windows 95<sup>TM</sup>, Windows 98<sup>TM</sup>, and WindowsNT<sup>TM</sup> long file-naming convention.

When the RESFEN program starts, it always opens a file called **default.rsf**. If changes are made to this file, you can save it under a different name, using the **Save As** menu choice. If you want to save certain settings so that they always appear when you start the program, you can use the **Save As** menu choice to overwrite the **default.rsf** file.

| Save As                                                      |        |                                                                                                                                      |   |   |          | ?                    | х |
|--------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|----------------------|---|
| Save jn:                                                     | 🔁 Re   | sfen31                                                                                                                               | • | £ | <b>ä</b> | 8-8-<br>8-8-<br>8-8- |   |
| Data<br>exe<br>Weathr<br>Base Case<br>default.rsf<br>doc.RSF | ∍1.RSF | 2       double.RSF         2       johnruntest.RSF         2       nfrc900.RSF         3       single.RSF         2       triple.RSF |   |   |          |                      |   |
| File <u>n</u> ame:<br>Save as tune:                          | Base C | ase 2.RSF                                                                                                                            |   | - |          | <u>S</u> ave         | ] |
| 0010 00 <u>3</u> po.                                         |        | en as read-only                                                                                                                      |   |   | _        | Lancei               | J |

Figure 4-5. Use the Save As feature to save files under different names for future use.

| Print Scree <u>n</u> | Print a copy of the current screen |
|----------------------|------------------------------------|
| <u>P</u> rint File   | Not currently implemented.         |
| Export as Text       | Not currently implemented.         |
| <u>E</u> xit         | Quits the program.                 |
|                      | (Ctrl+F4)                          |

#### 4.4.2. Edit

The **Edit** menu is used to cut, copy, and paste values from one input box to another as well as to copy and paste data from one column to another.



Figure 4-6. The Edit menu

| <i>Cu<u>t</u></i> | Cut selected text to the Windows <sup>TM</sup> clipboard.                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>C</u> opy      | Copy selected text to the Windows <sup>TM</sup> clipboard.                                                                                                                                                                                                                                                                                                                                                                 |
| <u>P</u> aste     | Paste text from the Windows <sup>TM</sup> clipboard over selected text or to current cursor position.                                                                                                                                                                                                                                                                                                                      |
| Copy Column       | Copy values of the current column to the Windows <sup>™</sup> clipboard. Place your cursor on any field in the column, click on the <b>Edit/Copy Column</b> menu choice, and all the column field values will be copied into the computer's memory.                                                                                                                                                                        |
| Paste Column      | Paste column values stored in memory (using <b>Copy Column</b> ) into the current column, which will overwrite all existing field values. Place your cursor on any field in the column, click on the <b>Edit/Paste Column</b> menu choice, and all the values will be pasted into the appropriate fields of the column where the cursor is currently placed. You must have copied a column just before using this feature. |

#### 4.4.3. Library

RESFEN can read a window library made from the WINDOW 4.1 software (see Chapter 1 for details about obtaining this additional software). RESFEN is shipped with a default window library, called **window.w4**, which contains many different generic windows, that you can use to make basic comparisons between different window. This library is based on casement windows, but can be used for sliders and fixed windows because their properties are essentially the same. Whenever possible, when looking at the performance of specific products, look for manufacturers' NFRC-certified data. You can also make custom window libraries if you are familiar with the WINDOW 4.1 program. (See Section 6-1, "Making Custom WINDOW 4.1 Libraries" for detailed instructions about this procedure).

The window library feature of RESFEN is useful for producing a fine-tuned analysis because it provides more detailed information about the window for the RESFEN simulation. However, it is not necessary to use this feature; in order to obtain basic trends in window performance, it is sufficient to enter the window properties by hand in the U-factor and SHGC input boxes.

Select File

Used to select a WINDOW 4.1 Library.



#### Figure 4-7. The Library menu

The **Library** / **Select File** menu choice displays an **Open** dialog box, which shows all WINDOW4.1 Library files that RESFEN can use in the **Window Type** pull-down list **Window4 Lib** choice. The program looks for all files that end in ".W4".

| Open               |                   |   |   |          | ? ×                  |
|--------------------|-------------------|---|---|----------|----------------------|
| Look jn:           | 🔄 Data            | - | £ | <b>ä</b> | 9-0-<br>9-0-<br>9-0- |
| RESFEN.            | w4                |   |   |          |                      |
| Mindow.w           | v4                |   |   |          |                      |
|                    |                   |   |   |          |                      |
|                    |                   |   |   |          |                      |
|                    |                   |   |   |          |                      |
| J                  |                   |   |   |          |                      |
| File <u>n</u> ame: |                   |   |   |          | <u>O</u> pen         |
| Files of type:     | Window Library    |   | • |          | Cancel               |
|                    | Dpen as read-only |   |   | _        |                      |

Figure 4-8. Window Library File Open window.

RESFEN comes with a default WINDOW 4.1 library, called **window.w4**, which the program looks for automatically in the RESFEN\DATA subdirectory. However, libraries with different names can be specified using the **Library/Select File** feature.

*NOTE:* Although you can change directories from this **Open** dialog box, RESFEN will only recognize the ".W4" files in the RESFEN\DATA subdirectory. Therefore, the WINDOW 4.1 files must always be copied into the RESFEN\DATA directory (using Windows<sup>TM</sup> Explorer) in order for RESFEN to access them properly. (See Section 6-1, "Making Custom WINDOW 4.1 Libraries" for detailed instructions about this procedure).

When you open a ".W4" file, you may see a dialog box with the message shown in Figure 4-9, saying that a "window.dat" file does not exist. This file is not required to use the "window.w4" file, it just adds more accuracy to the calculation. So the message is just informative but does not mean you have done something wrong. See Section 6-1, "Making Custom WINDOW 4.1 Libraries" for more information about creating a ".DAT" file.

| Informati | ion 🗙                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------|
| •         | "C:\Program Files\RESFEN 31\Data\window.dat" does not exist. Angular data will not used in simulation |
|           |                                                                                                       |

Figure 4-9. RESFEN will display a message when loading a ".W4" file if the associated ".DAT" file does not exist. The ".DAT" file is not necessary to use the ".W4" file. See Section 6-1, "Making Custom WINDOW 4.1 Libraries" for more information.

#### 4.4.4. Calculate

The calculate menu is used to specify the type of calculation to perform, either:

- Whole House: The program does a DOE2 simulation for the whole house and presents annual heating and cooling space conditioning energy consumption, including gains and losses from all the envelope components of the building, including windows, walls, roofs, and foundations.
- Whole House + 4 Orientations: The program does several simulations, one for the whole house and one for each of the four orientations; results are displayed for the whole house and the windows on each orientation. This option performs multiple DOE2 simulations and therefore may take several minutes to run, depending on the speed and

memory of your computer. Because calculation time may be long, a message will appear before the calculation starts asking if you are sure you want to continue.



Figure 4-10. The Calculate menu

#### 4.4.5. View

The **View** menu displays the same choices as the tabs in the **Results** section of the main screen. When a menu choice is selected, the appropriate **Results** tab comes to the foreground. These tabs can also be accessed using the mouse; place your cursor on the desired tab and click the left mouse button. The **Results** section of this manual describes each of the output options.



Figure 4-11. The View menu

| Whole House      | Annual energy results for the whole house, broken down into heating and cooling values. See Section 4.7, "Results," for details about the values in this display. (F6) |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Window           |                                                                                                                                                                        |
| Annual Energy    | Annual energy output data broken down by the windows on each orientation. See Section 4.7, "Results," for details about the values in this display. <b>(F7)</b>        |
| Window           |                                                                                                                                                                        |
| Annual Cost      | Annual energy cost output data. See Section 4.7, "Results," for details about the values in this display. (F8)                                                         |
| Window           |                                                                                                                                                                        |
| Peak Demand      | Peak demand output data. See Section 4.7, "Results," for details about the values in this display. (F9)                                                                |
| Multiple Results | Currently not implemented.                                                                                                                                             |

#### 4.4.6. Help

*About* Information about RESFEN, including the version number of the program.

#### 4.5. House Data

The left side of the main screen contains the **House Data** section, a series of pull-down lists that allow you to specify geographic location, house type, foundation type, HVAC type, floor area, and utility costs.

Figure 4-12. The House Data portion of the main screen

Location A pull-down list of fifty-two geographic locations (see Section 6.1, "Locations Available for Analysis with RESFEN 3.1"). The location you specify is used by RESFEN to automatically specify Typical Meteorological Year (TMY2) weather data used for the DOE-2 simulation. The location selection determines the default values for: Foundation Type **Electricity Cost** Gas Cost The default utility data for each location is from the National Association of Regulatory Utility Commissioners (NARUC) -- "Residential Gas Bills, Summer 1995", published Jan. 18, 1996; "Residential Electric Bills, Winter 1994-95", published May 31, 1996. House Type A pull-down list for specifying whether the building is one story or two story, new or existing construction, and what the predominant construction type is - either frame or masonry. For a two-story building case, the program assumes an equal floor area on each floor, based on the total floor area that you specify in the Floor Area input box. 1-Story New Frame 1-Story New Masonry 1-Story Existing Frame 1-Story Existing Masonry 2-Story New Frame 2-Story New Masonry 2-Story Existing Frame

2-Story Existing Masonry

**Default:** 1-Story New Frame

| Foundation Type      | A pull-down list for specifying the predominant type of foundation construction. The values<br>in the list are only the foundation types commonly found in the location you specify, so the<br>list will not always contain all three choices. (see Section 6.2, "RESFEN Modeling<br>Assumptions" for a complete listing of the Foundation Type assumptions). |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>Basement</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
|                      | ■ Slab-on-Grade                                                                                                                                                                                                                                                                                                                                               |
|                      | <ul> <li>Crawlspace</li> </ul>                                                                                                                                                                                                                                                                                                                                |
|                      | <b>Default:</b> dependent on the location selected. (See Section 6.2, "RESFEN Modeling Assumptions").                                                                                                                                                                                                                                                         |
| HVAC System          |                                                                                                                                                                                                                                                                                                                                                               |
| Type                 | A pull-down list for specifying the house's heating and cooling system. The efficiencies are different for New and Existing Construction (see Section 6.2, "RESFEN Modeling Assumptions" for details).                                                                                                                                                        |
|                      | Gas Furnace / AC                                                                                                                                                                                                                                                                                                                                              |
|                      | <ul> <li>Electric Heat Pump</li> </ul>                                                                                                                                                                                                                                                                                                                        |
| Total Area           |                                                                                                                                                                                                                                                                                                                                                               |
| Floor (ft2)          | The total floor area of the house.<br><b>Units:</b> square feet (ft <sup>2</sup> )<br><b>Legal values:</b> 1,000 to 4,000 square feet                                                                                                                                                                                                                         |
| Total Area<br>Window |                                                                                                                                                                                                                                                                                                                                                               |
| (ft2 or %)           | <i>Feedback only</i> . This box displays the total window area of all the building orientations, including skylights; this total is calculated automatically by the program.<br><b>Units:</b> square feet (ft <sup>2</sup> ) or percentage of floor area (%), depending on the settings in the <b>Options</b> menu choice for <b>Window Area</b> .            |
| Electric Cost        | The average cost of electricity for the location. This number is multiplied by the energy consumption to calculate total cost.                                                                                                                                                                                                                                |
|                      | Legal Values: Vary from \$0.040/kWh to \$0.150/kWh in increments of \$0.002/kWh.                                                                                                                                                                                                                                                                              |
|                      | <b>Default:</b> The default value is based on the location selected. The default value can be changed if it is not appropriate for the situation being modeled.                                                                                                                                                                                               |
| Gas Cost             | The average cost of gas for the location. This number is multiplied by the energy consumption to calculate total cost.                                                                                                                                                                                                                                        |
|                      | Legal Values: Vary from \$0.30/therm to \$1.00/therm in increments of \$0.05/therm.                                                                                                                                                                                                                                                                           |
| Description          | An optional field that can be used to record information about the case being modeled. <b>Legal Values:</b> Any character or number, up to 50 characters.                                                                                                                                                                                                     |

#### 4.6. Window Data

The upper right-hand section of the screen is used to input information about the windows in the house for each of the four orientations, **North, East, South** and **West**, as well as **Skylights**, as shown in the figure below. Use your mouse, the **Tab** key or the **arrow** keys to move between the fields.

| Window Data          |             |             |             |             |             |  |
|----------------------|-------------|-------------|-------------|-------------|-------------|--|
|                      | North       | East        | South       | West        | Skylight    |  |
| Window Type          | User spec 📮 | User spec 📮 | User spec 🖕 | User spec 📮 | User spec 📮 |  |
| Window (ft2)         | 57.75       | 57.75       | 57.75       | 57.75       | 0.00        |  |
| U-factor             | 0.32        | 0.32        | 0.32        | 0.32        | 0.32        |  |
| SHGC                 | 0.52        | 0.52        | 0.52        | 0.52        | 0.52        |  |
| Cfm/ft2              | 0.30        | 0.30        | 0.30        | 0.30        | 0.30        |  |
| Solar Gain Reduction | Typical 📮   | Typical 📮   | Typical 📮   | Typical 📮   | None        |  |

Figure 4-13. The Window Data portion of the screen

When modeling the windows in your house, group the windows on an orientation together to determine the total area by orientation. If your windows do not face the exact cardinal orientations (north, south, east and west), use the closest orientations. The program has the capability of varying fenestration system parameters for each orientation. The NFRC total product properties, which include the glazing and frame, should be used for the area, U-factor, solar heat gain coefficient (SHGC), and infiltration (CFM per unit area). The **Area** parameter represents the total window area on any one facade in square feet or as a percentage of the total floor area (see detailed **Area** explanation below).

Skylights are modeled as vertical glazing in the roof of the building, with solar heat gain reduced by 50% to account for skylight-well effects. This correction factor is a placeholder; research is ongoing to improve the skylight well solar correction.

Because it is necessary to group windows by orientation, use the window properties for the window type that predominates on an orientation if the building has different types of windows on the same orientation. Input the total window area. For example, if all the windows on the west orientation are wood casements except for one aluminum frame picture window or one patio door with an area significantly less than the sum of the wood windows, model the west-facing windows as all wood casements. You could also obtain the properties for each window type on a given orientation and area-weight these values based on the square footage of each window type.

# *Window Type* There are two choices for **Window Type**, which are accessed by clicking on the **Window Type** field for each orientation:

| -Window Data         |             |           |             |             |             |  |
|----------------------|-------------|-----------|-------------|-------------|-------------|--|
|                      | North       | East      | South       | West        | Skylight    |  |
| Window Type          | User spec   | 2 🗸       | User spec 📮 | User spec 📮 | User spec 📮 |  |
| Window (ft2)         | WINDOW4 LID |           | 75.00       | 75.00       | 0.00        |  |
| U-factor             | 0.49        | 0.49      | 0.49        | 0.49        | 0.65        |  |
| SHGC                 | 0.56        | 0.56      | 0.56        | 0.56        | 0.50        |  |
| Cfm/ft2              | 0.30        | 0.30      | 0.30        | 0.30        | 0.30        |  |
| Solar Gain Reduction | Typical 📮   | Typical 📮 | Typical 📮   | Typical 📮   | None        |  |

Figure 4-14. Two Window Type choices, User specified or Window4 Lib.

 User spec: allows you to enter the U-factor and SHGC window properties for each orientation. This choice can be used when you are comparing windows to get general trends about window technologies, but are not concerned about a detailed analysis for a particluar window. Window4 Lib: allows you to pick a window from a window library created by the WINDOW4.1 program (see the WINDOW4.1 User Manual); the U-factor and SHGC values from that library are automatically used by RESFEN. This choice will produce more accurate analysis results. Section 6-5, "Making Custom WINDOW 4.1 Libraries" contains detailed instructions about how to make this library in WINDOW 4.1. This choice displays the WINDOW4.1 Library (shown in Figure 4-14) that is specified using the Library/Select menu option. A default window library, window.w4, is distributed with the program. The values contained in this library are for casement windows, but can be used for sliders and fixed windows because their properties are essentially the same. In this example, the window.w4 library entries are displayed.

 Figure 4-15. If Window Type = Window4 Lib, RESFEN displays a list of the windows in the WINDOW4.1 library, and a window

 Window Data

 North
 East
 South
 West
 Skylight

|                              |            |                  | North    |        | Eas     | st     | South       | We        | est  | Skylight  |          |   |
|------------------------------|------------|------------------|----------|--------|---------|--------|-------------|-----------|------|-----------|----------|---|
|                              |            | Window Type      | User spe | 2      |         |        | User spec   | 🖡 Usersp  | ec Џ | User spec | <b>.</b> |   |
|                              |            | Window (ft2)     | Windowa  | Lib    |         |        | 75.00       | 75.00     |      | 0.00      | 1        |   |
|                              |            | U-factor         | 0.49     |        | 0.49    |        | 0.49        | 0.49      | —i   | 0.65      | -        |   |
|                              |            | SHGC             | 0.56     |        | 0.56    |        | 0.56        | 0.56      | —i   | 0.50      | -        |   |
|                              |            | Cfm/ft2          | 0.30     |        | 0.30    |        | 0.30        | 0.30      | — i  | 0.30      | -        |   |
|                              | Solar      | Gain Reduction   | Typical  | Ξ.     | Typical |        | Typical .   | J Typical | i    | None      | -        |   |
|                              |            |                  | ,<br>    |        |         |        |             |           |      |           |          |   |
|                              |            |                  |          |        |         |        |             |           |      |           |          |   |
|                              |            |                  |          |        |         |        |             |           |      |           |          |   |
|                              | 🔡 V        | ¥indow Library   | ,        |        |         |        |             |           |      |           | _        |   |
|                              | ID         | Name             | Тур      | Widt   | h       | Height | U Facto     | or SC     | :    | SHGC      | VT       |   |
|                              | 101        | AL 1 Clear       | 1        | 2.00   |         | 4.00   | 1.25        | 0.        | 89   | 0.76      | 0.74     |   |
| 7                            | 102        | AL 1 Bronze      | 1        | 2.00   | )       | 4.00   | 1.25        | 0.        | 76   | 0.65      | 0.56     |   |
|                              | 111        | AL2 Clear        | 1        | 2.00   | )       | 4.00   | 0.79        | 0.        | 79   | 0.68      | 0.67     |   |
|                              | 112        | AL 2 Bronze      | 1        | 2.00   | )       | 4.00   | 0.79        | 0.        | 66   | 0.57      | 0.50     |   |
|                              | 113        | AL 2 SS Tint     | 1        | 2.00   | )       | 4.00   | 0.79        | 0.        | 55   | 0.46      | 0.57     |   |
|                              | 121        | AL 2 PY Low-E    | 1        | 2.00   | )       | 4.00   | 0.64        | 0.        | 74   | 0.64      | 0.62     |   |
|                              | 131        | AL 2 SP Low-E    | 1        | 2.00   | )       | 4.00   | 0.61        | 0.        | 62   | 0.49      | 0.62     | - |
|                              |            |                  |          |        |         |        |             |           |      |           |          |   |
|                              | 101        | AL 1 Clear       | 1        | 2.00   | )       | 4.00   | 1.25        | 0.        | 89   | 0.76      | 0.74     |   |
|                              |            |                  |          |        |         |        |             |           |      |           |          |   |
| /                            | <u>Fil</u> | <u>e Name</u> C: | \Program | n File | s\RESF  | EN 31\ | \Data\RESFI | EN.w4     |      |           |          |   |
| Highlight the desired entry  |            |                  |          |        |         |        |             |           |      |           |          |   |
| from the WINDOW 4.1 library, |            |                  |          |        |         |        |             |           | Cano |           | OK       |   |
| and click on the OK button   |            |                  |          |        |         |        |             |           | Cant |           | UK       |   |
|                              |            |                  |          |        |         |        |             |           |      |           |          |   |

The selected entry is displayed in the **Window Type** input field, and the values from the library are automatically used in the **U-factor** and **SHGC** fields. Remember to change the **Cfm** field if necessary because it is not determined by the WINDOW 4.1 library.

|                      |           | 1         |   |           |   |           |   |             |
|----------------------|-----------|-----------|---|-----------|---|-----------|---|-------------|
| Window Data          |           |           |   |           | _ |           | _ |             |
|                      | North //  | East      | _ | South     |   | West      |   | Skylight    |
| Window Type          | W101      | User spec | Ŧ | User spec | Ŧ | User spec | - | User spec 📮 |
| Window (ft2)         | 75.00     | 75.00     |   | 75.00     |   | 75.00     |   | 0.00        |
| U-factor             | 1.25      | 0.49      |   | 0.49      |   | 0.49      |   | 0.65        |
| SHGC                 | 0.76      | 0.56      |   | 0.56      |   | 0.56      |   | 0.50        |
| Cfm/ft2              | 0.30      | 0.30      |   | 0.30      |   | 0.30      |   | 0.30        |
| Solar Gain Reduction | Typical 📮 | Typical   | Ţ | Typical   | ÷ | Typical   | Ţ | None 📮      |

can be selected.

|                         | A record from the <b>Window Library</b> can be selected by either double clicking on it with the mouse or highlighting it and clicking the <b>OK</b> button. The <b>up</b> and <b>down arrow</b> keys can also be used to move between records in the library.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | See Section 4.4.3, "Library" for more information on using the <b>Library/Select</b> menu to select another window library.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Area                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (% Flr Area<br>or ft2)  | Total window area given as either percent of total house floor area or total square feet for<br>each of four orientations. For example, if you want to model four windows that are 3' x 4' on<br>the south orientation, the total window area for that orientation is 36 square feet, which is<br>2.3% for a house whose floor area is 1,560 ft <sup>2</sup> (36/1540).<br><b>Default:</b> 3.75 % of floor area (in <b>default.rsf</b> file).<br><b>Units:</b> square feet (ft2) or % of floor area (% Flr Area), depending on the settings in the<br><b>Options</b> menu.<br><b>Legal values:</b> 0% to 12% per orientation; 0 to 480 square feet (4,000 square feet maximum<br>floor area * 0.12 = 480); the sum of the percentages for the four orientations cannot exceed |
|                         | 48% of the floor area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| U-Factor                | The U-factor of the total fenestration product at standard NFRC winter conditions, which includes the frame as well as the glazing, from a source such as the window NFRC label, manufacturer's literature, or a WINDOW 4.1 analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | <b>Units:</b> Btu/hr-ft <sup>2</sup> -°F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | Legal values: between 0.05 and 1.40 Btu/hr-ft <sup>2</sup> -°F at standard NFRC winter conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SHGC                    | The Solar Heat Gain Coefficient of the total fenestration product, which includes the frame as well as the glazing, from a source such as the window NFRC label, manufacturer's literature, or a WINDOW 4.1 analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Legal values: between 0.05 and 0.90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CFM/Area                | The infiltration of the total fenestration product (from ASTM E283 tests or equivalent), which includes the frame as well as the glazing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | Units: CFM/ft <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | <b>Legal values:</b> between 0.05 and 2.0 $CFM/ft^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solar Gain<br>Reduction | The type of solar gain reduction for the building, from the following list:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Keuuchon                | <ul> <li>Typical: A statistically average solar gain reduction which includes some interior shade, overhangs, exterior obstructions and screens. See Section 6.2, "RESFEN Modeling Assumptions" for specific details.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | • None: No interior shading, exterior overhangs, or obstructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | <ul> <li>Interior: Interior drapes. See Section 6.2, "RESFEN Modeling Assumptions" for<br/>specific details.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | • <b>Overhang:</b> two-foot exterior overhang at roof line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | • <b>Obstruction:</b> Used to model large obstructions, such as neighboring houses or other buildings. See Section 6.2, "RESFEN Modeling Assumptions" for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | • Int+Ovh: A combination of the Interior and Overhang options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | • <b>Ovh</b> + <b>Obs:</b> A combination of the Overhang and Obstruction options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | • Int + Obs: A combination of the Interior and Obstruction options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | • All: A combination of the Interior, Overhang, and Obstruction options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### 4.7. Results

The lower portion of the screen shows the results of the calculations, in the **Results** section. There are four tabs in this section, which display the following results:

- Whole House: the total annual energy consumption for the building, including conduction gains and losses from windows, walls, roof, and foundations.
- Window Annual Energy: the portion of the annual energy consumption attributed to the windows, broken down by four window orientations.
- Window Energy Cost: the portion of the annual energy cost attributed to the windows, broken down by four window orientations.
- Window Peak Energy: the portion of the peak energy consumption attributed to the windows, broken down by four window orientations.

| 🖀 RESFEN - single.RSF      |                      |                |              |      |                 |             | _ 🗆 🗙       |
|----------------------------|----------------------|----------------|--------------|------|-----------------|-------------|-------------|
| File Edit Library Calculat | e ⊻iew Options H     | elp            |              |      |                 |             |             |
| BB <b>5 5</b>              |                      |                |              |      |                 |             |             |
| House Data                 | Window Data          |                |              |      |                 |             |             |
| Location:                  |                      | North          | East         |      | South           | West        | Skylight    |
| AZ Phoenix 💌               | Window Type          | User spec 🕌    | User spec    | -    | Userspec 🚽      | User spec   | User spec 🕌 |
| House Type                 | Window (ft2)         | 57.82          | 57.82        |      | 57.82           | 57.82       | 0.00        |
| 1-Story New Frame          | U-factor             | 1.31           | 1.31         |      | 1.31            | 1.31        | 1.31        |
| Example in Ture            | SHGC                 | 0.74           | 0.74         |      | 0.74            | 0.74        | 0.74        |
| Slab-on-Grade              | Cfm/ft2              | 0.65           | 0.65         |      | 0.65            | 0.65        | 0.00        |
|                            | Solar Gain Reduction | Typical 🧵      | Typical      | ٦ť   | Typical 🧻       | Typical     | None        |
| HVAC System Type           |                      |                |              |      |                 | 1           |             |
|                            | Results              |                |              |      |                 |             | (           |
| Total Area                 | Whole House Win      | idow Annual En | ergy   Windo | ow E | Energy Cost 🛛 🗸 | Window Peak | Energy      |
| Floor (ft2) 1540           |                      |                |              |      |                 |             |             |
| Window (ft2) 231           | Energy Tot           | als            |              |      | Total Cost      |             |             |
| Elec Cost: Gas Cost:       | Cooling 5746         | (kWh)          | Cooling (    | (\$) | 344.79          |             |             |
| \$/kWh \$/Therm            | Heating 7.96         | (MBtu)         | Heating (    | (\$) | 55.73           |             |             |
| 0.060 💌 0.70 💌             | - j<br>Epergu per    | 82             | Total        | (\$) | ,<br> 400.52    |             |             |
| Description                | Cooling 2.72         | (1) (6/02)     |              | , I  | 1.00.02         |             |             |
| Enter a description here   | Cooling   3.73       | (KW1/1/2)      |              |      |                 |             |             |
|                            | Heating 5.17         | (kBtu/ft2)     |              |      |                 |             |             |
|                            |                      |                |              |      |                 |             |             |
|                            |                      |                |              |      |                 |             |             |

Figure 4-16. The Results section contains four different sets of results.

When you have input all the appropriate values into the **House Data** and **Window Data** sections, use the **Calculate** menu or press the **Whole House Calculation or Whole House + 4 Orientations** toolbar buttons to start the simulations. There are two different calculation types:

• Whole House: this option calculates the energy consumption for the entire house. It includes energy use attributable to the building windows, walls, roof, and foundation (including infiltration). It does not include lighting or appliance or hot water energy consumption.

• Whole House + 4 orientations: this option calculates the energy consumption of the entire house and also the energy attributed to only the windows, for each orientation. Because separate simulations are run for the whole house and each window orientation, this calculation can take some time, depending on the speed of your computer.

The window results by orientation are all relative to a standard insulated windowless wall. Positive values mean that the window uses *more* energy than an insulated wall with no windows; negative values mean that the window uses *less* energy than an insulated wall with no windows. All cooling results will be positive, but heating energy use can be either positive or negative. If the results are positive, the smallest value will be the most energy-efficient window configuration. If the results are negative, the largest negative value will be the most energy-efficient window configuration. When comparing positive and negative results, the window configurations with negative results will be the most energy efficient. It is possible for a window configuration to use less heating energy than an insulated wall (and thus have a negative result) because the solar heat gain from the window provides heat to the space and reduces the heating requirements of the building.

The results are reset to 0 whenever any changes are made to the input values, so you must recalculate the results.

#### 4.7.1. Whole House

The **Whole House** results show the total annual energy consumption for the building, broken into the following results:

- Energy Totals
- Energy per ft<sup>2</sup>
- Total Cost

| Results                                                                |            |         |        |            |   |  |   |  |  |
|------------------------------------------------------------------------|------------|---------|--------|------------|---|--|---|--|--|
| Whole House Window Annual Energy Window Energy Cost Window Peak Energy |            |         |        |            |   |  |   |  |  |
|                                                                        |            |         |        | · ·        |   |  |   |  |  |
| Energy Totals                                                          |            |         |        | Total Cost |   |  |   |  |  |
| Cooling 5904                                                           | (kWh)      | Cooling | (\$) 6 | 96.66      | - |  | F |  |  |
| Heating 6.29                                                           | (MBtu)     | Heating | (\$)   | 44.04      | - |  | - |  |  |
| Energy per ft2                                                         |            | Total   | (\$) 7 | 40.69      |   |  |   |  |  |
| Cooling 2.95                                                           | (kWh/ft2)  |         |        |            |   |  |   |  |  |
| Heating 3.15                                                           | (kBtu/ft2) |         |        |            |   |  |   |  |  |
| ~                                                                      |            |         |        |            |   |  |   |  |  |

Figure 4-17. The Results tab for the Whole House calculation.

*Energy Totals* Total annual energy consumption for the entire house, broken into the following components:

- **Cooling:** The cooling energy consumption for the entire house. **Units:** kWh/year.
- **Heating:** The heating energy consumption for the entire house. **Units:** MBtu/year

*Energy per ft2* The annual energy consumption for the entire house divided by the square footage of the house, broken into the following components:

Cooling: The annual cooling energy consumption for the entire house per square foot of floor area.
 Units: kWh/ft<sup>2</sup>-year

**Heating:** The annual heating energy consumption for the entire house per square foot of floor area. **Units:** kBtu/ft<sup>2</sup>-year

Total Cost The cost of the annual energy consumption for the entire house, which is the energy totals multiplied by electricity and gas prices, broken into the following components:

- **Cooling:** The cost of the annual cooling energy consumption for the entire house. This value should equal the Cooling Energy Total multiplied by the Electricity cost. Units: \$/year
- **Heating:** The cost of the annual heating energy consumption for the entire house. This value is the Heating Energy Total multiplied by either the Gas cost for gas furnaces or the Electricity cost for heat pumps. Units: \$/year
- Total: The total cost of the annual energy consumption for the entire house. This value is the sum of the heating and cooling costs. Units: \$/year

#### 4.7.2. Window Annual Energy

The **Window Annual Energy** results show the portion of the annual energy consumption of a building that can be attributed to the window being modeled. Positive values mean that the window adds that amount to the energy consumption of the house on an annual basis. Negative values can occur for heating, meaning that the window provides heating in the form of useful solar gain, which more than compensates for heat lost, and helps to lower the house's heating energy consumption. The first four columns represent the four window orientations (north, east, south and west). The fifth column represents skylights.

| Whole House Window Annual Energy Window Energy Cost Window Peak Energy |       |      |        |       |          |  |  |  |
|------------------------------------------------------------------------|-------|------|--------|-------|----------|--|--|--|
|                                                                        | North | East | South  | West  | Skylight |  |  |  |
| Cooling(kWh/ft2)                                                       | 4.70  | 9.74 | 8.27   | 10.73 | 0.00     |  |  |  |
| Heating(kBtu/ft2) 12.13                                                |       | 2.27 | -14.08 | 6.94  | 0.00     |  |  |  |
| Cooling(kWh)                                                           | 352   | 731  | 620    | 804   | 0        |  |  |  |
| Heating(MBtu                                                           | 0.91  | 0.17 | -1.06  | 0.52  | 0.00     |  |  |  |
|                                                                        |       |      |        |       |          |  |  |  |
|                                                                        |       |      |        |       | Comba    |  |  |  |
|                                                                        |       |      |        |       | Graph    |  |  |  |

Figure 4-18. The Results tab for Window Annual Energy.

| Cooling/ft <sup>2</sup>        | Cooling energy per unit window area.<br><b>Units</b> : kWh/ft <sup>2</sup> -year.                                                                          |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Heating/ft</i> <sup>2</sup> | Heating energy per unit window area.<br><b>Units:</b> kBtu/ft <sup>2</sup> -year for <b>Gas Furnace</b> or kWh/ft <sup>2</sup> -year for <b>HeatPump</b> . |
| Cooling Energy                 | Cooling energy attributed to windows.<br><b>Units:</b> kWh/year                                                                                            |
| Heating Energy                 | Heating energy attributed to windows.<br>Units: kBtu/year for Gas Furnace, or kWh/year for HeatPump.                                                       |

#### 4.7.3. Window Annual Cost

The **Window Annual Cost** result shows the difference between the annual energy cost of a building with the window being modeled and with a windowless wall. The energy use values in the **Window Annual Energy** result are converted to costs using the input values for electricity and gas. Positive values mean that the window uses *more* energy than a standard insulated wall with no windows; negative values for heating mean that the window uses *less* energy than a standard insulated wall with no windows. Negative values represent economic savings that will offset other energy-consuming features in the house, thus reducing the total home heating bill.

| Pasulta         |                                                                        |       |     |       |       |          |  |
|-----------------|------------------------------------------------------------------------|-------|-----|-------|-------|----------|--|
| nesuits         |                                                                        |       |     |       |       |          |  |
| Whole House Wir | Whole House Window Annual Energy Window Energy Cost Window Peak Energy |       |     |       |       |          |  |
| lí              |                                                                        |       |     |       |       |          |  |
|                 | North                                                                  | E     | ast | South | West  | Skylight |  |
| Cooling(\$/ft2) | 0.33                                                                   | 0.82  |     | 0.72  | 0.91  | 0.00     |  |
| Heating(\$/ft2) | 0.14                                                                   | 0.12  |     | -0.02 | 0.16  | 0.00     |  |
| Cooling(\$)     | 19.22                                                                  | 47.60 |     | 41.56 | 52.57 | 0.00     |  |
| Heating(\$)     | 8.06                                                                   | 6.85  |     | -1.28 | 9.44  | 0.00     |  |
| Total(\$)       | 27.28                                                                  | 54.45 |     | 40.28 | 62.01 | 0.00     |  |
|                 |                                                                        |       |     |       |       | Graphs   |  |

Figure 4-19. The Results tab for Window Energy Cost.

| Cooling $(\$/ft^2)$ | Cooling energy per unit window area. <b>Units</b> : IP: \$/ft <sup>2</sup> -year.    |
|---------------------|--------------------------------------------------------------------------------------|
| Heat $(\$/ft^2)$    | Heating energy per unit window area.<br><b>Units</b> : IP: \$/ft <sup>2</sup> -year. |
| Cooling (\$)        | Cooling energy attributed to windows. <b>Units</b> : \$/year.                        |
| Heating (\$)        | Heating energy attributed to windows. <b>Units</b> : \$/year.                        |
| Total Energy (\$)   | Sum of the Cooling and Heating Energy Cost. <b>Units</b> : \$/year.                  |

#### 4.7.4. Window Peak Demand

The **Window Peak Demand** result shows the difference between the peak energy demand of a building with the window being modeled and with a windowless wall. Positive values mean that the window has a higher peak demand than a standard insulated wall with no windows; negative values mean that the window has a lower peak demand than a standard insulated wall with no windows.

Peak heating and cooling loads determine the required size of the furnace and air conditioner needed to meet maximum thermal loads. Lower peak demand means smaller, less expensive equipment. Peak heating conditions typically occur on cold winter nights, and peak cooling conditions typically occur on hot, sunny summer afternoons. Make sure that the equipment sizing calculations done by your HVAC contractor take into account the benefits of high-performance windows.

| Whole House   Window Annual Energy   Window Energy Cost   Window Peak Energy |        |       |       |       |          |  |  |
|------------------------------------------------------------------------------|--------|-------|-------|-------|----------|--|--|
|                                                                              | North  | East  | South | West  | Skylight |  |  |
| Cooling(W/ft2)                                                               | 4.57   | 3.06  | 4.11  | 7.59  | 0.00     |  |  |
| Heating(Btu/h-ft2)                                                           | 108.39 | 38.52 | 38.09 | 38.63 | 0.00     |  |  |
| Cooling(kW)                                                                  | 0.26   | 0.18  | 0.24  | 0.44  | 0.00     |  |  |
| Heating(MBtu)                                                                | 6.27   | 2.23  | 2.20  | 2.23  | 0.00     |  |  |
|                                                                              |        |       |       |       |          |  |  |
|                                                                              |        |       |       |       | Graphs   |  |  |

Figure 4-20. The Results tab for Window Peak Energy.

| Cool Peak/   |                                                                                              |
|--------------|----------------------------------------------------------------------------------------------|
| Unit Area    | Cooling peak per unit window area.<br>Units: W/ft <sup>2</sup> .                             |
| Heat Peak/   |                                                                                              |
| Unit Area    | Heating peak per unit window area.<br><b>Units</b> : Btu/ft <sup>2</sup> or kW for HeatPump. |
| Cooling Peak | Cooling peak attributed to windows. <b>Units</b> : kW.                                       |
| Heating Peak | Heating peak attributed to windows.<br><b>Units</b> : kBtu/hr or kW for HeatPump.            |

# 5. EXAMPLES

The following examples show how RESFEN can be used to help select energy efficient-windows for a home. All of the buildings used in these examples are single story and have a floor area of  $2,000 \text{ ft}^2$ . The window properties listed are for the total window product, which includes the glazing and frame. These properties can be found on a standard NFRC label.

When analyzing the windows for your house, you can either use the window library provided with RESFEN (see Section 4.8, "Window Data") or get specific values for your windows. Using the library provided with the program is a good first strategy for looking at energy consumption differences among generic window technologies. However, if you want accurate results for your specific windows, you can obtain their properties from a variety of sources (see Section 6.6, "Resources"), including the NFRC label on the window, the NFRC *Certified Products Directory*, or manufacturers' literature. The following examples are based on the generic window library that comes with RESFEN.

The window properties you need for a RESFEN analysis – U-factor, SHGC, and infiltration  $(CFM/ft^2)$  – depend on the window's frame, type of operation (casement, slider, or fixed), and the glazing. Different types of operation can have significantly different thermal properties because of their different frame area to window area ratios. For example, casement and slider windows of the same size have fairly similar ratios of frame to window, in comparison to a fixed window, which has a much smaller frame area and larger window area than the same size casement window. Because in RESFEN you must aggregate the windows on each orientation into one set of properties, you will have to decide what properties to use if you have different window types that occur on the same orientation. One option is to decide which window type is dominant and use the properties for that type of window. Another option is to obtain the window properties for each different window type, and then calculate an area-weighted value for each of the properties based on the square footage of each window type. For example, to calculate an area-weighted Ufactor for the case where 25% of the windows on the north side of the building were wood, and the other 75% were aluminum, you could multiply the U-factor for the wood window by 0.25, and the U-factor for the aluminum window by 0.75, and add the results together. This result would be an area-weighted U-factor. In determining the values to use, keep in mind that differences of 0.04 in U-factor values and 0.05 in SHGC values are considered insignificant when modeling energy-efficiency impacts on your building.

A RESFEN file for Case 1 of each example is provided on the installation CD. These files are named **Example1-1.rsf**, **Example2-1.rsf**, and **Example3-1.rsf**.

# 5.1. Example 1: Window Selection in a Heating Climate, Madison WI

Four possible window choices are compared for a typical existing house in Madison, Wisconsin. Madison's climate is dominated by heating in the winter and some cooling is required in the summer. The house, described in Figure 5-1 and on the RESFEN screen in Figure 5-3, is a new construction wood-frame home with a basement. Heating is supplied by a gas furnace and cooling by a central air conditioner. Gas utility cost for heating is \$0.60/therm, and electric utility cost for cooling is \$0.084/kWh.

| Input Description | Input Value            |
|-------------------|------------------------|
| Location          | WI Madison             |
| Electricity Cost  | \$0.084/kWh            |
| Gas Cost          | \$0.60/therm           |
| House Type        | 1-Story Existing Frame |
| Foundation Type   | Basement               |
| HVAC System Type  | Gas Furnace / AC       |

Figure 5-1. Example 1 House Data Input Values

The four windows to be analyzed are listed in Figure 5-2. All the windows selected have relatively high visible transmittance (TVIS), and are 2'x4' casements. (2'x4' casements are used to represent typical operable windows in residential buildings). Although the air leakage varies somewhat by frame type, it has a very small effect on heating and cooling.

| Wine  | low Description                                       |                 |      |      | Air Leakage  |
|-------|-------------------------------------------------------|-----------------|------|------|--------------|
| (incl | iding Window Library Number)                          | <b>U-Factor</b> | SHGC | TVIS | $(cfm/ft^2)$ |
| А.    | Double-glazed clear (# 311)                           | 0.49            | 0.56 | 0.58 | 0.56         |
|       | 1/8" clear, <sup>1</sup> /2" air, 1/8" clear          |                 |      |      |              |
|       | wood or vinyl frame                                   |                 |      |      |              |
| В.    | Double-glazed low-E (#321)                            | 0.36            | 0.52 | 0.53 | 0.15         |
|       | 1/8" clear, <sup>1</sup> /2" argon, 1/8" low-E (0.20) |                 |      |      |              |
|       | wood or vinyl frame                                   |                 |      |      |              |
| C.    | Double-glazed spectrally selective low-E (#341)       | 0.32            | 0.30 | 0.50 | 0.15         |
|       | 1/8" low-E (0.04), 1/2" argon, 1/8" clear             |                 |      |      |              |
|       | wood or vinyl frame                                   |                 |      |      |              |
| D.    | Triple-glazed low-E superwindow (#451)                | 0.18            | 0.39 | 0.49 | 0.08         |
|       | 1/8" low-E (0.08), 1/2" argon, 1/8" clear             |                 |      |      |              |
|       | 1/2" argon, 1/8" low-E (0.08)                         |                 |      |      |              |
|       | insulated vinyl frame                                 |                 |      |      |              |

Figure 5-2. Example 1 Window Input Values

Window A represents what is currently being used in the house. It is the typical clear, double-glazed unit most commonly used in cold climates. Window B has a high-transmission low-E coating, and Window C has a spectrally selective low-E coating (a low SHGC combined with a relatively high visible transmittance). Window B is designed to reduce winter heat loss (low U-factor) and provide winter solar heat gain (high SHGC). Window C also reduces winter heat loss (low U-factor), but it reduces solar heat gain as well (low SHGC), an asset in the summer and a detriment in the winter. Window D, with triple glazing and two low-E coatings, is representative of the most efficient window on the market today with respect to winter heat loss (very low U-factor). In addition, because it has three glazing layers and two low-E coatings, the window has a solar heat gain coefficient that minimizes summer cooling.

The windows are distributed as shown on the RESFEN input screen in Figure 5-3, based on a real building design: 3% facing north, 2% facing east and west, and 5% facing south. The building is modeled with "typical" solar gain reduction, which represents a combination of some interior shades, overhangs, and an exterior obstruction (see Section 6.2, "RESFEN Modeling Assumptions" for details). RESFEN runs were made for each of the window types; the energy cost results are presented in the summary table in Figure 5-4.

| 🖪 RESFEN - Example1-1.RSF 📃 🗖 🗙                       |                      |               |              |               |               |           |  |  |
|-------------------------------------------------------|----------------------|---------------|--------------|---------------|---------------|-----------|--|--|
| File Edit Library Calculate <u>V</u> iew Options Help |                      |               |              |               |               |           |  |  |
|                                                       |                      |               |              |               |               |           |  |  |
| House Data Window Data                                |                      |               |              |               |               |           |  |  |
| Location:                                             |                      | North         | East         | South         | West          | Skylight  |  |  |
| VM Madison 🔹                                          | Window Type          | w311 🖕        | W311 📮       | W311 🗸        | W311          | User spec |  |  |
| House Type                                            | Window (% Flr Area)  | 3.00          | 2.00         | 5.00          | 2.00          | 0.00      |  |  |
| 1-Story Existing Fram                                 | U-factor             | 0.49          | 0.49         | 0.49          | 0.49          | 1.31      |  |  |
| Eoundation Turse                                      | SHGC                 | 0.56          | 0.56         | 0.56          | 0.56          | 0.74      |  |  |
| Resement T                                            | Cfm/ft2              | 0.56          | 0.56         | 0.56          | 0.56          | 0.00      |  |  |
|                                                       | Solar Gain Reduction | Typical 🍹     | Typical 🍹    | Typical 🍹     | Typical       | None 🗼    |  |  |
| HVAL System Type                                      |                      | ] ;           | ·            |               | ,ı            | ·         |  |  |
|                                                       | Results              |               |              |               |               |           |  |  |
| Total Area                                            | Whole House Win      | dow Annual En | ergy Window  | Energy Cost V | Vindow Peak B | Energy    |  |  |
| Floor (r(2) 2000                                      |                      |               |              |               |               |           |  |  |
| Window (%) 12                                         | Energy Tot           | als           |              | Total Cost    |               |           |  |  |
| Elec Cost: Gas Cost:                                  | Cooling 429          |               | Cooling (\$) | 36.01         | -             |           |  |  |
| \$/kWh \$/Therm                                       | Heating 161.86       | (MBtu)        | Heating (\$) | 971.19        | _             |           |  |  |
| 0.084 💌 0.60 💌                                        | Epergu per           | 82            | Total (\$)   | 1007.20       |               |           |  |  |
| Description                                           |                      | 0.5175-7620   |              | 1             |               |           |  |  |
| Example #1 Case A                                     |                      | (KWh/ft2)     |              |               |               |           |  |  |
|                                                       | Heating 80.93        | (kBtu/ft2)    |              |               |               |           |  |  |
|                                                       |                      |               |              |               |               |           |  |  |
|                                                       |                      |               |              |               |               |           |  |  |
|                                                       |                      |               |              |               |               | 11.       |  |  |

Figure 5-3. Example 1 Input Screen for Glazing Type A.

|      |                                                                        |                                                                                                                                                  | Whole House Energy Cost<br>(\$/yr) |                    |         |         |          |
|------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|---------|---------|----------|
| Case |                                                                        | Window Description                                                                                                                               | U-factor                           | SHGC               | Cooling | Heating | Total    |
| 1.   | Window A, N/S/E/W<br>Typical shading                                   | A – Double-glazed clear<br>(#311)                                                                                                                | 0.49                               | 0.56               | 36.01   | 971.19  | 1,007.20 |
| 2.   | Window B, N/S/E/W<br>Typical shading                                   | B – Double-glazed low-E<br>(#321)                                                                                                                | 0.36                               | 0.52               | 32.89   | 923.83  | 956.72   |
| 3.   | Window C, N/S/E/W<br>Typical shading                                   | C – Double-glazed<br>spectrally selective low-E<br>(#341)                                                                                        | 0.32                               | 0.30               | 17.46   | 963.36  | 980.82   |
| 4.   | Window D, N/S/E/W<br>Typical shading                                   | D – Triple-glazed low-E<br>superwindow<br>(#451)                                                                                                 | 0.18                               | 0.39               | 23.25   | 885.72  | 908.97   |
| 5.   | Window B on E & S<br>Window C on W<br>Window D on N<br>Typical shading | B – Double-glazed low-E<br>(#321)<br>C – Double-glazed<br>spectrally selective low-E<br>(#341)<br>D – Triple- glazed low-E<br>superwindow (#451) | Multiple<br>values                 | Multiple<br>values | 27.71   | 914.47  | 942.19   |

Figure 5-4. Example 1 RESFEN Results

Cases 1-4 have the same windows on all four orientations. Case 5 varies the window type on different orientations to maximize the benefits of the window thermal characteristics. In Figure 5-4, we see that there are significant savings in annual heating costs by using windows with low U-values (Cases 2 and 4, using Windows B and D) instead of double-glazed, clear units (Case 1, Window A). The high-transmission low-E unit (Case 2, Window B) is better than the spectrally selective low-E unit (Case 3, Window C) in heating season performance. The benefit of reducing cooling costs in this climate from Window C must be examined in terms of whether air conditioning is installed in the house and operated full time; however, the increased comfort of a window with a low SHGC should be considered whether or not the homeowner pays for cooling. The triple-glazed unit (Case 4, Window D), with its very low U-value, results in even greater heating season savings. Case 5 shows that using a combination of different windows on different orientations (double-glazed low-E on the east and south, double-glazed spectrally selective low-E on the west, and triple-glazed superwindow on the North) results in more energy savings that either window type B or C installed on all orientations. This may be a more cost-effective option than installing Window D on all orientations.

The table in Figure 5-5 shows the breakdown of window-related heating and cooling by orientation; it is clear that a larger glazing percentage on the south orientation makes a significant difference in heating savings, particularly for cases 2 and 4, which use windows B & D with low U-factors and relatively high SHGCs. By studying the results by orientation, you can use RESFEN to determine the optimal glazing distribution as well as glazing type by orientation for a new building.

|                |          |      | Cooling (\$/yr) |      |       |      | Heating (\$/yr) |       |        |       |
|----------------|----------|------|-----------------|------|-------|------|-----------------|-------|--------|-------|
|                |          |      | Ν               | Е    | S     | W    | Ν               | Ε     | S      | W     |
| Case           | U-factor | SHGC | (3%)            | (2%) | (5%)  | (2%) | (3%)            | (2%)  | (5%)   | (2%)  |
| 1. Window A    | 0.49     | 0.56 | 5.98            | 7.41 | 15.80 | 9.19 | 37.34           | 14.77 | 6.33   | 16.94 |
| 2. Window B    | 0.36     | 0.52 | 5.37            | 6.86 | 14.29 | 8.45 | 24.32           | 6.90  | -11.46 | 8.70  |
| 3. Window C    | 0.32     | 0.30 | 2.40            | 2.84 | 5.81  | 3.60 | 25.47           | 11.17 | 11.06  | 12.17 |
| 4. Window D    | 0.18     | 0.39 | 3.89            | 4.67 | 9.26  | 5.72 | 10.22           | -0.26 | -22.93 | 0.86  |
| 5. Combination |          |      | 3.84            | 6.40 | 12.95 | 4.51 | 10.17           | 6.82  | -12.32 | 12.83 |

Figure 5-5. Example 1 RESFEN results by window orientation (N=North, E=East, S=South, W=West).

### 5.2. Example 2: Window Selection in a Cooling Climate, Phoenix AZ

Four possible window choices are compared for a house planned for construction in Phoenix, Arizona. The house, described in the table in Figure 5-6 and the RESFEN screen in Figure 5-8, is a one-story new construction home with a slab-on-grade floor and frame construction. Heating is supplied by a gas furnace and cooling by a central air conditioner. Gas utility cost for heating is \$0.70/therm, and electric utility cost for cooling is \$0.118/kWh.

| Input Description | Input Value       |
|-------------------|-------------------|
| Location          | AZ Phoenix        |
| Electricity Cost  | \$0.118/kWh       |
| Gas Cost          | \$0.70/therm      |
| House Type        | 1-Story New Frame |
| Foundation Type   | Slab-on-Grade     |
| HVAC System Type  | Gas Furnace / AC  |

Figure 5-6. Example 2 House Data Input Values

The four windows to be analyzed are listed on the following table (all windows are 3'x5' horizontal sliders, but the window properties are essentially the same as for casements, so we can use RESFEN window library values):

| Wine  | Window Description                              |                 |      |      | Air Leakage  |
|-------|-------------------------------------------------|-----------------|------|------|--------------|
| (incl | uding Window Library Number)                    | <b>U-Factor</b> | SHGC | TVIS | $(cfm/ft^2)$ |
| А.    | Double-glazed clear (#111)                      | 0.79            | 0.68 | 0.67 | 0.56         |
|       | 1/8" clear, 1/2" air, 1/8" clear                |                 |      |      |              |
|       | aluminum frame                                  |                 |      |      |              |
| В.    | Double-glazed bronze (#112)                     | 0.79            | 0.57 | 0.50 | 0.56         |
|       | 1/8" bronze, 1/2" air, 1/8" clear               |                 |      |      |              |
|       | aluminum frame                                  |                 |      |      |              |
| C.    | Double-glazed spectrally selective low-E (#241) | 0.48            | 0.34 | 0.53 | 0.15         |
|       | 1/8" low-E (0.04), 1/2" argon, 1/8" clear       |                 |      |      |              |
|       | thermally broken aluminum frame                 |                 |      |      |              |
| D.    | Double-glazed spectrally selective low-E (#341) | 0.32            | 0.30 | 0.50 | 0.15         |
|       | 1/8" low-E (0.04), 1/2" argon, 1/8" clear       |                 |      |      |              |
|       | vinyl frame                                     |                 |      |      |              |

Figure 5-7. Example 2 Window Input Values

Window A is a typical clear, double-glazed unit with a standard aluminum frame. Window B, with bronze-tinted glass, represents a traditional approach to reducing solar heat gain (note the slightly reduced SHGC that results from tinting). Window C has a spectrally selective low-E coating (a low SHGC combined with a high visible transmittance) and a thermally broken aluminum frame, resulting in a lower U-factor compared to the standard aluminum frames of Windows A and B. Window D also has a spectrally selective low-E coating but a vinyl frame, resulting in the lowest U-factor and SHGC of all the windows studied while maintaining a reasonably high visible transmittance.

The windows are distributed as shown on the RESFEN input screen in Figure 5-8: 3% facing the north, 2% facing east and west, and 5% facing south. RESFEN runs were made for each of the windows; the whole house energy cost results from RESFEN are presented in Figure 5-9. The first four cases examine the window options while the cases 5 and 6 examine the energy impact of adding overhangs to the building

| E RESFEN - Example2-5.RSF |                                 |               |               |                  |             |               |
|---------------------------|---------------------------------|---------------|---------------|------------------|-------------|---------------|
| File Edit Library Calcula | te <u>V</u> iew Options He<br>∙ | elp           |               |                  |             |               |
| E E 🗗 🖋 🖋                 |                                 |               |               |                  |             |               |
| House Data                | Window Data                     |               |               |                  |             |               |
| Location:                 |                                 | North         | East          | South            | West        | Skylight      |
| AZ Phoenix 💌              | Window Type                     | W241 -        | W241          | • W241 •         | W241        | - User spec - |
| House Type                | Window (% Flr Area)             | 3.00          | 2.00          | 5.00             | 2.00        | 0.00          |
| 1-Story New Frame         | U-factor                        | 0.48          | 0.48          | 0.48             | 0.48        | 1.31          |
| Foundation Tupe           | SHGC                            | 0.34          | 0.34          | 0.34             | 0.34        | 0.74          |
| Slab-on-Grade             | Cfm/ft2                         | 0.15          | 0.15          | 0.15             | 0.15        | 0.00          |
|                           | Solar Gain Reduction            | None 🍹        | Overhang .    | 🕽 🗍 💭            | Overhang    | 🗼 None 📮      |
| HVAL System Type          |                                 |               | ,,            | ,                | ,           |               |
|                           | Results                         |               |               |                  |             |               |
| Total Area                | Whole House Wine                | dow Annual En | ergy   Window | v Energy Cost∫ V | Vindow Peak | Energy        |
| Floor (rt2) 2000          |                                 |               |               |                  |             |               |
| Window (%) 12             | Energy Tota                     | als           |               | Total Cost       |             |               |
| Elec Cost: Gas Cost:      | Cooling 4977                    |               | Cooling (\$)  | 587.29           |             |               |
| \$/kWh \$/Therm           | Heating 6.58                    | (MBtu)        | Heating (\$)  | 46.06            |             |               |
| 0.118 💌 0.70 💌            | Eperguiper                      | 82            | Total (\$     | 633.35           |             |               |
| Description               | Cooling 2.49                    | (L) (b /62)   |               | . 1              |             |               |
| Example #2 Case 1         | Cooling [ 2.43                  | (KWH/12)      |               |                  |             |               |
|                           | Heating 3.29                    | (kBtu/ft2)    |               |                  |             |               |
|                           |                                 |               |               |                  |             |               |
| ,'                        |                                 |               |               |                  |             |               |

Figure 5-8. Example 2 Input Screen for Case 5, Window C with 2' overhangs on the east, south, and west.

|      |                                        |                                                                                     | En      | ergy Cost (\$/ | 'yr)   |
|------|----------------------------------------|-------------------------------------------------------------------------------------|---------|----------------|--------|
| Case |                                        | Window Description                                                                  | Cooling | Heating        | Total  |
| 1.   | Window A, N/S/E/W<br>No shading        | A – Double-glazed clear,<br>aluminum frame                                          | 879.22  | 39.77          | 918.99 |
| 2.   | Window B, N/S/E/W<br>No shading        | B – Double-glazed bronze,<br>aluminum frame                                         | 809.88  | 44.24          | 854.12 |
| 3.   | Window C, N/S/E/W<br>No shading        | C – Double-glazed spectrally selective<br>low-E, thermally broken<br>aluminum frame | 649.90  | 43.36          | 693.26 |
| 4.   | Window D, N/S/E/W<br>No shading        | D – Double-glazed spectrally selective<br>low-E, vinyl frame                        | 617.91  | 38.10          | 656.01 |
| 5.   | Window C, N/S/E/W<br>2' overhang S/E/W | C – Double-glazed spectrally selective<br>low-E, thermally broken<br>aluminum frame | 587.29  | 46.06          | 633.35 |
| 6.   | Window D, N/S/E/W<br>2' overhang S/E/W | D – Double-glazed spectrally selective<br>low-E, vinyl frame                        | 560.47  | 40.61          | 601.08 |

Figure 5-9. Example 2 RESFEN Results

Cooling loads are dominant in this climate, and the results show significant savings in annual cooling costs from using windows with a low SHGC (Window C) instead of double-glazed, clear units or bronze-tinted glass (Windows A and B). Window D, which has a vinyl frame rather than a thermally-broken aluminum frame, results in the lowest heating and cooling loads of the four glazing types, because of both its low solar heat gain factor and low U-value. Cases 5 and 6 show that the lowest energy costs result from the combination of high-performance glazing (Windows C and D) and a two-foot overhang on the south, east and west orientations.

# **5.3.** Example 3: Window Selection in a Mixed Heating and Cooling Climate, Kansas City MO

Four possible window choices are compared for a house planned for construction in Kansas City, Missouri, which has both heating and cooling loads. The house, described in the table in Figure 5-10 and shown in the RESFEN screen in Figure 5-12, is a one-story new home with a basement and wood frame construction. Heating is supplied by a gas furnace and cooling by a central air conditioner. Gas utility cost for heating is \$0.40/therm, and electricity cost for cooling is \$0.086/kWh.

| Input Description | Input Value       |
|-------------------|-------------------|
| Location          | MO Kansas City    |
| Electricity cost  | \$0.086/kWh       |
| Gas Cost          | \$0.40/therm      |
| House Type        | 1-Story New Frame |
| Foundation Type   | Basement          |
| HVAC System Type  | Gas Furnace / AC  |

Figure 5-10. Example 3 House Data Input Values

The four windows to be analyzed are listed in the table in Figure 5-11 (all windows are 2'x4' casements):

|                                                    |          | <b></b> |      | Air Leakage            |
|----------------------------------------------------|----------|---------|------|------------------------|
|                                                    | U-Factor | SHGC    | TVIS | (cfm/ft <sup>-</sup> ) |
| A. Double-glazed clear (#311)                      | 0.49     | 0.56    | 0.58 | 0.56                   |
| 1/8" clear, 1/2" air, 1/8" clear                   |          |         |      |                        |
| wood or vinyl frame                                |          |         |      |                        |
| B. Double-glazed low-E (#321)                      | 0.36     | 0.52    | 0.53 | 0.15                   |
| 1/8" clear, 1/2" argon, 1/8" low-E (0.20)          |          |         |      |                        |
| wood or vinyl frame                                |          |         |      |                        |
| C. Double-glazed spectrally selective low-E (#341) | 0.32     | 0.30    | 0.50 | 0.15                   |
| 1/8" low-E (0.04), 1/2" argon, 1/8" clear          |          |         |      |                        |
| wood or vinyl frame                                |          |         |      |                        |
| D. Triple-glazed low-E superwindow (#451)          | 0.18     | 0.39    | 0.49 | 0.08                   |
| 1/8" low-E (0.08), 1/2" argon, 1/8" clear          |          |         |      |                        |
| 1/2" argon, 1/8" low-E (0.08)                      |          |         |      |                        |
| insulated vinyl frame                              |          |         |      |                        |

Figure 5-11. Example 3 Window Input Values

Window A represents what is currently being used in the house. It is the typical clear, double-glazed unit commonly used in many climates. Window B has a high-transmission low-E coating while Window C has a spectrally selective low-E coating (a low SHGC combined with a relatively high visible transmittance). Window B is designed to reduce winter heat loss (low U-factor) and provide winter solar heat gain (high SHGC). Window C also reduces winter heat loss (low U-factor), but it reduces solar heat gain as well (low SHGC), an asset in summer and a detriment in winter. Window D, with triple glazing and two low-E coatings, is representative of the most efficient window on the market today for preventing winter heat loss (very low U-factor).

The windows are distributed as shown on the RESFEN screen in Figure 5-12: 3% facing north, 2% facing east and west, and 5% facing south. RESFEN runs were made for each of the windows; the energy cost results are presented below.

| RESFEN - Example3-1.RSF        |                      |               |             |        |                |             |               |
|--------------------------------|----------------------|---------------|-------------|--------|----------------|-------------|---------------|
| File Edit Library Calculat     | e ⊻iew Options He    | elp           |             |        |                |             |               |
|                                |                      |               |             |        |                |             |               |
| House Data                     | Window Data          |               |             |        |                |             |               |
| Location:                      |                      | North         | East        |        | South          | West        | Skylight      |
| MO Kansas City 💌               | Window Type          | W311 -        | W311        | •      | W311 💡         | W311        | 🚽 User spec 🕌 |
| House Type                     | Window (% Flr Area)  | 3.00          | 2.00        |        | 5.00           | 3.00        | 0.00          |
| 1-Story New Frame              | U-factor             | 0.49          | 0.49        |        | 0.49           | 0.49        | 1.31          |
| Eoundation Tuno                | SHGC                 | 0.56          | 0.56        |        | 0.56           | 0.56        | 0.74          |
| Poundation Type                | Cfm/ft2              | 0.56          | 0.56        |        | 0.56           | 0.56        | 0.00          |
|                                | Solar Gain Reduction | None 📮        | None        | T,İN   | Vone 🔋         | None        | None          |
| HVAC System Type               |                      |               | ,           |        |                | ,           |               |
| Gas Furnace / AC               | Results              |               |             |        |                |             |               |
| Total Area<br>Floor (ft2) 2000 | Whole House Win      | dow Annual En | ergy   Wind | low Ei | nergy Cost 🛛 V | Vindow Peak | Energy        |
| Window (%) 13                  | Energy Tot           | als           |             |        | Total Cost     |             |               |
| Elec Cost: Gas Cost:           | Cooling 2472         | (kWh)         | Cooling     | (\$)   | 212.59         |             |               |
| \$/kWh \$/Therm                | Heating 50.43        | (MBtu)        | Heating     | (\$)   | 201.74         | _           |               |
| 0.086 💌 0.40 💌                 | ,<br>Energy per      | #2            | Total       | (\$)   | 414.32         |             |               |
| Description                    | Cooling 1.24         | (kwh/#2)      |             | I      |                |             |               |
| Example #3                     | Userias [25:22       | (             |             |        |                |             |               |
| Case 1                         | Heating 25.22        | (kBtu/ft2)    |             |        |                |             |               |
|                                |                      |               |             |        |                |             |               |
|                                |                      |               |             |        |                |             |               |

Figure 5-12. Example 3 Input Screen for Window A.

| _  |                                                                          |                                                                                                                      |                    |                    | Whole Hou | se Energy Co<br>(\$/yr) | ost    |
|----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------|-------------------------|--------|
| Ca | se                                                                       | Window Description                                                                                                   | U-value            | SHGC               | Cooling   | Heating                 | Total  |
| 1. | Window A, N/S/E/W<br>No shading                                          | A – Double-glazed clear                                                                                              | 0.49               | 0.56               | 212.59    | 201.74                  | 414.32 |
| 2. | Window B, N/S/E/W<br>No shading                                          | B – Double-glazed low-E                                                                                              | 0.36               | 0.52               | 201.85    | 182.47                  | 384.32 |
| 3. | Window C, N/S/E/W<br>No shading                                          | C – Double-glazed spectrally<br>selective<br>low-E                                                                   | 0.32               | 0.30               | 138.70    | 207.04                  | 345.75 |
| 4. | Window D, N/S/E/W<br>No shading                                          | D – Triple-glazed low-E<br>superwindow                                                                               | 0.18               | 0.39               | 167.36    | 169.86                  | 337.23 |
| 5. | Window B on E & S<br>Window C on W<br>Window D on N                      | B – Double-glazed low-E<br>C – Double-glazed spectrally<br>selective low-E<br>D – Triple-glazed low-E                | Multiple<br>values | Multiple<br>values | 179.38    | 180.85                  | 360.23 |
| 6. | No shading<br>Window B on E & S<br>Window C on West<br>Window D on North | superwindow<br>B – Double-glazed low-E<br>C – Double-glazed spectrally<br>selective low-E<br>D – Triple-glazed low-E | Multiple<br>values | Multiple<br>values | 143.64    | 188.47                  | 332.11 |
|    | 2' overhang, E/S/W                                                       | superwindow                                                                                                          |                    |                    |           |                         |        |

Figure 5-13. Example 3 RESFEN Results

We see that there are significant savings in annual heating costs from using windows with low U-values (Cases 2 and 3, Windows B and C) instead of double-glazed, clear units (Case 1, Window A). The high-transmission low-E unit (Case 2, Window B) has better heating season performance than the spectrally selective low-E unit (Case 3, using Window C), but Window C is clearly better during the cooling season. The triple-glazed unit (Case 4, using Window D), with its very low U-value, results in even greater heating season savings. Case 5 shows that using a combination of different windows on different orientations (double-glazed low-E on the east and south, double-glazed spectrally selective low-E on the west, and triple-glazed superwindow on the north) results in more energy savings than either window type B or C installed on all orientations. This combination approach may be more cost effective than using Window D on all orientations. Case 6 shows the lowest energy cost case that is also probably cost effective, which results from the combination of high-performance glazing (the same combination of windows as in Case 5) and a two- foot overhang on the south, east and west orientations.

| 🔚 RESFEN - Example3-6.RSF 📃 🔍 🗙 |                                                       |               |               |                  |               |             |  |
|---------------------------------|-------------------------------------------------------|---------------|---------------|------------------|---------------|-------------|--|
| File Edit Library Calcula       | File Edit Library Calculate <u>V</u> iew Options Help |               |               |                  |               |             |  |
| E 🛛 🍯 🖇 🖇                       |                                                       |               |               |                  |               |             |  |
| House Data                      | Window Data                                           |               |               |                  |               |             |  |
| Location:                       |                                                       | North         | East          | South            | West          | Skylight    |  |
| MO Kansas City 💌                | Window Type                                           | W451 🗸        | W321          | , W321 ,         | W341          | User spec 🕌 |  |
| House Tupe                      | Window (% Flr Area)                                   | 3.00          | 2.00          | 5.00             | 3.00          | 0.00        |  |
| 1-Story New Frame               | U-factor                                              | 0.18          | 0.36          | 0.36             | 0.32          | 1.31        |  |
|                                 | SHGC                                                  | 0.39          | 0.52          | 0.52             | 0.30          | 0.74        |  |
| Basement                        | Cfm/ft2                                               | 0.08          | 0.15          | 0.15             | 0.15          | 0.00        |  |
|                                 | Solar Gain Reduction                                  | None 📮        | Overhang ,    | Overhang         | Overhang      | None 🗸      |  |
| Gas Furnace / AC 💌              | Besults                                               |               |               |                  |               |             |  |
| Total Area<br>Floor (ft2) 2000  | Whole House Win                                       | dow Annual En | ergy   Window | ≀Energy Cost   \ | Window Peak I | Energy      |  |
| Window (%) 13                   | Energy Tot                                            | als           |               | Total Cost       |               |             |  |
| Elec Cost: Gas Cost:            | Cooling 1670                                          | (kWh)         | Cooling (\$)  | 143.64           |               |             |  |
| \$/kWh \$/Therm                 | Heating 47.12                                         | (MBtu)        | Heating (\$)  | 188.47           | 1 _           |             |  |
| 0.086 💌 0.40 💌                  | Eperguiper                                            | #2            | Total (\$)    | 332.11           | -             |             |  |
| Description                     | Cooling 0.94                                          | (L) (b /0-2)  |               | 1                |               |             |  |
| Example #3                      |                                                       | (KW1/1(2)     |               |                  |               |             |  |
| Case 1                          | Heating 23.56                                         | (kBtu/ft2)    |               |                  |               |             |  |
|                                 |                                                       |               |               |                  |               |             |  |
|                                 | [ <b>*</b>                                            |               |               |                  |               |             |  |
|                                 |                                                       |               |               |                  |               | 11.         |  |

*Figure 5-14.* Example 3 Input Screen for Case 6, a combination of high-performance windows on different orientations with 2' overhangs on the east, south, and west.

Another way to use RESFEN is to evaluate different building designs in terms of the glazing percentage on different orientations. For example, if you were in the process of designing your house and wanted to determine the energy impact of rotating it 180 degrees (because the great view was really to the north, not the south), you could do another run using RESFEN with the new glazing orientation, as shown in input screen in Figure 5-15 and listed as Case 7 in the table in Figure 5-13. The window type in this case is Window B (double glazed, low-E), but now there is 5% glazing on the north and 3% glazing on the south. You can see that the total energy cost is greater than in Case 2. The cooling cost is reduced somewhat because there is less glazing on the south, but the increased heating cost (because there is less heat gain in the winter from the south-facing windows) results in an overall increase in energy cost. At this point, you could begin analyzing this new configuration with different window and shading options as we have done in the previous examples, in order to maximize the energy savings for the new orientation of the building.

| E RESFEN - Example3-7.RSF |                                |               |              |               |             |          |
|---------------------------|--------------------------------|---------------|--------------|---------------|-------------|----------|
|                           | te <u>v</u> iew Uptions He<br> | эlр           |              |               |             |          |
|                           |                                |               |              |               |             |          |
| House Data                | Window Data                    | Marth         | Epot         | South         | West        | Skulight |
| Location:                 | Window Tupe                    | W321          | W321         | W321          | W321        |          |
|                           | Window (% Flr Area)            | 5.00          | 2.00         | 3.00          | 3.00        | 0.00     |
| House Type                | U-factor                       | 0.36          | 0.36         | 0.36          | 0.36        | 1.31     |
| 1-Story New Frame         | SHGC                           | 0.52          | 0.52         | 0.52          | 0.52        | 0.74     |
| Foundation Type           | Cfm/ft2                        | 0.15          | 0.15         | 0.15          | 0.15        | 0.00     |
|                           | Solar Gain Reduction           | None 📮        | None         | None          | None        | None     |
| HVAL System Type          |                                |               | ·            |               | ,           |          |
|                           | Results                        |               |              |               |             |          |
| Total Area                | Whole House Win                | dow Annual En | ergy Window  | Energy Cost V | Vindow Peak | Energy   |
| Floor (H2) 2000           |                                |               |              |               |             |          |
| Window (%) 13             | Energy Tot                     | als           |              | Total Cost    |             |          |
| Elec Cost: Gas Cost:      | Cooling 2227                   | (kWh)         | Cooling (\$) | 191.56        |             |          |
| \$/kWh \$/Therm           | Heating 48.63                  | (MBtu)        | Heating (\$) | 194.50        |             | <b></b>  |
|                           | Energy per                     | ft2           | Total (\$)   | 386.06        |             |          |
| Description               | 1.11                           |               |              |               |             |          |
| Example #3<br>Case 7      | 24.31                          | (kBtu/ft2)    |              |               |             |          |
|                           | ļ                              |               |              |               |             |          |
|                           |                                |               |              |               |             |          |
|                           |                                |               |              |               |             | 1.       |

*Figure 5-15. Example 3 Input Screen for Case 2, but with the north glass area* = 5% *and the south glass area* = 3%.

|      |                                                               |                         |         |      | Whole Hou | se Energy Co<br>(\$/yr) | ost    |
|------|---------------------------------------------------------------|-------------------------|---------|------|-----------|-------------------------|--------|
| Case | <b>)</b>                                                      | Window Description      | U-value | SHGC | Cooling   | Heating                 | Total  |
| 2.   | Window B, N/S/E/W<br>No shading<br>5% on South,               | B – Double-glazed low-E | 0.36    | 0.52 | 201.85    | 182.47                  | 384.32 |
| 7.   | Window B, N/S/E/W<br>No shading<br>5% on North<br>3% on South | B – Double-glazed low-E | 0.36    | 0.52 | 191.56    | 194.50                  | 386.06 |

*Figure 5-16. Example 3 RESFEN Results comparing Cases 2 and 7, which is the same as Case 2 except that the north and south glass areas are reversed.* 

# 6.1. Locations Available for Analysis with RESFEN 3.1

| United States Locations |               |    |                |  |  |  |
|-------------------------|---------------|----|----------------|--|--|--|
| AK                      | Juneau        | NM | Albuquerque    |  |  |  |
| AL                      | Birmingham    | NV | Las Vegas      |  |  |  |
| AZ                      | Phoenix       | NV | Reno           |  |  |  |
| CA                      | Fresno        | NY | Buffalo        |  |  |  |
| CA                      | Los Angeles   | NY | New York       |  |  |  |
| CA                      | San Diego     | OH | Cincinnati     |  |  |  |
| CA                      | San Francisco | OK | Oklahoma City  |  |  |  |
| CO                      | Denver        | OR | Medford        |  |  |  |
| DC                      | Washington    | OR | Portland       |  |  |  |
| FL                      | Jacksonville  | PA | Philadelphia   |  |  |  |
| FL                      | Miami         | PA | Pittsburgh     |  |  |  |
| GA                      | Atlanta       | SC | Charleston     |  |  |  |
| HI                      | Honolulu      | TN | Memphis        |  |  |  |
| ID                      | Boise         | TN | Nashville      |  |  |  |
| IL                      | Chicago       | TX | Brownsville    |  |  |  |
| LA                      | Lake Charles  | TX | El Paso        |  |  |  |
| MA                      | Boston        | TX | Forth Worth    |  |  |  |
| ME                      | Portland      | TX | San Antonio    |  |  |  |
| MN                      | Minneapolis   | UT | Salt Lake City |  |  |  |
| MO                      | Kansas City   | VT | Burlington     |  |  |  |
| MT                      | Great Falls   | WA | Seattle        |  |  |  |
| ND                      | Bismarck      | WI | Madison        |  |  |  |
| NE                      | Omaha         | WY | Cheyenne       |  |  |  |
|                         |               |    |                |  |  |  |
| Canadia                 | an Locations  |    |                |  |  |  |
| AB                      | Edmonton      | ON | Toronto        |  |  |  |
| NS                      | Halifax       | PQ | Montreal       |  |  |  |

Table 6-1. RESFEN 3.1 Locations

# **6.2. RESFEN Modeling Assumptions**

The following table compares the input value assumptions used for the DOE2 simulations in RESFEN versions 3.0 and 3.1. The 3.1 assumptions are consistent with efforts by NFRC Annual Energy Rating Subcommittee to develop an Annual Energy Rating Procedure (1998). These assumptions are under review and may be updated in the next version of RESFEN.

| PARAMETER                             | <b>RESFEN Ver. 3.0</b>                    | RESFEN Ver. 3.1                                                                   |
|---------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|
| Floor Area                            | 1,540 <sup>(a)</sup>                      | Variable, from 1,000 to 4,000 square feet, input by user.                         |
| (ft <sup>2</sup> & dimensions)        | 41.5 x 41.5 x 8                           |                                                                                   |
| House Type                            | New Construction                          | <ul> <li>New Construction</li> </ul>                                              |
|                                       |                                           | <ul> <li>Existing Construction</li> </ul>                                         |
| Foundation                            | Slab, Crawlspace                          | Foundation is based on location. There are a maximum of three                     |
|                                       | -                                         | options per climate zone, chosen from:                                            |
|                                       |                                           | <ul> <li>Basement</li> </ul>                                                      |
|                                       |                                           | <ul> <li>Slab-on-Grade</li> </ul>                                                 |
|                                       |                                           | Crawlspace                                                                        |
|                                       |                                           | See Table 6-2. <sup>(b)</sup>                                                     |
| Insulation                            | Wall: R19                                 | Envelope insulation levels are based on location.                                 |
|                                       | Roof: R30                                 | • New construction: See Table 6-4. (Council of American                           |
|                                       |                                           | Building Officials, 1993) <sup>(c)</sup>                                          |
|                                       |                                           | • Existing construction: See Table 6-5. (Ritschard, et al. 1992)                  |
| Infiltration                          | ELA=0.77 ft <sup>2</sup> (0.58 ACH)       | • New Construction: ELA=0.77 ft <sup>2</sup> (0.58 ACH)                           |
|                                       |                                           | • Existing Construction: ELA=1.00 ft <sup>2</sup> (0.70 ACH)                      |
| Structural Mass (lb/ft <sup>2</sup> ) | $\cong 4.3 \text{ lb/ft}^2$               | 3.5 lb/ft <sup>2</sup> of floor area, in accordance with the Model Energy Code    |
|                                       |                                           | and NFRC Annual Energy Performance Subcommittee                                   |
|                                       |                                           | recommendation (September 1998).                                                  |
| Internal Mass                         | $5.5 \text{ lb/ft}^2$                     | 8.0 lb/ft <sup>2</sup> of floor area, in accordance with the Model Energy Code    |
| Furniture (lb/ft <sup>2</sup> )       |                                           | and NFRC Annual Energy Performance Subcommittee                                   |
|                                       |                                           | recommendation (September 1998).                                                  |
| Solar Gain Reduction                  | Options:                                  | Options:                                                                          |
|                                       | <ul> <li>None</li> </ul>                  | • None: No solar gain reduction                                                   |
|                                       | 2' Exterior Overhangs                     | • Overhang: 2' Exterior Overhangs                                                 |
|                                       | <ul> <li>Exterior Obstructions</li> </ul> | • Obstruction: Exterior Obstructions, a completely opaque                         |
|                                       | a completely opaque                       | ( $\tau$ =0.0), same-height obstruction 20 feet away, intended to                 |
|                                       | $(\tau=0.0)$ , same-height                | represent adjacent buildings.                                                     |
|                                       | obstruction 20 feet away,                 | • Interior: Interior shades with a Seasonal SHGC multiplier,                      |
|                                       | intended to represent                     | summer value = $0.80$ , winter value = $0.90$ .                                   |
|                                       | adjacent buildings.                       | Int+Ovh: Interior shades & 2' overhangs                                           |
|                                       | Interior Shades: Shading                  | • Ovh+Obs: 2' overhangs & obstructions                                            |
|                                       | coefficient multiplier of 0.60            | <ul> <li>All: Interior shades, 2' overhangs, &amp; obstructions</li> </ul>        |
|                                       | when solar gain $> 30$                    | • <b>Typical</b> <sup>(d)</sup> : to represent a statistically average solar gain |
|                                       | BTU/ft <sup>2</sup>                       | reduction for a generic house, this option includes:                              |
|                                       |                                           | <ul> <li>Interior shades (Seasonal SHGC multiplier, summer value =</li> </ul>     |
|                                       |                                           | 0.80, winter value = 0.90);                                                       |
|                                       |                                           | <ul> <li>1' overhang;</li> </ul>                                                  |
|                                       |                                           | a 67% transmitting same-height obstruction 20' away                               |
|                                       |                                           | intended to represent adjacent buildings.                                         |
|                                       |                                           | • To account for other sources of solar heat gain reduction                       |
|                                       |                                           | (insect screens, trees, dirt, building & window self-shading),                    |
|                                       |                                           | the SHGC multiplier was further reduced by 0.1. This results                      |
|                                       |                                           | in a final winter SHGC multiplier of $0.8$ and a final summer                     |
| XX7*                                  |                                           | SHOC multiplier of 0.7.                                                           |
| window Area                           | variable (base case is 3% of              | variable                                                                          |
| (% Floor Area)                        | noor area)                                | DECEEN Vor 2.1                                                                    |
| rakawe i Ek                           | KESFEIN VER. 3.U                          |                                                                                   |
| window i vpe                          | variable                                  | variable                                                                          |

Table 6-2. RESFEN 3.0 and 3.1 Modeling Assumptions

| Window Distribution   | Variable                            | Variable                                                                     |
|-----------------------|-------------------------------------|------------------------------------------------------------------------------|
| HVAC System           | Furnace & A/C,                      | Furnace & A/C,                                                               |
|                       | Heat Pump                           | Heat Pump                                                                    |
| HVAC System Sizing    | DOE-2 autosizing                    | For each climate, system sizes are fixed for all window options.             |
|                       |                                     | Fixed sizes are based on the use of DOE-2 auto-sizing for the same           |
|                       |                                     | house as defined in the analysis, with the most representative               |
|                       |                                     | window for that specific climate. An auto-sizing multiplier of 1.3           |
|                       |                                     | used to account for a typical safety factor. <sup>(e)</sup>                  |
| HVAC Efficiency       | AFUE = 0.78                         | New Construction:                                                            |
|                       | A/C SEER = SEER= $10.0$             | • AFUE = 0.78, A/C SEER=10.0                                                 |
|                       |                                     | Existing Construction:                                                       |
|                       |                                     | • AFUE = 0.70, A/C SEER= 8.0                                                 |
| Duct Losses           | Heating: 10% (fixed)                | Heating: 10% (fixed)                                                         |
|                       | Cooling: 10% (fixed)                | Cooling: 10% (fixed)                                                         |
| Part-Load Performance | Default DOE-2 heating,              | New part-load curves for DOE2 (Henderson 1998) for both new and              |
|                       | cooling Part Load Ratios            | existing house types                                                         |
| Thermostat Settings   | Heating: 70°F, Cooling: 78°F        | Heating: 70°F, Cooling: 78°F                                                 |
|                       |                                     | Basement (partially conditioned): Heating 62°F, Cooling 85°F                 |
| Night Heating Setback | 60°F (11 PM – 6 AM)                 | $65^{\circ}F(11 \text{ PM} - 6 \text{ AM}^{(f)})$                            |
| Internal Loads        | Sensible: 56.1 kBtu/day             | Sensible: $43,033$ Btu/day + (floor area * 8.42 Btu/ft <sup>2</sup> -day for |
|                       | Latent: 12.2 kBtu/day               | lighting)                                                                    |
|                       |                                     | Latent: 12.2 kBtu/day                                                        |
| Natural Ventilation   | Enthalpic – Sherman-                | Enthalpic – Sherman-Grimsrud (78°F / 72°F based on 4 days'                   |
|                       | Grimsrud (78°F / 72°F based         | history <sup>(g)</sup> )                                                     |
|                       | on 4 days' history <sup>(g)</sup> ) |                                                                              |
| Weather Data          | 13 TMY2, 33 WYEC2 <sup>(h)</sup>    | All TMY2 <sup>(h)</sup>                                                      |
| Number of Locations   | 46                                  | 48 US cities <sup>(i)</sup>                                                  |
|                       |                                     | 4 Canadian cities                                                            |
| Calculation Tool      | DOE-2.1E                            | DOE-2.1E                                                                     |

#### Footnotes:

- RESFEN 3.0 modeled two building types a 1,540 ft<sup>2</sup> one-story ranch house, and a 2,240 ft<sup>2</sup> two-story house. The RESFEN 3.0 values in this table show the dimensions, interior wall area, and internal loads levels for the one-story house only.
   RESFEN 3.1 allows the floor area to vary, so floor-area-dependent parameters (such as exterior and interior wall area, perimeter area, internal gains, infiltration, and so forth) are calculated for each specific case.
- (b) In Table 2, the default foundation option is the most common foundation type in that location; the other options are other foundation types found in more than 10% of the houses according to a National Association of Homebuilder's survey (Labs et al. 1988).
- (c) The wall insulation R-values listed in the 1993 MEC (Council of American Building Officials, 1993) are the same for frame and masonry walls, as stated in the documentation for Prescriptive Packages: "Wall R-values represent the sum of the wall cavity insulation plus insulating sheathing (if used). Do not include exterior siding, structural sheathing, and interior drywall. For examples, an R-19 requirement could be met EITHER by R-19 cavity insulation OR R-13 cavity insulation plus R-6 insulating sheathing. Wall requirements apply to wood-frame or mass (concrete, masonry, log) wall constructions, but do not apply to metal-frame construction."
- (d) These assumptions are intended to represent the average solar heat gain reduction for a large sample of houses. A one-foot overhang is assumed on all four orientations in order to represent the average of a two-foot overhang and no overhang. A 67% transmitting obstruction 20 feet away on all four orientations represents the average of obstructions (such as neighboring buildings and trees) 20 feet away on one-third of the total windows and no obstructions in front of the remaining two-thirds of windows. An interior shade is assumed to have a Solar Heat Gain Coefficient multiplier of 0.9 during the winter and 0.8 during the summer. To account for solar heat gain reducing effects from other sources such as screens, trees, dirt, and self-shading of the building, the SHGC multiplier was further reduced by 0.1 throughout the year. This amounts to a 12.5% decrease in the summer and an 11.1% decrease in the winter. The final SHGC multipliers (0.8 in the winter and 0.7 in the summer) thus reflect the combined effects of shading devices and other sources.
- (e) For each climate, DOE-2's auto-sizing feature was used with the window most likely to be installed in new construction (assumed to be the MEC default). Tables 6.4 and 6.5 show the required prescriptive U-factors for windows for the 52 climates. For climates where the U-factor requirement is greater than or equal to 1.0, an aluminum frame window with single glazing (U-factor = 1.30; SHGC = 0.74) is used. For climates where the U-factor requirement is between 0.65 and 1.0, an aluminum frame window with double glazing (U-factor = 0.87; SHGC = 0.66) is used. For climates where the U-factor

requirements are below 0.65, as well as in the four Canadian climates, a vinyl frame window with double glazing (U-factor = 0.49; SHGC = 0.57) is used for the sizing calculation.

- (f) RESFEN 3.1 models a moderate setback of 65° F in recognition that some but not all houses may use night setbacks. Recent studies of residential indoor conditions have shown that, during the heating season, nighttime temperatures are significantly lower than daytime temperatures (Ref: "Occupancy Patterns and Energy Consumption in New California Houses," Berkeley Solar Group for the California Energy Commission, 1990).
- (g) RESFEN 3.0 and 3.1 use a feature in DOE-2 that allows the ventilation temperature to switch between a higher heating (or winter) and a lower cooling (or summer) temperature based on the cooling load over the previous four days.
- (h) RESFEN 3.0 used a mix of Typical Meteorologcal Year (TMY2) weather tapes from the National Renewable Energy Laboratory and WYEC2 weather tapes from ASHRAE. There are 239 TMY2 locations with average weather data compiled from 30+ years of historical weather data. (National Renewable Energy Laboratory, 1995), but only 55 WYEC2 locations (American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1997). The two weather data sets are of comparable reliability, but RESFEN 3.1 uses only TMY2 weather tapes to maintain internal consistency. (Huang, Memorandum to NFRC 900 Working Group, "Weather data for use in NFRC900", August 5, 1998).
- (i) This list of locations is based primarily on a list of 45 cities chosen in a previous LBNL project to define representative U.S. climates for simulating residential building energy use (Huang et al. 1987).

# 6.3. Foundation Types by Location

| Table 6-3. | RESFEN 3.1 | Foundation | Type | Options | by Location. | (Ritschard, | et. Al. | 1992) |
|------------|------------|------------|------|---------|--------------|-------------|---------|-------|
|------------|------------|------------|------|---------|--------------|-------------|---------|-------|

| State | City           | Default Foundation Type | 2 <sup>nd</sup> Foundation Option | 3 <sup>rd</sup> Foundation Option |  |
|-------|----------------|-------------------------|-----------------------------------|-----------------------------------|--|
| AK    | Anchorage      | Basement                |                                   |                                   |  |
| AL    | Birmingham     | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| AZ    | Phoenix        | Slab-on-Grade           |                                   |                                   |  |
| CA    | Fresno         | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| CA    | Los Angeles    | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| CA    | Red Bluff      | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| CA    | San Diego      | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| CA    | San Francisco  | Slab-on-Grade           | Crawlspace                        | Basement                          |  |
| CO    | Denver         | Basement                | Crawlspace                        |                                   |  |
| DC    | Washington     | Basement                |                                   |                                   |  |
| FL    | Jacksonville   | Slab-on-Grade           |                                   |                                   |  |
| FL    | Miami          | Slab-on-Grade           |                                   |                                   |  |
| GA    | Atlanta        | Slab-on-Grade           | Basement                          | Crawlspace                        |  |
| HI    | Honolulu       | Slab-on-Grade           |                                   |                                   |  |
| ID    | Boise          | Basement                | Crawlspace                        |                                   |  |
| IL    | Chicago        | Basement                |                                   |                                   |  |
| LA    | Lake Charles   | Slab-on-Grade           |                                   |                                   |  |
| MA    | Boston         | Basement                |                                   |                                   |  |
| ME    | Portland       | Basement                |                                   |                                   |  |
| MN    | Minneapolis    | Basement                |                                   |                                   |  |
| MO    | Kansas City    | Basement                |                                   |                                   |  |
| MT    | Great Falls    | Basement                |                                   |                                   |  |
| NC    | Raleigh        | Crawlspace              | Slab-on-Grade                     | Basement                          |  |
| ND    | Bismarck       | Basement                |                                   |                                   |  |
| NE    | Omaha          | Basement                |                                   |                                   |  |
| NM    | Albuquerque    | Slab-on-Grade           |                                   |                                   |  |
| NV    | Las Vegas      | Slab-on-Grade           | Crawlspace                        |                                   |  |
| NV    | Reno           | Slab-on-Grade           | Crawlspace                        |                                   |  |
| NY    | Buffalo        | Basement                |                                   |                                   |  |
| NY    | New York City  | Basement                | Slab-on-Grade                     |                                   |  |
| OH    | Dayton         | Basement                | Slab-on-Grade                     | Crawlspace                        |  |
| OK    | Oklahoma City  | Slab-on-Grade           |                                   |                                   |  |
| OR    | Medford        | Crawlspace              | Basement                          |                                   |  |
| OR    | Portland       | Crawlspace              | Basement                          |                                   |  |
| PA    | Philadelphia   | Basement                |                                   |                                   |  |
| PA    | Pittsburgh     | Basement                |                                   |                                   |  |
| SC    | Charleston     | Crawlspace              | Slab-on-Grade                     |                                   |  |
| TN    | Memphis        | Crawlspace              | Basement                          | Slab-on-Grade                     |  |
| TN    | Nashville      | Crawlspace              | Basement                          | Slab-on-Grade                     |  |
| TX    | Brownsville    | Slab-on-Grade           |                                   |                                   |  |
| TX    | El Paso        | Slab-on-Grade           |                                   |                                   |  |
| TX    | Fort Worth     | Slab-on-Grade           |                                   |                                   |  |
| TX    | San Antonio    | Slab-on-Grade           |                                   |                                   |  |
| UT    | Salt Lake City | Basement                |                                   |                                   |  |
| VT    | Burlington     | Basement                |                                   |                                   |  |
| WA    | Seattle        | Basement                | Crawlspace                        |                                   |  |
| WI    | Madison        | Basement                |                                   |                                   |  |
| WY    | Cheyenne       | Basement                |                                   |                                   |  |
| ON    | Toronto        | Basement                |                                   |                                   |  |
| PQ    | Montreal       | Basement                |                                   |                                   |  |
| AB    | Edmonton       | Basement                |                                   |                                   |  |
| NS    | Halifax        | Basement                |                                   |                                   |  |

# 6.4. Simulation Envelope Insulation Values

Table 6-4. RESFEN 3.1 New Construction Insulation Values (Default fndn. in bold.) (Council of American Building Officials, 1993)

|          |                | MEC  | Pkg | Glz | Window  | Ceil.   | Wall    | Floor   | Basement | Slab    | Crawl.  |
|----------|----------------|------|-----|-----|---------|---------|---------|---------|----------|---------|---------|
| ST       | City           | Zone | #   | %   | U-value | R-value | R-value | R-value | R-value  | R-value | R-value |
| AK       | Anchorage      | 17   | 3   | 15  | 0.400   | 38      | 19      | 30      | 30       |         |         |
| AL       | Birmingham     | 6    | 4   | 15  | 0.700   | 38      | 14      | 19      | 6        | 6       | 7       |
| AZ       | Phoenix        | 3    | 3   | 15  | 0.900   | 30      | 11      | 11      |          | 0       |         |
| CA       | Fresno         | 6    | 4   | 15  | 0.700   | 38      | 14      | 19      | 6        | 6       | 7       |
| CA       | Los Angeles    | 4    | 2   | 15  | 0.750   | 26      | 11      | 11      | 5        | 0       | 5       |
| CA       | Red Bluff      | 6    | 4   | 15  | 0.700   | 38      | 14      | 19      | 6        | 6       | 7       |
| CA       | San Diego      | 3    | 3   | 15  | 0.900   | 30      | 11      | 11      | 0        | 0       | 5       |
| CA       | San Francisco  | 6    | 4   | 15  | 0.700   | 38      | 14      | 19      | 6        | 6       | 7       |
| CO       | Denver         | 13   | 2   | 15  | 0.400   | 38      | 19      | 26      | 11       |         | 22      |
| DC       | Washington     | 10   | 3   | 15  | 0.550   | 38      | 19      | 19      | 9        |         |         |
| FL       | Jacksonville   | 3    | 3   | 15  | 0.900   | 30      | 11      | 11      |          | 0       |         |
| FL       | Miami          | 1    | 2   | 15  | 1.100   | 19      | 11      | 11      |          | 0       |         |
| GA       | Atlanta        | 7    | 4   | 15  | 0.650   | 38      | 19      | 13      | 5        | 2       | 6       |
| HI       | Honolulu       | 1    | 2   | 15  | 1.100   | 19      | 11      | 11      |          | 0       |         |
| ID       | Boise          | 12   | 3   | 15  | 0.400   | 38      | 19      | 19      | 9        |         | 14      |
| IL       | Chicago        | 14   | 3   | 15  | 0.400   | 38      | 19      | 30      | 14       |         |         |
| LA       | Lake Charles   | 4    | 2   | 15  | 0.750   | 26      | 11      | 11      |          | 0       |         |
| MA       | Boston         | 13   | 2   | 15  | 0.400   | 38      | 19      | 26      | 11       |         |         |
| ME       | Portland       | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| MN       | Minneapolis    | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| MO       | Kansas City    | 11   | 3   | 15  | 0.450   | 38      | 19      | 19      | 8        |         |         |
| MT       | Great Falls    | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| NC       | Raleigh        | 7    | 4   | 15  | 0.650   | 38      | 19      | 13      | 5        | 2       | 6       |
| ND       | Bismarck       | 16   | 3   | 15  | 0.400   | 38      | 19      | 30      | 28       |         |         |
| NE       | Omaha          | 13   | 2   | 15  | 0.400   | 38      | 19      | 26      | 11       |         |         |
| NM       | Albuquerque    | 9    | 3   | 15  | 0.600   | 38      | 19      | 19      |          | 3       |         |
| NV       | Las Vegas      | 5    | 3   | 15  | 0.700   | 30      | 14      | 11      |          | 0       | 6       |
| NV       | Reno           | 12   | 3   | 15  | 0.400   | 38      | 19      | 19      |          | 4       | 14      |
| NY       | Buffalo        | 14   | 3   | 15  | 0.400   | 38      | 19      | 30      | 14       |         |         |
| NY       | New York City  | 10   | 3   | 15  | 0.550   | 38      | 19      | 19      | 9        | 5       |         |
| OH       | Dayton         | 12   | 3   | 15  | 0.400   | 38      | 19      | 19      | 9        | 4       | 14      |
| OK       | Oklahoma City  | 8    | 3   | 15  | 0.650   | 38      | 19      | 19      |          | 2       |         |
| OR       | Medford        | 11   | 3   | 15  | 0.450   | 38      | 19      | 19      | 8        |         | 12      |
| OR       | Portland       | 10   | 3   | 15  | 0.550   | 38      | 19      | 19      | 9        |         | 16      |
| PA       | Philadelphia   | 10   | 3   | 15  | 0.550   | 38      | 19      | 19      | 9        |         |         |
| PA       | Pittsburgh     | 12   | 3   | 15  | 0.400   | 38      | 19      | 19      | 9        |         |         |
| SC       | Charleston     | 5    | 3   | 15  | 0.700   | 30      | 14      | 11      |          | 0       | 0       |
| TN       | Memphis        | /    | 4   | 15  | 0.650   | 38      | 19      | 13      | 5        | 2       | 0       |
| TN       | Nashville      | 8    | 3   | 15  | 0.650   | 38      | 19      | 19      | /        | 2       | δ       |
|          | Brownsville    | 2    | 2   | 15  | 1.100   | 19      | 13      | 10      |          | 0       |         |
|          | El Paso        | 6    | 4   | 15  | 0.700   | 38      | 14      | 19      |          | 0       |         |
|          | Fort Worth     | 5    | 3   | 15  | 0.700   | 30      | 14      | 11      |          | 0       |         |
|          | San Antonio    | 4    | 2   | 15  | 0.750   | 26      | 10      | 10      |          | U       |         |
|          | Salt Lake City | 12   | 5   | 15  | 0.400   | 38      | 19      | 19      | 9        |         |         |
| VI       | Burlington     | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| WA       | Seattle        | 10   | 3   | 15  | 0.550   | 38      | 19      | 19      | 9        |         | 16      |
| WI       | Madison        | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| WY       | Tananta        | 15   | 3   | 15  | 0.400   | 38      | 19      | 30      | 15       |         |         |
| UN       | 1 oronto       | 16   | 3   | 15  | 0.400   | 38      | 19      | 30      | 28       |         |         |
| PQ<br>AD | Edmonton       | 16   | 3   | 15  | 0.400   | 38      | 19      | 30      | 28       |         |         |
| AB       | Edmonton       | 10   | 3   | 15  | 0.400   | 38      | 19      | 30      | 28       |         |         |
| 112      | пашах          | 10   | 5   | 15  | 0.400   | 58      | 19      | 50      | 28       |         |         |

| State | City           | Window U- | Ceiling | Wall    | Floor   | Basement | Slab    | Crawlspace |
|-------|----------------|-----------|---------|---------|---------|----------|---------|------------|
|       | -              | value     | R-value | R-value | R-value | R-value  | R-value | R-value    |
| AK    | Anchorage      | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| AL    | Birmingham     | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| AZ    | Phoenix        | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| CA    | Fresno         | 1.100     | 11      | 7       | 0       | 0        | 0       | 0          |
| CA    | Los Angeles    | 1.100     | 11      | 7       | 0       | 0        | 0       | 0          |
| CA    | Red Bluff      | 1.100     | 11      | 7       | 0       | 0        | 0       | 0          |
| CA    | San Diego      | 1.100     | 11      | 7       | 0       | 0        | 0       | 0          |
| CA    | San Francisco  | 1.100     | 11      | 7       | 0       | 0        | 0       | 0          |
| CO    | Denver         | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| DC    | Washington     | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| FL    | Jacksonville   | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| FL    | Miami          | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| GA    | Atlanta        | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| HI    | Honolulu       | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| ID    | Boise          | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| П     | Chicago        | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| LA    | Lake Charles   | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| MA    | Boston         | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| ME    | Portland       | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| MN    | Minneapolis    | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| MO    | Kansas City    | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| MT    | Great Falls    | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| NC    | Raleigh        | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| ND    | Rismarck       | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| NE    | Omaha          | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| NM    | Albuquerque    | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| NV    | Las Vegas      | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| NV    | Reno           | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| NY    | Buffalo        | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| NY    | New York City  | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| OH    | Dayton         | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| OK    | Oklahoma City  | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| OR    | Medford        | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| OR    | Portland       | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| PA    | Philadelphia   | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| PA    | Pittsburgh     | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| SC    | Charleston     | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| TN    | Memphis        | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| TN    | Nashville      | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| TX    | Brownsville    | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| TX    | El Paso        | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| TX    | Fort Worth     | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| TX    | San Antonio    | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| UT    | Salt Lake City | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| VT    | Burlington     | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| WA    | Seattle        | 0.650     | 19      | 7       | 0       | 0        | 0       | 0          |
| WI    | Madison        | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| WY    | Chevenne       | 0.650     | 11      | 7       | 0       | 0        | 0       | 0          |
| ON    | Toronto        | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| PO    | Montreal       | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| AB    | Edmonton       | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |
| NS    | Halifax        | 0.650     | 22      | 7       | 0       | 0        | 0       | 0          |

Table 6-5. RESFEN 3.1 Existing Construction Insulation Values. (Ritschard, et. al. 1992)

# 6.5. Making Custom WINDOW 4.1 Libraries

RESFEN is shipped with a generic window library, called **window.w4**, that was generated with the WINDOW 4.1 computer program (Arasteh, et. al., 1994). This library contains a variety of energy-efficient window technologies that you can use for your analysis. However, the values in the library are based on one window size and operation type, 2' x 4' casements. These values are typical for common residential operable (slider, double hung, and casement) windows. Window properties often vary with size and will be different for fixed windows and patio doors. If the products you are analyzing are significantly different from the assumptions made in the **window.w4** window library, and you have reliable properties (from the NFRC label, NFRC product directory, or manufacturer), you should use them.

Users familiar with the WINDOW 4.1 program may want to use it to make window library files with very specific fenestration products to use with RESFEN. (For a description of WINDOW 4.1, visit the web site at http://windows.lbl.gov. To obtain WINDOW 4.1, fax your address and phone number to: Fax: (510) 486-4089 or email: RESFENHelp@lbl.gov.)

Using the values in a window library made from WINDOW 4.1 will increase the accuracy of the DOE-2 simulation because the library contains solar and visible properties of the window as a function of angle of incidence and U-values as a function of temperature and wind speed.

When you choose a WINDOW4.1 library, RESFEN automatically uses one of two possible calculation methods, depending on what files are available. *Method* (*b*) *is recommended for experienced WINDOW4.1 users only* (see Section 6.5, Making Custom WINDOW 4.1 Libraries" for more detailed information about creating these files):

- WINDOW4.1 Window Library(e.g., window.w4) only: if only the standard WINDOW4.1 window library file (e.g., window.w4) exists RESFEN will use the U-factor and SHGC from that file. Air infiltration values must be entered by the user.
- WINDOW4.1 Window Library (W4 file, such as window.w4) and additional WINDOW4.1 DOE-2.1E output(ASCII) file (DAT file, such as window.dat), recommended for experienced WINDOW4.1 users only: if both files exist, RESFEN will use the values from these files for the window properties. RESFEN automatically determines whether there is an associated DAT file for the window library (which have the same name before the extension) and will use the additional values if they exist. The following discussion includes steps for making these DAT files. (Note: The DOE-2.1 DAT file can only be made for windows with one glazing system, such as casements. It cannot be made for horizontal or vertical sliders.)

The window IDs in the "**.W4**" file and the "**.DAT**" file must be identical – if the program automatically detects a "**.DAT**" file, and finds windows in the "**.W4**" file that are not in the "**.DAT**" file, a program error will occur. So it is important to make sure that the W4 and DAT files are kept current with each other.

If the DAT file does not exist when the W4 library is selected in RESFEN, a message will appear saying that the program can't find the DAT file. RESFEN will still use the W4 file; the message is informational only and does not indicate a problem.



*Figure 6-1.* An informational error message appears if the DAT file does not exist for the \*.W4 file. This is not an error, and the program can use the library even without this DAT file.

You can make a window library in WINDOW 4.1, which is called *window.w4*, and then copy it to the RESFEN\DATA directory so that RESFEN can read it. RESFEN looks in this directory for any file with a ".W4" extension, so you can rename the *window.w4* file to something more descriptive, such as a manufacturer or product line name. (However, remember that WINDOW 4.1 can only read files called *window.w4*, so you must keep that name in the WINDOW 4.1 program directories.)

#### 6.5.1. Make WINDOW 4.1 Window Library Files

From WINDOW 4.1 you can also make a DOE2 input file for each window, which contains detailed information about the optical properties of the window. In WINDOW 4.1, these DOE2 files can be generated for one window at a time, for a range of records in the window library, or for the entire window library. To create these files in WINDOW4.1, go to either the main screen (for one window at a time), or **the Window Library** (**F2**) for a range of records in the library or the entire library. From either place, use **Alt-Print** and select the **Report Type** of "DOE-2" (from the **Window Library**, you first have to enter the range of windows for which the report is to be created. The default is the first through the last window record).



Figure 6-2. Making the DOE-2 DAT file in WINDOW 4.1.

#### 6.5.2. Name the DOE-2 DAT File

The WINDOW 4.1 program will then ask you for a file name for this output file; type a name that will correspond to the name of the **Window Library**, and give it the extension "**.DAT**", for example, "**ACMEWIN.DAT**". In order for RESFEN to connect the two files, the "**.W4**" file and the "**.DAT**" file must have the same prefix. So for the "**ACMEWIN.DAT**" file, there would have to be a corresponding "**ACMEWIN.W4**" WINDOW4.1 Window Library file, with the same windows as the **ACMEWIN.DAT** file. Also keep in mind that WINDOW4.1 will only save windows with one glazing system to the DOE2 output file, so you cannot create WINDOW 4.1 library files for horizontal or vertical sliders, or double doors, which all have two glazing systems even if the two glazing systems are the same. In this version of RESFEN, the window IDs in the "**.W4**" file and the "**.DAT**" file must be identical – if the program automatically detects a "**.DAT**" file, and finds windows in the "**.W4**" file that are not in the "**.DAT**" file, a program error will occur. If you have trouble making this feature work, email RESFENHelp@lbl.gov. (See Section 3.4, Troubleshooting).



*Figure 6-3. Naming the DAT file from WINDOW 4.1.* 

#### 6.5.3. Move WINDOW 4.1 Libraries to RESFEN Directory

Now you have two matching files, a "**DAT**" file (found in the main W4 directory) and a "**W4**" file (found in the W4\W4LIB subdirectory), created from the same data. Move these two files to the RESFEN/DATA directory so that RESFEN can access them.



*Figure 6-4. Move the DAT and W4 files into the RESFEN\DATA directory.* 

W4/W4LIB directory) to the

RESFEN\DATA directory.

#### 6.5.4. Select the WINDOW 4.1 Window Library in RESFEN

Start RESFEN, and use the Library/Select File menu to choose the appropriate WINDOW 4.1 library.



the library file is called "**window.w4**", but in the RESFEN\DATA directory, it can be as long as the W4 extension is kept and the DAT file has a matching prefix name.





Figure 6-6. From the RESFEN Library/Select File menu, choose the custom WINDOW library.

Now when you select the **Window4 Lib** choice in the **Window Type** pull-down list, the windows from the library you selected will be available.



Figure 6-7. The entries from the custom WINDOW library can now be used in a RESFEN calculation.

### 6.6. RESFEN Window Library Documentation

|      |       |          |             |        |               |                   |             | Total Window    | Total Window  |
|------|-------|----------|-------------|--------|---------------|-------------------|-------------|-----------------|---------------|
|      |       |          |             |        | Gas           | Total Window      | Shading     | Solar Heat Gain | Visible       |
|      | Frame | # of     | Glazing     | Gap    | (see Note for | U-factor          | Coefficient | Coefficient     | Transmittance |
| ID # | Туре  | glazings | Description | (inch) | Air/Argon)    | $(Btu/hr-ft^2-F)$ | (SC)        | (SHGC)          | (VT)          |
| 101  | AL    | 1        | Clear       | n/a    | n/a           | 1.25              | 0.89        | 0.76            | 0.74          |
| 102  | AL    | 1        | Bronze      | n/a    | n/a           | 1.25              | 0.76        | 0.65            | 0.56          |
| 111  | AL    | 2        | Clear       | 0.375  | Air           | 0.79              | 0.79        | 0.68            | 0.67          |
| 112  | AL    | 2        | Bronze      | 0.375  | Air           | 0.79              | 0.66        | 0.57            | 0.50          |
| 113  | AL    | 2        | SS Tint     | 0.375  | Air           | 0.79              | 0.55        | 0.46            | 0.57          |
| 121  | AL    | 2        | PY Low-E    | 0.50   | Argon         | 0.64              | 0.74        | 0.64            | 0.62          |
| 131  | AL    | 2        | SP Low-E    | 0.50   | Argon         | 0.61              | 0.62        | 0.49            | 0.62          |
| 141  | AL    | 2        | SS Low-E    | 0.50   | Argon         | 0.60              | 0.43        | 0.38            | 0.57          |
| 201  | ATB   | 1        | Clear       | n/a    | n/a           | 1.08              | 0.81        | 0.70            | 0.69          |
| 202  | ATB   | 1        | Bronze      | n/a    | n/a           | 1.08              | 0.69        | 0.60            | 0.52          |
| 211  | ATB   | 2        | Clear       | 0.50   | Air           | 0.64              | 0.72        | 0.62            | 0.62          |
| 212  | ATB   | 2        | Bronze      | 0.50   | Air           | 0.64              | 0.60        | 0.52            | 0.47          |
| 213  | ATB   | 2        | SS Tint     | 0.50   | Air           | 0.64              | 0.50        | 0.41            | 0.53          |
| 221  | ATB   | 2        | PY Low-E    | 0.50   | Argon         | 0.52              | 0.67        | 0.58            | 0.57          |
| 231  | ATB   | 2        | SP Low-E    | 0.50   | Argon         | 0.49              | 0.56        | 0.45            | 0.58          |
| 241  | ATB   | 2        | SS Low-E    | 0.50   | Argon         | 0.48              | 0.39        | 0.34            | 0.53          |
| 301  | W/V   | 1        | Clear       | n/a    | n/a           | 0.90              | 0.73        | 0.63            | 0.64          |
| 302  | W/V   | 1        | Bronze      | n/a    | n/a           | 0.90              | 0.62        | 0.54            | 0.48          |
| 311  | W/V   | 2        | Clear       | 0.50   | Air           | 0.49              | 0.65        | 0.56            | 0.58          |
| 312  | W/V   | 2        | Bronze      | 0.50   | Air           | 0.49              | 0.54        | 0.46            | 0.44          |
| 313  | W/V   | 2        | SS Tint     | 0.50   | Air           | 0.49              | 0.44        | 0.37            | 0.49          |
| 321  | W/V   | 2        | PY Low-E    | 0.50   | Argon         | 0.36              | 0.60        | 0.52            | 0.53          |
| 331  | W/V   | 2        | SP Low-E    | 0.50   | Argon         | 0.33              | 0.50        | 0.40            | 0.53          |
| 341  | W/V   | 2        | SS Low-E    | 0.50   | Argon         | 0.32              | 0.34        | 0.30            | 0.50          |
| 351  | W/V   | 3        | HT Super    | 0.50   | Argon         | 0.26              | 0.44        | 0.38            | 0.46          |
| 352  | W/V   | 3        | SS Super    | 0.50   | Argon         | 0.24              | 0.29        | 0.25            | 0.40          |
| 411  | INS   | 2        | Clear       | 0.50   | Air           | 0.44              | 0.69        | 0.59            | 0.62          |
| 412  | INS   | 2        | Bronze      | 0.50   | Air           | 0.44              | 0.56        | 0.49            | 0.47          |
| 413  | INS   | 2        | SS Tint     | 0.50   | Air           | 0.44              | 0.46        | 0.38            | 0.53          |
| 421  | INS   | 2        | PY Low-E    | 0.50   | Argon         | 0.30              | 0.64        | 0.55            | 0.57          |
| 431  | INS   | 2        | SP Low-E    | 0.50   | Argon         | 0.27              | 0.52        | 0.42            | 0.58          |
| 441  | INS   | 2        | SS Low-E    | 0.50   | Argon         | 0.26              | 0.35        | 0.31            | 0.53          |
| 451  | INS   | 3        | HT Super    | 0.50   | Argon         | 0.18              | 0.46        | 0.39            | 0.49          |
| 452  | INS   | 3        | SS Super    | 0.50   | Argon         | 0.17              | 0.30        | 0.26            | 0.43          |

#### NOTES:

#### FRAME TYPE CODES:

- **AL** = Aluminum
- **ATB** = Aluminum, Thermally Broken
- W/V = Wood/Vinyl
- **INS** = Insulated Frame

#### GLAZING TYPE CODES:

- **SS** = Spectrally Selective (e ≈ 0.04, low solar gain)
- **PY** = Pyrolitic coating ( $e \approx 0.15 0.20$ , high solar gain)
- **SP** = Sputter low-E coating ( $e \approx 0.10$ , moderate solar gain)
- **SS Super** = 3-layer insulating glazing, two layers with Spectrally Selective low-E coatings
- **HT Super** = 3-layer insulating glazing, two layers with high solar transmitting low-E coatings.

#### ARGON GAS:

Consists of 90% air, 10% argon

The data presented here and in RESFEN are average properties for several commercially available products. Specific products will perform slightly above or below the average products defined here. Users are encouraged to only use these numbers as a general guide and to use specific manufacturer's product data (i.e. NFRC U-factors and Solar Heat Gain Coefficients) whenever possible.

# 6.7. Resources

The following listings are resources for learning more about energy-efficient windows:

#### 6.7.1. Books

Residential Windows, A Guide to New Technologies and Energy Performance by John Carmody, Stephen Selkowitz, and Lisa Heschong W.W.W. Norton & Company, 1996. Updated material from this book can be found at the web site <u>www.efficientwindows.org</u>.

#### 6.7.2. Organizations

#### **Efficient Windows Collaborative**

Alliance to Save Energy 1200 18th Street N.W., Suite 900 Washington, DC 20036 Phone: (202) 857-0666 Fax: (202) 331-9588 Web site: www.efficientwindows.org

#### **National Fenestration Rating Council**

1300 Spring Street, Suite 500 Silver Spring, MD 20910 Phone: (301) 589-NFRC Web site: www.nfrc.org

#### Windows and Daylighting Group

Lawrence Berkeley National Laboratory MS 90-3111 1 Cyclotron Road Berkeley, CA 94720 Web site: <u>windows.lbl.gov</u>

### 6.8. References

American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) 1997. WYEC2 User's Manual, Atlanta GA.

Arasteh, D. K., E. U. Finlayson, and C. Huizenga. 1994. "WINDOW 4.1 : A PC program for analyzing window thermal performance in accordance with standard NFRC procedures". LBL-35298, Lawrence Berkeley Laboratory, Berkeley, Calif.

Council of American Building Officials (CABO). 1993. Model Energy Code. Falls Church, Va.

Henderson, H., Y. J. Huang, and D. Parker. 1999. "Residential equipment part-load curves for use in DOE-2". LBL-42145, Lawrence Berkeley National Laboratory, Berkeley, Calif.

Huang, Y. J., R. Ritschard, I. Turiel, S. Byrne, D. Wilson, C. Hsui, J. Bull, R. Sullivan, L. Chang, and P. Albrand. 1987. "Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings. Technical support document for the PEAR microcomputer program". LBL-19128, Lawrence Berkeley Laboratory, Berkeley, Calif.

Labs, K., J. Carmody, R. Sterling, L. Shen, Y. J. Huang, and D. Parker. 1988. *Building Foundation Design Handbook*. ORNL/Sub/86-72143/1, Oak Ridge National Laboratory, Oak Ridge, Tenn.

Lawrence Berkeley Laboratory (LBL) and Los Alamos Scientific Laboratory. 1980. DOE-2 Reference Manual, Parts 1 and 2. LBL-8706 Rev. 1/LA-7689-M Ver 2.1, Lawrence Berkeley Laboratory, Berkeley, Calif.

National Energy Renewable Laboratory (NREL). 1995. TMY2 User's Manual. Golden, Colo.

Ritschard, R., J. W. Hanford, and A. O. Sezgen. 1992. "Single-family heating and cooling requirements: assumptions, methods, and summary results", GRI-91/0236, Gas Research Institute, Chicago, Ill.

Winkelmann, F. C., B. E. Birdsall, W. F. Buhl, K. L. Ellington, A. E. Erdem, J. J. Hirsch, and S. Gates. 1993. "DOE-2 Supplement. Version 2.1E", pp. 2-98 through 2-117 (Window Library), LBL-34947, Lawrence Berkeley Laboratory, Berkeley, Calif.

# 7. ACKNOWLEDGEMENTS

The development of RESFEN 3.1 was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Building Technology, State and Community Programs; Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The authors appreciate the assistance of the following colleagues in the design and development of RESFEN: Fred Buhl, Ender Erdem, Rob Hitchcock, Steve Selkowitz, and Fred Winkelmann. The user interface was developed by Santosh Philip of Gabel Associates, Berkeley, California. Development of the modeling assumptions for use in RESFEN was a collaborative process between LBNL staff and NFRC members; the authors wish to acknowledge the significant effort and contributions from many in the window community.