
AMBER
Version 5

Volume 1
Amber 5 is a collaborative effort of the research groups of Peter Kollman (UCSF), David Case
(Scripps), Ken Merz(Penn State), Tom Darden (NIEHS), and Dave Fergunson (Minnesota).

The authors are:

David A. Case (The Scripps Research Institute)
David A. Pearlman (Vertex Pharmaceuticals)

James W. Caldwell (UCSF)
Thomas E. Cheatham III (UCSF,NIH)

Wilson S. Ross (UCSF)
Carlos Simmerling (UCSF)

Tom Darden (NIEHS)
Kenneth M. Merz (Penn State)

Robert V. Stanton (UCSF)
Ailan Cheng (Penn State)

James J. Vincent(Penn State)
Mike Crowley (PSC)

David M. Ferguson (University of Minnesota)
Randall Radmer (UCSF)

George L. Seibel (for contributions to Amber version 3A while at UCSF)
U. Chandra Singh (for contributions to Amber versions 2 and 3 while at UCSF)

Paul Weiner (for contributions to Amber version 1 while at UCSF)
Peter A. Kollman (UCSF)

All contents Copyright (c) 1986, 1991, 1995, 1997, University of California.
All Rights Reserved.

Page 2

Acknowledgements

We acknowledge the generous cooperation of Wilfred van Gunsteren, whose molecular dynamics code
was used as the basis of the md modules in version 2.0. We are also pleased to acknowledge Rad
Olson and Bill Swope at IBM Almaden Center, whose contributions were instrumental in developing
the better vector optimized non-bonded routines first released in version 3, revision A. Research sup-
port from DARPA, the NIH, and the NSF for Peter Kollman is gratefully acknowledged, as is support
from the NIH for David Case. Use of the facilities of the UCSF Computer Graphics Laboratory
(Thomas Ferrin, PI) is appreciated. We thank Nelson H.F. Beebe of the University of Utah for permis-
sion to include his ‘‘portable namelist’’ code. Wendy Cornell contributed a discussion of charge
derivation to the manual and added demos and documentation for the RESP program. We also thank
Allison Howard and Valerie Daggett for various helpful discussions and suggestions. The pseudocon-
tact shift code was provided by Ivano Bertini of the University of Florence. Many people helped add
features to various codes; these contributions are described in the documentation for the individual
programs. Jed Pitera, in particular, made a large contribution to the documentaion for PROFEC in Ver-
sion 5.

Recommended Citations:

When citing Amber Version 5 in the literature, the following citation should be used:

D.A. Case, D.A. Pearlman, J.W. Caldwell, T.E. Cheatham III, W.S. Ross, C.L. Simmerling,
T.A. Darden, K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vincent, M. Crowley, D.M. Ferguson,
R.J. Radmer, G.L. Seibel, U.C. Singh, P.K. Weiner and P.A. Kollman (1997), AMBER 5, Uni-
versity of California, San Francisco.

The basic description of the methods incorporated in Amber is in:

D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, III, S. DeBolt, D. Fer-
guson, G. Seibel, and P. Kollman. AMBER, a package of computer programs for applying
molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations
to simulate the structural and energetic properties of molecules.Comp. Phys. Commun.91,
1-41 (1995).

8/25/97

Table of Contents i

Table of Contents

1. Introduction. ... 3

1.1. What to read next. ... 3

1.2. Information flow in Amber. .. 3

1.3. Preparatory programs. ... 5

1.4. Energy programs. .. 6

1.5. Analysis programs. ... 7

2. Installation of Amber 5 .. 8

2.1. Installing by hand. .. 9

2.2. Testing. .. 10

2.3. Memory Requirements. .. 10

3. The database directory. ... 13

4. An Amber Tutorial. ... 16

4.1. Example 1. Minimization of BPTI in vacuum. .. 16

4.2. Example 2. Peptide with a non-standard residue. .. 21

4.3. Example 3. A more complicated protein example. .. 27

4.3.1. Make database file for the modified residues. .. 27

4.3.2. Do some editing of the PDB file. ... 30

4.3.3. Set up the system without solvent. ... 31

4.3.3.1. (Alternative 1): Create link, edit and parm files. .. 31

4.3.3.2. (Alternative 2): Use LEaP to set up the required files. 35

4.3.4. Run a simple minimization. ... 36

4.3.5. Run simulated annealing optimization. ... 36

4.3.6. Setup the system with counterions in a box of water. .. 38

4.3.6.1. Work on positioning counterions. ... 38

4.3.6.2. Run EDIT and PARM to add a box of waters around the system. 40

4.3.6.3. Run solvated molecular dynamics simulation. ... 40

5. LEaP ... 42

5.1. Preface ... 42

5.2. Introduction .. 44

5.3. Concepts .. 46

5.3.1. Commands .. 46

5.3.2. Variables ... 47

5.3.3. Objects .. 47

5.3.3.1. NUMBERs ... 48

5.3.3.2. STRINGs ... 48

5.3.3.3. LISTs ... 48

5.3.3.4. PARMSETs (Parameter Sets) .. 49

5.3.3.5. ATOMs ... 49

Table of Contents ii

5.3.3.6. RESIDUEs ... 50

5.3.3.7. UNITs .. 51

5.3.3.8. Complex objects and accessing subobjects ... 53

5.4. Starting LEaP ... 55

5.4.1. Verbosity ... 56

5.4.2. Log File ... 56

5.5. Using LEaP .. 57

5.6. tLEaP ... 57

5.7. xLEaP .. 58

5.7.1. Universe Editor ... 58

5.7.1.1. Universe Editor Menu Bar ... 59

5.7.2. Unit Editor .. 60

5.7.2.1. Unit Editor Menu Bar .. 60

5.7.2.2. Unit Editor Manipulation Buttons ... 62

5.7.2.3. Unit Editor Elements Buttons .. 63

5.7.2.4. Unit Editor Viewing Window .. 64

5.7.3. Atom Properties Editor ... 65

5.7.3.1. Atom Properties Menu Bar .. 65

5.7.3.2. Atom Properties Status Window .. 65

5.7.3.3. Atom Properties Table Window ... 65

5.7.4. Parmset Editor ... 67

5.7.4.1. Parmset Table Editor Menu Bar ... 67

5.7.4.2. Parmset Table Editor Status Window .. 67

5.7.4.3. Parmset Table Window .. 68

5.8. Using LEaP With AMBER .. 69

5.8.1. PARMSETs ... 69

5.8.2. UNIT Libraries ... 70

5.8.2.1. Amino Acid Residues .. 70

5.8.2.2. Nucleic Acid Residues ... 71

5.8.2.3. Miscellaneous Residues ... 72

5.8.3. Building a Molecule For Molecular Mechanics ... 72

5.8.3.1. Loading Objects ... 72

5.8.3.2. Constructing the Molecule ... 73

5.8.3.3. Z-matrix Input .. 73

5.8.3.4. PDB File Input ... 74

5.8.3.5. AMBER PREP Input ... 76

5.8.3.6. UNIT Editor Input ... 76

5.8.3.7. Generating Molecular Mechanics Input Files .. 77

5.9. Commands ... 78

5.9.1. add ... 78

5.9.2. addAtomTypes .. 79

Table of Contents iii

5.9.3. addIons .. 79

5.9.4. addPath .. 79

5.9.5. addPdbAtomMap .. 80

5.9.6. addPdbResMap ... 80

5.9.7. alias ... 81

5.9.8. alignAxes .. 82

5.9.9. bond .. 83

5.9.10. bondByDistance .. 83

5.9.11. center ... 84

5.9.12. charge .. 84

5.9.13. check ... 84

5.9.14. clearPdbAtomMap .. 85

5.9.15. clearPdbResMap ... 85

5.9.16. clearVariables ..85

5.9.17. combine ... 86

5.9.18. copy ... 86

5.9.19. createAtom .. 87

5.9.20. createParmset .. 87

5.9.21. createResidue .. 87

5.9.22. createUnit .. 88

5.9.23. crossLink ... 88

5.9.24. debugOff ... 89

5.9.25. debugOn .. 89

5.9.26. debugStatus ...89

5.9.27. desc ... 90

5.9.28. deSelect ... 92

5.9.29. displayPdbAtomMap .. 92

5.9.30. displayPdbResMap ... 92

5.9.31. edit .. 92

5.9.32. groupSelectedAtoms ... 92

5.9.33. help ... 93

5.9.34. impose ... 93

5.9.35. list ... 94

5.9.36. listOff .. 94

5.9.37. loadAmberParams ... 95

5.9.38. loadAmberPrep ... 96

5.9.39. loadOff .. 97

5.9.40. loadPdb ... 97

5.9.41. loadPdbUsingSeq .. 98

5.9.42. logFile ... 99

5.9.43. matchVariables .. 99

Table of Contents iv

5.9.44. measureGeom ... 99

5.9.45. quit .. 100

5.9.46. remove .. 100

5.9.47. removeBond .. 101

5.9.48. removeOffLibEntry ... 102

5.9.49. removeRestraint .. 103

5.9.50. restrainAngle ... 103

5.9.51. restrainBond .. 103

5.9.52. restrainTorsion .. 105

5.9.53. saveAmberParm .. 105

5.9.54. saveAmberParmPert ... 106

5.9.55. saveOff .. 106

5.9.56. savePdb ... 106

5.9.57. select ... 107

5.9.58. sequence .. 108

5.9.59. set .. 109

5.9.60. setBox ... 111

5.9.61. solvateBox ..111

5.9.62. solvateCap ... 112

5.9.63. solvateDontClip .. 113

5.9.64. solvateShell ... 114

5.9.65. source .. 114

5.9.66. transform ... 115

5.9.67. translate ... 116

5.9.68. verbosity .. 116

5.9.69. zMatrix .. 116

5.10. Examples .. 119

5.10.1. A Simple Steroid: Cholesterol .. 119

5.10.2. An Ion-Molecule Complex: 18-Crown-6 and Potassium Cation 121

5.10.3. Free Energy Perturbation: Guanine To Adenine ... 123

5.10.4. Creating Polynucleotides: B DNA .. 124

5.10.5. A Protein/Ligand Complex: trp Repressor ... 126

6. Sander .. 129

6.1. Introduction. .. 129

6.2. History and credits ... 130

6.3. File usage. ... 132

6.4. Overview of the contents of mdin. .. 133

6.5. SECTION ONE: General minimization and dynamics parameters. 134

6.5.1. General flags describing the calculation. ... 134

6.5.2. Nature and format of the input. .. 135

6.5.3. Nature and format of the output. .. 135

Table of Contents v

6.5.4. Potential function. .. 137

6.5.5. The soft repulsion option. .. 139

6.5.6. Polarizable potentials. .. 140

6.5.7. Frozen or restrained atoms. .. 141

6.5.8. Energy minimization. ... 141

6.5.9. Molecular dynamics. .. 142

6.5.10. Temperature regulation. ... 143

6.5.11. PEACS temperature algorithm ... 145

6.5.12. Pressure regulation .. 145

6.5.13. SHAKE bond length constraints. ... 146

6.5.14. Special water treatment. ... 147

6.5.15. Water cap. .. 148

6.5.16. NMR refinement options. .. 149

6.5.17. Particle Mesh Ewald. ... 149

6.6. SECTION TWO: Weight change information. ... 154

6.7. SECTION THREE: File redirection commands. .. 159

6.8. SECTION FOUR: Distance, angle and torsional restraints.: ... 160

6.9. SECTION FIVE: NOESY volume restraints. .. 164

6.10. SECTION SIX: Chemical shift restraints. ... 166

6.11. Example input files. .. 170

6.12. Overview of NMR refinement using SANDER. ... 177

6.12.1. Refinements using distance and angle restraints. .. 178

6.12.2. Direct refinement into J-coupling constants ... 178

6.12.3. Time-averaged restraints. ... 178

6.12.4. Multiple copies refinement using LES ... 180

6.12.5. Refinements using NOESY volume restraints. .. 180

7. Gibbs .. 182

7.1. Introduction .. 182

7.2. Free Energy Techniques Available in GIBBS .. 182

7.3. Understanding the Output .. 183

7.4. Defining States and Obtaining Appropriate Starting Coordinates 184

7.5. Suggested introductory references ... 186

7.6. Assigning files ... 188

7.7. Control parameters ... 190

7.8. Choices Affecting Free Energy Calculations ... 221

7.8.1. I. What method should be used to calculate the free energy? 221

7.8.2. II. Enthalpies and entropies .. 222

7.8.3. III. Mixing rules for vanishing atoms ... 223

7.8.4. IV. Using Dynamically Modified Windows .. 223

7.8.5. V. Potential of Mean Force (PMF) calculations ... 224

7.8.6. VI. Error estimates and convergence .. 226

Table of Contents vi

7.8.7. VII. Changing parameters versus dual topologies .. 226

7.9. References .. 227

8. LES ... 228

8.1. ADDLES for sander .. 228

8.2. Using the new topology/coordinate files ... 230

8.3. More information on the options ... 231

8.4. Unresolved issues .. 233

8.5. References for LES and other multiple-copy methods .. 234

Introduction Page 3

1. Introduction.
Amber is the collective name for a suite of programs that allow users to carry out molecular

dynamics simulations, particularly on biomolecules. None of the individual programs carries this
name, but the various parts work reasonably well together, and provide a powerful framework for
many common calculations. The termamber is also sometimes used to refer to the empirical force
field that is implemented here. It should be recognized however, that the code and force field are sepa-
rate: several other computer packages have implemented theamberforce field, and other force fields
can be implemented with theamber programs. Further, the force field is in the public domain,
whereas the codes are distributed under a license agreement.

Amber 5(1997) represents a significant change from the most recent previous version,4.1, which
was released in 1995. Briefly, the major differences include:

(1) an updated and parallelized implementation of the particle-mesh Ewald routine, and its incor-
poration into the free energy module;

(2) "locally-enhanced sampling" (LES) code that allows parts of the system to be present as multi-
ple copies;

(3) an alternate version of Sander (ROAR) that includes the ability to define part of the system as a
quantum-mechanical section (QM/MM), and includes alternate integrators;

(4) PROFEC (Pictorial Representation of Free Energy Changes), a set of tools for carrying out and
displaying extrapolative free energy changes;

(5) new and parallelized methods for NMR refinement; incorporation of penalites based on pseu-
docontact shifts.

(6) updates to the functionality and stability of LEaP.

1.1. What to read next.
If you are installing this package or want to redimension the code, seeinstallationsection of this

manual. New users should continue with thisintroductionsection, and will also find thetutorial sec-
tion useful. The directories under amber5/demo contain a number of systems that may serve as exam-
ples. You should familiarize yourself with the files in the database directory, amber5/dat, by looking
over thedatabasesection of the manual. There is also lots of information, tips, and examples on the
Amber Web pages athttp://www.amber.ucsf.edu ; a portion of this is included in the distribu-
tion tape: point your browser toamber5/Web/index.html.Although Amber may appear dauntingly
complex at first, it has become easier to use over the past few years, and overall is reasonably straight-
forward once you understand the basic architecture and option choices. Hundreds of people have
learned to use Amber; don’t be easily discouraged.

1.2. Information flow in Amber.
Understanding where to begin in Amber is primarily a problem of managing the flow of informa-

tion in this package. You first need to understand what information is needed by the energy programs
(gibbs, sander, spasms, roarandnmode). You need to know where it comes from, and how it gets into

8/25/97

Introduction Page 4

the form that the energy programs need. This section is meant to orient the new user, and is not a sub-
stitute for the individual program documentation.

Information all the energy programs need:

(1) Cartesian coordinates for each atom in the system.

(2) "Topology": connectivity, atom names, atom types, residue names, and charges.

(3) Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the system.

(4) Commands: The user specifies the procedural options and state parameters desired.

This information is provided to the energy programs in three files: One contains the coordinates; the
second contains the topology and parameters, and is called the "topology file"; the command or
"input" file is the third file. Additional files may needed for special options specified in the command
file.

Cartesian coordinatesusually come from Xray crystallography, NMR spectroscopy, or model-
building. They should be in Brookhaven Protein Databank (PDB) format. The programLEaP pro-
vides a platform for carrying out many of these modeling tasks, but users may wish to consider other
programs as well.

Topologycomes from the database: The database is found in theamber5/datdirectory. It is
calleddb94.dat, and is described in Chapter 3. It contains topology for the standard amino acids as
well as N and C-terminal charged amino acids, DNA, and RNA. The database contains default inter-
nal coordinates for these monomer units, but coordinate information is usually obtained from PDB
files. Topology information for other molecules (not found in the standard database) is kept in user-
generated "residue files".

The basicforce fieldparameters are also found in theamber5/datdirectory; thedatabasesection
of the manual contains some detailed descriptions of various force field options. This file may be used
"as is" for proteins and nucleic acids, or users may prepare their own files that contain modifications to
the "standard" force fields.

8/25/97

Introduction Page 5

data-
base

prep
db94.dat

link
lnkbin

edit

pdb

con-
straints

edtbin
par m

prmtop
prmcrd

sander,
gibbs,

spasms

anal

mdanal

car nal

force
field

seq

nmode
prmtop

prmcrd

nmanal,
lmanal

(also handled byLEaP)

Basic information flow in AMBER

1.3. Preparatory programs.

LEaP is the primary program to create a new system in Amber, or to modify old systems. It combines
the functionality ofprep, link, edit, andparm outlined below. These latter programs
are retained primarily for backward compatibility with older versions of Amber.

PREP
creates or adds to a residue database from the appropriate topology/parameter information.
Required for residues not already defined in the standard AMBER database. (As supplied, the
standard AMBER database contains definitions for the 20 standard amino acids, nucleic acids
with the five standard bases, and a few other units).

LINK
deals only with topology. You tell LINK the residue sequence of your molecule (even if there is
only one residue). LINK will extract the topology information for each residue from the stan-
dard AMBER database or, optionally, from the residue database files created with PREP. The
topology for each residue will be linked together to form the topology for the system. This is
written to a binary file (default name =lnkbin) that is read by EDIT.

EDIT
deals mainly with coordinates. One of the primary purposes of EDIT is to read PDB coordinates
and apply them to the system generated by LINK. Coordinates for atoms that are missing from
the PDB file (usually hydrogens) will in most cases be generated automatically by EDIT, using

8/25/97

Introduction Page 6

the stored internal coordinates in the link binary file link.bin. EDIT can be used to solvate a
molecule in water, to add counterions to nucleic acid systems, or to alter coordinates in specific
ways.

PARM
will determine which bonds, angles, dihedrals, and atom types exist in the system, and extract the
appropriate parameters for them from the force field file. PARM then writes the final coordinate
and topology files needed by all other AMBER programs. used to add simple non-varying inter-
nal coordinate restraints to the system, and to create a two-state topology file for use in GIBBS
free energy perturbation calculations. PARM outputs two files which are used subsequently: The
topology file (default name =prmtop); and the coordinate file (default name =prmcrd).

PROT ONATE
This program will add hydrogens in appropriate locations to peptides and proteins that lack them.
It can also check the suitability of protons that are already present, and convert from one naming
system to another (e.g. from IUPAC-IUB recommendations to Brookhaven format.)

1.4. Energy programs.

SANDER
is the basic energy minimizer and molecular dynamics program. This program relaxes the struc-
ture by iteratively moving the atoms down the energy gradient until a sufficiently low average
gradient is obtained. Structures should usually be minimized before molecular dynamics simu-
lation. The molecular dynamics portion generates configurations of the system by integrating
Newtonian equations of motion. MD will sample more configurational space than MIN, and will
allow the structure to cross over small potential energy barriers. For complicated systems MD is
usually able to locate lower energy conformations than simple energy minimization. Configura-
tions may be saved at regular intervals during the simulation for later analysis.

More elaborate conformational searching and modeling MD studies can also be carried out using
the SANDER module. This allows a variety of constraints to be added to the basic force field,
and has been designed especially for the types of calculations involved in NMR structure refine-
ment.

GIBBS
is the free energy perturbation program. It is similar to SANDER, but uses the ensemble of gen-
erated configurations to calculate the free energy difference between two similar states through
either a perturbation or thermodynamic integration approach. The two states are defined by the
user in LEaP or PARM.

NMODE
is both a quasi-Newton Raphson second derivative energy minimizer and vibrational analysis
program. The NMODE minimizer is capable of obtaining extremely low energy gradients.
NMODE can calculate the normal modes of the system as well as numerous thermochemical
properties. Other features include the ability to compute "Langevin modes" (normal modes
including viscous coupling to a continuum solvent,) and techniques to find transitions states as
well as minima.

RO AR
is a "Penn State" version of sander, that incoporates a variety of features not found in sander
itself. The most notable change is the incorporation of the ability to define a part of the system
quantum-mechanically, allowing it to interact with other parts of the system that are defined in a

8/25/97

Introduction Page 7

molecular mechanics sense. Other features of ROAR include implementation of a Nose-Hoover-
chain MD integrator, Ewald summations, and multiple-time-scale integration routines.

1.5. Analysis programs.

ANAL
is for the analysis of structure and especially molecular mechanical energy of a single configura-
tion of a system. It can be run on structures both before and after modification by the energy
programs. Running ANAL on the initial configuration of your system is a good way to locate
errors in the structure that result in large energies. Anal can also be used for more sophisticated
analyses of energy and structure.

CARNAL
is a molecular dynamics analysis program. It is used for geometrical measurements, root mean
square coordinate fitting, trajectory averaging, and other structural analyses of MD trajectories.
CARNAL executes a programming language for filtering, measuring and comparing multiple
streams of coordinate files (the language contains 44 keywords and uses 10 punctuation/logical
characters). As an example, one can use it to build a trajectory in which the solute is positioned
for minimum root mean square fit of residues in the active site and only the first shell of waters is
included.

RDPARM
is a general purpose utility that can examine and modify prmtop files created by LEaP or PARM.
It can also process trajectory files created from MD simulations, carrying out superpositions,
extractions of coordinates, etc.

NMANAL/LMANAL
computes atomic fluctuations and various correlation functions from normal modes.

8/25/97

Installation Page 8

2. Installation of Amber 5
(1) Compile the basic AMBER distribution:

a. go to the src directory below this one.

b. create a link to the appropriate Machine file, e.g.

ln -s -f Machine/Machine.hp MACHINE for HP, or

ln -s -f Machine/Machine.sgi MACHINE for SGI, etc.

c. ./Makeall >& make.errs &

look at the make.errs file for programs that didn’t get made;

loader warnings (especially on SGI -- see the Machine.sgi file)

can generally be ignored; compiler warnings should be considered,

but most are innocuous.

(2) Compile LEaP:

a. go to the leap directory below this one.

b. xmkmf; make World; make install.leap;

[Note: on some Digital Unix machines, the second step above may

need to be: make "DNETLIB=-ldnet_stub" World]

c. Set your LEAPROOT environment variable using the leapSetup.sh

or leapSetup.csh scripts in amber5/Leap (depending on whether

you use the Boune or C shells).

(3) Compile RO AR:

a. go to the roar/source directory below this one.

b. edit the Makefile, to uncomment the lines appropriate for your machine.

c. make install

(4) Make the database files:

a. go to the dat directory below this one.

b. make

(5) Make Interface (optional):

a. go to the interface directory below this one.

b. source install_int; source install_ambint.

8/25/97

Installation Page 9

(6) Test the basic AMBER distribution

a. go to the test directory below this one.

b. ./Run.tests >& tests.errs &

Examine the tests.errs file: where "possible FAILURE" messages are

found, go to the indicated directory under amber5/test, and look

at the *.dif files. Differences should involve round-off in the

final digit printed, or occasional messages that differ from machine

to machine.

The "standards" to which your output will be compared are contained

in the demo dirctory. The "default" values were run at UCSF on

an HP-735 workstation. You should expect to see slighly different

detailed MD trajectories on other machines, especially in gibbs,

although the "statistics" (which are the real answers) should be

very close to our results. The transition-state theory test may

give a large number of differences -- see the comments in the output

of that test to help interpret it.

c. go to the leap/test directory below this one

d. ./Run >& tests.errs &

Again, examine the tests.errs file for indications of more than

round-off error differences.

e. There is no automated test for gibbs with PME; if you are interested

in this option, please look at the files in

amber5/demo/sodium_gibbs_pme.

f. There is no automated test for addles; if you are interested in this

option, please look at the files in amber5/demo/addles.

2.1. Installing by hand.
If your system is not included among the configuration files supplied, or if you want to alter the

existing file or are curious how these files hide machine dependencies, see the file
amber5/src/Machine/0README . If you are developing or changing theMACHINEfile, you
may want to go more slowly, compiling and testing. You can typemake or make install in any
src/ directory to make the program(s) in that directory, e.g. when redimensioning arrays or otherwise
modifying the code.make clean will cause all .o files to be removed; otherwise they stay around
using significant space to conserve recompilation time.

8/25/97

Installation Page 10

2.2. Testing.
We hav e installed and tested AMBER 5 on a number of machines, using Cray, IBM, Sun,

Hewlett-Packard, DEC, Convex, and Silicon Graphics hardware. However, owing to time and access
limitations, not all combinations of code, compilers, and operating systems have been tested. There-
fore we recommend running the test suites.

The distribution contains a validation suite that can be used to help verify correctness. The
nature of molecular dynamics, and to a lesser extent molecular mechanics, is such that the course of
the calculation is very dependent on the order of arithmetical operations and the machine arithmetic
implementation,i.e. the method used for roundoff. Because each step of the calculation depends on
the results of the previous step, the slightest difference will eventually lead to a divergence in trajecto-
ries. As an initially identical dynamics run progresses on two different machines, the trajectories will
ev entually become completely uncorrelated. Neither of them are ‘‘wrong;’’ they are just exploring dif-
ferent regions of phase space. Hence, states at the end of long simulations are not very useful for veri-
fying correctness. Av erages are meaningful, provided that normal statistical fluctuations are taken into
account. ‘‘Different machines’’ in this context means any difference in floating point hardware, word
size, or rounding modes, as well as any differences in compilers or libraries. Differences in the order
of arithmetic operations will affect roundoff behavior; (a + b) + c is not necessarily the same as a + (b
+ c). Different optimization levels will among other things affect operation order, and may therefore
affect the course of the calculations.

When comparing the output from two different machines for purposes of verification, it is very
important that identical input files be used to generate both sets of output. The validation suite uses
matched inputs and outputs in the amber5/demo/ tree, which is set to read-only to help you avoid over-
writing them with files created on your machine. Testing takes place in the amber5/test/ tree.

All initial values reported as integers should be identical. The energies and temperatures on the
first cycle should be identical. The RMS and MAX gradients reported in sander are often more preci-
sion sensitive than the energies, and may vary by 1 in the last figure on some machines. As is the case
with sander, the trajectory in a Gibbs simulation will diverge, but the resulting free energy should not
if the simulation is run to convergence (this is not done because of the time involved). In minimization
and dynamics calculations, it is not unusual to to see small divergences in behavior after as little as
1-200 cycles.

In general, compiler and optimizer errors are fairly obvious, and result in rather large changes in
the output, if you get any output at all. Seetest/0README for examples of acceptable output dif-
ferences and discussion of peculiarities of various machines.

2.3. Memory Requirements.
The AMBER 5 programs as distributed are dimensioned for a fairly large system (about 10K

atoms), and you may want to change their dimensions to be more appropriate for the machine you are
using if you are running in a tight memory environment. Seesrc/0README for information on
resizing. Some programs use local scripts called resize.csh; this script uses the stream editor sed, and
employs regular expression matching to correctly redimension the code regardless of what its dimen-
sions are currently set to, even if the same parameter has been inadvertently set to different values in
different modules. Here we describe dimensioning of sander as an example. Sander can also be com-
piled the MEM_ALLOC switch set in the MACHINE file. This causes arrays to be allocated dynami-
cally, based on the size of the molecule. If this works on your machine, it can eliminate most of the
resizing effort described below.

8/25/97

Installation Page 11

In src/sander/sizes.h, you will find the following parameters that might need to be changed:

parameter (MAXINT=1300000)

parameter (MAXPR=2500000)

parameter (MAXREA=340000)

parameter (MAXHOL=200000)

parameter (MAXDUP=5000)

The actual memory requirements for a particular job can be determined from the output of SANDER
or GIBBS. An annotated example follows:

1. R E S O U R C E U S E:

Memory Use Allocated Used

Real 340000 19109 <-- minimum MAXREA

Integer 1300000 29904 <-- minimum MAXINT

Max Nonbonded Pairs: 1270096 packed 1 to a machine word

ˆ

"NWDVAR"

Duplicated 26 dihedrals

Duplicated 94 dihedrals <-- minimum MAXDUP

.

.

.

NB-UPDATE: NPAIRS = 150395 HBPAIR = 2804

As is shown above, MAXREA must be at least as large as the number of Real words used. It can
be read directly off the output. MAXDUP must be at least as large as the larger of the two ’duplicated’
values given, in this case 94. The actual amount of memory controlled by MAXDUP is 10 times its
value. MAXINT is slightly more complicated, since it depends on the type of pairlist packing used.
The number of NB pair pointers packed in a native integer word, NWDVAR, is printed in the output as
shown. It will be 1 or 2 on byte-oriented machines, 1, 2, or 4 on 64 bit machines like Cray or FPS264.
The minimum value of MAXINT is determined by the sum of the static integer requirement given in
the output. For gibbs, MAXINT also includes the requirement for the pairlist, while in sander the
pairlist size is determined by MAXPR. The pairlist requirement is the total number of nonbonded
pairs, NPAIRS, divided by NWDVAR. Because the number of pairs may grow or shrink during a run,
you should include a safety factor of 5-10% extra for NPAIRS. The algorithm to determine the
MAXPR (sander) or MAXINT pairlist component is thus:

8/25/97

Installation Page 12

(NPAIRS/NWDVAR) * 1.1

More detailed documentation on memory use and packing configuration is found in sander/sizes.h.
For gibbs, the variables which define memory allocation are MAXREA, MAXINT, and MAXCHR.
MAXREA and MAXINT can be set as described above. MAXCHR allocates character storage, is typ-
ically small, and scales linearly with the number of atoms. These parameters are scaled to a single
parameter,memmax.

8/25/97

The Amber database Page 13

3. The database directory.

There are two main types of force field file in the amber5/dat/ directory: residue descriptions for
building the topolgy database, and force field files. The residue descriptions include topologies, atom
types and charges and have.in extensions. The PARM force field files contains parameters mapped
to the atom types: mass, Van der Waals, bond, angle, torsional and hydrogen bonding terms. These
files have names matching the pattern,parm*.dat .

The following files are found in the database directoryamber5/dat/ :

DATABASE AND DATABASE INPUT FILES:

db94.dat Residue database for the 1994 force field.

(needs to be created by "make db94.dat")

all_nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all_aminont94.in NH3+ amino acid input for database.

db4.dat Residue database for the 1991 force field.

(needs to be created by "make db4.dat")

uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.

unint.in United atom database input, NH3+ Amino acids.

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.

allnt.in All atom database input, NH3+ Amino acids.

nacl.in Ion file

opls_uni.in Normal OPLS residues.

opls_unict.in OPLS COO- Amino acids.

opls_unint.in OPLS NH3+ Amino acids.

FORCE FIELD PARAMETER FILES:

parm96.dat modified version (see below) of 1994 force field

parm94.dat 1994 force field file.

parm91.dat 1991 force field file.

opls_parm.dat OPLS force field file.

STANDARD PROGRAM INPUTS:

wat216.dat Cube of 216 TIP4P waters, MC liquid.

8/25/97

The Amber database Page 14

nucgen.dat Nucgen nucleic acid conformations.

(1) 1994 parameters.These parameters are especially derived for solvated systems, and when used
with an appropriate 1-4 electrostatic scale factor, hav e been shown to perform well at modelling
the small molecules examined to date. The parameters inparm94.datomit the hydrogen bond-
ing terms of earlier force fields.

The main files in the amber5/dat/ directory that users normally need aredb94.dat and
parm94.dat . This is an all-atom force field; no united-atom counterpart is provided. 1-4 elec-
trostatic interactions are scaled by 1.2 instead of 2.0;users must make this adjustment in their
input files for sander, gibbs etc. when using this force field.

Charges for the old AMBER (Weineret al.) force field were derived using the STO-3G basis set.
The 6-31G* basis set was used for the new charges because it exaggerates the dipole moment of
most residues by 10-20%. It thus "builds in" the amount of polarization which would be
expected in aqueous solution. This is necessary for carrying out condensed phase simulations
with an effective two-body force field which does not include explicit polarization. The charge-
fitting procedure is described at length in the Appendix.

Parm96.dat differs from parm94.dat in that the torsions for phi and psi have been modified in
response to high levelab initio calculations performed by Friesner (JACS ?? and unpublished), in
which they showed that the energy difference between conformations were quite different than
calculated by Cornellet al. (using parm94.dat). To create parm96.dat, common V1 and V2
parameters were used for phi and psi, which were empirically adjusted to reproduce the energy
difference between extended and constrained alpha helical energies for the alanine tetrapeptide
studied by M.D. Beachy, D. Chasman, R.B. Murphy, T.A. Halgren and R.A. Friesner,J. Am.
Chem. Soc.119, 5908-5920 (1997). This led to a significant improvement between molecular
mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Friesneret al. This model (parm96.dat) is described by Dixonet al. in
Vol. 3 of Computer Simulation of Biomolecular SystemsA. Wilkinson, P. Weiner, W. Van Gun-
steren, eds. (Elsevier, 1997, in press).

(2) 1991 parameters.These parameters may still be useful for vacuum simulations of nucleic acids
and proteins using a distance-dependent dielectric. The material inparm91.datis the parameter
set distributed with Amber 4.0. TheSTUBnonbonded set has been copied fromparmuni.dat;
these sets of parameters are appropriate for united atom calculations using the "larger" carbon
radii referred to in the "note added in proof" of the 1984 JACS paper. If these values are used for
a united atom calculation, the parameterscnbshould be set to 8.0, not its default value of 2.0.

A number of terms in the non-bonded list of parm91.dat should be noted. The non-bonded terms
for I(iodine),CU(copper) and MG(magnesium) have not been carefully calibrated, but are given
as approximate values. In the STUB set of non-bonded parameters, we have included parameters
for a large hydrated monovalent cation (IP) that represent work by Singh et al 1985 on large
hydrated counterions for DNA. Similar values are included for a hydrated anion (IM).

For alkali ions with explicit waters, we have provided the values of A° qvist (J. Phys. Chem.,
1990, 94: 8021-8024) which are adjusted for Amber’s nonbonded atom pair combining rules to
give the same ion-OW potentials, in order to reproduce the first peak of the radial distribution for
ion-OW and the relative free energies of solvation in water of the various ions. These are

8/25/97

The Amber database Page 15

included in the standard (STDA) parameter file. The atom types are:

QC: Cs+ QK: K+ QL: Li+ QN: Na+ QR: Rb+

(3) OPLS. The file opls_parm.datis a parameter set appropriate for use with the AMBER/OPLS
parameter set as described by Tirado-Rives and Jorgensen: W.L. Jorgensen and J. Tirado-Rives,
J. Am. Chem. Soc.1988,110,1657.

8/25/97

Tutorial Page 16

4. An Amber Tutorial.
AMBER is a suite of programs for use in molecular modeling and molecular simulations. It con-

sists of a substructure database, a force field parameter file, and a variety of useful programs. Here we
give some commented sample runs to provide an overview of how things are carried out. The exam-
ples do not use theinterfaceprograms, and only a cover a fraction of the things that it is possible to do
with AMBER. The formats of the example files shown are described in detail later in the manual, in
the chapters pertaining to the programs. A separate introduction toLEaP is given in Chapter 5.

Additional tutorial examples are available on the Amber web page, at
http://www.amber.ucsf.edu ; a portion of this page is included in the distribution tape: point
your browser toamber5/Web/index.html.

4.1. Example 1. Minimization of BPTI in vacuum.

Step 1. Generate some starting coordinates.

The first step is to obtain starting coordinates. We begin with the file6pti.pdb, exactly as dis-
tributed by the Protein Data Bank and Brookhaven. This file (as with most Brookhaven files) needs
some editing before it can be used by Amber. First, alternate conformations are provided for residue
50, so we need to figure out which one we want. For this example, we choose the "A" conformation,
and manually edit the file to remove the alternate conformers. Second, coordinates are provided for a
phosphate group and a variety of water molecules. These are not needed for the calculation we are
pursuing here, so we also edit the file to remove these. Third, the cysteine residues are involved in
disulfide bonds, and need to have their residue names changed from CYS to CYX to reflect this. Let’s
call this modified file6pti.mod.pdb.Finally, hydrogen positions are not included, so we run the Amber
programprotonateto provide these:

protonate -d amber41/dat/PROTON_INFO < 6pti.mod.pdb > 6pti.H.pdb

In other situations, many different programs could be used to generate starting coordinates, but the
basic ideas are the same: somehow generate what you want in a "pdb" format, then run the result
throughprotonate. We recommend doing the last step even if protons are present, since protonate per-
forms a number of checks on the correctness and naming of hydrogen atoms.

Step 2. Run LEaP to generate the parameter and topology file.

This is a fairly straightforward exercise in loading in the pdb file, adding the disulfide cross links,
and saving the resulting files. Type the following command in eithertleapor xleap:

bpti = loadPdb 6pti.H.pdb

bond bpti.5.SG bpti.55.SG

bond bpti.14.SG bpti.38.SG

bond bpti 30.SG bpti.51.SG

8/25/97

Tutorial Page 17

saveAmberParm bpti prmtop prmcrd

quit

Step 3. Perform some minimization.

Use this script:

Running minimization for BPTI

cat << eof > min.in

200 steps of minimization, distance-dependent dielectric

&cntrl

maxcyc=200, imin=1, cut=12.0, nsnb=20, idiel=0, scee=2.0, ntpr=10,

&end

eof

sander -i min.in -o 6pti.min1.out -c prmcrd -r 6pti.min1.xyz

/bin/rm min.in

This will perform minimization (imin) for 200 steps (maxcyc), using a nonbonded cutoff of 12
‘angstroms’ (cut) and a distance-dependent dielectric constant (idiel). The list of non-bonded
pairs will be updated every 20 steps (nsnb), and intermediate results will be printed every 10 steps
(ntpr). Text output will go to file6pti.min1.out, and the final coordinates to file6pti.min1.xyz.

The rest of this section documents using older AMBER modules to carry out the equilvalent of
Step 2, above. These are included for completeness, but we encourage peoplenot to continue doing
things this way.

Step 2a. Run LINK to establish the topology.

The following script will accomplish this by creating an input file and running LINK with a prep
database:

8/25/97

Tutorial Page 18

Running link for BPTI

cat <<eof >lnkin

bpti

DU

0 0 0 0 0

bpti

P 1 0 1 3 1

ARG 2PRO ASP PHE CYX LEU GLU PRO PRO TYR THR GLY

PRO CYX LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN

ALA LYS ALA GLY LEU CYX GLN THR PHE VAL TYR GLY

GLY CYX ARG ALA LYS ARG ASN ASN PHE LYS SER ALA

GLU ASP CYX MET ARG THR CYX GLY GLY ALA

5 55SG SG 0

14 38SG SG 0

30 51SG SG 0

QUIT

eof

#

link -i lnkin -o lnkout -p $AMHOME/dat/db4.dat

/bin/rm lnkin

You should interpret the file given above using the input description forlink. Basically, the first
seven lines contain operation flags, many of which are almost always the same. The next four lines
give the amino acid sequence, then come lines that establish cross-links (disulfide bonds) between
residues 5-55, 14-38 and 30-51. The UNIXAMHOMEvariable should be set to the location of Amber
on your system, and yourPATHvariable should allow the programlink to be found. The above script
will create a text output filelnkout (which you should read), and a binary filelnkbin, which will be
used as input to the next step.

This step informs AMBER of the "topology" of the system: what all the atoms are called, what
their "types" are (needed to set up a force field), and where all the bonds are. All this information was
assembled from the sequence and the information about amino acids that is contained in thedb4.dat
file.

Step 2b. Run EDIT to insert the starting coordinates.

The following script will accomplish this:

8/25/97

Tutorial Page 19

Running edit for BPTI

cat <<eof > edtin

bpti, 5pti structure

0 0 0 0

XYZ

OMIT

XRAY

0 0 0 0 0

QUIT

eof

#

edit -i edtin -o edtout -pi 6pti.H.pdb

/bin/rm edtin

The XRAY option reads in a Brookhaven format file and compares the atoms in that file to what
Amber expects to see; when it finds matches it inserts the proper coordinates into the system, and it
reports errors when it fails to find matches. In this case, all the atoms are present, and no warning
messages should be obtained.

The output from the above script will be a text file callededtoutand a binary fileedtbin, which
will be used in the next step.

Step 2c. Run PARM to connect the force field to the protein.

This is done by this simple script:

Running parm for BPTI

cat <<eof >prmin

name of system

BIN FOR STDA

0

eof

#

parm -i prmin -o prmout -f $AMHOME/dat/parm91.dat

/bin/rm prmin

In this step, theparmprogram looks through the molecular information inedtbinand determines
all the types of "parameters" (force constants, bond lengths, non-bonded sizes, etc.) that are necessary
to calculate the energy of BPTI. It then searches through theparm91.datfile to find the parameters.
The program will complain if something is missing, but this is just a standard protein, and everything
is in place. The output is a text fileprmout, which you should read, and data filesprmtopandprmcrd
that will be used in the next step. Theprmtopandprmcrdfiles are ascii files, so can be moved easily
from one machine to another. (It is common to runlink, edit, andparmon a workstation, then transfer
theprmtopandprmcrdfiles to a more powerful computer for minimization and dynamics.) Theprm-
top file contains all the information needed to compute the energy of a molecule, andprmcrdcontains
the coordinates (in this case, the starting coordinates.) This division makes sense since minimization
or dynamics will change the coordinates but not the make-up of the molecule.

8/25/97

Tutorial Page 20

You are now ready to go back toStep 3, above.

8/25/97

Tutorial Page 21

4.2. Example 2. Peptide with a non-standard residue.

As a second example, suppose you want to minimize an enzyme - substrate complex, and that
you have a standard PDB file with coordinates for the enzyme and substrate, which we will call
’model.pdb’. Such a file might come from X-ray crystallography or model building. PDB files gener-
ally don’t contain connectivity information, so this must be provided. In addition, each atom of the
system must be assigned the appropriate AMBER atom type so the correct force field parameters will
be applied. For the amino acid residues of the protein, this connectivity and atom type information
already exists, keyed by residue name in the AMBER database, and need not be specified. However,
the substrate will require that you input connectivity and atom type information. This is done using the
program PREP. The input for prep consists of only one file, in this case subprep.in. Running PREP
will give you two output files. One of the files, sub.res, is a residue topology file for your substrate. It
will have the same format as the amino acid residues in the standard data- base. The other file,
prep.out, is a list of diagnostic information.

Amber programs are usually run through the use of command files. In the following examples,
one will see that the control file for each program is namedfilename.in. The output file containing
user information and diagnostics is calledfilename.out. The binary topology files that are passed from
module to module are calledfilename.bin,where filename is the name of the module that created it.
Residue files from prep have names ending in ".res", pdb files have names ending in ".pdb", and coor-
dinate files created by AMBER are usually namedname.crd. It is not essential that these naming con-
ventions be adhered to but it will facilitate communication with other AMBER users. The following
two files are the command and input files that create the substrate residue file using PREP.

8/25/97

Tutorial Page 22

Running PREP

Unix:

˜amber41/exe/prep -i subprep.in -o prep.out

VMS:

$ set default [yourdir.tet]

$ assign subprep.in for005

$ assign prep.out for006

$ run [amber41.exe]prep

Here is the "subprep.in" file; strip comments before using.

0 0 1 !control for database generation

!blank card

substrate !title

sub.res !name of output file

SUB INT 0 !control parameters - see PREP.DOC

CORRECT OMIT DU BEG

1 DUMM DU M 0 0 0 0. 0. 0. 0.

2 DUMM DU M 1 0 0 1.449 0. 0. 0.

3 DUMM DU M 2 1 0 1.522 111.1 0. 0.

4 N N M 3 2 1 1.335 116.6 180. -0.5200

5 HN H E 4 3 2 1.01 119.8 0. 0.2480

6 CA CH M 4 3 21.449 121.9 180. 0.2270

7 CB C2 S 6 4 3 1.525 111.1 60. 0.0390

8 CG C2 S 7 6 4 1.525 109.47 180. 0.0530

9 CD C2 S 8 7 6 1.525 109.47 180. 0.0480

10 CE C2 S 9 8 7 1.525 109.47 180. 0.2180

11 NZ N3 3 10 9 8 1.47 109.47 180. -0.2720

12 HNZ1 H3 E 11 10 9 1.01 109.47 60. 0.3110

13 HNZ2 H3 E 11 10 9 1.01 109.47 180. 0.3110

14 HNZ3 H3 E 11 10 9 1.01 109.47 300. 0.3110

15 C JJ M 6 4 3 1.522 111.1 180. 0.5260

16 O O2 E 15 6 4 1.229 120.5 0. -0.5000

IMPROPER

-M CA N H

CA +M C O

CB CA N C

DONE

STOP

The next step is to link the appropriate residues from the standard database, along with the
residue file you created with PREP into a macromolecule. This is done using the program LINK. Note
that if you were only interested in the enzyme and not the substrate, you would start at this point. The

8/25/97

Tutorial Page 23

third line of link.in tells LINK that the topological information for residue "SUB" is in the file sub.res
(the "standard" residues are retrieved from the prep database file specified with the ‘−p’ argument).
The residues of the enzyme are listed sequentially in the order that they are to be bonded. The sub-
strate residue is put at the end, separated by the spacer residue "***" indicating that it is not covalently
attached. Alternatively it could be specified as a separate molecule. After the residue sequence, disul-
fide crosslinks are input. Any desired covalent attachment can be input as a crosslink. See
LINK.DOC for details. Running LINK again produces two files:link.bin, the molecular topology file,
andlink.out, which contains diagnostic information.

Running LINK

Unix:

˜amber41/exe/link -i link.in -o link.out -l link.bin -p db4.dat

VMS:

$ SET DEFAULT [YOURDIR.TET]

$ ASSIGN [AMBER.DAT]DB4.DAT FOR001

$ ASSIGN LINK.IN FOR005

$ ASSIGN LINK.OUT FOR006

$ ASSIGN LINK.BIN FOR010

$ RUN [AMBER41.EXE]LINK

LINK.IN:

TACK’S PROTEIN !title

!blank line

SUB 0sub.res !filename for residue SUB

!blank card

DU !symbol for dummy atoms

0 0 0 0 0 !print controls

tacks protein !subtitle for first molecule

P 1 0 1 3 1 !control parameters for first molecule

ASP 1SER CYX GLU ALA ILE ILE HIP GLU LEU HID SER

ARG HID PRO GLY ASP PHE GLY ALA ASP ALA GLN GLY

ALA MET ASN LYS ALA CYX GLU SER *** SUB !residue list

!blank card

3 30SG SG 0 !crosslink info

!blank card

QUIT !exit control

The binary filelink.bin contains your system, but at this point it lacks the correct atomic coordi-
nates. It does contain the internal coordinates for each residue, but the residues are linked with arbi-
trary dihedral angles. The file also contains some pseudo atoms called "dummy" atoms. They are
there to define the space axes for the internal coordinate system and must be removed. The addition of
correct coordinates and removal of dummy atoms is accomplished with the program EDIT. Input for
EDIT consists of a small control file,edit.in; the topology file from LINK,link.bin; and your PDB file.
Tw o files are output:edit.bin, the molecular topology file (now with correct coordinates and dummy
atoms removed), andedit.outcontaining user information and diagnostics. A look atedit.outgenerally
reveals some frightening diagnostics stating that input for some atoms was not found. What this actu-
ally means is that the PDB file was missing some atoms present in the database residues, or had some

8/25/97

Tutorial Page 24

extra atoms not present in the database (sometimes these are the same atoms, with different names). If
atoms in the PDB file are missing, edit will add them using the stored internal coordinates of the
residues. In the event that this can’t be done (notably for the very first atoms in a molecule), the correct
orientation of the atoms can be specified onedit.in using the "ABC" option of EDIT. Extra atoms in
the PDB file are ignored. Some important notes: EDIT expects the residue sequence of the pdb file to
match the link input file. If any residues are missing or extra ones are present, the program will stop
with an error message. The ordering of atoms within a residue does not matter, nor do the atom
sequence numbers, however, all atom records for a given residue should have the same residue
sequence number.

Running EDIT

Unix:

˜amber41/exe/edit -i edit.in -o edit.out -l link.bin

-e edit.bin -pi model.pdb -po edit.pdb

VMS:

$ set default [yourdir.tet]

$ assign edit.in for005

$ assign edit.out for006

$ assign link.bin for010

$ assign edit.bin for012

$ assign model.pdb for015

$ run [amber41.exe]edit

EDIT.IN:

tacks protein !title

0 0 0 0 !print controls

XYZ !select xyz option

OMIT !xyz input - omit dummy atoms

XRAY !select xray option

0 0 0 0 !xray input

ABC !select abc option

1 0 !abc input

1 1.01 109.5 60. 0 2 5 6 !abc input

3 1.01 109.5 180. 0 2 5 6 !abc input

4 1.01 109.5 300. 0 2 5 6 !abc input

!blank card

QUI !terminate abc option

QUIT !terminate edit

All that remains to be done is add force field parameters to the molecular topology file, and you
will be ready to run either molecular mechanics or molecular dynamics. Force field parameters are
added with the program PARM. Input for PARM consists of a control file;parm.in, a parameter file;
parm91.dat, and the topology file from EDIT;edit.bin. parm91.datis part of the AMBER 4 distribu-
tion. Output from PARM consists of the completed topology file,prmtop, a coordinate file,prmcrd,
and the diagnostics fileprmout. The finished topology and coordinate files can be written either in
binary form or formatted form. In general we now use only the formatted form for all files, so they
can be used on various machines regardless of the underlying representation of data. It is important to

8/25/97

Tutorial Page 25

look at parm.out to make sure that all the needed parameters were found inparm91.dat. If you are only
working with amino acids, nucleic acids, or water, they should all be there. However, it is very easy to
construct a molecule for which parameters do not exist inparm91.dat. In that event you will have to
create some on your own. Often parameters for similar bonding situations can be found in
parm91.dat, and simply duplicated in that file with the appropriate atom types. An overview of
parameter generation is contained in Appendices C and D.

Running PARM

Unix:

˜amber41/exe/parm -i parm.in -o prmout

-e edit.bin -f amber5/dat/parm91.dat

-c prmcrd -p prmtop

VMS:

$ SET DEFAULT [YOURDIR.TET]

$ ASSIGN PARM.IN FOR005

$ ASSIGN PARM.OUT FOR006

$ ASSIGN [AMBER41.DAT]PARM91.DAT FOR010

$ ASSIGN PARM.TOP FOR012

$ ASSIGN EDIT.BIN FOR015

$ ASSIGN PARM.CRD FOR018

$ RUN [AMBER41.EXE]PARM

PARM.IN:

tack helix !title

BIN FOR STDA !format controls + nonbon param set name

0 0 0 !print flags

1 1 1 !print flags

Now you are finally ready to run SANDER, the molecular mechanics/dynamics module. Input
for this program consists of a control file,sander.in, the topology file from PARM;prmtop, and the
coordinate file from PARM;prmcrd. Output from SANDER consists of the final coordinates,
minmd.crd,and a record of the molecular mechanical energies of the system as the minimiza-
tion/dynamics proceeds,minmd.out.Output from a dynamics run may optionally include files contain-
ing the dynamics trajectory and velocities of all the atoms of the system over the course of the simula-
tion.

SANDER.COM: This file will typically be submitted to a batch queue, or run in the background at
reduced priority.

8/25/97

Tutorial Page 26

Running SANDER

SANDER.IN:

This file uses thenameliststyle of input.

500 steps min, constant dielectric

&cntrl

imin = 1, maxcyc = 500, nrun = 0, nsnb = 50,

idiel = 1, cut = 8.0, scee = 2.0,

&end

Unix:

sander -i sander.in -o minmd.out -p prmtop

-c prmcrd -r minmd.crd -inf minmd.inf

VMS:

$ SET DEFAULT [YOURDIR.TET]

$ ASS SANDER.IN FOR005

$ ASS MINMD.OUT FOR006

$ ASS PARM.BIN FOR020

$ ASS COORD.DAT FOR021

$ ASS COORD.OUT FOR033

$ RUN [AMBER41.EXE]SANDER.EXE

8/25/97

Tutorial Page 27

4.3. Example 3. A more complicated protein example.

This section works through in some detail setting up a protein simulation in AMBER. The
example is for plastocyanin in water, and contains a number of things that experienced AMBER users
know how to do, but which may be far from obvious for others. In particular, there are a number of
items that go beyond a simple protein. The examples assume you have an environment variable
$amber5 that points to the top of your AMBER distribution.

(1) Plastocyanin contains a metal ion bound to four amino acids, and I also want to modify a
methionine residue that is bound to the copper in such a way that it has a different type of sul-
fur than is found in the standard database.

(2) The Brookhaven crystallographic file (1PLC) contains crystallographic waters, which I might
want to keep. Only the oxygen positions are provided, so I will need to try to figure out where
to put protons.

(3) Somewhat unusually, this PDB file has proton positions for the protein, which I would like to
keep. However, Brookhaven uses proton names that are different than what NMR spectro-
scopists use, and I would like to be able to use the latter to make easy contact with NMR
results.

(4) Using the most probable ionization states of the protein (at neutral pH) results in a protein with
a net charge of -8, so I would like to include mobile counterions in the solution to create an
overall neutral system.

This will be a lot of work, but it’s infinitely easier now in AMBER than it used to be. We will
also use this example to show how to set up some constraints, such as might be found in a NMR
refinement, and will illustrate how to carry out simulated annealing optimizations.

4.3.1. Make database file for the modified residues.
For plastocyanin, I will define two new types of residues: HIC, which will be a histidine coupled

to a copper ion, and which will take the place of HIS 37 in the "real" sequence, and MEM, which is a
modified methionine where the sulfur atom is of type "SM" rather than type "S". "SM" is a type I
made up, and will use to create special force field parameters for MET 94, which is bonded to the cop-
per ion with a fairly long bond.

Here are the input files for these two residues:

8/25/97

Tutorial Page 28

hicu.in
0 0 2

HISTIDINE PLUS
hicu.db4

HIC INT 1
CORR OMIT DU BEG

0.00000
1 DUMM DU M 0 -1 -2 0.000 0.000 0.000 0.00000
2 DUMM DU M 1 0 -1 1.449 0.000 0.000 0.00000
3 DUMM DU M 2 1 0 1.522 111.100 0.000 0.00000
4 N N M 3 2 1 1.335 116.600 180.000 -0.34790
5 H H E 4 3 2 1.010 119.800 0.000 0.27470
6 CA CT M 4 3 2 1.449 121.900 180.000 -0.13540
7 HA H1 E 6 4 3 1.090 109.500 300.000 0.12120
8 CB CT 3 6 4 3 1.525 111.100 60.000 -0.04140
9 HB2 HC E 8 6 4 1.090 109.500 300.000 0.08100

10 HB3 HC E 8 6 4 1.090 109.500 60.000 0.08100
11 CG CC S 8 6 4 1.510 115.000 180.000 -0.00120
12 ND1 NB B 11 8 6 1.390 122.000 180.000 -0.15130
13 CU CU E 12 11 8 2.050 126.000 0.000 0.38660
14 CE1 CR B 12 11 8 1.320 108.000 180.000 -0.01700
15 HE1 H5 E 14 12 11 1.090 120.000 180.000 0.26810
16 NE2 NA B 14 12 11 1.310 109.000 0.000 -0.17180
17 HE2 H E 16 14 12 1.010 125.000 180.000 0.39110
18 CD2 CW S 16 14 12 1.360 110.000 0.000 -0.11410
19 HD2 H4 E 18 16 14 1.090 120.000 180.000 0.23170
20 C C M 6 4 3 1.522 111.100 180.000 0.73410
21 O O E 20 6 4 1.229 120.500 0.000 -0.58940

LOOP
CG CD2

IMPROPER
-M CA N H
CA +M C O
CE1 CD2 NE2 HE2
CG NE2 CD2 HD2
ND1 NE2 CE1 HE1
ND1 CD2 CG CB

DONE
STOP

8/25/97

Tutorial Page 29

mem.in

0 0 2

METHIONINE, with SM atom type for the sulfur

mem.db4

MEM INT 1

CORR OMIT DU BEG

0.00000

1 DUMM DU M 0 -1 -2 0.000 0.000 0.000 0.00000

2 DUMM DU M 1 0 -1 1.449 0.000 0.000 0.00000

3 DUMM DU M 2 1 0 1.522 111.100 0.000 0.00000

4 N N M 3 2 1 1.335 116.600 180.000 -0.41570

5 H H E 4 3 2 1.010 119.800 0.000 0.27190

6 CA CT M 4 3 2 1.449 121.900 180.000 -0.02370

7 HA H1 E 6 4 3 1.090 109.500 300.000 0.08800

8 CB CT 3 6 4 3 1.525 111.100 60.000 0.03420

9 HB2 HC E 8 6 4 1.090 109.500 300.000 0.02410

10 HB3 HC E 8 6 4 1.090 109.500 60.000 0.02410

11 CG CT 3 8 6 4 1.525 109.470 180.000 0.00180

12 HG2 H1 E 11 8 6 1.090 109.500 300.000 0.04400

13 HG3 H1 E 11 8 6 1.090 109.500 60.000 0.04400

14 SD SM S 11 8 6 1.810 110.000 180.000 -0.27370

15 CE CT 3 14 11 8 1.780 100.000 180.000 -0.05360

16 HE1 H1 E 15 14 11 1.090 109.500 60.000 0.06840

17 HE2 H1 E 15 14 11 1.090 109.500 180.000 0.06840

18 HE3 H1 E 15 14 11 1.090 109.500 300.000 0.06840

19 C C M 6 4 3 1.522 111.100 180.000 0.59730

20 O O E 19 6 4 1.229 120.500 0.000 -0.56790

IMPROPER

-M CA N H

CA +M C O

DONE

STOP

I mademem.injust by copying the relevant portions of the methionine entry fromall_amino94.inin
the database directory, changing the atom type of the sulfur, and adding appropriate first and last lines.
Similar things were done for the histidine residue (starting from the library’s HIP residue), except that
I added a copper atom bonded to ND1. It is a good idea to read these files alongside the PREP docu-
mentation.

Then, these files were used as input to PREP:

prep -i hicu.in -o hicu.prpout -p hicu.params

prep -i mem.in -o mem.prpout -p mem.params

8/25/97

Tutorial Page 30

This creates the fileshicu.db4andmem.db4, which describe these modified residues that will be incor-
porated into our protein.

4.3.2. Do some editing of the PDB file.
Several small changes need to be made to the input PDB file to make it work with Amber:

(1) First, we need to split of the HOH water residues into a separate file, saywatpdb, and remove
them from the main PDB file (call this modified file1plc.nowat.pdb). Further, the remarks in
this pdb file indicate that waters #183 and #187 are a disordered pair, and should not both be
present. So, I arbitrarily choose to delete #187 and to keep #183. For some reason, these two
disordered waters were both put in the PDB file, and not assigned as alternate conformers.
Note that AMBER by default will also choose only the principal position for disordered side
chains,i.e. the "A" conformation if there is more than one. But this is done automatically, and
does not require editing. If you want to start a simulation from the "B" conformation of a side
chain, you need to manually edit the PDB file to remove the "A" conformation and blank-out
the alternate conformation flag for the atoms you want AMBER to use. Generally speaking,
you have to look carefully at a Brookhaven file before really using it.

(An alternative is to simply strip out the "crystallographic" waters and not use them at all.
This is most appropriate if you are planning an MD or free energy simulation that will go
through an extensive equilibration period before the "real" simulation begins. One goal of
equilibration is to minimize dependence upon the starting conditions, and certainly the individ-
ual water molecules will move around a lot during any decent equilibration. At that point, the
fact that you went to some trouble to originally place the waters in some nice positions may be
irrelevant. Or maybe not; opinions differ on this matter, which is why we try to provide flexi-
ble tools in Amber. For this tutorial, we will not use the "crystallographic" waters in our start-
ing structure.)

One final change involves residue names. Brookhaven files do no distinguish between cysteine
residue that are involved in bonds to other things (and hence which have no proton on the sul-
fur atom) and "free" residues that do have such a proton. Molecular mechanics studies need to
make this sort of distinction. Since residue 84 in plastocyanin has the sulfur atom bonded to
the copper ion, I changed its name from CYS to CYX. Similar comments apply to histidines:
molecular mechanics studies need to know (or guess, or assume) whether the histidine has a
proton bonded at the ‘delta‘ position (HID), at the ‘epsilon‘ position (HIE), or at both (HIP).
This is pretty easy for plastocyanin, since the two histidine side chains are both bound to cop-
per through the ND1 nitrogen. So we initially change both HIS residues to HIE, in order to
tell AMBER to put the protons on the NE2 nitrogen. (Note that in many other proteins, it will
often be reasonable to assign surface-accessible histidines to be protonated, residue name HIP.)

(2) Next, we need to work on the proton names in the main protein file. Most Brookhaven crystal-
lographic files do not have protons, so theprotonateprogram is used to add them. Even here,
we want to change the names Brookhaven uses to NMR conventions as described above, so we
will still use protonate. This program also does sanity and chirality checking, so it is generally
a good idea to use it prior to putting any pdb file into Amber. Now run:

csh:
(protonate -k -d PROTON_INFO < 1plc.nowat.pdb

> 1plc.nowat.H.pdb) >& protonate.out

8/25/97

Tutorial Page 31

sh:
protonate -k -d PROTON_INFO < 1plc.nowat.pdb

> 1plc.nowat.H.pdb 2> protonate.out

The -k option changes the names but "keeps" the positions of the protons in the input pdb file.
As in other examples, you need to use the location of the PROT ON_INFO file on your
machine in place the the location listed above.

(3) Next, I moved the copper ATOM card from the end of the pdb file into residue 37, changing its
residue name to "HIC" and its residue number to 37. I also changed the residue name for the
rest of atoms of residue 37 from "HIE" to "HIC", and changed the residue name for residue 92
from "MET" to "MEM" as described above. I call this file1plc.protein.pdb.

4.3.3. Set up the system without solvent.
AMBER provides two ways to set up the files needed to carry out minimization or molecule

dynamics. The original ("old") way runs the programslink, edit,andparm, each of which needs a sep-
arate input file. The "new" way involves running the programLEaP (which stands for "link, edit and
parm"). Most new users will runLEaP, but it won’t hurt to skim over the next section, which
describes the "old" way, since the ideas required are very similar in the two approaches.

4.3.3.1. (Alternative 1): Create link, edit and parm files.
AMBER gets the sequence information, plus information about how the copper ion is bound to

its ligands, from the input files to LINK:

8/25/97

Tutorial Page 32

lnkin.nowat

PLASTOCYANIN

HIC 2hicu_all.db4

MEM 2met.db4

DU

0 0 0 0 0

Plastocyanin (poplar)

P 1 0 1 3 1

ILE 2ASP VAL LEU LEU GLY ALA ASP ASP GLY SER LEU ALA PHE VAL PRO

SER GLU PHE SER ILE SER PRO GLY GLU LYS ILE VAL PHE LYS ASN ASN

ALA GLY PHE PRO HIC ASN ILE VAL PHE ASP GLU ASP SER ILE PRO SER

GLY VAL ASP ALA SER LYS ILE SER MET SER GLU GLU ASP LEU LEU ASN

ALA LYS GLY GLU THR PHE GLU VAL ALA LEU SER ASN LYS GLY GLU TYR

SER PHE TYR CYX SER PRO HIE GLN GLY ALA GLY MEM VAL GLY LYS VAL

THR VAL ASN

37 87CU ND1 0

37 84CU SG 0

37 92CU SD 0

QUIT

Again, it is a good idea to compare this input to the descriptions in the manual. Note the the copper
atom is already bonded to the ND1 atom of HIS37, and that crosslink commands to used to add three
other ligands to it. Then run:

link -i lnkin.nowat -o lnkout.nowat

-p /afs/psc/packages/amber/amber41/dat/db94.dat

where you must substitute the location ofdb94.daton your machine for the file listed above. Study
the output filelnkout.nowatto see if it looks like everything worked OK.

Next create a standard input for for edit:

edtin.nowat

poplar plastocyanin

0 0 0 0

XYZ

OMIT

XRAY

0 0 0 0 0

QUIT

and run:

edit -i edtin.nowat -o edtout.nowat -pi 1plc.protein.pdb

8/25/97

Tutorial Page 33

and look carefully at the output file. It is very common to find warning messages at this point, and
they need to be cleared up, usually by minor re-editing of the input PDB file.

Finally, create a standard input file forparm:

prmin

standard parm using parm94.dat

BIN FOR MOD4

0 0 0

1

We also need to make modifications to the AMBER force field to recognize the copper atom and the
modified methionine residue. The best way to do this is not to edit the main force field file, but to cre-
ate afrcmodfile with changes specific to each project. Here is the one I created for plastocyanin:

8/25/97

Tutorial Page 34

frcmod.pcy

modifications to force field for poplar plastocyanin

MASS

SM 32.06

CU 65.36

BOND

NB-CU 70.000 2.05000 kludge by JRS

CU-S 70.000 2.10000 kludge by JRS

CU-SM 70.000 2.90000 for pcy

CT-SM 222.000 1.81000 met(aa)

ANGLE

CU-NB-CV 50.000 126.700 JRS estimate

CU-NB-CR 50.000 126.700 JRS estimate

CU-NB-CP 50.000 126.700 JRS estimate

CU-NB-CC 50.000 126.700 JRS estimate

CU-SM-CT 50.000 120.000 JRS estimate

CU-S -CT 50.000 120.000 JRS estimate

CU-S -C2 50.000 120.000 JRS estimate

CU-S -C3 50.000 120.000 JRS estimate

NB-CU-NB 10.000 110.000 dac estimate

NB-CU-SM 10.000 110.000 dac estimate

NB-CU-S 10.000 110.000 dac estimate

SM-CU-S 10.000 110.000 dac estimate

CU-SM-CT 50.000 120.000 JRS estimate

CT-CT-SM 50.000 114.700 met(aa)

HC-CT-SM 35.000 109.500

H1-CT-SM 35.000 109.500

CT-SM-CT 62.000 98.900 MET(OL)

DIHE

X -NB-CU-X 1 0.000 180.000 3.000

X -CU-SM-X 1 0.000 180.000 3.000

X -CU-S -X 1 0.000 180.000 3.000

X -CT-SM-X 3 1.000 0.000 3.000

NONBON

CU 2.20 0.200

SM 2.00 0.200

Crating afrcmodfile is a bit of an art, since one is often faced with unknown parameters (such as force
constants from copper to its ligands in the above example.) In this tutorial, I am just going over the
mechanics of running AMBER, and make no claims about the validity or appropriateness of the above
parameters. There is a big literature on parameter estimation, and users are encouraged to consult this
when faced with unusual chemical environments.

8/25/97

Tutorial Page 35

Now, runparmwith the above inputs:

parm -i prmin -o prmout.nowat

-f $amber5/dat/parm94.dat

-m frcmod.pcy -p prmtop.nowat -c prmcrd.nowat

Again, you need to put in the location of theparm94.dat file on your machine. Study the
prmout.nowatfile to see if it looks like things went OK. It might be typical to find "missing parame-
ters" at this point, which means that thefrcmodfile does not contain all of the parameters you need;
the missing ones will be identified inparmoutput.

You might also create a pdb file at this point with the new coordinates:

ambpdb -p prmtop.nowat -wrap < prmcrd.nowat > 1plc.protein.amber.pdb

The -wrap flag will make the output proton names more like those Brookhaven uses. Leave this flag
off if you want the names in the output PDB file to be the internal AMBER proton names.

4.3.3.2. (Alternative 2): Use LEaP to set up the required files.
It is simpler to carry out the above procedure inLEaP. Let’s start by setting up an input file:

leap.in

PARM94 = loadamberparams frcmod.pcy

loadAmberPrep mem.lib

loadAmberPrep hicu.lib

plc = loadPdb 1plc.protein.pdb

bond plc.87.ND1 plc.37.CU

bond plc.84.SG plc.37.CU

bond plc.92.SD plc.37.CU

saveAmberParm plc prmtop.nowat prmcrd.nowat

By default,LEaP will read in the standard AMBER 94 force field libraries. The first line in the file
above merges in the extra material from thefrcmod.pcyfile described above. The next two lines load
in the files describing the modified residues HIC and MEM. The a molecule, named "plc" is created
by reading in the appropriate pdb file. (LEaPwill often complain at this point if it finds something it
doesn’t understand or doesn’t like; a typical task would be to modify the pdb file and try again.) Next,
the three "cross-links" that connect residues 84, 87 and 92 to the copper atom are added via thebond
command. Finally, thesaveAmberParm command is used to create the required output files.
Details of all of these commands can be found in theLEaPmanual.

The file above isread intoLEaPas follows; ">" is the prompt thatLEaPprovides:

tleap

> source leap.in

> quit

8/25/97

Tutorial Page 36

4.3.4. Run a simple minimization.
We start with a very simple minimization with restraints to keep the protein from moving too far.

In the examples below, do not include the comments in parenthesis in your actual files.

min1.in

Minimization with Cartesian restraints

&cntrl

imin=1, maxcyc=200, (invoke minimization)
scee=1.2, idiel=0, cut=12.0, (force field options)
nsnb=20, (update non-bonded list)
ntpr=5, (print frequency)
ntr=1, (turn on cartesian restraints)

&end

Group input for restrained atoms

1.0 (force constant for restraint)
RES 1 99 (all atoms in residues 1-99)
END

END

To run this file, use the following command:

sander -i min1.in -c prmcrd.nowat -p prmtop.nowat -ref prmcrd.nowat

-o min1.out -r min1.xyz

4.3.5. Run simulated annealing optimization.
At this point, one often would want to carry out a more robust optimization, using a dynamical

simulated annealing protocol. One also might add some sort of constraints at this point. In this exam-
ple, we will illustrate how NMR-derived constraints might be incorporated; constraints from other
sources of information would be handled in a similar fashion.

8/25/97

Tutorial Page 37

simul_anneal.in

15ps simulated annealing protocol

&cntrl

nstlim=15000, ntt=1, (time limit, temp. control)
scee=1.2, (scee must be set - 1-4 scale factor)
ntpr=500, pencut=0.1, (control of printout)
ipnlty=1, nmropt=1, (NMR penalty function options)
vlimit=10, (prevent bad temp. jumps)

&end

#
Simple simulated annealing algorithm:
#
from steps 0 to 1000: raise target temperature 10->1200K
from steps 1000 to 3000: leave at 1200K
from steps 3000 to 15000: re-cool to low temperatures
#

&wt type=’TEMP0’, istep1=0,istep2=1000,value1=10.,

value2=1200., &end

&wt type=’TEMP0’, istep1=1001, istep2=3000, value1=1200.,

value2=1200.0, &end

&wt type=’TEMP0’, istep1=3001, istep2=15000, value1=0.,

value2=0.0, &end

#
Strength of temperature coupling:
#
steps 0 to 3000: tight coupling for heating and equilibration
steps 3000 to 11000: slow cooling phase
steps 11000 to 13000: somewhat faster cooling
steps 13000 to 15000: fast cooling, like a minimization
#

&wt type=’TAUTP’, istep1=0,istep2=3000,value1=0.2,

value2=0.2, &end

&wt type=’TAUTP’, istep1=3001,istep2=11000,value1=4.0,

value2=2.0, &end

&wt type=’TAUTP’, istep1=11001,istep2=13000,value1=1.0,

value2=1.0, &end

&wt type=’TAUTP’, istep1=13001,istep2=14000,value1=0.5,

value2=0.5, &end

&wt type=’TAUTP’, istep1=14001,istep2=15000,value1=0.05,

value2=0.05, &end

(continued on next page)

8/25/97

Tutorial Page 38

simul_anneal.in (continued)

#
"Ramp up" the restraints over the first 3000 steps:
#

&wt type=’REST’, istep1=0,istep2=3000,value1=0.1,

value2=1.0, &end

&wt type=’REST’, istep1=3001,istep2=15000,value1=1.0,

value2=1.0, &end

&wt type=’END’ &end

LISTOUT=POUT (get restraint violation list)
DISANG=RST.f (file containing NMR restraints)

The restraint file referenced above (RST.f) would ordinarily hold hundreds to thousands of con-
straints based on experimental information. The constraints would keep the protein near its native
conformation even though we have heated to a very high temperature. Examples of such constraint
files are given in the SANDER section of the Users’ Manual. Since a refinement like this can take a
long time to run, we have not actually included files for it in the tutorial directory: the example given
above can serve as a guide for real calculations that you might want to carry out.

4.3.6. Setup the system with counterions in a box of water.
Next, we turn from "vacuum" simulations to consider how to set up and carry out molecular

dynamics simulations in a box of solvent water, using periodic boundary conditions. This example is
typical of many molecular dynamics simulations begin carried out with AMBER.

4.3.6.1. Work on positioning counterions.
The question of how or whether to include solvent counterions in protein and DNA simulations

is a difficult one. Generally speaking, DNA simulations have often used counterions and many exist-
ing protein simulations have not. In terms just of "mechanics" and not science, AMBER will suggest
counterion positions for you, by using thecionprogram:

csh:
(cion -elstat -p prmtop.nowat < 1plc.protein.amber.pdb > cion.pdb)

>& cion.out

sh:
cion -elstat -p prmtop.nowat < 1plc.protein.amber.pdb > cion.pdb

2> cion.out

This routine places counterions at the most favorable electrostatic positions, until it achieves a neutral
overall system. Note, however, that this may end up corresponding to a fairly high salt concentration,
and may not be at all what you want. At this stage, the user’s judgment is required, which is why a lot
of this stuff is not yet automated. This tutorial can’t go over all of the pros and cons of various
choices, and in any event, different users will have different preferences. Let’s suppose that you
choose a few sodium counterions to add to the simulation. For this example, we will choose the first

8/25/97

Tutorial Page 39

eight counterions, in order to neutralize the -8 charge on the protein itself. Then, you need to run
LINK again, using an input something like the following:

lnkin.cion

PLASTOCYANIN

HIC 2hicu.db4

MEM 2mem.db4

DU

0 0 0 0 0

Plastocyanin (poplar)

P 1 0 1 3 1

ILE 2ASP VAL LEU LEU GLY ALA ASP ASP GLY SER LEU ALA PHE VAL PRO

SER GLU PHE SER ILE SER PRO GLY GLU LYS ILE VAL PHE LYS ASN ASN

ALA GLY PHE PRO HIC ASN ILE VAL PHE ASP GLU ASP SER ILE PRO SER

GLY VAL ASP ALA SER LYS ILE SER MET SER GLU GLU ASP LEU LEU ASN

ALA LYS GLY GLU THR PHE GLU VAL ALA LEU SER ASN LYS GLY GLU TYR

SER PHE TYR CYX SER PRO HIE GLN GLY ALA GLY MEM VAL GLY LYS VAL

THR VAL ASN

37 87CU ND1 0

37 84CU SG 0

37 92CU SD 0

Eight sodium counterions:

P 0 0 1 3 0

CIP 2*** CIP *** CIP *** CIP *** CIP *** CIP *** CIP *** CIP

QUIT

Note the use of the "***" residue to indicate that the counterions are not chemically bonded to
each other. Now run:

rm lnkbin edtbin

link -i lnkin.cion -o lnkout.cion

-p $amber5/dat/db94.dat

where you must again substitute the location ofdb94.daton your machine for the file listed above.

8/25/97

Tutorial Page 40

Study the output filelnkout.cionto see if it looks like everything worked OK.

4.3.6.2. Run EDIT and PARM to add a box of waters around the system.
Actually, the hard part is mostly done. At this point we would manually add the top eight coun-

terions from the filecion.pdb to the bottom of the file1plc.protein.pdb, (call this new file
1plc.cion.pdb) and then would run edit to read in the PDB file that has counterions, and to add a box of
water molecules around the solute. Here is a sample input file for that:

edtin.wat

poplar plastocyanin

0 0 0 0

XYZ

OMIT

XRAY

0 0 0 0 0

BOX

HW OW 4

0.417 2.8 2.3

12.0 12.0 12.0

QUIT

The edit command is:

edit -i edtin.wat -o edtout.wat -pi 1plc.cion.pdb

-b $amber5/dat/wat216.dat

This creates a box with a minimum of 10 A° between the protein and the edge of the box. There
end up being 3336 water molecules surrounding the protein. This is not a large value, since with coun-
terions you need to be sure that there is enough room for them to move around if they need to.

Running PARM with counterions and water is no different than without, so at this point you need
to repeat the PARM step outlined above, except for changing the names of the output files:

parm -i prmin -o prmout.wat

-f $amber5/dat/parm94.dat

-m frcmod.pcy -p prmtop.wat -c prmcrd.wat

If everything went well, you will have a parameter file (prmtop.wat), and a coordinate file (prm-
crd.wat). These would be used to start an equilibration procedure, followed by an MD or free energy
simulation.

4.3.6.3. Run solvated molecular dynamics simulation.
We will first run a simple minimization in water to remove initial bad contacts:

8/25/97

Tutorial Page 41

min2.in

molecular dynamics run

&cntrl

imin=1,

scee=1.2, idiel=1, cut=9.0,

ntb=1, ntc=2, nsnb=25,

maxcyc=500, ntpr=25,

&end

Here is the command to run:

sander -O -i min2.in -c prmcrd.wat -p prmtop.wat

-o min2.out -r min2.xyz &

(This is run in background, since it will take a few minutes to run; Next, try out a short molecular
dynamics run; actual "production" computations would include many, many more MD steps than is
given here.

md1.in

molecular dynamics run

&cntrl

imin=0, irest=0, ntx=1, tempi=0., (no restart MD)
scee=1.2, idiel=1, cut=9.0, (force field options)
ntt=1, temp0=300.0, tautp=0.2, (temperature control)
ntp=2, taup=0.2, (pressure control)
ntb=2, ntc=4, ntf=2, nsnb=25, (SHAKE, periodic bc.)
nstlim=500, (run for 0.0005 nsec)
ntwe=100, ntwx=100, ntpr=25, (output frequency)

&end

Here we will start from the output of the minimization step to carry out the dynamics:

sander -O -i md1.in -c min2.xyz -p prmtop.wat

-o md1.out -r md1.xyz -x md1.crd -e md1.ene &

The output will include themd1.outfile giving information about the progress of the trajectory, along
with md1.crdand md1.enefiles that contain the coordinates and energy information at every 100th
step, respectively. Many of the analysis programs in AMBER can use these sorts of files.

8/25/97

LEAP Preface Page 42

LEaP

5. LEaP

5.1. Preface

LEaP is the generic name given to the programstLEaPandxLEaP, which are more commonly known
astleapandxleap. These two programs share a common command language but thexLEaPprogram
has been enhanced through the addition of an X-windows graphical interface. The nameLEaP is an
acronym constructed from the names of the AMBER software modules it replaces: prep, link, edit, and
parm. Thus,LEaP can be used to prepare input for the AMBER and SPASMS molecular mechanics
programs. However, the utility ofLEaP is not limited to this task.

The LEaP User’s Manual is intended to provide a comprehensive description of the programs
tLEaP and xLEaP from a user’s perspective. After reading the manual, the user ought to be able to
run either thetLEaP or xLEaPprogram to obtain meaningful results. Also, the user should be able to
understand the methods used byLEaP during the process of constructing molecules and generating
input for other computational chemistry programs.

There are very few prerequisites for understandingLEaP or this manual. We hav e tried to write
the manual so a person with a minimal background in chemistry and/or computers can understand the
material. The material is frequently presented in more than one format to aid in comprehension.

It was our goal to write a user manual that provided a thorough and comprehensive presentation
of theLEaPprogram. The information in this manual includes:

• examination of the concepts involved in runningLEaP

• the use ofLEaP in creating input for the AMBER and SPASMS programs

• discussion and comparison of the terminal and X-windows versions

• explanation of all chemistry-related algorithms used inLEaP

• descriptions and examples of each command

• sev eral practical examples of runningLEaP to build specific molecules.

Researchers usingLEaP should use the following citation when referencing the program: Chris-
tian E. A. F. Schafmeister, Wilson S. Ross and Vladimir Romanovski,LEaP, University of California,
San Francisco (1995).LEaP was dev eloped in Peter A. Kollman’s laboratory at the University of Cal-
ifornia−San Francisco. Its development was supported, in part, by the Defense Advanced Research
Projects Agency under contract N00014-86-K-0757 administered by the Office of Naval Research
(Robert Langridge, PI.). The software and documentation are provided to users pursuant to a license
agreement containing restrictions on its disclosure, duplication, and use.

It is our intention to provide regular updates to this manual. However, in order to do so, we need
input from users ofLEaP. We would appreciate receiving reports regarding mistakes or omissions in

8/25/97

LEAP Preface Page 43

the manual. Furthermore, if the user finds parts of the manual difficult to understand or poorly written,
we would appreciate being made aware of the problems. Users can direct electronic mail toamber-
request@cgl.ucsf.edu .

We gratefully acknowledge the Computer Graphics Laboratory (cgl: Robert Langridge, PI) for
providing code that was used as the foundation for the pdb routines inLEaP. Financial support from
the Defense Advanced Research Projects Agency under contract N00014-86-K-0757 administered by
the Office of Naval Research (Robert Langridge, PI.) is appreciated. We wish to thank W. L. Jor-
gensen for providing the Monte Carlo equilibrated box of TIP3P water which is included in theLEaP
distribution.

8/25/97

LEAP Introduction Page 44

5.2. Introduction

LEaP is the general name for a program that performs as a workbench for computational chemists. In
its current version,LEaP allows researchers to prepare input for the molecular modeling programs
AMBER and SPASMS. Thus, the program replaces the prep, link, edit, and parm programs that are
distributed with AMBER. It was felt that a replacement was needed that had all such functionality
within a single program, that incorporated a simple, consistent user interface, and that would incorpo-
rate graphics to allow users to see the systems they were preparing.

The inspiration to write a program to replace the preparation modules of AMBER was first pro-
vided by Erik-Robert Evensen while he was at UCSF. Such a program, MainLine, was also written by
him. LEaPwas conceived and written by Christian E. A. F. Schafmeister, working in the laboratory of
Peter A. Kollman at the University of California−San Francisco. David A. Rivkin contributed some
features and Wilson S. Ross and Vladimir Romanovski have assisted extensively to prepare the pro-
gram for distribution.

Both tLEaP and xLEaPare written in vanilla Kernighan & Ritchie (KR) C.tLEaP and xLEaP
share much of the same code and there are approximately 90,000 lines in theLEaP distribution soft-
ware files. About 10,000 of those lines are in C header files and 75,000 in C and yacc source code
files. xLEaP contains about 3,000 additional lines of code in resource files to utilize the X-windows
interface. TheLEaP source directory contains approximately 200 files. About 48% are source files,
40% are header files, and 12% are X-windows resource files.tLEaP does not support graphics and
therefore, it will run on any teletype terminal attached to any machine that supports a KR C compiler.
xLEaP is meant to run on any machine that supports KR C and X-windows (Version 11 Revision 4
and latter versions).

xLEaP does all of its graphics manipulations in generic X-windows. It does not depend on any sys-
tem-dependent graphics to do 3D transformations or page-flipping. All of the user interface was writ-
ten using David E. Smyth’s Widget Creation Library (Wcl-1.05). This library is included in theLEaP
distribution, as is the Xraw 3D widget set by Vladimir Romanovski (modeled on the ATHENA 3D
widget set by Kaleb Keithley).

Using tLEaP, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Place counterions around a molecule

Solvate molecules in arbitrary solvents

Add bond, angle, and torsion restraints to molecules

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and SPASMS

8/25/97

LEAP Introduction Page 45

In addition, withxLEaPthe user can:

Access commands using a simple point and click interface

Draw new residues and molecules in a graphical environment

View structures graphically

Graphically dock molecules

Modify the properties of atoms, residues, and molecules using a spreadsheet edito r

Input or alter molecular mechanics parameters using a spreadsheet editor.

LEaPsupports the following input and output file formats:

(1) Object File Format (OFF): This is a general file format developed forLEaP but applicable to
any scientific computing problem.LEaP is capable of both reading and writing these files.

(2) AMBER PREP input files: TheLEaP program can read and write these files. Note that when
reading, it ignores improper torsions in these files (used to keep things like amino groups pla-
nar), instead generating its own impropers from connectivity and whatever force field informa-
tion is available when AMBER PARM output files are written. When writing PREP files,
LEaP addsall possible improper torsions, leaving it to the user to decide which are needed.
(See Appendix C for a description of improper torsions.)

(3) AMBER PARM formatted parameter set files (parm.dat): The formatted parameter set files
have been used as an input file for the AMBER program PARM. These files can be read by
LEaP.

(4) AMBER PARM output files: The AMBER PARM output files are coordinate and topology
files that are used as input to the programs AMBER and SPASMS. TheLEaP program can
generate these files (prmtop and prmcrd).

(5) PDB files:LEaP is capable of reading and generating these files.

8/25/97

LEAP Concepts Page 46

5.3. Concepts

In order to effectively use LEAP it is necessary to understand the philosophy behind the program. The
philosophy which guides LEAP is developed in this section. This is done by exploring the concepts of
LEAP commands, variables, and objects. Once the user understands how commands, variables, and
objects are defined and employed within LEAP, they will have also learned the principles necessary to
use the program effectively. In addition to exploring these concepts, this section also addresses the use
of external files and libraries with the program.

5.3.1. Commands

A researcher uses LEAP by entering commands that manipulate objects. An object is just a basic
building block; some examples of objects are ATOMs, RESIDUEs, UNITs, and PARMSETs. The
commands that are supported within LEAP are described throughout the manual and are defined in
detail in the "Command Reference" section.

The heart of LEAP is a command-line interface that accepts text commands which direct the program
to perform operations on objects. All LEAP commands have one of the following two forms:

command argument1 argument2 argument3 ...

variable = command argument1 argument2 ...

For example:

edit ALA

trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by commas. Some com-
mands return objects which are then associated with a variable using an assignment (=) statement.
Each command acts upon its arguments, and some of the commands modify their arguments’ contents.
The commands themselves are case- insensitive. That is, in the above example,edit could have been
entered asEdit , eDiT , or any combination of upper and lower case characters. Similarly,loadPdb
could have been entered a number of different ways, includingloadpdb . In this manual, we fre-
quently use a mixed case for commands. We do this to enhance the differences between commands
and as a mnemonic device. Thus, while we writecreateAtom , createResidue , andcreate-
Unit in the manual, the user can use any case when entering these commands into the program.

The arguments in the command text may be objects such as NUMBERS, STRINGS, or LISTs or they
may be variables. In the following manual sections, we discuss variables and objects. It is important
that the user be able to differentiate between variables and objects in order to properly use the LEaP
command line interface.

8/25/97

LEAP Concepts Page 47

5.3.2. Variables

A variable is a handle for accessing an object. A variable name can be any alphanumeric string whose
first character is an alphabetic character. (Alphanumeric means that the characters of the name may be
letters, numbers, or special symbols such as "*". The following special symbols should not be used in
variable names: dollar sign, comma, period, pound sign, equal sign, space, semicolon, double quote, or
list open or close characters { and }. LEaP commands should not be used as variable names. Variable
names are case-sensitive: "ARG" and "arg" are different variables. Variables are associated with
objects using an assignment statement not unlike regular computer languages such as FORTRAN or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }

In the above examples, bothmole and MOLEare variable names, whose contents are the same
(6.02E23). Despite the fact that bothmole andMOLEhave the same contents, they arenot the same
variable. This is due to the fact that variable names are case-sensitive. LEaP maintains a list of vari-
ables that are currently defined and this list can be displayed using thelist command.

The contents of a variable can be printed using thedesc command. Each variable is associated with
one object. Variables may also be assigned to the object represented by some other variable. For
example, suppose that you wanted to create a RESIDUE called AIB (aminoisobutyric acid) using
LEaP. Since this amino acid differs from ALA by only one substituent, you might decide to start with
the ALA UNIT loaded from the "lib/all_amino94.lib" file and edit this to add one methyl group to the
ALA RESIDUE. To implement this idea, you might enter the command line:

AIB = ALA

After executing the above statement,AIB and ALA will "point to" the same (single) object. This
means more than simply sayingAIB andALA have the same contents. At this point, there will only be
one UNIT object; bothAIB andALA will represent that one object. If the contents of the object are
changed at some later time (such as editing AIB to add a methyl substituent), then the change will be
seen in bothAIB andALA. Clearly, this wouldnotbe a good idea for this specific example. Instead, in
this case one could use the LEaPcopy command to create a duplicate of theALA object. The strategy
of creating an equivalent relationship between objects is largely used to prevent unnecessary duplica-
tion of objects, some of which can bevery large. NOTE: equivalencing for residues, effective only
when loading PDB files, is also achieved by theaddResidueNameMap command, and the use of
alternate names ("AIB = ALA") may be discontinued in future.

5.3.3. Objects

The object is the fundamental entity in LEaP. Objects range from the simple objects NUMBERS and
STRINGS to the complex objects UNITs, RESIDUEs, ATOMs. Complex objects have properties that
can be altered using theset command and some complex objects can contain other objects. For
example, RESIDUEs are complex objects that can contain ATOMs and have the properties: residue

8/25/97

LEAP Concepts Page 48

name, connect atoms, and residue type.

5.3.3.1. NUMBERs

NUMBERs are simple objects and they are identical to double precision variables in FORTRAN and
double in C.

5.3.3.2. STRINGs

STRINGS are simple objects that are identical to character arrays in C and similar to character strings
in FORTRAN. STRINGS are represented by sequences of characters which may be delimited by dou-
ble quote characters. STRINGS may also be represented by prefixing a sequence of characters by a
dollar sign, where the delimiter is a comma, a space, a semicolon, or a list open or close character ({ or
}). If a string does not contain a comma, a space, a semicolon, or a list open or close character and
there is no variable defined that is the same as that string, then it is not necessary to put the string in
quotes or prefix it by a dollar sign. Double quote characters within the STRING may be represented
by a pair of double quotes. Example strings are:

"Hello there"

"String with a "" (quote) character"

"Strings contain letters and numbers:1231232"

$noQuotes

$343noQuotesAgain

noQuotesOrDollarSign

5.3.3.3. LISTs

LISTs are made up of sequences of other objects delimited by LIST open and close characters. The
LIST open character is an open curly bracket ({) and the LIST close character is a close curly bracket
(}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs are:

{ 1 2 3 4 }

{ 1.2 "string" $anotherString }

{ 1 2 3 { 1 2 } { 3 4 } }

LISTs are used by many commands to provide a more flexible way of passing data to the commands.
The zMatrix command has two arguments, one of which is a LIST of LISTs where each subLIST
contains between three and eight objects.

8/25/97

LEAP Concepts Page 49

5.3.3.4. PARMSETs (Parameter Sets)

PARMSETs are objects that contain bond, angle, torsion, and nonbond parameters for AMBER force
field calculations. They are normally loaded frome.g. parm94.dat andfrcmod files.

5.3.3.5. ATOMs

AT OMs are complex objects that do not contain any other objects. The ATOM object is similar to the
chemical concept of atoms. Thus, it is a single entity that may be bonded to other ATOMs and it may
be used as a building block for creating molecules. AT OMs have many properties that can be changed
using theset command. These properties are defined below.

name
This is a case-sensitive STRING property and it is the ATOM’s name. Thenames for all
AT OMs in a RESIDUE should be unique. Thename has no relevance to molecular mechanics
force field parameters; it is chosen arbitrarily as a means to identify ATOMs. Ideally, thename
should correspond to the PDB standard, being 3 characters long except for hydrogens, which can
have an extra digit as a 4th character.

type
This is a STRING property. It defines the AMBER force field atom type. It is important that the
character case match the canonical type definition used in the appropriate "parm.dat" or "frcmod"
file. For smooth operation, all atom types need to have element and hybridization defined by the
addAtomTypes command. The standard AMBER force field atom types are added by the
default "leaprc" file.

charge
Thecharge property is a NUMBER that represents the ATOM’s electrostatic point charge to be
used in a molecular mechanics force field.

element
The atomic element provides a simpler description of the atom that thetype , and is used only
for LEAP’s internal purposes (typically when force field information is not available). The ele-
ment names correspond to standard nomenclature; the character "?" is used for special cases.

position
This property is a LIST of NUMBERS. The LIST must contain three values: the (X, Y, Z)
Cartesian coordinates of the ATOM.

Both the AMBER and SPASMS software packages support a type of calculation know as Free
Energy Perturbation. During Free Energy Perturbation, one chemical species is slowly trans-
formed into another and the energy change associated with the transformation is measured. In
order to perform a Free Energy Perturbation, the properties of the perturbed ATOMs must also be
set. These properties correspond to the ATOM properties described above, but the values repre-
sent the final state of the perturbed species, as described below. If a Free Energy Perturbation
calculation is not to be performed, the following properties can be left asnull . They are only

8/25/97

LEAP Concepts Page 50

used when the "PERTURB" property’s value is "true" for that atom, when doing asaveAm-
berParmPert to save a perturbation topology file. (Note that mass is never perturbed.)

pertName
This property can either benull or a case sensitive STRING. The property is a unique identi-
fier for an ATOM in its final state during a Free Energy Perturbation calculation. If it isnull
then the perturbed ATOM will inherit the unperturbed name. ThepertName has no effect on
calculations and is mainly useful as a reminder of what was intended.

pertType
This property can either benull or a STRING. If the value isnull then the ATOMtype will
not be perturbed in a perturbation calculation. If thepertType is a STRING, the STRING is
the AMBER force field atom type of the perturbed ATOM. This property is case-sensitive.

pertCharge
ThepertCharge property is a NUMBER. It represents the final electrostatic point charge on
an ATOM during a Free Energy Perturbation.

5.3.3.6. RESIDUEs

RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of ATOMs that are
either molecules (e.g. formaldehyde) or are linked together to form molecules (e.g. amino acid
monomers). RESIDUEs have sev eral properties that can be changed using theset command.

One property of RESIDUEs is connection ATOMs. Connection AT OMs are ATOMs that are used to
make linkages between RESIDUEs. For example, in order to create a protein, the N-terminus of one
amino acid residue must be linked to the C-terminus of the next residue. This linkage can be made
within LEaP by setting the N ATOM to be a connection ATOM at the N-terminus and the C ATOM to
be a connection ATOM at the C-terminus. As another example, two CYX amino acid residues may
form a disulfide bridge by crosslinking a connection atom on each residue.

When residues are read from AMBER PREP input files, LEAP creates a RESIDUE object for each
residue read and defines the first main chain atom of the AMBER residue to be theconnect0 AT OM
of the RESIDUE. The last main chain atom of the AMBER residue becomes theconnect1 AT OM
of the RESIDUE. Any other atoms that would be used for cross links must be explicitly defined as
connect ATOMs using theset command. The scripts in "leap/lib/" show how this is done for the stan-
dard force field residues.

There are several properties of RESIDUEs that can be modified using theset command. The proper-
ties are described below:

connect0
This defines an ATOM that is used in making links to other RESIDUEs. In UNITs containing
single RESIDUEs, the RESIDUEssconnect0 AT OM is usually defined as the UNITs’head
AT OM. (This is how the standard library UNITs are defined.) For amino acids, the convention
is to make the N-terminal nitrogen theconnect0 AT OM.

8/25/97

LEAP Concepts Page 51

connect1
This defines an ATOM that is used in making links to other RESIDUEs. In UNITs containing
single RESIDUEs, the RESIDUEs’connect1 AT OM is usually defined as the UNITs’tail
AT OM. (This is done in the standard library UNITs.) For amino acids, the convention is to make
the C-terminal oxygen theconnect1 AT OM.

connect2
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs. In amino acids, the convention is that this is the ATOM to which disulphide bridges
are made.

connect3
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

connect4
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

connect5
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

restype
This property is a STRING that represents the type of the RESIDUE. Currently, it can have one
of the following values:"undefined" , "solvent" , "protein" , "nucleic" , or "sac-
charide" . Some of the LEAP commands behave in different ways depending on the type of a
residue. For example, the solvate commands require that the solvent residues be of type"sol-
vent" . It is important that the proper character case be used when defining this property.

name
The RESIDUE name is a STRING property. It is important that the proper character case be
used when defining this property.

5.3.3.7. UNITs

UNITs are the most complex objects within LEAP, and the most important. UNITs, when paired with
one or more PARMSETs, contain all of the information required to perform a calculation using
AMBER or SPASMS. UNITs have the following properties which can be changed using theset
command:

head

tail

These define the ATOMs within the UNIT that are connected when UNITs are joined together
using thesequence command or when UNITs are joined together with the PDB or PREP file

8/25/97

LEAP Concepts Page 52

reading commands. Thetail AT OM of one UNIT is connected to thehead AT OM of the next
UNIT in any sequence. (Note: a "TER card" in a PDB file causes a new UNIT to be started.)

box
This property can either benull , a NUMBER, or a LIST. The property defines the bounding
box of the UNIT. If it is defined asnull then no bounding box is defined. If the value is a sin-
gle NUMBER then the bounding box will be defined to be a cube with each side being NUM-
BER of angstroms across. If the value is a LIST then it must be a LIST containing three num-
bers, the lengths of the three sides of the bounding box.

cap
This property can either benull or a LIST. The property defines the solvent cap of the UNIT.
If it is defined asnull then no solvent cap is defined. If the value is a LIST then it must contain
four numbers, the first three define the Cartesian coordinates (X, Y, Z) of the origin of the solvent
cap in angstroms, the fourth NUMBER defines the radius of the solvent cap in angstroms.

Examples of setting the above properties are:

set dipeptide head dipeptide.1.N

set dipeptide box { 5.0 10.0 15.0 }

set dipeptide cap { 15.0 10.0 5.0 8.0 }

The first example makes the amide nitrogen in the first RESIDUE within "dipeptide" thehead
AT OM. The second example places a rectangular bounding box around the origin with the (X, Y, Z)
dimensions of (5.0, 10.0, 15.0) in angstroms. The third example defines a solvent cap centered at (
15.0, 10.0, 5.0) angstroms with a radius of 8.0 Å.Note: the "set cap" command does not actually sol-
vate, it just sets an attribute. See thesolvateCap command for a more practical case.

UNITs are complex objects that can contain RESIDUEs and ATOMs. UNITs can be created using the
createUnit command and modified using theset commands. The contents of a UNIT can be
modified using theadd andremove commands.

UNITs also contain information about restraints.Users are encouraged to avoid applying such
restraints in LEAP, and instead to use the more robust ones available in the simulation programs.
Restraints are supported in LEAP only for backward compatibility.

Restraints can be modified using the LEAP commands:addBondRestraint , addAngleRe-
straint , addTorsionRestraint , andremoveRestraint . Restraints are additional energy
terms that can be placed between two, three or four ATOMs. There are three kinds of restraints: bond,
angle, and torsion restraints. Bond restraints can be created between any two ATOMs, and they are
defined by the two ATOMs, an equilibrium distance, and a force constant. Angle restraints are defined
by three ATOMs, an equilibrium angle, and a force constant. Torsion restraints are defined by four
AT OMs, an equilibrium torsion angle, a force constant and a multiplicity. See Appendix C, Parameter
Development, for more details.

8/25/97

LEAP Concepts Page 53

5.3.3.8. Complex objects and accessing subobjects

UNITs and RESIDUEs are complex objects. Among other things, this means that they can contain
other objects. There is a loose hierarchy of complex objects and what they are allowed to contain.
The hierarchy is as follows:

• UNITs can contain RESIDUEs and ATOMs.

• RESIDUEs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. Howev er,
the convention that has evolved within LEAP is to have UNITs directly contain RESIDUEs which
directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot "." notation. An example
would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUEs each of
which contain several ATOMs. If the UNIT is referenced (named) by the variabledipeptide , then
the RESIDUE named ALA can be accessed in two ways. The user may type one of the following com-
mands to display the contents of the RESIDUE:

desc dipeptide.ALA

desc dipeptide.1

The first translates to "some RESIDUE namedALA within the UNIT nameddipeptide ". The sec-
ond form translates as "the RESIDUE with sequence number1 within the UNIT nameddipep-
tide ". The second form is more useful because every subobject within an object is guaranteed to
have a unique sequence number. If the first form is used and there is more than one RESIDUE with the
name ALA, then an arbitrary residue with the nameALA is returned. To access ATOMs within
RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA

desc dipeptide.1.3

Assuming that the ATOM with the nameCA has a sequence number3, then both of the above com-
mands will print a description of the $alpha$−carbon of RESIDUEdipeptide.ALA or dipep-
tide.1 . The reader should keep in mind thatdipeptide.1.CA is the ATOM, an object, con-
tained within the RESIDUE namedALA within the variabledipeptide . This means thatdipep-
tide.1.CA can be used as an argument to any command that requires an ATOM as an argument.
Howeverdipeptide.1.CA is not a variable and cannot be used on the left hand side of an assign-
ment statement.

In order to further illustrate the concepts of UNITs, RESIDUEs, and ATOMs, we can examine the log
file from a LEAP session. Part of this log file is printed below.

> loadOff all_amino94.lib

> desc GLY

UNIT name: GLY

8/25/97

LEAP Concepts Page 54

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> desc GLY.1

RESIDUE name: GLY

RESIDUE sequence number: 1

RESIDUE PDB sequence number: 0

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 6>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA2 4>

A<HA3 5>

A<C 6>

A<O 7>

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are prefaced by ">" and the LEAP program output has no such charac-
ter preface. The first command,

> loadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY

allows us to examine the contents of the amino acid UNIT, GLY. The UNIT contains one RESIDUE
which is named GLY and this RESIDUE is the first residue in the UNIT (R<GLY 1>). In fact, it is
also the only RESIDUE in the UNIT. Thehead andtail AT OMs of the UNIT are defined as the N-

8/25/97

LEAP Concepts Page 55

and C-termini, respectively. Thebox andcap UNIT properties are defined as "null". If these latter
two properties had values other than "null", the information would have been included in the output of
thedesc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in the GLY UNIT. This RESIDUE is named GLY and its
residue type is that of aprotein . The connect0 AT OM (N) is the same as the UNITs’head
AT OM and theconnect1 AT OM (C) is the same as the UNITs’tail AT OM. There are seven
AT OM objects contained within the RESIDUE GLY in the UNIT GLY.

Finally, let us look at one of the ATOMs in the GLY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the residue. The AMBER force field
atom type for CA is CT. The type of element, atomic point charge, and Cartesian coordinates for this
AT OM hav e been defined along with its bonding attributes. Other force filed parameters, such as the
van der Waals well depth, have been included in "lib/parm94.dat".

5.4. Starting LEaP

% xleap [−h] [−I dir] [−f file] [−s]

% tleap [−h] [--I dir] [−f file] [−s]

The user may enter several options when starting the LEAP program. If the option "−h" is used (e.g.,
xleap −h), then the program will print a list of start-up options and then exit. A directory may be
added to the program’s search path by using the option: "−I dir ". This will cause the program to
searchdir whenever a file is requested. If the user would like to execute LEAP commands at start-
up, they should use the option: "−f file ". Finally, if the user enters the command option "−s", the
"leaprc" file will not be executed at start-up.

A file called "leaprc" is executed as a script file at the start of the LEAP session unless the user sup-
presses it with a command line option. The file is used to customize the operation of the LEAP pro-
gram. For example, in the "leaprc" file included in the distribution, commands have been added to
load the standard AMBER force field parameter library and the TIP3P water residue, the main chain
and terminating amino acid residue UNITs, and the nucleic acid residue UNIT libraries. The file also
sets up PDB Name maps and creates aliases. The user can copy and customize the file included in the
distribution. LEAP will look for this file in the user’s current directory during start-up.

8/25/97

LEAP Concepts Page 56

5.4.1. Verbosity

The verbosity command is used to control how much output LEAP displays to the user. A ver-
bosity level of0 tells LEAP to print the minimum amount of information. A verbosity level of1 tells
LEAP to print all information it can, and a verbosity level of2 tells LEAP to print all information and
to display each line read from source files executed using thesource command.

5.4.2. Log File

The command line interface allows the user to specify a log file that is used to log all input and output
within the command line environment. The log file is named using thelogFile command. The file
has two purposes: to allow the user to see a complete record of operations performed by LEAP, and to
help recover from (and recreate) program crashes. Output from LEAP commands is written to the log
file at a verbosity level of2 regardless of the verbosity level set by the user using theverbosity
command. Each line in the log file that was typed in by the user begins with the two characters "> " (a
greater-than sign followed by a space). This allows the user to extract the commands typed into LEAP
from the log file to create a script file that can be executed using thesource command. This pro-
vides a type of insurance against program crashes by allowing the user to regenerate their interactive
sessions. An example of a command that works on UNIX systems and that will create a script to reen-
act a LEAP session is:

% cat LOGFILE | grep "ˆ> " | sed "s/ˆ> //" > SOURCEFILE.x

Note that changes via graphical and table interfaces (xleap) are not captured by command-line traces.

8/25/97

LEAP Using LEap Page 57

5.5. Using LEaP

In the next two sections, we describe how to use the tleap and xleap user interfaces. Strategies for
using LEAP in research is discussed in a subsequent section: "Using LEAP With AMBER".

5.6. tLEaP

tleap (terminal LEAP) is the non-graphical, command-line-only interface to LEAP. It has the same
functionality as thexleapmain window (Universe Editor Command Window). The user can employ
the following terminal keys to edit or enter commands in the tleap interface:

BACKSPACE
The use of this key will cause the last character on the line to be deleted.

uparrow/downarrow
Go backwards and forwards in the command "history" (tleap only).

RETURN/ENTER
Accept the current line. If the current line is the last line of a block then accept the block and
execute it. (See the manual section describing the "Universe Editor Command Window".)

control-c
Cancel the current block or terminate the current process.

control-u
Clear the current line.

An edited tleap session is shown below:

unix 1% tleap

Welcome to LEaP!

leaprc is /home/euler/ross/Leap/cmd/leaprc

Log file: ./leap.log

Loading parameters: /home/euler/ross/Leap/lib/parm94.dat

Loading library: /home/euler/ross/Leap/lib/water.lib

Loading library: /home/euler/ross/Leap/lib/ions94.lib

Loading library: /home/euler/ross/Leap/lib/all_nucleic94.lib

Loading library: /home/euler/ross/Leap/lib/all_amino94.lib

Loading library: /home/euler/ross/Leap/lib/all_aminoct94.lib

Loading library: /home/euler/ross/Leap/lib/all_aminont94.lib

8/25/97

LEAP Using LEap Page 58

> desc ALA

: :

> quit

unix 2%

In the first line, the user starts the execution of tleap. Several lines of information may then be
displayed: the user is first greeted, and if the LEAP script file ("leaprc") contained any commands to
load libraries, the execution of these load commands is confirmed. The user may enter commands at
the tleap command line prompt ("> "). In the above edited example, the user entered two commands
into tleap: "desc ALA " and "quit ". After quitting the program, the user is returned to the Unix
shell command line prompt.

5.7. xLEaP

xleap is a windowing interface to LEAP. In addition to the command-line interface contained in the
Universe Editor window, it has a Unit Editor (graphical molecule editor), an Atom Properties Editor,
and a Parmset Editor. These editors are discussed in subsequent subsections.

5.7.1. Universe Editor

The window that first appears when the user starts xleap is called the Universe Editor. The Universe
Editor is the most basic way in which users can interact with xleap. It has two parts, the "command
window," which corresponds to the tleap command interface, and the "pulldown" items above the win-
dow, which provide mouse-driven methods to generate specific commands for the command window,
either directly or via popped-up dialog boxes. Within the command window, the user can cut and
paste text using the mouse buttons:

LEFTBUTTON
Begin selection.

RIGHTBUTTON
Continue selection.

MIDDLEBUTTON
Append the selection to the last input line.

The command window has a scroll bar that allows the user to scroll back and review messages
that have scrolled off the top of the window.

Because some commands within LEAP can be very long, the command window allows users to
spread input for single commands over multiple lines. A block is defined as one or more lines of input
that contain a single command and all of its arguments. LEAP uses two criteria to determine whether
a line terminates a block.

• If the last character in a line is a backslash then the block is continued on the next line.

8/25/97

LEAP Using LEap Page 59

• If the block has any open lists, meaning if there are more "{" (open lists) than "}" (close lists),
then the block will continue to grow in lines until all lists are closed. This is to facilitate entry of
LEAP commands that use long lists as arguments (e.g., thezMatrix command). Note: from
this it follows that, if typing many carriage returns seems to have no effect, an extra open left-
hand brace is the probable cause.

5.7.1.1. Universe Editor Menu Bar

The items in the pulldowns allow the user to generate commands using dialog boxes. To display the
"File" pulldown, for example, press the left mouse button on "File;" to select an item in the pulldown,
keep the button down, move the mouse to highlight the item, then release the mouse button. A dialog
box will then pop up containing fields which the user can fill in, and lists from which values can be
chosen; these will be used to generate commands for the command window interface.

Currently, the following pulldown/popup commands are defined:

loadOff
The dialog box contains a single file list. The user can move about the subdirectories and select
the desired LEAP OFF library to load. Alternately, the name of the file to be loaded may be
typed. The user should press the "Accept" button after selecting a file in order to execute the
command.

saveOff
This dialog box contains a list of UNITs/PARMSETs and a file list. The user must choose the
UNIT or PARMSET to save, and choose the file to which to write. If the file to be written to
does not exist, the user may type the name of a new file into the file name text box. The user can
enter the command by pressing the "Accept" button.

loadAmberPrep
The dialog box contains a single file list. The user can move about the subdirectories, and select
the AMBER PREP file to load. Alternately, they may type the name of the file to be loaded. The
user should press the "Accept" dialog box button after selecting a file.

loadPdb
There are two parts to this dialog box. The PDB file will be read into a UNIT and that UNIT
will be associated with a variable. The variable name to associate with the UNIT is entered into
the first text field. The name of the PDB file is either selected from the file list or the file name is
typed into the dialog box. The user can execute the command by pressing the "Accept" button.

impose
This dialog box has three parts. The first part is a list of UNITs from which the user can select
the UNIT which is to be changed. The second part is a list of STRING objects that may or may
not contain internal coordinates. The third part is a text field for entry of RESIDUE sequence
numbers, or ranges of sequence numbers. The user executes the command by pressing the
"Accept" button.

8/25/97

LEAP Using LEap Page 60

edit
A list of UNITs and PARMSETs that can be edited is presented to the user. The user may select
one or type in the name of a UNIT. The user may "Accept" or "Cancel" the command by press-
ing one of these two buttons.

source
The user can select a file which is to be used in asource command from the file list. Alter-
nately, they may type the name of the file to be loaded. The user should press the "Accept" but-
ton after selecting a file.

verbosity
The user is presented with three levels ofverbosity in order to regulate the amount of output
to be displayed during the LEAP session. The user should select one of theseverbosity level
buttons and press the "Accept" button to enter the command.

quit
The user may "Accept" or "Cancel" thequit command.

5.7.2. Unit Editor

When the user enters theedit command from the Universe Editor Command Window, the Unit Edi-
tor will be displayed if the argument to theedit command is an existing UNIT or a nonexistent (i.e.
new) object. The Parmset Editor will be activated if the argument is a PARMSET. The Parmset Editor
is discussed later in this subsection.

The Unit Editor has five parts. At the top of the window is a pulldown menu bar; below it is a set
of buttons titled "Manipulation" that define the mode of mouse activity in the graphics window, and
below that, a list of elements to select for the manipulation "Draw" mode (selecting one automatically
selects "Draw" mode). Then comes the graphical molecule-editing ("viewing") window itself, and at
the very bottom a text window where status and errors are reported.

5.7.2.1. Unit Editor Menu Bar

The menu bar has three pulldowns: "Unit," "Edit," and "Display."

Unit pulldown

The Unit pulldown contains commands affecting the whole UNIT.

"Check unit" − checks the UNIT in the viewing window for improbable bond lengths, missing
force field atom types, close nonbonded contacts, and a non-integral and non-zero total charge.
Information is printed in the text window at the bottom of the Unit Editor.

"Calculate charge" − the total electrostatic charge for the UNIT is displayed in the text window at
the bottom of the Unit Editor.

"Build," "Add H & Build" − the coordinates of new atoms are adjusted according to hybridiza-
tion (inferred from bonds) and standard geometries. (See also theEdit pulldown’s "Relax

8/25/97

LEAP Using LEap Page 61

selection.) Newly-drawn ATOMs are marked as "unbuilt" until they are marked otherwise by one
of the Build commands or by theEdit pulldown’s "Mark selection (un)built." The builderonly
builds coordinates for unbuilt ATOMs. This allows users to draw molecules piecemeal and make
adjustments as they draw, without worrying that the builder is going to undo their work. "Add H
& Build" adds hydrogens to the ATOMs that do not have a full valence and builds coordinates
for the hydrogens and any other ATOMs that are marked "unbuilt." The number of hydrogens
added to each ATOM is determined by the hybridization and element type of each ATOM.

"Import unit" − a selection window pops up for the user to incorporate a copy of another unit in
the current one. The imported unit will generally superimpose on the existing one. (Hint: select
all atoms in the current unit before doing this to simplify dragging them apart using the Manipu-
lationMove mode.)

"Close" − Exit the Editor.

Edit pulldown

The Edit pulldown contains commands relating to the currently- selected ATOMs in the viewer
window. Selection is described below in the "Manipulation buttons" section.

"Relax selection" − performs a limited energy minimization of all selected ATOMs, leaving uns-
elected ATOMs fixed in place, by relaxing strained bonds, angles, and torsions. If atom types
have been assigned and can be found in the currently-loaded force field, force field parameters
are used. If no types are available then default parameters are used that are based on ATOM
hybridization. This command invokes an iterative algorithm that can take some time to converge
for large systems. As the algorithm proceeds, the modified UNIT will be continuously updated
within the viewing window. The user can stop the process at any time by placing the cursor
within the viewing window and typingcontrol-C . Since only internal coordinates are energy
minimized, steric overlap can result.

"Edit selected atoms" − pops up an Atom Properties Editor, a tool for examining/setting the
properties of the selected ATOMs. The Atom Properties Editor allows the user to edit the ATOM
names, types, charges, perturbed names, etc. in a convenient table format. It is described in a sep-
arate section below.

"Flip chirality" This command inverts the chirality of all selected ATOMs. In order for the chi-
rality to be inverted, the ATOM cannot be in more than one ring. The operation causes the light-
est chains leaving the ATOM to be moved so as to inv ert the chirality. If the ATOM has only
three chains attached to it, then only one of the chains will be moved.Note: this command is
rather apt to crash LEAP.

"Select Rings/Residues/Molecules" − expands the currently selected group of atoms to include
all partially-contained rings, residues, or molecules.

"Show everything" − causes all ATOMs to become visible.

"Hide selection" − makes all selected ATOMs invisible.

"Show selection only" − makes only selected ATOMs visible.

"Mark selection unbuilt/built" − see "Unit/Build," above.

Display pulldown

The Display pulldown contains commands that determine what information is displayed within

8/25/97

LEAP Using LEap Page 62

the viewing window.

"Names" − toggles display of ATOM names at each ATOM position.

"Perturbed names" − toggles display of perturbed ATOM names. The perturbed names are dis-
played immediately after the unperturbed names and are prefixed with a forward slash "/". (See
the "Concepts" section for a discussion of Free Energy Perturbation ATOM names.)

"Types" − toggles display of molecular mechanics atom types. The ATOM types are displayed
within parentheses "()".

"Perturbed types" − toggles display of perturbed atom types of the ATOMs. Perturbed types are
displayed within the same parentheses as the unperturbed types, immediately after the unper-
turbed types, and are prefixed by a forward slash "/". (See the "Concepts" section for a discus-
sion of Free Energy Perturbation ATOM types.)

"Residue names" − toggles display of residue names. These are displayed at the position of the
first ATOM, before any of that ATOM’s information that may be displayed. The residue names
are displayed within angled brackets "<>".

"Axes" − toggles display of the Cartesian coordinate axes. The origin of the axes coincides with
the origin of Cartesian space.

"Periodic box" − toggles display of the periodic box, if the UNIT has one.

5.7.2.2. Unit Editor Manipulation Buttons

The Manipulation buttons are Select, Twist, Move, Erase, and Draw. They determine the behavior of
the mouse left-button when the pointer is in the Viewing Window.

Select
This button allows one to select part or all of a UNIT in anticipation of a subsequent operation or
action. In the Select mode, the user can highlight ATOMs within the viewing window for special
operations. The cursor becomes a pointing hand in the viewing window in this mode. Selected
AT OMs are displayed in a different color (or different line styles on monochrome systems) from
all other ATOMs. Atoms can be selected with the left-button in several ways: first, clicking on
an atom and releasing selects that atom. Clicking twice in a row on an atom (at any speed)
selects all atoms (this is a bug - only the residue should be selected). Keeping the button down
and moving to release on another atom selects all ATOMs in the shortest chain between the two
AT OMs, if such a chain exists. Finally, by first pressing the button in empty space, and holding it
down as the mouse is moved, one can "drag a box" enclosing atoms of interest. Note that a cur-
rent selection can be expanded by using the "Edit" menubar pulldown select options to complete
any partial selection of rings, residues or molecules. menu options within the Selection menu.

If the user holds down the SHIFT key while performing any of the above actions, the same effect
will be seen, except ATOMs will be unselected.

Twist
Twist mode operates on previously-Select ed atoms. The intention is to allow rotation about
dihedrals; if too many atoms are selected, odd transformations can occur. While in theTwist
mode, the pointer looks like a curved arrow. Twisting is driven by holding down the left-button
anywhere in the viewing window and moving the mouse up and down.

8/25/97

LEAP Using LEap Page 63

Move
Like Twist , Move mode operates on previously-Select ed atoms. While in theMove mode,
the pointer looks like four arrows coming out of one central point. Holding down the left-button
anywhere allows movement of these atoms by dragging in any direction in the viewing plane.
(The view can be rotated by holding down the middle-button to allow any movement desired.)
This option allows the user to move the selected ATOMs relative to the unselected ATOMs. To
rotate the selected ATOMs relative to the unselected ones, press and drag the mode (left) button
while holding down the SHIFT key. The selected ATOMs will rotate around a central ATOM on
a "virtual sphere" (see the section below on the rotate (middle) button for more information on
the "virtual sphere"). The user can change which ATOM is used as the center of rotation by
clicking the mode (left) button on any of the ATOMs in the window.

Erase
Erase mode causes the cursor to resemble a chalkboard eraser when it is in the viewing win-
dow. Clicking the left-button will delete any atoms or bonds under this cursor, one atom or bond
per click.

Draw
ChoosingDraw is equivalent to choosing the default "Elements" atom in the next array of but-
tons; the initial default is carbon. While in the draw mode, the pointer is a pencil when in the
viewing window. Clicking the left-button deposits an atom of the current element, while drag-
ging the cursor with the left-button held down draws a bond: if no atom is found where the but-
ton is released, one is created.

When the pointer approaches an ATOM, the end of the line connected to the pointer will "snap"
to the nearest ATOM. This is to facilitate drawing of bonds between ATOMs. Any bonds that
are drawn will by default be single bonds. To change the order of a bond, the user would move
the mouse to any point along the bond and click the mode (left) button. This will cause the order
of the bond to increase until it is reset back to a single bond. The user can cycle through the fol-
lowing bond order choices: single, double, triple, and aromatic.

If the user rotates a structure as it is being drawn, she will notice that all of the ATOMs that have
been drawn lie in the same plane. New ATOMs are automatically placed in the plane of the
screen. The fact that LEAP places the new ATOMs in the same plane is not a handicap because
once a rough sketch of part of the structure is compete, the user can invoke one of LEAP’s two
model building facilities ("Unit/Build" and "Edit/Relax Selection" in the Unit Editor Menu bar)
to build full three dimensional coordinates.

5.7.2.3. Unit Editor Elements Buttons

C, H, O, ...
These buttons put the viewing window inDraw mode if it is not in that mode already, and select
the drawing element. The more common elements have their own buttons, and all elements are
also found by pulling down theother elements button.

8/25/97

LEAP Using LEap Page 64

5.7.2.4. Unit Editor Viewing Window

The viewing window displays a projection of the UNIT currently being edited. The user can manipu-
late the structure within the viewing window with the mouse. By moving the mouse and holding down
the mouse buttons, the user can rotate, scale, and translate the UNIT within the window. The functions
attached to the mouse buttons are:

Rotate (Middle button)
By pressing the rotate (middle) button within the viewing window and dragging the mouse, the
user can rotate the UNIT around the center of the viewing window. While the rotate (middle)
button is down, a circle appears within the viewing window, representing a "virtual sphere track-
ball." As the user drags the mouse around the outside of the circle, the UNIT will spin around
the axis normal to the screen. As the user drags the mouse within the circle, the UNIT will spin
around the axis in the screen, perpendicular to the movement of the mouse. The structures that
are being viewed can be considered to be embedded within a sphere of glass. The circle is the
projection of the edge of the sphere onto the screen. Rotating a UNIT while the mouse is within
the circle is akin to placing a hand on a glass sphere and turning the sphere by pulling the hand.
The rotate operation does not modify the coordinates of the ATOMs; rather, it simply changes
the user’s point of view.

Translate (Right button)
By pressing the translate (right) button within the viewing window and dragging the mouse
around the viewing window, the user can translate the UNIT within the plane of the screen. The
structures will follow the mouse as it moves around the window. This operation does not modify
the coordinates of the UNIT.

Scale (middle plus right button)
If the scale "button" (holding the middle and right buttons down at the same time) is depressed,
the user will change the size of the structures within the viewing window. Pressing the scale
(middle plus right) button and dragging the mouse up and down the screen will increase and
decrease the scale of the structures. This operation does not modify the coordinates of the UNIT.

Mode button (left button) and the viewing window mode
The function of the left button is determined by the current mode of the viewing window as
described in the "Manipulation" section, above. When the mouse enters the viewing window it
changes shape to reflect the current mode of the viewing window.

Spacebar
Another always-available operation when the pointer is in the viewing window is the keyboard
spacebar, which centers the view of the molecule, and is especially useful if the UNIT becomes
"lost" due to some operation.

The functions of the middle and right buttons are fixed and always available to the user. This allows
the user to change the viewpoint of the UNIT within the viewing window reg ardless of its current
mode. The user might ask why there are controls to translate in the plane of the screen, but not out of
the plane of the screen. This is because LEAP does not have depth-cueing or stereo projection and this
makes it difficult for users to perceive changes in the depth of a structure. However, the user can rotate

8/25/97

LEAP Using LEap Page 65

the entire UNIT by 90 degrees which will orient everything so that the direction that was coming out
of the screen becomes a direction lying in the plane of the screen. Once the UNIT has been rotated
using the rotate (middle) button, the user can translate the structure anywhere in space. While it does
take some getting used to, users can become very adept at the combination of rotations and transla-
tions.

5.7.3. Atom Properties Editor

The Atom Properties Editor is popped up by the Unit Editor when the user selects theEdit
selected atoms command from theEdit pulldown. The Atom Properties Editor allows the user
to edit the properties of ATOMs using a convenient table format. ATOM properties are: name, type,
charge, element, perturbed name, perturbed type, and perturbed charge. (Mass is not perturbed.)

The Atom Properties Editor has three parts: the Menu Bar, Status Window, and Table Window.

5.7.3.1. Atom Properties Menu Bar

The Menu Bar has two pulldowns:Table andOperations .

Table
"Save" − sav e current table. This transfers the properties in the table to the ATOMs. The table is
first checked, and if something is incorrect, a warning box pops up with the option to cancel the
save.

"Save and quit" − save current table (as in "Save") and quit.

"Close table" − the table information is discarded and not applied to the ATOMs. If the table has
been changed, a warning box pops up with the option to cancel the close.

Operations
"Find..." − pops up a dialog box to enter a string to search for. All fields in the table are searched,
and if the string matches the contents of a field, that cell is highlighted.

"Find next" − find next instance of current search string.

"Check table" − check each field in the table for errors. Error information is printed in the Status
Window. The first error in the table is highlighted.

"Go to next error" − highlight the next error from the last "Check table" command.

5.7.3.2. Atom Properties Status Window

The Status Window is used to display messages from the Atom Properties Editor.

5.7.3.3. Atom Properties Table Window

The Table Window contains the properties of the selected ATOMs in the UNIT. The properties can be
edited by clicking the mouse left-button in a cell (clicking again to position the cursor within an exist-
ing string), and typing/backspacing to modify the contents. Also, a selection can be made by dragging

8/25/97

LEAP Using LEap Page 66

the cursor with the left-button down, then pasted into other cells by positioning the cursor over the tar-
get cell and clicking the middle button.

The ATOM properties are:

Name
This is a case-sensitive STRING. Thenames for all ATOMs in a RESIDUE should be unique.
Thename has no relevance to molecular mechanics force field parameters; it is chosen arbitrar-
ily as a means to identify ATOMs. Ideally, thename should correspond to the PDB standard,
being 3 characters long except for hydrogens, which can have an extra digit as a 4th character.

Type
This is a STRING property. It defines the force field atom type. It is important that the character
case match the canonical type definition used in the appropriate "parm.dat" or "frcmod" file. For
smooth operation, all atom types need to have element and hybridization defined by the
addAtomTypes command. The standard AMBER force field atom types are added by the
default "leaprc" file.

Charge
This property is the monopole atomic charge centered on the ATOM. See the Appendices for
more information on deriving these charges. The value can be any floating point number (e.g.,
3.0, -1.0E-2).

Element
The atomic element provides a simpler description of the atom that thetype , and is used only
for LEAP’s internal purposes (typically when force field information is not available). The ele-
ment names correspond to standard nomenclature; the character "?" is used for special cases.
The element name is automatically generated when drawing new atoms.

Perturb
This is a flag that indicates whether to consider the ensuing perturbation information when build-
ing a perturbation topology file using thesaveAmberParmPert command. The setting is
"true" if the ATOM is to be perturbed, nothing or "false" otherwise. Unless one is setting up a
perturbation, this aprt of the table can be ignored.

Perturbed name
This property is a case-sensitive STRING. The property is a unique identifier for an ATOM in its
final state during a Free Energy Perturbation calculation. LEAP fills in the unperturbed name as a
default. The perturbed name has no effect on calculations and is mainly useful as a reminder of
what was intended.

Perturbed type
This property is the force field atom type of the perturbed species in a Free Energy Perturbation
calculation. The atom type is used to assign force field parameters. The type can be any string
from the force field.

8/25/97

LEAP Using LEap Page 67

Perturbed charge
This property is the monopole charge on an ATOM at the completion of a Free Energy Perturba-
tion calculation. The value can be any floating point number (e.g., -1.0E-2, 3.0).

5.7.4. Parmset Editor

If the user enters the commandedit Foo in the Universe Editor andFoo is a PARMSET, then a
Parmset Editor is popped up. First, a window appears which contains a number of buttons. The but-
tons list the parameters that can be edited − Atom, Bond, Angle, Proper Torsion, Improper Torsion,
and Hydrogen Bond − and an option to close the editor. Choosing one of the parameter buttons will
pop up a Table Editor. This editor resembles that of the Atom Properties Editor, having three parts: the
Menu Bar, Status Window, and Table Window.

5.7.4.1. Parmset Table Editor Menu Bar

The Menu Bar has three pulldowns:Table , Edit andOperations .

Table
"Save" − sav e current table. This transfers the parameter definitions in the table to the PARM-
SET. The table is first checked, and if something is incorrect, a warning box pops up with the
option to cancel the save.

"Save and quit" − save current table (as in "Save") and close the Parmset Editor.

"Close table" − the table information is discarded and not applied to the PARMSET. If the table
has been changed, a warning box pops up with the option to cancel the close.

Edit
"Add row at end" − create a new, empty row at the end of the table.

"Insert row before selection" − insert a new, empty row before the row containing the currently-
selected cell.

"Delete row" − delete row containing currently-selected cell.

Operations
"Find..." − pops up a dialog box to enter a string to search for. All fields in the table are searched,
and if the string matches the contents of a field, that cell is highlighted.

"Find again" − find next instance of current search string.

"Check table" − check each field in the table for errors. Error information is printed in the Status
Window. The first error in the table is highlighted.

"Go to next error" − highlight the next error from the last "Check table" command.

5.7.4.2. Parmset Table Editor Status Window

The Status Window is used to display messages from the Parmset Editor.

8/25/97

LEAP Using LEap Page 68

5.7.4.3. Parmset Table Window

The Table Window contains the parameters in a table format. The cell that is currently being edited is
highlighted; clicking mouse left-button over a cell selects it.

8/25/97

LEAP Using LEap with AMBER Page 69

5.8. Using LEaP With AMBER

This section focuses on concepts necessary to employ LEAP to produce input files for the AMBER
molecular mechanics programs. First we discuss loading force field parameter files (PARMSETs) and
residue libraries, and then the general strategy for using LEAP to create the coordinates and parame-
ters necessary to run AMBER. The user should refer to the "Examples" section and the tutorials in
under the "Web" part of the AMBER source tree for detailed analyses of utilizing LEAP for specific
tasks.

There are two AMBER force fields, Weineret al.1984, 1986 and Cornellet al.1995. The associ-
ated files happen to be named "91" and "94" respectively. Each force field consists of residue defini-
tions in one or more files, and an accompanying parameter file, or PARMSET. The residue definitions
and PARMSET must be compatible. The newer Cornellet al. force field is loaded by the default
leaprc file. A $LEAPROOT/cmd/leaprc.ff91 file is provided for loading the Weineret al.
force field; to use it, one would copy this file toleaprc in the current directory. You never want to
have both force fields (or parts of both) loaded at once, because they use incompatible and overlapping
atom type definitions.

5.8.1. PARMSETs

The mechanism for loading PARMSETs is theloadAmberParams command. The Weineret al.
PARMSET file for LEAP isparm91X.dat ; the Cornellet al. one isparm94.dat . The default
leaprc loads Cornellet al. as UNIT "parm94," whileleaprc.ff91 loads Weineret al. as
"parm91." Thelist command will show the PARMSET(s) that have been loaded along with all
other objects currently existing in LEAP.

In addition to one of the standard PARMSETs, one may need to load extra parameters, either for
residues not contained in these basic force fields, or in order to override standard parameters. This is
done by making afrcmod file in a normal text editor and loading that as well (usingloadAmber-
Params). The most recently-loaded parameters take precedence when there is a duplicate definition
of e.g.an atom type, so a frcmod file can be used to alter standard parameters without the risk of modi-
fying the standard file and losing track of what was changed.

NOTE that the nonbonded parameters in PARMSETs must be of the formr* andε . LEAP will
not read nonbonded parameters of the form "A & C". Also, for every atom type "mass" definition in
the parameter set, there must also exist a nonbonded parameter for that atom type. LEAP ignores
polarizability values from AMBER PARM parameter sets.

When LEAP needs force field parameters for commands likesaveAmberParm or saveAm-
berParmPert , it searches through the list of PARMSETs that are currently loaded from the most
recently loaded to the oldest. As soon as LEAP finds a parameter that matches the configuration of
atom types for which it is looking, it stops searching the PARMSET list.

Parameters for torsional terms are found by searching each loaded PARMSET in turn. Specific
torsional parameters take precedence over general ones (i.e. parameters having wild-card atoms). Only
an exact match will prevent searching all the PARMSETs.

8/25/97

LEAP Using LEap with AMBER Page 70

5.8.2. UNIT Libraries

A set of residue libraries is provided for each force field; the file names include "91" for Weineret al.
and "94" for Cornellet al.. The latter ones are loaded by the defaultleaprc file. One can see a list of
all the loaded residues using thelist command. In this section, we list the UNITs found in the
libraries and their names and aliases. When a UNIT is distributed with LEAP, all of the force field
parameters needed to define the UNIT within AMBER are also found in the PARMSETs.

5.8.2.1. Amino Acid Residues

The following amino acid UNITs and their aliases are defined in the LEAP libraries.

Group or residue Residue Name, Alias
Acetyl beginning group ACE
Amine ending group NHE
N-methylamine ending group NME
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Cysteine CYS
Cystine, S--S crosslink CYX
Glutamic acid GLU
Glutamine GLN
Glycine GLY
Histidine, delta H HID
Histidine, epsilon H HIE
Histidine, protonated HIP
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

The UNIT/RESIDUE names and aliases listed above correspond to the AMBER all atom force
field. (The Weineret al. united atom force field has not been adapted for LEAP.) For each of the
amino acids found in the LEAP libraries, there has been created an n-terminal and a c-terminal analog.
The n-terminal amino acid UNIT/RESIDUE names and aliases are prefaced by the letter N (e.g.
NALA) and the c-terminal amino acids by the letter C (e.g. CALA}. If the user models a peptide or
protein within LEAP, they may choose one of three ways to represent the terminal amino acids. The
user may use 1) standard amino acids, 2) protecting groups (ACE/NME), or 3) the charged c- and n-

8/25/97

LEAP Using LEap with AMBER Page 71

terminal amino acid UNITs/RESIDUEs. If the standard amino acids are used for the terminal
residues, then these residues will have incomplete valences. These three options are illustrated below:

{ ALA VAL SER PHE }

{ ACE ALA VAL SER PHE NME }

{ NALA VAL SER CPHE }

The default for loading from PDB files is to use n- and c-terminal residues; this is established by the
addPdbResMap command in the defaultleaprc files. To force incomplete valences with the stan-
dard residues, one would have to define a sequence ("x = { ALA VAL SER PHE } ") and use
loadPdbUsingSeq , or useclearPdbResMap to completely remove the mapping feature.

It should be noted that by convention amino acid sequences are written starting with the n-
terminus. This same convention is used in LEAP, dictated by the atom order in the residue libraries.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at the
delta or epsilon position. For this reason, the histidine UNIT/RESIDUE name is either HIP, HID, or
HIE (but not HIS). The default "leaprc" file assigns the name HIS to HID. Thus, if a PDB file is read
that contains the residue HIS, the residue will be assigned to the HID UNIT object. This feature can
be changed within one’s own "leaprc" file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the similar
residue which participates in disulfide bridges, cystine (CYX). The user will have to explicitly define,
using thecrossLink command, the disulfide bond for a pair of cystines, as this information is not
read from the PDB file. In addition, the user will need to load the PDB file using theloadPdbUs-
ingSeq command, substituting CYX for CYS in the sequence wherever a disulfide bond will be cre-
ated.

5.8.2.2. Nucleic Acid Residues

The following are defined for the 1994 force field.

Group or residue Residue Name, Alias
Adenine DA,RA
Thymine DT
Uracil RU
Cytosine DC,RC
Guanine DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with the
default leaprc file, ambiguous residues are assumed to be deoxy. Residue names like "DA" can be
followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also the default
established byaddPdbResMap, even if the "5" or "3" are not added in the PDB file. The "5" and "3"
residues are "capped" by a hydrogen; the plain and "3" residues include a "leading" phosphate group.
Neutral residues capped by hydrogens are end in "N," such as "DAN."

8/25/97

LEAP Using LEap with AMBER Page 72

5.8.2.3. Miscellaneous Residues

Miscellaneous Residue unit/residue name
_
TIP3P water molecule WA T, HOH, IP3
Periodic box of TIP3P water WATBOX216
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl- or IM
Large cation IB

"IB" represents a solvated monovalent cation (say, sodium) for use in vacuum simulations. The cation
UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in the file
"water.lib". The defaultleaprc file assigns the variables HOH and IP3 to the WAT UNIT found in
the OFF library file. Thus, if a PDB file is read and that file contains either the residue name HOH or
IP3, the WAT UNIT will be substituted. (Note that PDB residue names are restricted to 3 characters.)

A periodic box of 216 waters (WATBOX216) is provided in the file "water.lib". The box mea-
sures 18.774 angstroms on a side. This box of waters has been equilibrated by a Monte Carlo simula-
tion. It is the UNIT that should be used to solvate systems with TIP3P water molecules within LEaP.
It has been provided by W. L. Jorgensen.

5.8.3. Building a Molecule For Molecular Mechanics

Note that there are some web examples of using LEAP for various practical tasks under "PSC Tutori-
als" on http://www.amber.ucsf.edu/amber/.

In order to prepare a molecule within LEAP for AMBER, three basic tasks need to be completed.

• Any needed UNIT or PARMSET objects must be loaded;

• The molecule must be constructed within LEAP;

• The user must output topology and coordinate files from LEAP to use in AMBER.

5.8.3.1. Loading Objects

Before start-up, LEAP contains no objects. In the default configuration, standard PARMSET and
UNIT residue libraries for the Cornellet al. force field are loaded by the defaultleaprc file in
$LEAPROOT/cmd/. This file can be consulted or copied as a template for constructing a useful work
environment.

8/25/97

LEAP Using LEap with AMBER Page 73

The saveOff command is used to save constructed UNITs to libraries, and frcmod-style
PARMSETs are constructed using a normal text editor. Both may be loaded to prepare for a session
usingloadOff and dAmberParams respectively.

Objects are loaded into LEAP either by the user typing in load commands interactively, or by
placing appropriate load commands within a "leaprc" start-up file in the working directory.

5.8.3.2. Constructing the Molecule

There are several different methods of constructing molecules or UNITs within LEAP. If the user has
an AMBER PREP file, the structure may be read in using theloadAmberPrep command. PDB
files are read into LEAP using theloadPdb or loadPdbUsingSeq commands. It is also possible
to construct a molecule structure manually using thezMatrix command or (most commonly) the
xleap edit command. The user may use any combination of these methods to make molecules.
Once a UNIT is created, it can be stored in an OFF library for subsequent use. Thus, if a user is build-
ing a polypeptide which includes one novel amino acid, they would load the OFF library of standard
amino acids and create the novel amino acid residue through one of the abovementioned methods.
This nonstandard amino acid residue UNIT could then be stored and reloaded at the beginning of
future sessions.

5.8.3.3. Z-matrix Input

Let us examine several methods of constructing a water molecule within LEAP. One such method
would be to build a water UNIT, which we will call WAT , by utilizing a Z-matrix input for structure.
Note that this method is probably only convenient if one already has such a matrix; normally it is eas-
ier to draw the new residue usinthe Unit Editor.

In the following example, presented as if it were a special leaprc, the user constructs WAT by
creating ATOMs, then a RESIDUE, and finally the WAT UNIT. A structure is applied to the UNIT by
using internal coordinates given by a Z-matrix. In this illustration, the user does not define anyhead
or tail atoms for the RESIDUE or anyconnect atoms for the UNIT. This is because WAT is not a
residue in the chemical sense; the WAT UNIT will never be used as a substituent or monomer. Once
the WAT UNIT is created, a topology file and a coordinate file are generated for molecular mechanics
calculations. In this and subsequent illustrations, all input command lines are prefaced by the charac-
ters "> ". The program output found in these listings is not prefaced by the characters.

> #

> # Constructing the water molecule will be done through

> # a build-up procedure. First, ATOMs are created. The

> # names, types, and charges of the ATOMs are also set.

> # We then define the elements that are associated with

> # each ATOM variable:

> #

> o = createAtom O OW -0.834

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> set o element O

8/25/97

LEAP Using LEap with AMBER Page 74

> set h1 element H

> set h2 element H

> #

> # A new residue ("WAT") is created and the

> # variable "waterResidue" represents

> # this object. Each of the ATOMs are then

> # added to the RESIDUE and bonds are next placed

> # between the ATOMs. The bond orders are, by

> # default, single:

> #

> waterResidue = createResidue WAT

> add waterResidue o

> add waterResidue h1

> add waterResidue h2

> bond h1 o

> bond h2 o

> #

> # A new UNIT ("WAT") is created and "waterResidue" is placed

> # within the UNIT. At this point, the RESIDUE topology

> # is known. A Z-matrix is read in so that the structure

> # of the RESIDUE can be determined:

> #

> WAT = createUnit WAT

> add WAT waterResidue

> zMatrix WAT {

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

> #

> # The "WAT" UNIT is saved in an OFF library:

> #

> saveOff WAT examples.lib

Saving WAT.

Building topology.

Building atom parameters.

5.8.3.4. PDB File Input

Another method of constructing a molecule is to use a PDB file. This time, rather than first building
the molecule atom-by-atom and adding bonds to create a template, we just load the PDB file and begin
work on that.

> #

> # Load the file; since it’s an unknown residue,

> # there are lots of messages..

> #

8/25/97

LEAP Using LEap with AMBER Page 75

> WAT = loadpdb Wat.pdb

Loading PDB file: ./Wat.pdb

Unknown residue: WAT number: 0 type: Terminal/last

-no luck

Creating new UNIT for residue: WAT sequence: 1

Created a new atom named: O within residue: .R<WAT 1>

Created a new atom named: H1 within residue: .R<WAT 1>

Created a new atom named: H2 within residue: .R<WAT 1>

total atoms in file: 3

The file contained 3 atoms not in residue templates

> #

> # Add bonds

> #

> bondbydistance WAT

> #

> # Make it solvent

> #

> set WAT.1 restype solvent

> #

> # Set atom attributes (easier to do in the

> # Atom Properties Editor)

> #

> set WAT.1.O type OW

> set WAT.1.H1 type HW

> set WAT.1.H2 type HW

> set WAT.1.O charge -0.834

> set WAT.1.H1 charge 0.417

> set WAT.1.H1 charge 0.417

> #

> # The "WAT" UNIT is saved in an OFF library:

> #

> saveOff WAT examples.lib

Saving WAT.

Building topology.

Building atom parameters.

The user may want to model a molecule for which a PDB file exists and a LEAP UNIT has already
been created and stored in an OFF library. In this case, it is only necessary to load a PARMSET, the
UNIT, and PDB file into LEAP. It is important to replace the coordinates of the UNIT with those of
the PDB file in order to ensure that the molecular structure assumes the conformation of interest to the
user. To understand this last point, consider the construction of a protein. When the UNITs in LEAP
are joined together to form the protein sequence, the resulting structure is linear. Replacing the Carte-
sian coordinates of the UNITs will allow the proper tertiary protein structure to be modeled. The fol-
lowing example illustrates this procedure:

> #

> # Load a LEaP OFF library that contains the

8/25/97

LEAP Using LEap with AMBER Page 76

> # water UNIT:

> #

> loadOff examples.lib

> #

> # Load a PDB file to obtain correct Cartesian

> # coordinates:

> #

> wat = loadPdb Wat.pdb

Loading PDB file: ./Wat.pdb

total atoms in file: 3

5.8.3.5. AMBER PREP Input

If an AMBER PREP file exists for the water molecule it can be used to create the water UNIT within
LEAP. When the PREP file is loaded into LEAP, a new UNIT is constructed that contains a single
RESIDUE and a variable is created with the same name as the name of the residue within the PREP
file.

> #

> # Load AMBER PREP file for water:

> #

> loadAmberPrep Wat.in

Loaded UNIT: WAT

> #

> # If necessary, load a PDB file to obtain correct

> # Cartesian coordinates:

> #

> wat = loadPdb Wat.pdb

Loading PDB file: ./Wat.pdb

total atoms in file: 3

5.8.3.6. UNIT Editor Input

We hav e illustrated several methods of constructing a water molecule within LEAP. By far, the most
convenient method is the one which we will now discuss. If the user runs the xleap program, the
molecule can be created quite easily graphically within the Unit Editor.

After the xleap program is started and a PARMSET is loaded, the user can enter the Unit Editor
with theedit command. If the command argument (WAT) is not an existing UNIT, a new RESIDUE
and UNIT will be created and the program will display a Unit Editor for WAT .

The first objective is to draw and build the molecule. In the Control Window is a button named
draw . The user should select this button with the left mouse button. The Viewing Window will now
be set to the Draw mode. The user should then select the O (oxygen) element button in the Control
Window. This will set the drawing element type to oxygen. TheDraw mode mouse button (left

8/25/97

LEAP Using LEap with AMBER Page 77

button) is depressed and clicked anywhere on the screen. The user can then release the mouse button.
Now the user can select theUnit pulldown command:Add H & Build . Two hydrogen
AT OMs will be added to the oxygen and the molecular structure will be generated using the geometry
builder rules. The user may want to rotate the molecule, using the middle mouse button, to confirm
that the geometry is correct.

Next, the user needs to edit the ATOMs. The entire molecule should be selected by pressing the
ManipulationSelect option and then pressing theSelect mode mouse button (left button) any-
where in the Viewing Window background and dragging the mouse until the select box encompasses
the molecule. The mouse button can then be released. The user should then choose theEdit
selected items command from theEdit pulldown. An Atom Properties Editor will appear.

The Unit Editor has already assigned names to the ATOMs and if desired, the user can change
the names. In order for correct AMBER force field parameters to be assigned, the user must define the
oxygen and hydrogen ATOM types as "OW" and "HW", respectively. The user should also assign elec-
trostatic point charges to each ATOM. The Atom Properties Editor can then be closed by choosing the
"Save and quit" command in theTable pulldown. The UNIT has been created and the user can
return to the xleap Universe Editor. Note that this WAT residue does not correspond to the TIP3P
WA T residue that is loaded fromwater.lib since it lacks an H-H bond (used for keeping the
molecule rigid with SHAKE).

> #

> # Load the main parameter set:

> #

> parm94 = loadAmberParams parm94.dat

Loading parameters: parm94.dat

> #

> # Graphically create a water molecule within

> # the Unit Editor:

> #

> edit WAT

> #

> # If necessary, load a PDB file to obtain correct

> # Cartesian coordinates:

> #

> wat = loadPdb Wat.pdb

Loading PDB file: ./Wat.pdb

total atoms in file: 3

5.8.3.7. Generating Molecular Mechanics Input Files

Once the UNIT is constructed, it should be examined using thecheck command. The UNIT may
also be augmented in many ways, including adding counterions, restraints, or solvents.

Finally, the user needs to obtain topology and coordinate files. These files are used as input for
AMBER. These two files are created by thesaveAmberParm command. If the user constructed a
UNIT to be used in a Free Energy Perturbation calculation, then thesaveAmberParmPert com-
mand should be used instead.

8/25/97

LEAP Using LEap with AMBER Page 78

5.9. Commands

The following is a description of the commands that can be accessed using the command line interface
in tLEAP, or through the command line editor in xLEAP. Whenever an argument in a command line
definition is enclosed in brackets ([arg]), then that argument is optional. When examples are shown,
the command line is prefaced by "> ", and the program output is shown without this character preface.

5.9.1. add
add a b

UNIT/RESIDUE/ATOM a,b

Add the objectb to the objecta. This command is used to place ATOMs within RESIDUEs, and
RESIDUEs within UNITs. This command will work only ifb is not contained by any other
object.

The following example illustrates both theadd command and the way the tip3p water molecule
is created for the LEAP distribution tape.

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> o = createAtom O OW -0.834

>

> set h1 element H

> set h2 element H

> set o element O

>

> r = createResidue TIP3

> add r h1

> add r h2

> add r o

>

> bond h1 o

> bond h2 o

> bond h1 h2

>

> TIP3 = createUnit TIP3

>

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.O

>

> zMatrix TIP3 {

8/25/97

LEAP Commands Page 79

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

>

> saveOff TIP3 water.lib

Saving TIP3.

Building topology.

Building atom parameters.

5.9.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type

STRING element

STRING hybrid

Define element and hybridization for force field atom types. This command for the standard
force fields can be seen in the defaultleaprc files. The STRINGs are most safely rendered
using quotation marks. If atom types are not defined, confusing messages about hybridization
can result when loading PDB files.

5.9.3. addIons
addIons unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Adds counterions in a shell aroundunit using a Coulombic potential on a grid. IfnumIon1is 0,
then theunit is neutralized. In this case,numIon1must be opposite in charge tounit and
numIon2cannot be specified. Otherwise, the specified numbers ofnumIon1 numIon2are added
in alternating order. Ions must be monoatomic. This procedure is not guaranteed to globally
minimize the electrostatic energy. When neutralizing regular-backbone nucleic acids, the first
cations will generally be placed between phosphates, leaving the final two ions to be placed
somewhere around the middle of the molecule.The default grid resolution is 1 Å, extending from
an inner radius of ((maxIonVdwRadius + maxSoluteAtomVdwRadius)) to an outer radius 4
angstroms beyond. A distance-dependent dielectric is used for speed.

5.9.4. addPath
addPath path

STRING path

8/25/97

LEAP Commands Page 80

Add the directory inpath to the list of directories that are searched for files specified by other
commmands. The following example illustrates this command.

> addPath /disk/howard

/disk/howard added to file search path.

After the above command is entered, the program will search for a file in this directory if a file is
specified in a command. Thus, if a user has a library named "/disk/howard/rings.lib" and the
user wants to load that library, one only needs to enter load rings.lib and not load
/disk/howard/rings.lib.

5.9.5. addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms within
residue UNITs when the atom name in the PDB file does not match an atom in the residue. This
enables PDB files to be read in without extensive editing of atom names. Typically, this com-
mand is placed in the LEAP start-up file, "leaprc", so that assignments are made at the beginning
of the session. The LIST is a LIST of LISTs. Each sublist contains two entries to add to the
Name Map. Each entry has the form:

{ string string }

where the firststring is the name within the PDB file, and the secondstring is the name in the
residue UNIT.

5.9.6. addPdbResMap
addPdbResMap list

LIST list

The Name Map is used to map RESIDUE names read from PDB files to variable names within
LEAP. Typically, this command is placed in the LEAP start-up file, "leaprc", so that assignments
are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist contains
two or three entries to add to the Name Map. Each entry has the form:

{ double string string }

8/25/97

LEAP Commands Page 81

wheredoublecan be 0 or 1, the first string is the name within the PDB file, and the second string
is the variable name to which the first string will be mapped. To illustrate, the following is part
of the Name Map that exists when LEAP is started from the "leaprc" file included in the distribu-
tion tape:

ADE --> DADE

: :

0 ALA --> NALA

0 ARG --> NARG

: :

1 ALA --> CALA

1 ARG --> CARG

: :

1 VAL --> CVAL

Thus, the residueALA will be mapped toNALA if it is the N-terminal residue andCALA if it is
found at the C-terminus. The above Name Map was produced using the following (edited) com-
mand line:

> addPdbResMap {

> { 0 ALA NALA } { 1 ALA CALA }

> { 0 ARG NARG } { 1 ARG CARG }

: :

> { 0 VAL NVAL } { 1 VAL CVAL }

>

: :

> { ADE DADE }

: :

> }

5.9.7. alias
alias [string1 [string2]]

STRING string1

STRING string2

This command will add or remove anentry to the Alias Table or list entries in the Alias Table. If
both strings are present, then string1 becomes the alias to string2, the original command. If only
one string is used as an argument, then this string is removed from the Alias Table. If no argu-
ments are given with the command, the current aliases stored in the Alias Table will be listed.

The proposed alias is first checked for conflict with the LEAP commands and it is rejected if a
conflict is found. A proposed alias will replace an existing alias with a warning being issued.
The alias can stand for more than a single word, but also as an entire string so the user can

8/25/97

LEAP Commands Page 82

quickly repeat entire lines of input.

The leaprc file that is found in the LEAP distribution tape creates the following aliases:

q quit

exit quit

e edit

a alias

? help

l loadOff

lp loadPdb

so saveOff

sap saveAmberParm

sp savePdb

ap loadAmberParams

lap loadAmberPrep

ai addIons

s source

The following line is an example of this command:

> alias q quit

5.9.8. alignAxes
alignAxes unit

UNIT unit

Translate the geometric center ofunit to the origin and align the principle axes of the ATOMs
within unit along the coordinate axes. This is done by calculating the moment of inertia of the
UNIT using the identical mass for each ATOM, and then diagonalizing the resulting matrix and
aligning the eigenvectors along the coordinate axes. This command modifies the coordinates of
the UNIT.

The following example illustrates the alignAxes command. For the purposes of this manual, the
CA ATOM of the all_amino94.lib UNIT GLY is described. The user should note the change in
the CA Cartesian coordinates after alignment.

> desc GLY.GLY.CA

ATOM

Name: CA

Type: CT

Charge: 0.035

8/25/97

LEAP Commands Page 83

Element: C

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

> alignAxes GLY

> desc GLY.GLY.CA

ATOM

Name: CA

Type: CT

Charge: 0.035

Element: C

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 0.124598, 0.610835, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

5.9.9. bond
bond atom1 atom2 [order]

ATOM atom1

ATOM atom2

STRING order

Create a bond between atom1 and atom2. Both of these ATOMs must be contained by the same
UNIT. By default, the bond will be a single bond. By specifying "-", "=", "#", or ":" as the
optional argument,order, the user can specify a single, double, triple, or aromatic bond, respec-
tively. (See theaddcommand for an example of thebond command.)

5.9.10. bondByDistance
bondByDistance container [maxBond]

CONT container

NUMBER maxBond

Create single bonds between all ATOMs in container that are within maxBond angstroms of each
other. If maxBond is not specified then a default distance will be used. This command is

8/25/97

LEAP Commands Page 84

especially useful in building molecules. Example:

bondByDistance alkylChain

5.9.11. center
center container

UNIT/RESIDUE/ATOM container

Display the coordinates of the geometric center of the ATOMs within container. In the following
example, the alanine UNIT found in the amino acid library has been examined by the center
command:

> center ALA

The center is at: 4.04, 2.80, 0.49

5.9.12. charge
charge container

UNIT/RESIDUE/ATOM container

This command calculates the total charge of the ATOMs within container. The total charges for
both standard and, where applicable, perturbed systems are displayed. In the following example,
the alanine UNIT found in the amino acid library has been examined by the charge command:

> charge ALA

Total unperturbed charge: 0.00

Total perturbed charge: 0.00

5.9.13. check
check unit [parms]

UNIT unit

PARMSET parms

This command can be used to check the UNIT for internal inconsistencies that could cause prob-
lems when performing calculations. This is a very useful command that should be used before a
UNIT is saved withsaveAmberParm. Currently it checks for the following possible problems:

8/25/97

LEAP Commands Page 85

• long bonds

• short bonds

• non-integral total charge of the UNIT.

• missing force field atom types

• close contacts (< 1.5 Å) between nonbonded ATOMs.

The user may collect any missing molecular mechanics parameters in a PARMSET for subse-
quent editing. In the following example, the alanine UNIT found in the amino acid library has
been examined by thecheck command:

> check ALA

Checking ’ALA’....

Checking parameters for unit ’ALA’.

Checking for bond parameters.

Checking for angle parameters.

Unit is OK.

5.9.14. clearPdbAtomMap
Clear the atom Name Map (see theaddPdbAtomMap command).

5.9.15. clearPdbResMap
Clear the residue Name Map (see theaddPdbResMap command).

5.9.16. clearVariables
clearVariables [list]

LIST list

This command removes variables from LEAP. If the list argument is provided then only the vari-
ables in the LIST will be removed. If no argument is provided then all variables will be removed.
Example:

> addPath /disk/howard/LeapTests/Ethane

/disk/howard/LeapTests/Ethane added to file search path.

> loadOff ETH.lib

Loading library: ETH.lib

Loading: ETH

> list

ETH

> desc ETH

UNIT name: ETH

8/25/97

LEAP Commands Page 86

Head atom: null

Tail atom: null

Contents:

R<ETH 1>

> clearVariables { ETH }

> list

> desc ETH

"ETH"

5.9.17. combine
variable = combine list

object variable

LIST list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is placed in
variable. This command is similar to thesequencecommand except it does not link the ATOMs
of the UNITs together. In the following example, the input and output should be compared with
the example given for thesequencecommand.

> tripeptide = combine { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

5.9.18. copy
newvariable = copy variable

object newvariable

object variable

Creates an exact duplicate of the object variable. Since newvariable is not pointing to the same
object as variable, changing the contents of one object will not alter the other object. Example:

8/25/97

LEAP Commands Page 87

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not solvated. Had
the user instead entered

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated since they would both point to the same
object.

5.9.19. createAtom
variable = createAtom name type charge

ATOM variable

STRING name

STRING type

NUMBER charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type, and
electrostatic point charge. (See theaddcommand for an example of thecreateAtomcommand.)

5.9.20. createParmset
variable = createParmset name

PARMSET variable

STRING name

Return a new and empty PARMSET with the name "name".

> newparms = createParmset pertParms

5.9.21. createResidue
variable = createResidue name

RESIDUE variable

STRING name

8/25/97

LEAP Commands Page 88

Return a new and empty RESIDUE with the name "name". (See theaddcommand for an exam-
ple of thecreateResiduecommand.)

5.9.22. createUnit
variable = createUnit name

UNIT variable

STRING name

Return a new and empty UNIT with the name "name". (See theadd command for an example
of thecreateUnitcommand.)

5.9.23. crossLink
crossLink res1 conn1 res2 conn2 [order]

RESIDUE res1

STRING connect1

RESIDUE res2

STRING connect2

STRING order

Create a bond between ATOMs at the connection point specified by conn1 and conn2. The user
may also specify the bond order of the crosslink through the order option. By specifying "-",
"=", "#", or ":" as the optional argument, order, the user can specify a single, double, triple, or
aromatic bond, respectively. The arguments conn1 and conn2 can have the following values:

Name Alternative Names

connect0 nend firstend

connect1 cend lastend

connect2 send disulphide

connect3 -

connect4 -

connect5 -

Example:

> disulfide = sequence {

> ALA CYX ALA ALA ALA ALA CYX ALA

> }

> crosslink disulfide.2 connect2 disulfide.7 connect2

> desc disulfide.2.8

ATOM

Name: SG

8/25/97

LEAP Commands Page 89

Type: S

Charge: 0.824

Element: S

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 9.992386, 3.049907, -1.366045

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<CYX 2>.A<CB 5> by a single bond.

Bonded to .R<CYX 2>.A<LP1 9> by a single bond.

Bonded to .R<CYX 2>.A<LP2 10> by a single bond.

Bonded to .R<CYX 7>.A<SG 8> by a single bond.

5.9.24. debugOff
debugOff filename

STRING filename

This command is a system debugging function. It turns off debugging messages from the source
file filename. The default for all filenames is OFF. Command example:

> debugoff /disk/howard/debug

Messages will be displayed from the files:

5.9.25. debugOn
debugOn filename

STRING filename

This command is a system debugging function. It turns on debugging messages from the source
file filename. The default for all filenames is OFF. Example:

> debugon /disk/howard/debug

Messages will be displayed from the files:

/disk/howard/debug

5.9.26. debugStatus
debugStatus [memory]

8/25/97

LEAP Commands Page 90

STRING memory

This command is a system debugging command. It displays various messages that describe
LEAP’s usage of system resources. The optional string, memory, can have the following values:

testMemoryOn Turn memory testing on

testMemoryOff Turn memory testing off

Command example:

> debugstatus

Current memory usage: 0 bytes

Memory testing on = FALSE

5.9.27. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the amino
acid library has been examined by thedesccommand:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<ALA 1>.A<C 9>

Contents:

R<ALA 1>

Now, thedesccommand is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

8/25/97

LEAP Commands Page 91

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

Next, we illustrate the desc command by examining the ATOMn of the first residue (1) of the
alanine UNIT:

> desc ALA.1.N

ATOM

Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the n ATOM is also the first atom of the ALA residue, the following command will give
the same output as the previous example:

> desc ALA.1.1

ATOM

Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

8/25/97

LEAP Commands Page 92

5.9.28. deSelect
deSelect object

CONT object

Clears the select flag on all ATOMs within object. (see theselectcommand for additional infor-
mation.)

> deSelect ALA.1.5

5.9.29. displayPdbAtomMap
Display the atom Name Map (see theaddPdbAtomMapcommand).

5.9.30. displayPdbResMap
Display the residue Name Map (see theaddPdbResMapcommand).

5.9.31. edit
edit unit

UNIT unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The user can view and
edit the contents of the UNIT using the mouse. The command causes a copy of the object to be
edited. If the object that the user wants to edit is "null", then the edit command assumes that the
user wants to edit a new UNIT with a single RESIDUE within it. In tleap this command prints
an error message.

5.9.32. groupSelectedAtoms
groupSelectedAtoms unit name

UNIT unit

STRING name

Create a group within unit with the name, "name", using all of the ATOMs within the UNIT that
are selected. If the group has already been defined then overwrite the old group. Thedesccom-
mand can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like "TRP@sideChain" returns a LIST, so any commands that require LIST ’s can

8/25/97

LEAP Commands Page 93

take advantage of this notation. After assignment, one can access groups using the "@" notation.
Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the "sideChain" group. (see theselect
command for a more detailed example.)

5.9.33. help
help [string]

STRING string

This command prints a description of the command in string. If the STRING is not given then a
list of help topics is provided. This command is illustrated with the following example:

> help quit

quit

Quit LEaP.

5.9.34. impose
impose unit seqlist internals

UNIT unit

LIST seqlist

LIST internals

The impose command allows the user to impose internal coordinates on the UNIT. The list of
RESIDUEs to impose the internal coordinates upon is in seqlist. The internal coordinates to
impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the seqlist
argument and attempts to apply each of the internal coordinates within internals. The seqlist
argument is a LIST of NUMBERS that represent sequence numbers or ranges of sequence num-
bers. Ranges of sequence numbers are represented by two element LISTs that contain the first
and last sequence number in the range. The user can specify sequence number ranges that are
larger than what is found in the UNIT. For example, the range { 1 999 } represents all
RESIDUEs in a 200 RESIDUE UNIT.

8/25/97

LEAP Commands Page 94

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM names
which are of type STRING followed by the value of the internal coordinate. An example of the
impose command would be:

impose peptide { 1 2 3 } {

{ N CA C N -40.0 }

{ C N CA C -60.0 }

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT peptide to
assume an alpha helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } {

{ CA CB 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within the UNIT
peptide a bond length of 5.0 angstroms between the alpha and beta carbons. RESIDUEs without
an ATOM named CB (like glycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle changes,
and torsion angle changes. If the conformational change involves a torsion angle, then all dihe-
drals around the central pair of atoms are rotated. The entire list of internals are applied to each
RESIDUE.

5.9.35. list
List all of the variables currently defined. To illustrate, the following (edited) output shows the
variables defined when LEAP is started from the leaprc file included in the distribution tape:

> list

A

ACE ALA

ARG ASN

: :

VAL W

WAT Y

5.9.36. listOff
listOff library

STRING library

8/25/97

LEAP Commands Page 95

List the UNITs/PARMSETs that are stored within the library. Command example:

> listOff all_amino94.lib

Index of library: all_amino94.lib

ALA

ARG

ASH

ASN

ASP

CYM

CYS

CYX

GLN

GLU

GLY

HID

HIE

HIP

ILE

LEU

LYS

MET

PHE

PRO

SER

THR

TRP

TYR

VAL

5.9.37. loadAmberParams
variable = loadAmberParams filename

PARMSET variable

STRING filename

Load an AMBER format parameter set file and place it in variable. All interactions defined in
the parameter set will be contained within variable. This command causes the loaded parameter
set to be included in LEAP ’s list of parameter sets that are searched when parameters are
required. General proper and improper torsion parameters are modified during the command
execution with the LEAP general type "?" replacing the AMBER general type "X".

The LEAP distribution contains "old" and "new" AMBER force field parameters in files
"parm91X.dat" and "parm94.dat". One could build OFF libraries using the commands shown
below; at some point this may become a standard conversion, but since it is easier to maintain the
parameters in the AMBER format, this procedure is not used in the default setup. "parm91X.dat"

8/25/97

LEAP Commands Page 96

is used instead of the "parm91.dat" in the AMBER dat/ tree because this file has corrections for
LEAP ’s method of applying improper torsions.

> parm91 = loadAmberParams parm91X.dat

> saveOff parm91 parm91.lib

Saving parm91.

5.9.38. loadAmberPrep
loadAmberPrep filename [prefix]

STRING filename

STRING prefix

This command loads an AMBER PREP input file. For each residue that is loaded, a new UNIT is
constructed that contains a single RESIDUE and a variable is created with the same name as the
name of the residue within the PREP file. If the optional argument prefix is provided it will be
prefixed to each variable name; this feature is used to prefix UAT OM residues, which have the
same names as AATOM residues with the string "U" to distinguish them. Let us imagine that the
following AMBER PREP input file exists:

0 0 2

Crown Fragment A

cra.res

CRA INT 0

CORRECT NOMIT DU BEG

0.0

1 DUMM DUM 0 0 0 0. 0. 0.

2 DUMM DUM 0 0 0 1.000 0. 0.

3 DUMM DUM 0 0 0 1.000 90. 0.

4 C1 CT M 0 0 0 1.540 112. 169.

5 H1A HC E 0 0 0 1.098 109.47 -110.0

6 H1B HC E 0 0 0 1.098 109.47 110.0

7 O2 OS M 0 0 0 1.430 112. -72.

8 C3 CT M 0 0 0 1.430 112. 169.

9 H3A HC E 0 0 0 1.098 109.47 -49.0

10 H3B HC E 0 0 0 1.098 109.47 49.0

CHARGE

0.2442 -0.0207 -0.0207 -0.4057 0.2442

-0.0207 -0.0207

DONE

STOP

8/25/97

LEAP Commands Page 97

This fragment can be loaded into LEAP using the following command:

> loadAmberPrep cra.in

Loaded UNIT: CRA

5.9.39. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs and PARMSETs
within the library will be loaded. The objects are loaded into LEAP under the variable names the
objects had when they were saved. Variables already in existence that have the same names as
the objects being loaded will be overwritten. Any PARMSETs loaded using this command are
included in LEAP ’s library of PARMSETs that is searched whenever parameters are required
(The old AMBER format is used for PARMSETs rather than the OFF format in the default con-
figuration). Example command line:

> loadOff parm91.lib

Loading library: parm91.lib

Loading: PARAMETERS

5.9.40. loadPdb
variable = loadPdb filename

STRING filename

object variable

Load a Protein Databank format file with the file name filename. The sequence numbers of the
RESIDUEs will be determined from the order of residues within the PDB file ATOM records.
This function will search the variables currently defined within LEAP for variable names that
map to residue names within the ATOM records of the PDB file. If a matching variable name is
found then the contents of the variable are added to the UNIT that will contain the structure
being loaded from the PDB file. Adding the contents of the matching UNIT into the UNIT being
constructed means that the contents of the matching UNIT are copied into the UNIT being built
and that a bond is created between the connect0 ATOM of the matching UNIT and the connect1
AT OM of the UNIT being built. The UNITs are combined in the same way UNITs are combined
using the sequence command. As atoms are read from the ATOM records their coordinates are
written into the correspondingly named ATOMs within the UNIT being built. If the entire
residue is read and it is found that ATOM coordinates are missing, then external coordinates are
built from the internal coordinates that were defined in the matching UNIT. This allows LEAP to

8/25/97

LEAP Commands Page 98

build coordinates for hydrogens and lone-pairs which are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.

Mapped residue THR, term: 0, seq. number: 0 to: NTHR.

Residue THR, term: M, seq. number: 1 was not

found in name map.

Residue CYS, term: M, seq. number: 2 was not

found in name map.

Residue CYS, term: M, seq. number: 3 was not

found in name map.

Residue PRO, term: M, seq. number: 4 was not

found in name map.

: : :

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.

Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

: : :

Joining ASP - TYR

Joining TYR - ALA

Joining ALA - CASN

The above edited listing shows the use of this command to load a PDB file for the protein Cram-
bin. Several disulphide bonds are present in the protein and these bonds are indicated in the PDB
file. The loadPdb command, however, cannot read this information from the PDB file. It is nec-
essary for the user to explicitly define disulphide bonds using thecrossLinkcommand.

5.9.41. loadPdbUsingSeq
loadPdbUsingSeq filename unitlist

STRING filename

LIST unitlist

This command reads a Protein Data Bank format file from the file named filename. This com-
mand is identical toloadPdb except it does not use the residue names within the PDB file.
Instead the sequence is defined by the user in unitlist. For more details seeloadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }

8/25/97

LEAP Commands Page 99

> pept = loadPdbUsingSeq pept.pdb peptSeq

In the above example, a variable is first defined as a LIST of united atom RESIDUEs. A PDB
file is then loaded, in this sequence order, from the file "pept.pdb".

5.9.42. logFile
logFile filename

STRING filename

This command opens the file with the file name filename as a log file. User input and all output is
written to the log file. Output is written to the log file as if the verbosity level were set to 2. An
example of this command is:

> logfile /disk/howard/leapTrpSolvate.log

5.9.43. matchVariables
variable = matchVariables string

LIST variable

STRING string

The matchVariables command is used to create a LIST of variables with names that match string.
The argument string can contain the wildcard characters "?" and "*" to match a specific character
or multiple characters, respectively.

> cTerminal = matchVariables C???

> desc cTerminal

List size=24

CALA: CARG: CASN: CASP: CCYS: CCYX: CGLN:

CGLU: CGLY: CHID: CHIE: CHIP:

CHIS: CILE: CLEU: CLYS: CMET: CPHE: CPRO:

CSER: CTHR: CTRP: CTYR: CVAL:

--End of list

5.9.44. measureGeom
measureGeom atom1 atom2 [atom3 [atom4]]

ATOM atom1

ATOM atom2

8/25/97

LEAP Commands Page 100

ATOM atom3

ATOM atom4

Measure the distance, angle, or torsion between two, three, or four ATOMs, respectively.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in order to
find the identity of the ATOMs. Next, the measureGeom command is used to determine a dis-
tance, simple angle, and a dihedral angle. As shown in the example, the ATOMs may be identi-
fied using atom names or numbers.

> desc ALA.ALA

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA.5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

5.9.45. quit
Quit the LEAP program.

5.9.46. remove
remove a b

CONT a

CONT b

8/25/97

LEAP Commands Page 101

Remove the object b from the object a. If b is not contained by a then an error message will be
displayed. This command is used to remove ATOMs from RESIDUEs, and RESIDUEs from
UNITs. If the object represented by b is not referenced by some variable name then it will be
destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents:

R<ALA 1>

R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

5.9.47. removeBond
removeBond atom1 atom2

ATOM atom1

ATOM atom2

Remove the bond between the ATOMs atom1 and atom2. If no bond exists, an error will be dis-
played.

> dipeptide = sequence { ALA GLY }

Sequence: ALA

Sequence: GLY

Joining ALA - GLY

> desc dipeptide.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<O 10>

8/25/97

LEAP Commands Page 102

A<C 9>

A<HB3 8>

A<HB2 7>

A<HB1 6>

A<CB 5>

A<HA 4>

A<CA 3>

A<HN 2>

A<N 1>

> desc dipeptide.1.9

ATOM

Name: C

Type: C

Charge: 0.616

Element: C

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 5.485541, 2.705207, -0.000004

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Bonded to .R<ALA 1>.A<O 10> by a single bond.

Bonded to .R<GLY 2>.A<N 1> by a single bond.

> removeBond dipeptide.1.9 dipeptide.2.1

> desc dipeptide.1.9

ATOM

Name: C

Type: C

Charge: 0.616

Element: C

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 5.485541, 2.705207, -0.000004

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Bonded to .R<ALA 1>.A<O 10> by a single bond.

5.9.48. removeOffLibEntry
removeOffLibEntry library entry

STRING library

STRING entry

Remove the entry from the library.

> loadOff ETH.lib

Loading library: ETH.lib

8/25/97

LEAP Commands Page 103

Loading: ETH

> listOff ETH.lib

Index of library: ETH.lib

ETH

> removeOffLibEntry ETH.lib ETH

ETH was removed.

> listOff ETH.lib

Index of library: ETH.lib

5.9.49. removeRestraint
removeRestraint unit a b [c [d]]

UNIT unit

ATOM a

ATOM b

ATOM c

ATOM d

Remove a restraint bond, angle, or torsion from unit, depending on the number of ATOMs speci-
fied. (see therestrainBondcommand for an example of this command).

5.9.50. restrainAngle
restrainAngle unit a b c force angle

UNIT unit

ATOM a

ATOM b

ATOM c

NUMBER force

NUMBER angle

Add a restraint angle to unit. A restraint is used to constrain atoms during molecular mechanics
calculations. It causes the energy of the unit to increase as the deviation from the restraining
internal coordinate increases. The restraint is between atoms a, b, and c. The force constant of
the restraint is force (in kcal-mol$ˆ{-1}$-deg$ˆ{-1}$) and the equilibrium angle is angle (in
degrees). (see therestrainBondcommand for an example of this command).

5.9.51. restrainBond
restrainBond unit a b force length

UNIT unit

ATOM a

ATOM b

NUMBER force

8/25/97

LEAP Commands Page 104

NUMBER length

Add a restraint bond to unit. A restraint is used to constrain atoms during molecular mechanics
calculations. It causes the energy of the unit to increase as the deviation from the restraining
internal coordinate increases. The restraint is between atoms a and b and has a force constant of
force (in kcal/mol-Å2) and an equilibrium distance of length (in Å).

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> restrainBond GLY GLY.1.1 GLY.1.7 50 2.8

> restrainAngle GLY GLY.1.1 GLY.1.3 GLY.1.6 50 110

> restrainTorsion GLY GLY.1.2 GLY.1.1 GLY.1.3

> GLY.1.6 50 0 2

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Restraint BOND: .R<GLY 1>.A<N 1> - .R<GLY 1>.A<O 7>

Kr=50.000000 R0=2.800000

Restraint ANGLE: .R<GLY 1>.A<N 1> - .R<GLY 1>.A<CA 3> -

Restraint TORSION: .R<GLY 1>.A<HN 2> - .R<GLY 1>.A<N 1> -

Kt=50.000000 T0=0.000000 N=2.000000

Contents:

R<GLY 1>

> removeRestraint GLY GLY.1.2 GLY.1.1 GLY.1.3 GLY.1.6

Removing restraint.

> removeRestraint GLY GLY.1.1 GLY.1.3 GLY.1.6

Removing restraint.

> removeRestraint GLY GLY.1.1 GLY.1.7

Removing restraint.

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

In the above example, we illustrate several commands for adding and removing restraints to the
"lib/all_amino94.lib" UNIT GLY. (Don’t try this at home or you might alter the
"lib/all_amino94.lib". In general, we would not suggest modifying any standard libraries, rather,
one should create a new UNIT for practice.)

8/25/97

LEAP Commands Page 105

5.9.52. restrainTorsion
restrainTorsion unit a b c d force phi multiplicity

UNIT unit

ATOM a

ATOM b

ATOM c

ATOM d

NUMBER force

NUMBER phi

NUMBER multiplicity

Add a restraint torsion to unit. A restraint is used to constrain atoms during molecular mechan-
ics calculations. It causes the energy of the unit to increase as the deviation from the restraining
internal coordinate increases. The restraint is between atoms a, b, c, and d, and has a force con-
stant offorce(in kcal/mol-deg2), an equilibrium torsion angle ofφ (in degrees), and a periodicity
of multiplicity (see therestrainBondcommand for an example of this command).

5.9.53. saveAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Save the AMBER/SPASMS topology and coordinate files for the UNIT into the files named
topologyfilename and coordinatefilename respectively. This command will cause LEAP to search
its list of PARMSETs for parameters defining all of the interactions between the ATOMs within
the UNIT. This command produces topology files and coordinate files that are identical in format
to those produced by AMBER PARM and can be read into AMBER and SPASMS for calcula-
tions. The output of this operation can be used for minimizations, dynamics, and thermody-
namic perturbation calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT ALA are
generated:

> saveamberparm ALA ala.top ala.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

8/25/97

LEAP Commands Page 106

5.9.54. saveAmberParmPert
saveAmberParmPert unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

This command is the same assaveAmberParm, except a perturbation topology file is written
instead of a plain minimization/dynamics one.

Save the AMBER/SPASMS topology and coordinate files for the UNIT into the files named
topologyfilename and coordinatefilename respectively. This command will cause LEAP to
search its list of PARMSETs for parameters defining all of the interactions between the ATOMs
within the UNIT. This command produces topology files and coordinate files that are identical in
format to those produced by AMBER PARM and can be read into AMBER gibbs and SPASMS
for perturbation calculations.

> saveAmberParmPert pert pert.leap.top pert.leap.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

5.9.55. saveOff
saveOff object filename

object object

STRING filename

The saveOff command allows the user to save UNITs and PARMSETs to a file namedfilename.
The file is written using the Object File Format (off) and can accommodate an unlimited number
of uniquely named objects. The names by which the objects are stored are the variable names
specified in the argument of this command. If the filefilenamealready exists then the new
objects will be added to the file. If there are objects within the file with the same names as
objects being saved then the old objects will be overwritten. The argument object can be a single
UNIT, a single PARMSET, or a LIST of mixed UNITs and PARMSETs. (See theaddcommand
for an example of thesaveOffcommand.)

5.9.56. savePdb
savePdb unit filename

8/25/97

LEAP Commands Page 107

UNIT unit

STRING filename

Write UNIT to the filefilenameas a PDB format file. In the following example, the PDB file
from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

5.9.57. select
select object

CONT object

Sets the select flag on all ATOMs within object (see thedeSelectcommand). In the following
example, the side chain of the amino acid ALA has been selected. The center and charge of the
selected atoms is compared with those of the entire ALA RESIDUE. We hav e also described
one of the ATOMs in ALA, ALA.1.5, before and after selection in order that the user could see
the output when a select flag is set.

> center ALA

The center is at: 4.04, 2.80, 0.49

> charge ALA

Total unperturbed charge: 0.00

Total perturbed charge: 0.00

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

> desc ALA.1.5

ATOM

Name: CB

8/25/97

LEAP Commands Page 108

Type: CT

Charge: -0.098

Element: C

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 3.576965, 3.653838, 1.232143

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Bonded to .R<ALA 1>.A<HB1 6> by a single bond.

Bonded to .R<ALA 1>.A<HB2 7> by a single bond.

Bonded to .R<ALA 1>.A<HB3 8> by a single bond.

> select ALA.1.5

> select ALA.1.6

> select ALA.1.7

> select ALA.1.8

> desc ALA.1.5

ATOM

Name: CB

Type: CT

Charge: -0.098

Element: C

Atom flags: 20001|posfxd- posblt- posdrn- sel+ pert-

notdisp- tchd- posknwn+ int- nmin- nbld-

Atom position: 3.576965, 3.653838, 1.232143

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Bonded to .R<ALA 1>.A<HB1 6> by a single bond.

Bonded to .R<ALA 1>.A<HB2 7> by a single bond.

Bonded to .R<ALA 1>.A<HB3 8> by a single bond.

> groupSelectedAtoms ALA sideChain

Added 4 atoms.

> center ALA@sideChain

The center is at: 3.51, 3.80, 1.45

> charge ALA@sideChain

Total unperturbed charge: 0.02

Total perturbed charge: 0.02

5.9.58. sequence
variable = sequence list

UNIT variable

LIST list

The sequence command is used to create a new UNIT by combining the contents of a LIST of
UNITs. The first argument is a LIST of UNITs. A new UNIT is constructed by taking each
UNIT in the sequence in turn and copying its contents into the UNIT being constructed. As each
new UNIT is copied, a bond is created between the tail ATOM of the UNIT being constructed

8/25/97

LEAP Commands Page 109

and the head ATOM of the UNIT being copied, if both connect ATOMs are defined. If only one
is defined, a warning is generated and no bond is created. If neither connection ATOM is defined
then no bond is created. As each RESIDUE is copied into the UNIT being constructed it is
assigned a sequence number which represents the order the RESIDUEs are added. Sequence
numbers are assigned to the RESIDUEs so as to maintain the same order as was in the UNIT
before it was copied into the UNIT being constructed. This command builds reasonable starting
coordinates for all ATOMs within the UNIT; it does this by assigning internal coordinates to the
linkages between the RESIDUEs and building the external coordinates from the internal coordi-
nates from the linkages and the internal coordinates that were defined for the individual UNITs
in the sequence.

> tripeptide = sequence { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

5.9.59. set
set container parameter object

CONT container

STRING parameter

object object

This command sets various parameters associated with container. Please see the "Concepts" sec-
tion for an extended discussion of the UNIT, RESIDUE, and ATOM parameters that may be
altered for each type of object. (See theaddcommand for an example of thesetcommand.) The
following parameters can be set within LEAP:

For ATOMs:

name
A unique STRING descriptor used to identify ATOMs.

type
This is a STRING property that defines the AMBER force field atom type.

8/25/97

LEAP Commands Page 110

charge
The charge property is a NUMBER that represents the ATOM’s electrostatic point charge to be
used in a molecular mechanics force field.

position
This property is a LIST of NUMBERS containing three values: the (X, Y, Z) Cartesian coordi-
nates of the ATOM.

pertName
The STRING is a unique identifier for an ATOM in its final state during a Free Energy Perturba-
tion calculation.

pertType
The STRING is the AMBER force field atom type of a perturbed ATOM.

pertCharge
This NUMBER represents the final electrostatic point charge on an ATOM during a Free Energy
Perturbation.

For RESIDUEs:

connect0
This defines an ATOM that is used in making links to other RESIDUEs. In UNITs containing
single RESIDUEs, the RESIDUEsS connect0 ATOM is usually defined as the UNIT’s head
AT OM.

connect1
This is an ATOM property which defines an ATOM that is used in making links to other
RESIDUEs. In UNITs containing single RESIDUEs, the RESIDUEsS connect1 ATOM is usu-
ally defined as the UNIT’s tail ATOM.

connect2
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs. In amino acids, the convention is that this is the ATOM to which disulphide bridges
are made.

connect3
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

connect4
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

connect5
This is an ATOM property which defines an ATOM that can be used in making links to other
RESIDUEs.

restype
This property is a STRING that represents the type of the RESIDUE. Currently, it can have one
of the following values: "undefined", "solvent", "protein", "nucleic", or "saccharide".

name
This STRING property is the RESIDUE name.

For UNITs:

8/25/97

LEAP Commands Page 111

head
Defines the ATOM within the UNIT that is connected when UNITs are joined together: the tail
AT OM of one UNIT is connected to the head ATOM of the subsequent UNIT in any sequence.

tail
Defines the ATOM within the UNIT that is connected when UNITs are joined together: the tail
AT OM of one UNIT is connected to the head ATOM of the subsequent UNIT in any sequence.

box
The property defines the bounding box of the UNIT. If it is defined as null then no bounding box
is defined. If the value is a single NUMBER then the bounding box will be defined to be a cube
with each side being NUMBER of angstroms across. If the value is a LIST then it must be a
LIST containing three numbers, the lengths of the three sides of the bounding box.

cap
The property defines the solvent cap of the UNIT. If it is defined as null then no solvent cap is
defined. If the value is a LIST then it must contain four numbers, the first three define the Carte-
sian coordinates (X, Y, Z) of the origin of the solvent cap in angstroms, the fourth NUMBER
defines the radius of the solvent cap in angstroms.

5.9.60. setBox
setBox unit

UNIT unit

The setBoxcommand adds a periodic box to the UNIT, turning it into a periodic system for the
simulation programs. The unit is first centered on the origin, using Van der Waals shells of the
unit’s atoms along each axis.

5.9.61. solvateBox
solvateBox solute solvent buffer [closeness]

UNIT solute

UNIT solvent

object buffer

NUMBER closeness

The solvateBoxcommand creates a solvent box around the solute UNIT. The solute UNIT is
modified by the addition of solvent RESIDUEs.

The normal choice for a TIP3 _solvent_ UNIT is WATBOX216. Note that constant pressure
equilibration is required to bring the artificial box to reasonable density, since Van der Waals
voids remain due to the impossibility of natural packing of solvent around the solute and at the
edges of the box.

The solvent UNIT is copied and repeated in all three spatial directions to create a box containing
the entire solute and a buffer zone defined by the buffer argument. The buffer argument defines
the distance, in angstroms, between the wall of the box and the closest ATOM in the solute. If

8/25/97

LEAP Commands Page 112

the buffer argument is a single NUMBER, then the buffer distance is the same for the x, y, and z
directions. If the buffer argument is a LIST of three NUMBERS then the NUMBERs are applied
to the x, y, and z axes respectively. As the larger box is created and superimposed on the solute,
solvent molecules overlapping the solute are removed.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0. Smaller
values allow solvent ATOMs to come closer to solute ATOMs. The criterion for rejection of
overlapping solvent RESIDUEs is if the distance between any solvent ATOM to the closest
solute ATOM is less than the sum of the ATOMs VANDERWAAL distances multiplied by the
closeness argument.

This command modifies the _solute_ UNIT in several ways. First, the coordinates of the ATOMs
are modified to move the center of a box enclosing the Van der Waals radii of the atoms to the
origin. Secondly, the UNIT is modified by the addition of _solvent_ RESIDUEs copied from the
solvent UNIT. Finally, the box parameter of the new system (still named for the _solute_) is
modified to reflect the fact that a periodic, rectilinear solvent box has been created around it.

In this example, it is assumed that the file water.lib, containing WATBOX216, has been loaded
already (as is done by the default leaprc):

>> mol = loadpdb my.pdb

>> solvateBox sol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 30.995 35.538 35.416 angstroms.

Total mass 14470.768 amu, Density 0.616 g/cc

Added 785 residues.

Again, note that the density of 0.601 g/cc points to the need for constant pressure equilibration.
(See the discussion of equilibration in the Q&A section of the amber web.)

5.9.62. solvateCap
solvateCap solute solvent position radius [closeness]

UNIT solute

UNIT solvent

object position

NUMBER radius

NUMBER closeness

The solvateCap command creates a solvent cap around the solute UNIT. The solute UNIT is
modified by the addition of solvent RESIDUEs. The solvent box will be repeated in all three
spatial directions to create a large solvent sphere with a radius of radius angstroms.

8/25/97

LEAP Commands Page 113

The position argument defines where the center of the solvent cap is to be placed. If position is a
UNIT, RESIDUE, ATOM, or a LIST of UNITs, RESIDUEs, or ATOMs, then the geometric cen-
ter of the ATOMs within the object will be used as the center of the solvent cap sphere. If posi-
tion is a LIST containing three NUMBERS, then the position argument will be treated as a vec-
tor that defines the position of the solvent cap sphere center.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0. Smaller
values allow solvent ATOMs to come closer to solute ATOMs. The criterion for rejection of
overlapping solvent RESIDUEs is if the distance between any solvent ATOM to the closest
solute ATOM is less than the sum of the ATOMs VANDERWAAL’s distances multiplied by the
closeness argument.

This command modifies the solute UNIT in several ways. First, the UNIT is modified by the
addition of solvent RESIDUEs copied from the solvent UNIT. Secondly, the cap parameter of the
UNIT solute is modified to reflect the fact that a solvent cap has been created around the solute.

>> mol = loadpdb my.pdb

>> solvateCap mol WATBOX216 mol.2.CA 8.0 2.0

Added 3 residues.

5.9.63. solvateDontClip
solvateDontClip solute solvent buffer [closeness]

UNIT solute

UNIT solvent

object buffer

NUMBER closeness

This command is identical to thesolvateBoxcommand except that the solvent box that is created
is not clipped to the boundary of the buffer region. This command forms larger solvent boxes
than doessolvateBoxbecause it does not cause solvent that is outside the buffer region to be dis-
carded. This helps to preserve the periodic structure of properly constructed solvent boxes, pre-
venting hot-spots from forming.

>> mol = loadpdb my.pdb

>> solvateDontClip mol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 41.120 40.899 41.075 angstroms.

Total mass 30595.088 amu, Density 0.735 g/cc

Added 1680 residues.

8/25/97

LEAP Commands Page 114

Note the larger number of waters added, compared to solvateBox; in the case of this solute and
choice of buffer, the overall box size is increased by about 10 angstroms in each direction.

5.9.64. solvateShell
solvateShell solute solvent thickness [closeness]

UNIT solute

UNIT solvent

NUMBER thickness

NUMBER closeness

The solvateShellcommand adds a solvent shell to the solute UNIT. The resulting solute/solvent
UNIT will be irregular in shape since it will reflect the contours of the solute. The solute UNIT is
modified by the addition of solvent RESIDUEs. The solvent box will be repeated in three direc-
tions to create a large solvent box that can contain the entire solute and a shell thickness
angstroms thick. The solvent RESIDUEs are then added to the solute UNIT if they lie within the
shell defined by thickness and do not overlap with the solute ATOMs. The optional closeness
parameter can be used to control how close solvent ATOMs can come to solute ATOMs. The
default value of the closeness argument is 1.0. Please see thesolvateBoxcommand for more
details on the closeness parameter.

>> mol = loadpdb my.pdb

>> solvateShell mol WATBOX216 8.0

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 23.512 28.339 28.066

Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

5.9.65. source
source filename

STRING filename

This command executes commands within a text file. To display the commands as they are read,
see theverbositycommand. The text within the source file is formatted exactly like the text the
user types into LEAP. If a file named "paths.cmd" contains the following lines:

addPath /disk/howard/LeapTests

addPath /disk/howard/LeapTests/Cholesterol

addPath /disk/howard/LeapTests/Ethane

addPath /disk/howard/LeapTests/Solvents

addPath /disk/howard/LeapTests/Trp

8/25/97

LEAP Commands Page 115

"source"ing it will produce the output listing shown below.

> source paths.x

>> addPath /disk/howard/LeapTests

/disk/howard/LeapTests added to file search path.

>> addPath /disk/howard/LeapTests/Cholesterol

/disk/howard/LeapTests/Cholesterol added to file search path.

>> addPath /disk/howard/LeapTests/Ethane

/disk/howard/LeapTests/Ethane added to file search path.

>> addPath /disk/howard/LeapTests/Solvents

/disk/howard/LeapTests/Solvents added to file search path.

>> addPath /disk/howard/LeapTests/Trp

/disk/howard/LeapTests/Trp added to file search path.

5.9.66. transform
transform atoms, matrix

CONT atoms

LIST matrix

Transform all of the ATOMs within atoms by the (3× 3) or (4× 4) matrix represented by the
nine or sixteen NUMBERS in the LIST of LISTsmatrix. The general matrix looks like:

r11 r12 r13 -tx

r21 r22 r23 -ty

r31 r32 r33 -tz

0 0 0 1

The matrix elements represent the intended symmetry operation. For example, a reflection in the
(x, y) plane would be produced by the matrix:

1 0 0

0 1 0

0 0 -1

This reflection could be combined with a six angstrom translation along the x-axis by using the
following matrix.

1 0 0 6

0 1 0 0

0 0 -1 0

8/25/97

LEAP Commands Page 116

0 0 0 1

In the following example, wrB is transformed by an inversion operation:

transform wrpB {

{ -1 0 0 }

{ 0 -1 0 }

{ 0 0 -1 }

}

5.9.67. translate
translate atoms direction

CONT atoms

LIST direction

Translate all of the ATOMs within atoms by the vector defined by the three NUMBERS in the
LIST direction.

Example:

translate wrpB { 0 0 -24.53333 }

5.9.68. verbosity
verbosity level

NUMBER level

This command sets the level of output that LEAP provides the user. A value of 0 is the default,
providing the minimum of messages. A value of 1 will produce more output, and a value of 2
will produce all of the output of level 1 and display the text of the script lines executed with the
sourcecommand. The following line is an example of this command:

> verbosity 2

Verbosity level: 2

5.9.69. zMatrix
zMatrix object zmatrix

8/25/97

LEAP Commands Page 117

CONT object

LIST matrix

The zMatrix command is quite complicated. It is used to define the external coordinates of
AT OMs within object using internal coordinates. The second parameter of thezMatrix com-
mand is a LIST of LISTs; each sub-list has several arguments:

{ a1 a2 bond12 }

This entry defines the coordinate of a1 by placing it bond12 angstroms along the x-axis from
AT OM a2. If AT OM a2 does not have coordinates defined then ATOM a2 is placed at the origin.

{ a1 a2 a3 bond12 angle123 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM a2
making an angle of angle123 degrees between a1, a2 and a3. The angle is measured in a right
hand sense and in the x-y plane. AT OMs a2 and a3 must have coordinates defined.

{ a1 a2 a3 a4 bond12 angle123 torsion1234 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM a2,
creating an angle of angle123 degrees between a1, a2, and a3, and making a torsion angle of tor-
sion1234 between a1, a2, a3, and a4.

{ a1 a2 a3 a4 bond12 angle123 angle124 orientation }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM a2,
making angles angle123 between ATOMs a1, a2, and a3, and angle124 between ATOMs a1, a2,
and a4. The argument orientation defines whether the ATOM a1 is above or below a plane
defined by the ATOMs a2, a3, and a4. If orientation is positive then a1 will be placed in such a
way so that the inner product of (a3-a2) cross (a4-a2) with (a1-a2) is positive. Otherwise a1 will
be placed on the other side of the plane. This allows the coordinates of a molecule like fluoro-
chloro-bromo-methane to be defined without having to resort to dummy atoms.

The first arguments within thezMatrix entries (a1, a2, a3, a4) are either ATOMs or STRINGS
containing names of ATOMs within object. The subsequent arguments are all NUMBERS. Any
AT OM can be placed at the a1 position, even those that have coordinates defined. This feature
can be used to provide an endless supply of dummy atoms, if they are required. A predefined
dummy atom with the name "*" (a single asterisk, no quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order, as long

8/25/97

LEAP Commands Page 118

as they maintain the requirement that all atoms a2, a3, and a4 must have external coordinates
defined, except for entries that define the coordinate of an ATOM using only a bond length. (See
theaddcommand for an example of thezMatrixcommand.)

8/25/97

LEAP Examples Page 119

5.10. Examples

Note: see also the "PSC tutorial" materials under the "Web/index.html" page in the source tree.

In this section, we provide examples that illustrate how to use LEAP under a variety of conditions and
for several different molecules. For each example, we first enumerate the principles that are demon-
strated then print the log file. The log files have been edited in order to provide comments and explana-
tions. The user may wish to recreate these examples and can do so by running the example log files
found in the LEAP "demos" directory. (Refer to the "Log File" section of the "Concepts" section.)

5.10.1. A Simple Steroid: Cholesterol

In this example, the steroid cholesterol is created within xleap. The example illustrates:

• creating a LEAP UNIT using the Unit Editor

• using theBuild andRelax Selection commands

• modeling a cyclic molecule

• creating LEAP OFF libraries.

This example is mainly a discussion of how to use the Unit EditorBuild andRelax Selec-
tion commands to create a complex cyclic molecule. There are two points to mention that the user
needs to know in order to create such a structure in the Unit Editor. First, since one builds molecules
on a two-dimensional surface in xleap, structures that are minimized with theRelax Selection
command may be planar unless they are first altered in theManipulate mode or generated using
the Build command. Second, theBuild command frequently improperly generates fused cyclic
structures. In the following example, the cholesterol molecule is drawn in the order: ring A, B, C, D,
and alkyl chain. The LEAP structure was saved in an OFF library ("chol.lib") at each stage of refine-
ment. The user is encouraged to look at the library entries if they hav e difficulty constructing the
molecule. The user should note that this version of LEAP does a less than ideal job of generating a
molecule such as cholesterol since vdw and electrostatic force field terms are not used in the Unit Edi-
tor minimizer.

> #

> # First, execute the commands in the distribution

> # "leaprc" file. Because of space considerations,

> # these commands have been deleted from this example.

> # Next, create a new UNIT and edit it in the Unit

> # Editor. Choose the "Draw" button and the drawing

> # element of carbon. Draw a six-membered ring (ring

> # A). Select the menu item "Add H & Build". Erase

> # two hydrogens and draw the ring A hydroxyl oxygen

> # and methyl carbon atoms. Select the menu item

8/25/97

LEAP Examples Page 120

> # "Add H & Build". Save the "ch1" UNIT in an OFF

> # library:

> #

> edit ch1

> saveOff ch1 chol.lib

> #

> # Make a copy of the "ch1" UNIT so we can leave

> # that UNIT as an illustration. Edit the copy,

> # "ch2", in the Unit Editor in order to add ring

> # B. First, remove the three hydrogens at the

> # ring fusion carbons. Choose the "Draw" button

> # and the drawing element of carbon. Draw a

> # six-membered ring (ring B). Select the ring B

> # carbons not associated with the ring A junction.

> # Select the menu items "Relax selected atoms" and

> # "Mark built". Save the UNIT in an OFF file:

> #

> ch2 = copy ch1

> edit ch2

> saveOff ch2 chol.lib

> #

> # Make a copy of the "ch2" UNIT so we can leave that

> # UNIT as an illustration. Edit the copy,

> # "ch3", in the Unit Editor in order to add ring

> # C. Choose the "Draw" button and the drawing

> # element of carbon. Draw a six-membered

> # ring (ring C). Select the ring C

> # carbons not associated with the ring B junction.

> # Select the menu items "Relax selected atoms" and

> # "Mark built". Save the UNIT in an OFF file:

> #

> ch3 = copy ch2

> edit ch3

> saveOff ch3 chol.lib

> #

> # Make a copy of the "ch3" UNIT so we can leave that

> # UNIT as an illustration. Edit the copy,

> # "ch4", in the Unit Editor in order to add ring

> # D. Choose the "Draw" button and the drawing

> # element of carbon. Draw a five-membered

> # ring (ring D). Select the ring D

> # carbons not associated with the ring C junction.

> # Select the menu items "Relax selected atoms" and

> # "Mark built". Save the UNIT in an OFF file:

> #

> ch4 = copy ch3

> edit ch4

> saveOff ch4 chol.lib

> #

8/25/97

LEAP Examples Page 121

> # Add the alkyl group to ring D. Select the

> # menu items "Relax selected atoms" and

> # "Mark built". Save the UNIT in an OFF file:

> #

> ch5 = copy ch4

> edit ch5

> saveOff ch5 chol.lib

> #

> # Add all remaining hydrogens to the molecule.

> # Select the menu items "Relax selected atoms"

> # and "Mark built". Save the UNIT in an OFF file:

> #

> ch6 = copy ch5

> edit ch6

> saveOff ch6 chol.lib

> #

> # Quit the xLEaP program:

> #

> quit

5.10.2. An Ion-Molecule Complex: 18-Crown-6 and Potassium Cation

In this example, the crown ether/ion complex 18-crown-6/K+ is created within xleap and then solvated
with methanol. The example illustrates:

• creating a LEAP UNIT starting from AMBER PREP input files

• modeling a cyclic molecule

• loading a PDB file into a LEAP UNIT

• building a box of solvent molecules

• solvating a molecule

• converting an AMBER parameter file to a LEAP PARMSET

• creating LEAP OFF libraries

• creating topology and coordinate files for AMBER or LEAP.

> #

> # First, execute the commands in the distribution

> # "leaprc" file. Because of space considerations,

> # these commands have been deleted from this example.

> # Next, 3 UNITs will be created from AMBER PREP

> # files:

> #

> loadAmberPrep cra.in

> loadAmberPrep crb.in

> loadAmberPrep crc.in

8/25/97

LEAP Examples Page 122

> #

> # A PDB file is loaded into the UNIT "cr":

> #

> cr = loadPdb crown.pdb

> #

> # The "cr" UNIT is edited in the xLEaP X-Windows

> # Unit Editor and a bond is added between RESIDUEs

> # CRA(1) and CRB(6). This bond could also have been

> # created with the command line editor using the command:

> # "crossLink cr.1 lastend cr.6 firstend".

> # The same editor is then used to create

> # a potassium ion and assign atom properties to

> # that ion. The ion is placed at the center of the

> # crown ether. Finally, a methanol UNIT ("meoh") is created

> # in the Unit Editor. Atom Properties are defined

> # for the methanol UNIT and the ATOMs in this UNIT

> # are minimized using the Unit Editor "Relax Selection"

> # menu item:

> #

> edit ion

> edit cr

> edit meoh

> #

> # We will then create methanol solvent box.

> # In order to do so, it is first

> # necessary to align the principle axes of the

> # "meoh" UNIT along the Cartesian coordinate axes

> # with its geometric center at (0, 0, 0).

> # The bounding box is defined to be a 4 angstrom

> # cube:

> #

> alignAxes meoh

> set meoh box 4

> set meoh restype solvent

> #

> # Parameters will be needed for molecular mechanics.

> # The parameters had previously been used in the

> # AMBER modules and therefore an AMBER parameter

> # file is used to load the 18-crown-6 parameters.

> # We now will solvate the crown with methanol

> # molecules. The original crown/ion UNIT will be

> # copied so the "cr" UNIT will not be altered by solvent:

> #

> cr_parms = loadAmberParams cr_parms.mod

> cr-tem = copy cr

> solvateBox cr-tem meoh 10

> #

> # The parameters, and all of the UNITs that have

> # been created within xLEaP, are then saved as

8/25/97

LEAP Examples Page 123

> # OFF library files. Finally, topology and coordinate

> # files are created for use in AMBER or SPASMS:

> #

> saveOff cr_parms crown.lib

> saveOff meoh crown.lib

> saveOff cr crown.lib

> saveOff ion crown.lib

> saveOff cr-tem crown.lib

> saveAmberParm cr-tem cr-meoh.top cr-meoh.crd

> #

> # Quit the xLEaP program:

> #

> quit

5.10.3. Free Energy Perturbation: Guanine To Adenine

One type of calculation frequently performed in molecular mechanics is that of Free Energy Perturba-
tion. During Free Energy Perturbation, the potential energy function of one molecular species is
slowly perturbed to that of a second molecular species through a perturbation parameter called
$lambda$. This calculation allows one to determine the relative Gibbs or Helmholtz free energy differ-
ences between the two species. In this example, LEAP is used to produce AMBER/SPASMS input
files for the perturbation of Guanine to Adenine,in vacuoand in water, using the 1991 force field
residues. This perturbation involves the a) replacement of GUA ((C_{(6)} = O_{(6)})) into ADE (
(C_{(6)} - NH_{2})), b) replacement of GUA ((N_{(1)} - H)) into ADE ((N_{1})), and c) replace-
ment of GUA ((C_{(2)} - N_{(2)}H_{(2)})) into ADE ((C_{2} - H)).

This example illustrates:

• creating Free Energy Perturbation input files within LEAP

• loading a AMBER PREP RESIDUE into LEAP

• converting an AMBER parameter file to a LEAP PARMSET

• creating LEAP OFF libraries

• creating topology and coordinate files for AMBER or LEAP.

> #

> # First, execute the commands in the distribution

> # "leaprc" file. Because of space considerations,

> # these commands have been deleted from this example.

> # An AMBER PREP residue for Guanine (GUB) is loaded

> # into LEaP:

> #

> loadAmberPrep guan.in

> #

> # An AMBER format parameter set file is loaded and placed

> # in "parmatgc.dat" file. The resulting PARMSET is saved

8/25/97

LEAP Examples Page 124

> # as an OFF file:

> #

> newparm = loadAmberParams parmatgc.dat

> saveOff newparm newparm.lib

> #

> # The GUB UNIT is edited in the Unit Editor to

> # prepare the perturbation properties. The user

> # should examine the GUB UNIT in "gub.lib",

> # using the Unit Editor and Atom Properties

> # Editor, to see the changes that are made for

> # perturbation. The UNIT is saved as an OFF file

> # and coordinate and topology files are prepared

> # for AMBER and SPASMS :

> #

> edit GUB

> saveOff GUB gub_leap.lib

> saveAmberParm GUB gub_vacuo.top gub_vacuo.crd

> #

> # The GUB UNIT is then solvated with a box of

> # TIP3P waters.

> # The GUB UNIT is saved in an OFF library file.

> # Topology and coordinate files for AMBER or

> # SPASMS perturbation calculations (TIP3P

> # solvated) are created:

> #

> loadOff water.lib

> solvateBox GUB WATERBOX216 10

> saveAmberParm GUB gub_water.top gub_water.crd

> #

> # Quit the program

> #

> quit

5.10.4. Creating Polynucleotides: B DNA

A double helix of dna is built using LEAP in this example. Two examples of adding counterions to the
dna are illustrated. In one example, both counterions and tip3p water are added. The second example
is an in vacuo model and the counterions have a large vdw radius in order to simulate a water shell sur-
rounding them.

The Cartesian coordinates for the dna were obtained from the PDB file "1bd1". This file also con-
tained coordinates for X-ray waters of crystallization and two triethylammonium ions. Neither of
these species are included in this representation. Only one nucleotide strand is found in the PDB file
since the symmetry operations necessary to generate the second strand are given. These operations are
used with the LEAPtransform command in order to create the double helix molecule.

This example illustrates:

8/25/97

LEAP Examples Page 125

• creating a dna molecule within LEAP

• loading a PDB file into a LEAP UNI

• using PDB symmetry operations to build a molecule

• using theaddIons command to place counterions around a molecule

• solvate a molecule using the LEAPsolvateBox command

• creating LEAP OFF libraries

• creating topology and coordinate files for AMBER or LEAP.

#

dnaStrandA = loadPdb 1bd1.pdb

#

A second strand is generated by making a

copy of the first strand and then applying

the symmetry operations found in the PDB

file to the latter strand. The DNA double helix

is generated by combining the two strands.

The combine command does not link the UNITs

in the LIST argument with bonds:

#

dnaStrandB = copy dnaStrandA

transform dnaStrandB {

{ -1 0 0 }

{ 0 1 0 }

{ 0 0 -1 }

}

dnaDoubleHelix = combine { dnaStrandA dnaStrandB }

#

Two complexes are now created. The first is

the "in vacuo" association of a DNA double

strand with ions. Since this complex will not be

solvated, the ions have large VDW radii in order to

simulate a shell of water surrounding them. The

second complex associates DNA, ions, and a box of

TIP3P waters. The ions (Na+) in the later case

have VDW radii of "standard" size. In both

complexes, enough counterions are added to

neutralize the DNA:

#

loadOff ions.lib

dnaDHBigIons = copy dnaDoubleHelix

addIons dnaDHBigIons IB 0

#

dnaDHIons = copy dnaDoubleHelix

solvateBox dnaDHIons WATBOX216 9

addIons dnaDHIons Na+ 0

#

8/25/97

LEAP Examples Page 126

The DNA double helix UNITs are saved in

an OFF library file. Topology and coordinate

files for the double helix molecules with associated

counterions/water are created for use in AMBER:

#

saveOff dnaDoubleHelix dna.lib

saveOff dnaDHBigIons dna.lib

saveOff dnaDHIons dna.lib

saveAmberParm dnaDHBigIons dnaDHBigIons.top dnaDHBigIons.crd

saveAmberParm dnaDHIons dnaDHIons.top dnaDHIons.crd

#

Quit the program

#

quit

5.10.5. A Protein/Ligand Complex: trp Repressor

This example illustrates one method of building the trp repressor protein and solvating it within LEAP.
The trp repressor protein is dimeric. Each protein monomer contains one zwitterionic trp amino acid
ligand and one polypeptide unit. The two monomeric units are related by symmetry.

In the example, a PDB structure (1wrp) is used to generate the trp repressor Cartesian coordinates.
The PDB file contains coordinates for only one monomer; the second monomer must be generated
from the symmetry operations given in the PDB file. The original PDB file also contained Cartesian
coordinates for water molecules found in the crystal structure. We hav e removed the waters from the
PDB file as we did not want to use them in the example. In addition, we have split the original PDB
file into two files: the file "wrp.pdb" contains one polypeptide chain and the file "trp.pdb" contains the
trp ligand coordinates.

The example illustrates:

• creating a protein within LEAP

• loading a PDB file into a LEAP UNIT

• using PDB symmetry operations to build a molecule

• the use of thecopy command to simplify the creation of a molecule

• using each of the solvation options of LEAP

• creating LEAP OFF libraries

• creating topology and coordinate files for AMBER.

#

First, execute the commands in the distribution

"leaprc" file. Because of space considerations,

these commands have been deleted from this example.

Load the Cartesian coordinates of one protein

monomer into a LEaP UNIT:

8/25/97

LEAP Examples Page 127

#

wrpA = loadPdb wrp.pdb

#

The trp repressor ligand is a zwitterionic amino acid.

Since the LEaP libraries do not include

zwitterionic amino acids, the ligand will be

modeled by making a copy of "NTRP" (N-terminal TRP)

and modifying the C-terminal to be an anion. The

Unit Editor will be used to make the modification

and to add the Atom Properties of the modified ATOMs.

First, a copy will be made of "NTRP". The UNIT and

residue names of the copy will then be changed from

"NTRP" to "WRP". Finally, the "WRP" UNIT will be

modified within the Unit Editor. The following changes

are made - 1) a second oxygen is drawn and connected to

the C-terminal carbon; 2) the C-terminal carboxylate

ion is selected and the "Build" command is chosen

from the "Build menu"; 3) the "Edit selected atoms"

command is chosen from the "Selection menu". An Atom

Properties table will appear for the carboxylate ion group.

In the # table, the "Name" of the new oxygen is changed to

"OXT" and its "Type" is changed to "O". The "Charge"s

of both carboxylate ion oxygens are changed to -0.7525.

The Atom Properties table and Unit Editor are then exited

and the "trpA" Cartesian coordinates are loaded from a PDB

file:

#

WRP = copy NTRP

set WRP name "WRP"

set WRP.1 name "WRP"

edit WRP

trpA = loadPdb trp.pdb

#

Create one monomer by associating the protein

chain with the zwitterion. Then, to create the

second monomer, copy the first monomer and apply

the symmetry operations found in the PDB file.

Finally, combine the two monomers to form the

protein:

#

monomerA = combine { wrpA trpA }

monomerB = copy monomerA

translate monomerB { 0 0 -24.53333 }

transform monomerB {

{ 1 0 0 }

{ 0 -1 0 }

{ 0 0 -1 }

}

trpRepressor = combine { monomerA monomerB }

8/25/97

LEAP Examples Page 128

#

Solvate the protein using the various LEaP

solvation options. Prior to each solvation,

a copy of the protein UNIT is made so that

the original UNIT is not altered by the water

molecules. The solvent used in each of the

examples is TIP3P water taken from the

water OFF distribution library. In the

case of the "solvateCap" command, the cap is

centered at the Calpha carbon of the "trpA" ligand

in "monomerA". Two of the solvation commands are

shown below but not executed in the example:

#

trpRepressorDontClip = copy trpRepressor

solvateDontClip trpRepressorDontClip WATBOX216 8.0

trpRepressorBox = copy trpRepressor

solvateBox trpRepressorBox WATBOX216 8.0

#

trpRepressorCap = copy trpRepressor

solvateCap trpRepressorCap WATBOX216

trpRepressorCap.106.CA 8.0

trpRepressorShell = copy trpRepressor

solvateShell trpRepressorShell WATBOX216 8.0

#

The monomer, ligand, and trp repressor UNITs are

saved in an OFF library file. Topology and coordinate

files are created for use in AMBER or SPASMS:

#

saveOff wrpA trpRepressor.lib

saveOff trpA trpRepressor.lib

saveOff trpRepressor trpRepressor.lib

saveAmberParm trpRepressor trpRepressor.top trpRepressor.crd

#

Quit the program

#

quit

8/25/97

SANDER module Introduction Page 129

6. Sander

Usage: sander [-O] -i mdin -o mdout -p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden -inf mdinfo

−O Overwrite output files if they exist.

6.1. Introduction.
This is a guide tosander, the AMBER module which carries out energy minimization, molecular

dynamics, and NMR refinements. The acronym stands forSimulatedAnnealing withNMR-Derived
EnergyRestraints, but this module is used for a variety of simulations that have nothing to do with
NMR refinement.

Sanderprovides standard protocols for minimization and molecular dynamics, and we use it for
just about everything except free energy calculations. Some of the features are outlined in the follow-
ing paragraphs:

(1) Sanderprovides direct support for the AMBER and AMBER/OPLS force fields for proteins
and nucleic acids, and for the TIP3 and TIP4 models for water. Other types of restraints can
be applied, and the code allows some variation in functional form as well as in parameters.
These variations include alternate functions for "improper" torsions and Urey-Bradley interac-
tions, so that force fields like that of version 22 of CHARMM can be supported. In addition,
"non-additive" force fields based on atom-centered dipole polarizabilities can be invoked.

(2) The relative weights of various terms in the force field can be varied over time. It is also
straightforward to choose a constant weighting that implements a "geometric" force field, in
which bonds and angles are kept fixed, torsions are free and non-bonded interactions consist
solely of chargeless Van der Waals interactions to prevent steric overlap. This sort of potential
can be useful when major conformational changes are anticipated, or when one is concerned
that errors in the more realistic atomic potentials are biasing the results.

(3) Two periodic imaging geometries are included: rectangular parallelopiped and truncated octa-
hedron (box with corners chopped off). The size of the repeating unit can be coupled to a
given external pressure, and velocities can be coupled to a given external temperature by sev-
eral schemes. The external conditions and coupling constants can be varied over time, so vari-
ous simulated annealing protocols can be specified in a simple and flexible manner.

(4) The user can define internal restraints on bonds, valence angles, and torsions, and the force
constants and target values for the restraints can vary during the simulation. The penalty func-
tion can consist of as many as three types of region: it can be flat between an ‘inner’ set of
upper and lower bounds (calledr2 andr3); then rise parabolically when the internal coordinate

8/25/97

SANDER module Introduction Page 130

violates these bounds; and finally, since large violations may lead to excessive parabolic penal-
ties, these parabolas can smoothly turn into linear penalties outside even wider upper and
lower bounds (calledr1 andr4). The imposition of restraints can be made dependent upon the
distance that residues are apart in the amino-acid sequence, so that much of the functionality of
programs like DISMAN or DIANA is available.

(5) Internal restraints can be defined to be "time-averaged", that is, restraint forces are applied
based on the averaged value of an internal coordinate over the course of the dynamics trajec-
tory, not only on its current value.

(6) Restraints can be directly defined in terms of NOESY intensities (calculated with a relaxation
matrix technique), scalar coupling constants and proton chemical shifts. There are provisions
for handling overlapping peaks or ambiguous assignments. In conjunction with distance and
angle constraints, this provides a powerful and flexible approach to NMR structural refine-
ments.

We hav e divided this manual into the six sections listed below.

Purpose Sections involved

Simple min/md 1

varying parameters over time 1,2
(simulated annealing)

using internal restraints 3,4
(including NMR distance & angle constraints)

nmr refinement using NOESY volume restraints 5

nmr refinement using chemical shift restraints 6

If you are just doing "standard" minimization or dynamics, read sectionone, and ignore the rest. If
you want to carry out simulated annealing, consult sectiontwo. Those who wish to carry out simula-
tions while imposing internal coordinate restraints should also read sectionsthreeand four. Sections
fiveandsixallow you to add sophisticated penalty functions during NMR refinement.

6.2. History and credits
The annealing, ‘‘weight change,’’ ‘‘restraints’’ and NMR-specific portions ofsanderwere pri-

marily written by David Pearlman and David Case. All of the AMBER crew listed on the title page
contributed to the general portions; the polarization implementation is that of Jim Caldwell and Liem
Dang. The pseudocontact shift code was provided by Ivano Bertini of the University of Florence.

Parallelism. In version 4.0, an SGI shared memory version by Roberto Gomperts and Michael
Schlenkrich of SGI with assistance from Thomas Cheatham was distributed on request, as were a mes-
sage-passing version for the SP1 by Steven Chin of IBM and a KSR version by David Zirl and Nick
Camp. A general PVM version by Terry Lybrand and Eric Swanson of the University of Washington
was included as a separate source tree in the later 4.0 release. We also had an unreleased version of

8/25/97

SANDER module Introduction Page 131

Steve Debolt’s AMBERCUBE1 (based on release 3A) that ran on nCube and had been ported to 4.0
on the Intel Paragon by David Case of Scripps with help from Jerry Greenberg and Jack Rodgers of
San Diego Supercomputer Center. (George Seibel of UCSF and Tom Darden of NIEHS also had done
shared memory versions of previous releases for Cray and SGI, respectively.)

In 4.1 and later versions, all message-passing parallel code falls under a generalized MPI inter-
face developed by Jim Vincent and Ken Merz of Pennsylvania State University, who provided PVM,
SPx and T3D versions.2 (The PVM,etc.message-passing libraries are only used for systems that do
not have MPI implemented.) Thomas Cheatham and David Case helped to integrate, extend, and opti-
mize this work. The SGI shared memory version from 4.0 was improved by Gomperts and
Schlenkrich of SGI, and has been reorganized and incorporated into the release by Thomas Cheatham.
Other credits: Steve Chin (IBM, SPx optimization), Jeyapandian Kottalam, Mike Page and Asiri
Nanayakkara (Cray optimization), Michael Crowley (Pittburgh Supercomputer Center, T3D portable
namelist port, PME development), and Thomas Huber (Ludwig Maximilian Universitaet, TCGMSG
library).

Particle Mesh Ewald.The Particle Mesh Ewald (PME) method, implemented originally in
AMBER 3a and contributed by Tom Darden3 of the NIEHS, is included. The PME method not only
provides a better treatment of long range electrostatics (at a modest computational cost), but can be
applied in both rectangular and non-rectangular periodic boundary simulations. Parallelization of
PME was done by Mike Crowley, with assistance from Tom Cheatham and David Case. Crowley.

1 DeBolt, S.E. and Kollman, P.A. (1993)J. Comput. Chem.14, 312.
2 ‘‘A Highly Portable Parallel Implementation of AMBER 4 Using the Message Passing Interface Standard,’’ Vincent, J. and Merz,

K.M. (1995)J.Comput.Chem.11, 1420-1427.
3 Ported to AMBER 4.1 by Tom Darden with the assistance of Thomas Cheatham. For citation information and more information

about the method, see the input description in section one of this manual.

8/25/97

SANDER module Input description Page 132

6.3. File usage.

Usage: sander [-O] -i mdin -o mdout -p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden -inf mdinfo

−O Overwrite output files if they exist.

On VMS systems, files are assigned by Fortran unit number. These unit numbers are also some-
times useful to reference when viewing i/o-related operating system error messages, and are given
below along with a description of each file.

file unit in/out purpose

mdin 5 input control data for the min/md run

prmtop 8 input molecular topology, force field, periodic

box type, atom and residue names

inpcrd 9 input initial coordinates and (optionally)

velocities and periodic box size

refc 10 input (optional) reference coords for position

constraint

mdout 6 output user readable state info and diagnostics

mdinfo 7 output latest mdout-format energy info

restrt 16 output final coordinates, velocity, and box

dimensions if any - for restarting run

mdcrd 12 output coordinate sets saved over trajectory

mdvel 13 output velocity sets saved over trajectory

mden 15 output extensive energy data over trajectory

8/25/97

SANDER module Input description Page 133

6.4. Overview of the contents of mdin.

Section Comments Format

ONE Standard minimization and dy-
namics input

&cntrl namelist

TWO Varying conditions Parameters for changing temperature, restraint
weights, etc. during the MD run. Sometimes
called "weight change lines". Each weight
change line is specified by a separate&wt
namelist specifier, ending with &wt
type=’END’, &end. NOTE: the termina-
tion of this section is&rst iat=0, &end at
the end of section FOUR.I.e. without an explicit
section THREE or section FOUR, you must use
this line if you want a group specification fol-
lowing this one to be read properly.

THREE I/O redirection TYPE=filename lines. Optional. Section ends
with the first non-blank line which does not cor-
respond to a recognized redirection.

FOUR Distance and angle restraints Multiple &rst namelists; if a
DISANG=filename redirection was given in
THREE, these are read fromfilenameinstead of
mdin. One &rst definition is given per re-
straint. Section FOUR is terminated by&rst
iat=0, &end .

FIVE NOESY volume restraints Read only if NMROPT= 2 and aNOE-
EXP=filenamewas giv en in THREE. Defines
molecular subgroups. Each definition consists
of one &noeexp namelist followed by the
group cards defining the subgroup. Ended by
&noeexp npeak(1)=-1, &end .

SIX Chemical shifts restraints Read only if NMROPT= 2 and a
SHIFTS=filenameor PCSHIFT=filenamewas
given in THREE, Exactly one&shf or &pcshf
namelist (or both) must be provided for this sec-
tion.

8/25/97

SANDER module Input section ONE Page 134

6.5. SECTION ONE: General minimization and dynamics parameters.
Each of the variables listed below is input in a namelist statement with the namelist identifier

&cntrl . You can enter the parameters in any order, using keyword identifiers. Variables that are not
explicitly listed retain their default values. Support for namelist input is included in almost all current
Fortran compilers, and is a standard feature of Fortran 90. In addition, a "portable" namelist imple-
mentation, written in Fortran by N.H.F. Beebe, is included, to allow namelist input on (almost) all
machines. This "portable" version is actually an improvement over most native implementations,
because it gives better error messages in case of problems. A detailed description of the namelist con-
vention is given in Appendix B.

In general, namelist input consists of an arbitrary number of comment cards, followed by a
record whose first 7 characters after a "&" (e.g. " &cntrl ") name a group of variables that can be
set by name. This is followed by statements of the form "maxcyc=500, diel=2.0, ... ",
and is concluded by an "&end " token. The files in the demo directory contain examples of this for-
mat. The first line of input contains a title, which is then followed by the&cntrl namelist. Note that
the first character on each line of a namelist block must be a blank.

A simple input file

Sample input file : just a few steps of minimization.

[minimize for 50 cycles, print results every 10 steps]

&cntrl

imin=1, maxcyc=50, ntpr=10, scee=2.0,

&end

6.5.1. General flags describing the calculation.

TIMLIM Time limit, in seconds, for the job. Default 999999.

IMIN Flag to run minimization

= 0 No minimization (only do molecular dynamics; default)

= 1 Perform minimization (and no molecular dynamics)

NMROPT

= 0 no nmr-type analysis will be done; default (Note: this variable replaces
nmrmax from previous versions, and has a slightly different meaning.)

> 0 NMR restraints/weight changes will be read

= 2 NOESY volume restraints or chemical shift restraints will be read as well

8/25/97

SANDER module Input section ONE Page 135

6.5.2. Nature and format of the input.

NTX Option to read the initial coordinates, velocities and box size from the "inpcrd" file
(also see INIT). The options 1-2 must be used when one is starting from mini-
mized or model-built coordinates. If an MD restrt file is used as inpcrd, then
options 4-7 may be used. Note: BOX (the periodic box lengths) is written to the
restrt file in periodic boundary runs. If NTB.gt.0 (a periodic boundary run) and
NTX.lt.6, the box sizes in the prmtop are used; otherwise, the box sizes from the
inpcrd (MD restrt) file will be used. This enables one to use the last box from the
constant pressure regime when switching to constant volume runs.

= 1 X is read formatted with no initial velocity information (default)

= 2 X is read unformatted with no initial velocity information

= 4 X and V are read unformatted.

= 5 X and V are read formatted.

= 6 X, V and BOX(1..3) are read unformatted.

= 7 X, V and BOX(1..3) are read formatted.

IREST Flag to restart the run.

= 0 No effect (default)

= 1 restart calculation (i.e. read restart time and set INIT= 4. Requires veloc-
ities in coordinate input file, so you also may need to reset NTX if restart-
ing MD)

NTRX Format of the cartesian coordinates for restraint from file "refc". Note: the pro-
gram expects file "refc" to contain coordinates for all the atoms in the system. A
subset for the actual restraints is selected by the GROUP input which follows.

= 0 Unformatted (binary) form

= 1 Formatted (ascii, default) form

6.5.3. Nature and format of the output.

NTXO Format of the final coordinates, velocities, and box size (if constant volume or
pressure run) written to file "restrt".

= 0 Unformatted

8/25/97

SANDER module Input section ONE Page 136

= 1 Formatted (default).

NTPR Every NTPR steps energy information will be printed in human-readable form to
files "mdout" and "mdinfo". "mdinfo" is closed and reopened each time, so it
always contains the most recent energy and temperature. Default 50.

NTWR Every NTWR steps during dynamics, the "restrt" file will be written, ensuring that
recovery from a crash will not be so painful. In any case, restrt is written every
NSTLIM steps. If NTWR<0, a unique copy of the file, restrt_nstep, is written. This
option is useful if for example one wants to run free energy perturbations from
multiple starting points or save a series of restrt files for minimization. NTWR<0
is not allowed in NRUN>1, since the "nstep" counter resets for each "run" and so
files would be overwritten. Default 50.

NTWX Every NTWX steps the coordinates will be written to file "mdcrd". NTWX=0
inhibits all output. Default 0.

NTWV Every NTWV steps the velocities will be written to file "mdvel". NTWV=0
inhibits all output. Default 0.

NTWE Every NTWE steps the energies and temperatures will be written to file "mden" in
compact form. NTWE=0 inhibits all output. Default 0.

NTWXM The maximum number of steps that NTWX is active. At this number of steps no
more trajectories will be written to file "mdcrd". Set this to 0 to disable the limit.

NTWVM Analogous to NTWXM for velocities. 0 to disable.

NTWEM Analogous to NTWXM for energies. 0 to disable.

IOUTFM Format of velocity, coordinate, and energy sets

= 0 Formatted (default)

= 1 Binary

NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the size of
the coordinate / velocity archive files, by only including that portion of the system
of greatest interest. (E.g. one can print only the solute and not the solvent, if so
desired).

Coord/velocity archives will include:

= 0 all atoms of the system (default).

8/25/97

SANDER module Input section ONE Page 137

< 0 only the solute atoms.

> 0 only atoms 1->NTWPRT.

6.5.4. Potential function.

NTF Force evaluation. Note: If SHAKE is used (see NTC), it is not necessary to calcu-
late forces for the constrained bonds.

= 1 complete interaction is calculated (default)

= 2 bond interactions involving H-atoms omitted (use with NTC=2)

= 3 all the bond interactions are omitted (use with NTC=3)

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle interactions are
omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions are omitted

NTB Periodic boundary. If NTB .EQ. 0 then a boundary is NOT applied regardless of
any boundary condition information in the topology file. The value of NTB speci-
fies whether constant volume or constant pressure dynamics will be used. Options
for constant pressure are described in a separate section below.

= 0 no periodicity is applied (default)

= 1 constant volume

= 2 constant pressure

If NTB .NE. 0, there must be a periodic boundary in the topology file. Constant
pressure is not used in minimization (IMIN=1, above).

For a periodic system, constant pressure is the only way to equilibrate density if
the starting state is not correct. For example, the solvent packing scheme used in
EDIT can result in a net void when solvent molecules are subtracted which can
aggregate into ‘vacuum bubbles’ in a constant volume run. Another consideration
is box shrinkage under constant pressure, which if the solute clearance has been
chosen too close to the cutoff distance can result in solvent molecules ‘seeing’
parts of the solute in opposite directions (not desirable if one believes that less cor-
related interactions are significantly more like simulations in free solution). The
remedy for this is to allow enough margin when building the box.

IDIEL Type of dielectric function to be used in calculating the electrostatic energy.

8/25/97

SANDER module Input section ONE Page 138

= 0 distance dependent dielectric function. This is used to mimic the presence
of a high dielectric solvent, typically for simulating water when no
explicit water is present.

= 1 constant dielectric function. This is used when there is explicit solvent
(e.g. water) in the calculation, or for a true gas phase calculation. Default.

DIELC Dielectric multiplicative constant for the electrostatic interactions. If DIELC .le.
0.0 then DIELC = 1.0. DIELC and IDIEL are coupled. For example to obtain a
dielectric constant of 4rij set DIELC=4 and IDIEL=0. Default 1.0.

CUT The primary cutoff distance for non-bonded interactions. CUT should be no more
than half the shortest BOX dimension in order to maintain spherical symmetry in
the nonbonded potential. For non-PME runs, AMBER only uses a residue-based
cutoff. This means that if any atom of one residue is within CUT of any atom of
another residue, every atom in each residue will see every atom of the other
residue. This is done to avoid splitting the residue dipoles. The average effective
cutoff is thus increased by the average residue diameter. For PME simulations,
CUT is used to separate short-ranged and long-ranged interactions, and an atom-
based cutoff scheme is used. Default 8.0.

NTNB Non-bonded pair list.

= 0 no pair list will be generated and no nonbonded interactions are calcu-
lated.

= 1 Normal behavior (default; recommended).

NSNB After NSNB steps the non-bonded pair list will be updated. It is recommended
that the pairlist be updated every 25fs, but for very mobile systems or when short
cutoffs are used it may be necessary to update the pairlist more frequently. If the
nonbonded cutoff is larger than the system size (ie, no cutoff), you should set
NSNB to a large value so that the pairlist is only constructed once. Default 25.

NTID Water pairlist method.

= 0 In periodic systems the water pairlist is generated from oxygen coordi-
nates. Default and recommended.

= 86 pairlist generated on residue basis from atom coordinates. I.e. if any pair
of atoms in different waters is within the cutoff, all the interactions
between the 2 waters are used. This yields an effective cutoff distance
that is somewhat longer than that specified in CUT. This option may be
extremely slow and is provided only for comparison to old runs.

SCNB 1-4 vdw interactions are divided by SCNB. Default 2.0.

8/25/97

SANDER module Input section ONE Page 139

SCEE 1-4 electrostatic interactions are divided by SCEE; the 1991 and previous force
fields used 2.0, while the 1994 force field uses 1.2.No default; must be set.

CUT2ND An (optional) secondary cutoff. If CUT2ND > 0.0, then at every nonbonded update
(every NSNB steps), the energies and forces due to interactions in the range CUT<
Rij <= CUT2ND will be determined. These energies and forces will be added to
the non-bonded interactions within CUT distance at every timestep. The idea is
that long-range interactions change more slowly than short range interactions, and
thus this dual cutoff method allows one to include longer-range information at only
a moderate additional cost. Default 0.0.

ICHDNA Option to modify the charge of end hydrogens. This is useful for "in vacuo" simu-
lations of RNA and DNA. Without this option, energy minimization calculations
on nucleotides will result in bonding between the 5’ and 3’ hydrogens and the cor-
responding phosphate groups. This option transfers the charge from H5’ to O5’ so
that the hydrogen on the end is neutral.

= 0 no charge modification (default)

= 1 modify charge

6.5.5. The soft repulsion option.

ISFTRP

= 0 No "soft repulsions" (default).

If ISFTRP > 0, a "soft" repulsion-only potential term will be used in place of the
standard 6-12 potential. This term has the form

E = Krep (ro
2 - r2)2 for r < ro

E = 0 for r > ro
where ro is the sum of the van der Waals radii of the interacting atoms, r is their

interatomic distance, and Krep is a force constant. This type of potential has shown

some usefulness in improving the efficiency of restrained refinement using MD.

= 1 The standard 10-12 potential will still be used for interactions between
hydrogen bonding atoms, rather than the "soft" repulsion-only term.

>=2 The soft-repulsion term will replace the 10-12 term for hydrogen bonds,
as well.

RWELL Default 0.0. If ISFTRP > 0, RWELL gives the initial value of Krep. All interactions

use the same value of Krep, which can be changed using the SOFTR option in the

NMR control file (see below).

[Note: If, in the force field, either epsilon or ro for an atom is specified to be zero,

that atom will not contribute to the vdw potential energy. This is always true,

8/25/97

SANDER module Input section ONE Page 140

regardless of the values of ISFTRP or RWELL.]

Caution: Note that the van der Waals radii in the "standard" force field may not be
what you want for soft repulsion. In particular, the atom typeHC (hydrogen
bonded to carbon) has a large value for r* (1.54 A) and a very small value for the
well depth (0.01 kcal/mol). This results in a relatively weak repulsive wall, but
will not translate well into a soft repulsion. You will probably want to use afrc-
mod file to reduce this radius to something more like 1.0 A. You may wish to
modify other radii as well. Some useful information about this (for proteins) is in
"Calibration of effective van der Waals atomic contact radii for proteins and pep-
tides", by Iijima, Dunbar and Marshall,Proteins: Str. Funct. Gen.2, 330-339
(1987).

Note also that theRSTARweight function (described below) can be used to modify
all of the radii by a constant amount. For example, if you want the repulsive force
to begin where the 6-12 potential crosses zero (rather than at the minimum), set
RSTARto (1/2)**(1/6), or about 0.8909.

6.5.6. Polarizable potentials.

IPOL Inclusion of polarizabilities in the force field.

= 0 non polar calc (default).

= 1 turn on polarization calculation. Polarizabilities must be present in prm-
top; see PARM.

= 2 Polarization calculation + read and use 3-body interaction definitions

Note: polarization is expensive and is currently recommended ONLY for
investigation of polarization parameters.

N3B Number of three-body interactions to be defined; current maximum is 5.

NION Number of ions in the system.

AT1(I) The second atom in this 3-body interaction.

AT2(I) The third atom in this 3-body interaction.

ACON(I) The pre-exponential factor for this 3-body interaction.

BETA3(I) The beta value for this 3-body interaction.

GAMMA3(I) The gamma value for this 3-body interaction.

8/25/97

SANDER module Input section ONE Page 141

6.5.7. Frozen or restrained atoms.

IBELLY Flag for belly type dynamics.

= 0 No belly run (default).

= 1 Belly run. A subset of the atoms in the system will be allowed to move,
and the coordinates of the rest will be frozen. Themovingatoms are spec-
ified in Group format at the end of all other input from file "mdin". Group
input is described in the Appendix.

NTR Flag for restraining specified atoms in Cartesian space using a harmonic potential.
Note: the restrained atoms are read in GROUP format after the numeric input from
file "mdin" - see Appendices for GROUP. The coordinates are read in "restrt" for-
mat from the "refc" file (see NTRX, above).

= 0 No position restraints (default)

= 1 MD with restraint of specified atoms

6.5.8. Energy minimization.

MAXCYC Maximum number of cycles of minimization. Default 1.

NCYC After NCYC cycles the method of minimization would be switched from steepest
descent to conjugate gradient method. Default 10.

NTMIN Flag for the method of minimization.

= 0 Full conjugate gradient minimization. The first 10 cycles are steepest
descent at the start of the run and after every nonbonded pairlist update.

= 1 For NCYC cycles the steepest descent method is used then conjugate gra-
dient is switched on (default).

= 2 Only steepest descent method is used.

DX0 The initial step length. If the initial step length is big then the minimizer will try to
leap the energy surface and sometimes the first few cycles will give a huge energy,
however the minimizer is smart enough to adjust itself. Default 0.01.

DXM The maximum step length allowed. Default 0.5.

8/25/97

SANDER module Input section ONE Page 142

DRMS Convergence criterion for the energy gradient: minimization will halt when the
root-mean-square of the cartesian elements of the gradient is less than DRMS.
Default 1.0E-4 kcal/mole A° .

6.5.9. Molecular dynamics.

NRUN Number of MD-runs of NSTLIM steps to be performed. Since the restart coordi-
nates are written only at the end of each "run", it is sometimes advisable to break a
long MD calculations into several "runs". The number of picoseconds of molecu-
lar dynamics is equal to the product of NRUN x NSTLIM x DT. Default 1.

NSTLIM Number of MD-steps per NRUN to be performed. Default 1.

NDFMIN Number of degrees of freedom that will be subtracted from the total number of
degrees of freedom. If either NTCM or NSCM .NE. 0 then this option should be
set equal to 6. Otherwise, NDFMIN should be 0. NDFMIN, NTCM, and NSCM
are ignored for belly dynamics. Default 0.

NTCM Flag for the removal of translational and rotational motion at the beginning of the
simulation.

= 0 The translational and rotational motion about the center of mass is not
removed (default)

= 1 The above motion is removed one time at the beginning of the simulation.

NSCM Flag for the removal of translational and rotational motion at regular intervals.
After every NSCM steps, translational and rotational motion will be removed.
This flag is ignored for both belly and periodic simulations. Default 0.

INIT Flag for different starting procedures. If option NTX is less than 4, INIT should be
equal to 3. If option NTX is greater than or equal to 4, this option should be equal
to 4.

= 3 Generate starting velocities (NTX = 1 or 2). V(T-DT/2) is obtained by
calculating force(T) unless TEMPI .gt. 1e-6, in which case the velocities
are assigned from a Maxwellian at TEMPI K. Default.

= 4 Use input velocities (NTX >= 4). V(T-DT/2) is read from the input file
"inpcrd".

T The time at the start (psec) this is for your own reference and is not critical. Start
time is taken from the coordinate input file if IREST=1. Default 0.0.

8/25/97

SANDER module Input section ONE Page 143

DT The time step (psec). Recommended MAXIMUM is .002 if SHAKE is used, or
.001 if it isn’t. Note that for temperatures above 300K, the step size should be
reduced since greater temperatures mean increased velocities and longer distance
travelled between each force evaluation, which can lead to anomalously high ener-
gies and system blowup. Default 0.001.

6.5.10. Temperature regulation.

TEMP0 Reference temperature at which the system is to be kept. Note that for tempera-
tures above 300K, the step size should be reduced since increased distance trav-
elled between evaluations can lead to SHAKE and other problems. Default 300.

TEMPI Initial temperature. For the initial dynamics run, (NTX .lt. 3) the velocities are
assigned from a Maxwellian distribution at TEMPI K. If TEMPI = 0.0, the veloci-
ties will be calculated from the forces instead. TEMPI has no effect if NTX .gt. 3.
Default 0.0.

IG The seed for the random number generator. The MD starting velocity is dependent
on the random number generator seed if NTX .lt. 3 .and. TEMPI .ne. 0.0. Default
71277.

HEAT If ABS(HEAT) .GE. 1.0E-06, all the velocities are multiplied by HEAT. This only
affects the initial velocities assigned at TEMPI. Default 0.0.

NTT Switch for temperature scaling.

Note that some of the following options are rather ad-hoc, and may not result in a
thermodynamically relevant ensemble. However, they may be useful when using
MD strictly to sample conformational space, such as with simulated annealing and
nmr refinement − cases where the temperature of the system may be too unstable
to use standard coupling scheme. In particular, option NTT=4 may be useful in
such cases. Coupling schemes NTT=0,1 or 5 should be used when generating a
thermodynamic ensemble is crucial.

= 0 Constant total energy classical dynamics. Velocities are never rescaled
after the start of the simulationexceptat the end of every NSTLIM steps,
when they will be rescaled to the target temperature if the current temper-
ature deviates from TEMP0 by more than DTEMP. Default, but owing to
the "hard" cutoff that lacks a switching function, energy will not be con-
served unless the cutoff includes the whole system.

= 1 Constant temperature, using the Berendsen coupling algorithm (Berend-
sen et al. J. Chem. Phys., 81, 3684 (1984)). A single scaling factor is used
for all atoms. This is good for small solutes, e.g. methane, but can result
in cold solute for larger ones. See NTT=5.

8/25/97

SANDER module Input section ONE Page 144

= 2 Constant temperature, using Berendsen coupling algorithm. But only con-
sider the solute temperature in determining the velocity scaling factor on
each step. Could result in solvent atoms having very high temperature,
and is not recommended for most cases.

= 3 Constant temperature, using Berendsen algorithm. But only rescale when
the temperature deviates from TEMP0 by more than DTEMP. Single
scaling factor.

= 4 Any time temperature deviates from TEMP0 by more than DTEMP, do
one quick scale of the velocities to bring them back to TEMP0. Other-
wise, do not scale.

= 5 Berendsen algorithm, use separate scaling factors for atoms of the solute
and atoms of the solvent. This option is recommended as a replacement
for NTT=1, and can help alleviate the "cold solute/hot solvent" problem.

<−1 Re-assign random velocities for all atoms whenever the current tempera-
ture deviates by more than DTEMP from TEMP0 (target temperature),
and every ABS(NTT) steps. Velocities are assigned in a Maxwellian dis-
tribution.

=−1 Re-assign random velocities for all atoms whenever the current tempera-
ture deviates by more than DTEMP from TEMP0. Velocities are assigned
in a Maxwellian distribution.

NOTE 1: When option (5) is chosen, both the solute and solvent coupling
constants are used (TAUTP and TAUTS, respectively). In cases (1), (2),
and (3), the single temperature coupling constant TAUTP is used for all
atoms.

NOTE 2: If you are using NTT=2 or NTT=5, you can specify the variable
ISOLVP to redefine the last_solute_atom pointer. See below.

ISOLVP Last-solute-atom pointer to be used with temperature scaling, when separate scal-
ing of solute and solvent atoms has been requested (NTT=2 or NTT=5).

By default (ISOLVP=0), the last non-TIP3P water molecule in the system is gener-
ally taken as the last_solute_atom. For example, the counterions are considered
part of the "solute" by default. You could re-define the counterions to be part of
the solvent by setting ISOLVP.

DTEMP For NTT = 0, if the difference between the system temperature and TEMP0 is
more than DTEMP at the end of each run, the velocities will be linearly scaled to
TEMP0. Default 0.0.

TA UTP Time constant for heat bath coupling for the SOLUTE. Default 0.2. Generally, val-
ues for TAUTP should be in the range of 0.5-5.0 ps, with a smaller value providing
tighter coupling to the heat bath, therefore a less natural trajectory. Smaller values
of TAUTP result in smaller fluctuations in kinetic energy, but larger fluctuations in
the total energy. Values much larger than the length of the simulation result in a

8/25/97

SANDER module Input section ONE Page 145

return to constant energy conditions.

TA UTS Time constant for the heat bath coupling for the SOLVENT (NTT=5). Default 0.2.

VLIMIT If .ne. 0.0, then any component of the velocity that is greater than abs(VLIMIT)
will be reduced to VLIMIT (preserving the sign). This can be used to avoid occa-
sional instabilities in molecular dynamics runs. VLIMIT should be set (if at all) to
a value like 20., which is well above the most probable velocity in a Maxwell-
Boltzmann distribution at room temperature. A warning message will be printed
whenever the velocities are modified. Runs that have more than a few such warn-
ings should be carefully examined. Default 0.0.

6.5.11. PEACS temperature algorithm

PEACS is a searching technique wherein the trajectory follows a constant energy
contour. See Schaik et al, J. Comp. Aided Mol. Design, 6, 97 (1992). PEACS can
only be carried out using MD (not minimization).

TA UV0 Defines the rate constant for lowering the temperature if a PEACS constant poten-
tial energy search is to be carried out.

= 0.0 No PEACS search will be carried out (default).

> 0.0 TAUV0 defines the rate at which the target energy contour is annealed
down.

TA UV When a PEACS search is being carried out (TAUV0 > 0.0), TAUV defines the cou-
pling constant between the target energy contour and the contour being followed.
Default 0.1.

VZERO Defines the value of the initial potential energy contour to be followed if a PEACS
search is being carried out. If VZERO is specified as 0.0 (default), the initial
energy of the system will be used.

6.5.12. Pressure regulation

Pressure regulation only applies when Constant Pressure periodic boundary condi-
tions are used (NTB = 2).

NTP Flag for constant pressure dynamics. This option MUST be set to 1 or 2 when
Constant Pressure periodic boundary conditions are used (NTB = 2).

8/25/97

SANDER module Input section ONE Page 146

= 0 Used with NTB not = 2 (default)

= 1 md with isotropic position scaling

= 2 md with anisotropic diagonal (x-,y-,z-) position scaling

PRES0 Reference pressure (in units of bars, where 1 bar ˜ 1 atm) at which the system is
maintained (when NTP > 0). Default 1.0.

COMP compressibility of the system when NTP > 0. The units are in 1.0E-06/bar; a value
of 44.6 (default) is appropriate for water.

TA UP Pressure relaxation time (in ps), when NTP > 0. The recommended value is
between 1.0 and 5.0 psec. Default 0.2.

NPSCAL Method for pressure scaling of the atomic coordinates. Pressure scaling means
changing the size of the box to match the target pressure, which involves scaling
the positions of the contents of the box so that they are proportionally distributed
within the new box size. For example if the box contracts, the system as a whole
must be contracted to avoid overlaps at the periodic boundary, and if the box
expands, the system is expanded uniformly to fill the vacuum at the edge(s).

= 0 Atom scaling. All atoms are independently moved according to the scale
factor. This causes some degree of compression or stretching of bonds.
Default.

= 1 Molecule scaling. Bonded groups of atoms (molecules) are moved as
units. This is intended to avoid changing bond lengths as a side effect of
pressure scaling, but may disrupt coordination of extended contacting
molecules such as nucleic acid strands.

6.5.13. SHAKE bond length constraints.

NTC Flag for SHAKE to perform bond length constraints. (See also NTF in thePoten-
tial function section.) The SHAKE option should be used for most MD calcula-
tions. The size of the MD timestep is determined by the fastest motions in the sys-
tem. SHAKE removes the bond stretching freedom, which is the fastest motion,
and consequently allows a larger timestep to be used. SHAKE is used in the TIP
water potentials and keeps waters rigid so that the hydrogens (which have 0 vdw
radius) do not extend beyond the vdw sphere defined for the oxygens. For energy
minimization, no SHAKE should be necessary, unless electrostatic energies blow
up (negatively) in a water bath. If both problems affect a minimization with peri-
odic boundary conditions, increasing the box dimension at the end of the prmtop
file by 0.2-0.8 Angstroms may help.

8/25/97

SANDER module Input section ONE Page 147

= 1 SHAKE is not performed (default)

= 2 bonds involving hydrogen are constrained

= 3 all bonds are constrained

TOL Relative geometrical tolerance for coordinate resetting in shake. Recommended
maximum: <0.0005 Angstrom Default 0.0005.

6.5.14. Special water treatment.

IMGSLT Controls Solute-Solvent imaging in periodic boundary calculations.

= 0 Solute is imaged with solvent. Solute is allowed to interact with solvent
images (if they are within CUT). Default.

= 1 No Solute-Solvent imaging. Solute does not see image solvent. This
assumes that the solute is centered in the periodic system, and is not free
to migrate. Do not use this with mobile solutes. This option is mainly
useful for large solutes.

IFTRES Flag to remove the nonbonded cutoff from the solute in periodic boundary simula-
tions.

= 0 ALL intramolecular solute - solute nonbonded interactions are calculated
regardless of whether the interatomic distance is greater than the non-
bonded cutoff. Solute-solute imaging is turned off.

= 1 Nonbondeds are evaluated normally. Default.

NOTE: For simulations of highly charged solutes in a water bath, it can be
useful to calculate ALL solute - solute nonbonded interactions in order to
reduce electrostatic problems. This is especially important for highly
charged systems like nucleic acids. Note that this option is intended for
small solutes, and will generate many more nonbonded pairs than the nor-
mal method if the solute is large. Counterions added in EDIT are consid-
ered part of the solute.

JFASTW Fast water definition flag. By default, the system is searched for TIP3P waters, and
special fast routines are used for these molecules. There are two types of fast rou-
tines specific to TIP3P water: 1) A faster, analytic SHAKE algorithm for 3-point
water; 2) A faster routine to calculate non-bonded TIP3P-TIP3P water interactions.
In normal operation, the program defaults will be acceptable. However, in rare
instances (e.g. for debugging purposes, or when the user has redefined the defini-
tion of a TIP3P water), one may wish to inhibit the use of these fast routines and/or
redefine the default definition used in Amber to define TIP3P waters. This option
makes this possible.

8/25/97

SANDER module Input section ONE Page 148

= 0 Normal operation. The default AMBER definition of TIP3P water is used,
and the fast water routines are used where appropriate.

= 1 Use the fast water routines for SHAKE and non-bonds, but redefine the
names the program uses to recognize TIP3P waters. The redefinition
names are provided below.

= 2 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds.

= 3 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds. Redefine the names the program uses to recognize TIP3P
waters. The redefinition names are provided below, after the normal

= 4 Do not use fast water routines for either SHAKE or non-bonds.

The following variables allow redefinition of the default residue and atom names
used by the program to determine which residues are TIP3P waters. Except in
unusual circumstances, the default water names should be acceptable.

WA TNAM The residue name the program expects for TIP3P waters. Default ’WAT ’.

OWTNM The atom name the program expects for the oxygen of TIP3P wat. Default ’O ’.

HWTNM1 The atom name the program expects for the 1st H of TIP3P wat. Default ’H1 ’.

HWTNM2 The atom name the program expects for the 2nd H of TIP3P wat. Default ’H2 ’.

6.5.15. Water cap.

IVCAP Flag to control Cap Option. The Cap refers to a spherical portion of water centered
on a point in the solute and restrained by a soft half-harmonic potential. Caps are
constructed using EDIT.

= 0 Cap will be in effect if it is passed from the the parm module (default)

= 1 Cap will be activated except that the Cap atom pointer will be modified

= 2 Cap will be inactivated

MATCAP The Cap atom pointer. This is the last Non-Cap atom number. If IVCAP = 1 then
the pointer passed from the PARM module will be overwritten by this number.
PARM passes the NATCAP parameter which is replaced by the value in MATCAP.
Default 0.

FCAP The Force Constant for the Cap restraint potential. A value of 0.0 for FCAP will
result in the default force constant of 1.5.

8/25/97

SANDER module Input section ONE Page 149

6.5.16. NMR refinement options.

ISCALE Number of additional variables to optimize beyond the 3N structural parameters.
(Default = 0). At present, no options other than ISCALE = 0 are supported (see
code).

NOESKP The NOESY volumes will only be evaluated if mod(nstep, noeskp) = 0; otherwise
the last computed values for intensities and derivatives will be used. (default = 1,
i.e. evaluate volumes at every step)

IPNLTY

= 1 the program will minimize the sum of the absolute values of the errors;
this is akin to minimizing the crystallographic R-factor (default).

= 2 the program will optimize the sum of the squares of the errors.

= 3 For NOESY intensities, the penalty will be of the form

awt [I (1/6)
c − I (1/6)

o]2.

Chemical shift penalties will be as foripnlty=1.

MXSUB Maximum number of submolecules that will be used. This is used to determine
how much space to allocate for the NOESY calculations. Default 1.

SCALM "Mass" for the additional scaling parameters. Right now they are restricted to all
have the same value. The larger this value, the slower these extra variables will
respond to their environment. Default 100 amu.

PENCUT In the summaries of the constraint deviations, entries will only be made if the
penalty for that term is greater than PENCUT. Default 0.1.

TA USW For noesy volume calculations (NMROPT = 2), intensities with mixing times less
that TAUSW (in seconds) will be computed using perturbation theory, whereas
those greater than TAUSW will use a more exact theory. See the theory section
(below) for details. To always use the "exact" intensities and derivatives, set
TA USW = 0.0; to always use perturbation theory, set TAUSW to a value larger
than the largest mixing time in the input. Default is TAUSW of 0.1 second, which
should work pretty well for most systems.

6.5.17. Particle Mesh Ewald.

IEWALD Turns on the Particle Mesh Ewald (PME) method. PME4 is a fast implementation

4 (a) Darden, T.A.; York, D. and Pedersen L. Particle Mesh Ewald: An N log(N) method for Ewald sums in large systems.J. Chem.
Phys. 98, 10089 (1993). (b) U. Essman, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen. A smmoth particle mesh Ewald
method.J. Chem. Phys.;b 103,8577-8593 (1995).

8/25/97

SANDER module Input section ONE Page 150

of the Ewald summation method5 for calculating the full electrostatic energy of a
unit cell (periodic box) in a macroscopic lattice of repeating images. As imple-
mented, the PME in AMBER bypasses the standard pairlist creation and non-
bonded energy and force evaluation, calling special PME functions to calculate the
Lennard-Jones and electrostatic interactions. The PME method is fast since the
reciprocal space Ewald sums are B-spline interpolated on a grid and since the con-
volutions necessary to evaluate the sums are calculated via fast Fourier transforms.
Note that the accuracy of the PME is related to the density of the charge grid
(NFFTX, NFFTY, and NFFTZ), the spline interpolation order (SPLINE_ORDER),
and the direct sum tolerance (DSUM_TOL); see the descriptions below for more
information.

= 0 PME is turned off. This is the default option.

= 1 PME is turned on. This requires extra input in order to control the calcu-
lation. This input, consisting of three lines of free format numerical input
(not namelist input!), is described below andmustbe placed in the input
file just after the end of this namelist (&cntrl &end) [or after the for-
matted input] andbefore any weight change information (&wt &end)
described in the next section and/or before the group input information.

Special input:only processed when IEWALD = 1.

Line 1 The unit cell parameters: BOXX, BOXY, BOXZ, ALPHA, BETA and GAMMA.
All are double precision free format input.

BOXX, BOXY, BOXZ
The PME unit cell (periodic box) lengths (A°) in each dimension. This
information must be specified andoverridesthe box information specified
in the parm file. When NTX = 7 (used to read in the velocity and box
information upon restart) this information is read, but ignored, and the
unit cell information is obtained from the restart file.

ALPHA, BETA, GAMMA
The PME unit cell angles (in degrees). Unlike standard AMBER, PME
allows non-rectangular boxes. [A rectangular box has angles of 90.0.]
When NTX = 7, ALPHA, BETA and GAMMA are obtained from the
restart file. If the restart file doesn’t contain these values (for example if
restarting from standard, non PME, periodic boundary conditions),
ALPHA, BETA and GAMMA will default to 90.0 degrees.

Line 2 Interpolation and control information: NFFT1, NFFT2, NFFT3, SPLINE_ORDER,
ISCHARGED, VERBOSE, EXACT_EWALD. All are integer free format input.

NFFTX, NFFTY, NFFTZ
These give the size of the charge grid (upon which the reciprocal sums are
interpolated) in each dimension. Higher values lead to higher accuracy
(when the DSUM_TOL is also lowered) but considerably slow the

5 Ewald, P. (1921)Ann. Phys. (Leipzig)64, 253.

8/25/97

SANDER module Input section ONE Page 151

calculation. Generally it has been found that reasonable results are
obtained when NFFTX, NFFTY and NFFTZ are approximately equal to
BOXX, BOXY, and BOXZ respectively, leading to a grid spacing
(BOXX/NFFTX, etc) of 1.0 A° . Significant performance enhancement in
the calculation of the fast Fourier transform is obtained by having each of
the integer NFFTX, NFFTY and NFFTZ values be aproduct of powersof
2, 3, and 5.

SPLINE_ORDER
The order of the B-spline interpolation. The higher the order, the better
the accuracy (unless the charge grid is too coarse). The minimum order is
3. An order of 4 implies a cubic spline approximation which is a good
standard value. Note that the cost of the PME goes as roughly the order to
the third power.

ISCHARGED
Standard use is to have ISCHARGED = 0 which forces neutralization of
the unit cell by removal of the average charge over the system at the
beginning of the run. [This is necessary due to the roundoff error associ-
ated with the parm derived charges (upon reading in a parameter file, the
sum of the charges for a neutral system does not sum to zero).] When
ISCHARGED = 1, the unit cell is not neutralized. Technically, the Ewald
summation method is not correct when a non-neutral system is used
(energy will change, independent of the direct sum tolerance, but the
forces are still correctly determined). However, the method has been
applied for non-neutral systems and may be useful for equilibrating sys-
tems in the absence of counterions, for example.

VERBOSE
Standard use is to have VERBOSE = 0. Turning VERBOSE = 1 leads to
voluminous output of information about the PME run.

EXACT_EWALD
Standard use is to have EXACT_EWALD = 0 which turns on the particle
mesh ewald (PME) method. When EXACT_EWALD = 1, instead of the
approximate, interpolated PME, anexactEwald calculation is run. The
exact Ewald summation is present to serve as an accuaracy check allow-
ing users to determine if the PME grid spacing, order and direct sum toler-
ance lead to acceptable results. Although the cost of the exact Ewald
method formally increases with system size at a much higher rate than the
PME, it is faster for small numbers of atoms (< 500). For larger, macro-
molecular systems, with > 500 atoms, the PME method is significantly
faster. (Note: this option is not currently implemented in Amber 5, but the
variable is still read, and so needs to be there.)

Line 3 The direct sum tolerance: DSUM_TOL. This is a double precision free format
value.

8/25/97

SANDER module Input section ONE Page 152

DSUM_TOL
This relates to the width of the direct sum part of the Ewald sum, requir-
ing that the value of the direct sum at the Lennard-Jones cutoff value
(specified in CUT as during standard dynamics) be less that DSUM_TOL.
In practice it has been found that the relative error in the Ewald forces
(RMS) due to cutting off the direct sum at CUT is between 10.0 and 50.0
times DSUM_TOL. Standard values for DSUM_TOL are in the range of
0.000001 to 0.00001 leading to estimated RMS deviation force errors of
0.00001 to 0.0005.

Special notes about the PME (whenIEWALD = 1):

(1) Imaging: The PME method, as implemented, does not image residues in the same manner as
standard AMBER.6 Standard AMBER, when periodic boundary conditions are applied, will
translate all the atoms in a given residue back into the box if the first atom in that residue is
outside the box. [An exception to this case − when running dynamics and running without a
belly (IBELLY = 0) and without position constraints (NTR = 0) − is that translation of the
entire solute will occur if the center of geometry of the solute is outside the box.] Technically,
the PME does not need to explicitly image (translate) the atoms since in the calculations imag-
ing to the unit cell is done implicitly.

(2) Pressure:Correct calculation of the pressure requires that each solvent molecule be repre-
sented as a separate molecule in the topology file. This is the default behavior when the BOX
or SOL options are used in EDIT.

(3) Quick Error estimate:During a PME run, whenever the energy summary is printed, an esti-
mate of the RMS force error is also printed.

(4) Pairlist: The Lennard-Jones interactions (stored in a pairlist updated every NSNB steps) are
calculated using an atom-based cutoff when using PME rather than the residue (charge group)
based cutoff applied in standard AMBER. This is appropriate since residue-based pairlisting is
only relevant to avoid splitting the dipole when electrostatic interactions are involved.

(5) Forces: Although the PME method does rigorously conserve energies-- assuming a high
enough level of accuracy obtained through small charge grids (NFFT1, NFFT2, NFFT3), low
DSUM_TOL, and high level interpolation (ORDER)-- the forces are not conserved. In test
cases, this led to problems whereby a directed force component appeared when the pairlist was
not updated very frequently. In order to circumvent this, any net force component is now
zeroed every step (in subroutine accumforce). This does not seem to effect energy conserva-
tion. Although in proper usage, PME does conserve energy, energy drains can occur for other
reasons, such as infrequent pairlist updates, Berendsen pressure coupling, SHAKE tolerances
that are too high, and large time steps in the integration of the equations of motion. With tem-
perature coupling and uniform scaling of velocities, this can lead to a slow growth in the center
of mass translational motion. Therefore it is recommended to use the NTCM/NSCM options
to remove center of mass motion every 50-100 ps if temperature coupling is being applied.

6 A supplementary program called rdparm has been provided which can convert trajectory (mdcrd) files from PME imaging to stan-
dard imaging.

8/25/97

SANDER module Input section ONE Page 153

(6) Compatibility:The following options are not compatible with the Ewald method:

CUT2ND: cannot have secondary cutoffs on the van der Waals terms.

IPOL = 1: polarization is not supported

IPRR and IPWR: cannot read/write pairlists to a file for later reuse.

IFTRES = 1: cannot calculate all solute − solute interactions.

IMGSLT = 1: not compatible

IFBOX = 2: cannot work with truncated octahedral boundary conditions.

For more information about the application of the PME method, please refer to the following refer-
ences:

York, D.M.; Darden, T.A. and Pedersen, L.G. ‘‘The effect of long-range electrostatic interac-
tions in simulations of macromolecular crystals: A comparison of the Ewald and truncated
list methods.’’ J. Chem. Phys.99(10), 8345 (1993).

York, D.M.; Wlodawer, A.; Pedersen, L.G. and Darden, T.A. ‘‘Atomic-level accuracy in
simulations of large protein crystals.’’Proc. Natl. Acad. Sci.91, 8715 (1994).

For more general information about the Ewald method, please see:

Allen, M.P. and Tildesley, D.J.Computer Simulation of LiquidsOxford (1987).

Valleau, J.P.; Whittington, S.G. ‘‘A Guide to Monte Carlo for Statistical Mechanics: 1. High-
ways.’’ in Statistical Mechanics. A. A Modern Theoretical Chemistry.B.J. Berne: New York,
1977; pp 137-168.

8/25/97

SANDER module Input section TWO Page 154

6.6. SECTION TWO: Weight change information.

This section of information is read (if NMROPT > 0) as a series of namelist specifications, with
name "&wt ". This namelist is read repeatedly until a namelist&wt statement is found with
TYPE=END.

Overview of weight change variables
variable description

TYPE Defines quantity being varied; valid options are list-
ed below.

ISTEP1,ISTEP2 This change is applied over steps/iterations ISTEP1
through ISTEP2. If ISTEP2 = 0, this change will
remain in effect from step ISTEP1 to the end of the
run at a value of VALUE1 (VALUE2 is ignored in
this case).(default= both 0)

VALUE1,VALUE2 Values of the change corresponding to ISTEP1 and
ISTEP2, respectively. If ISTEP2=0, the change is
fixed at VALUE1 for the remainder of the run, once
step ISTEP1 is reached.

IINC If IINC > 0, then the change is applied as a step
function, with IINC steps/iterations between each
change in the target VALUE (ignored if ISTEP2=0).
If IINC =0, the change is done continuously.(de-
fault=0)

IMULT If IMULT=0, then the change will linearly interpo-
lated from VALUE1 to VALUE2 as the step number
increases from ISTEP1 to ISTEP2.(default)

If IMULT=1, then the change will be effected by a
series of multiplicative scalings, using a single fac-
tor, R, for all scalings. i.e.

VALUE2 = (R**INCREMENTS) * VALUE1.
INCREMENTS is the number of times the target
value changes, which is determined by ISTEP1, IS-
TEP2, and IINC.

8/25/97

SANDER module Input section TWO Page 155

The remainder of this section describes the options for the TYPE parameter. For a few types of
cards, the meanings of the other variables differ from that described above; such differences are noted
below. Valid Options for TYPE (you must use uppercase) are:

BOND Varies the relative weighting of bond energy terms.

ANGLE Varies the relative weighting of valence angle energy terms.

TORSION Varies the relative weighting of torsion (and J-coupling) energy terms. Note that
any restraints defined in the input to the PARM program are included in the above.
Improper torsions are handled separately (IMPROP).

IMPROP Varies the relative weighting of the "improper" torsional terms. These are not
included in TORSION.

VDW Varies the relative weighting of van der Waals energy terms. This is equivalent to
changing the well depth (epsilon) by the given factor.

HB Varies the relative weighting of hydrogen-bonding energy terms.

ELEC Varies the relative weighting of electrostatic energy terms.

NB Varies the relative weights of the non-bonded (VDW, HB, and ELEC) terms.

ATTRACT Varies the relative weights of the attractive parts of the van der waals and h-bond
terms.

REPULSE Varies the relative weights of the repulsive parts of the van der waals and h-bond
terms.

RSTAR Varies the effective van der Waals radii for the van der Waals (VDW) interactions
by the given factor. Note that this is done by changing the relative attractive and
repulsive coefficients, so ATTRACT/REPULSE should not be used over the same
step range as RSTAR.

SOFTR Varies the soft-repulsion non-bond force constant. Has no effect if ISFTRP.LE.0.

INTERN Varies the relative weights of the BOND, ANGLE and TORSION terms.
"Improper" torsions (IMPROP) must be varied separately.

ALL Varies the relative weights of all the energy terms above (BOND, ANGLE, TOR-
SION, VDW, HB, and ELEC; does not affect RSTAR or IMPROP).

REST Varies the relative weights of *all* the NMR restraint energy terms.

RESTS Varies the weights of the "short-range" NMR restraints. Short- range restraints are
defined by the SHORT instruction (see below).

RESTL Varies the weights of any NMR restraints which are not defined as "short range" by
the SHORT instruction (see below). When no SHORT instruction is given, RESTL
is equivalent to REST.

NOESY Varies the overall weight for NOESY volume restraints. Note that this value multi-
plies the individual weights read into the "awt" array. (Only if NMROPT=2; see
Section 4 below).

SHIFTS Varies the overall weight for chemical shift restraints. Note that this value multi-
plies the individual weights read into the "wt" array. (Only if NMROPT=2; see sec-
tion 4 below).

8/25/97

SANDER module Input section TWO Page 156

SHORT Defines the short-range restraints. For this instruction, ISTEP1, ISTEP2, VALUE1,
and VALUE2 have different meanings. A short-range restraint can be defined in
two ways.

(1) If the residues containing each pair of bonded atoms comprising the restraint
are close enough in the primary sequence:

ISTEP1≤ ABS(delta_residue)≤ ISTEP2,
where delta_residue is the difference in the numbers of the residues containing the
pair of bonded atoms.

(2) If the distances between each pair of bonded atoms in the restraint fall within a
prescribed range:

VALUE1 ≤ distance≤ VALUE2.
Only one SHORT command can be issued, and the values of ISTEP1, ISTEP2,
VALUE1, and VALUE2 remain fixed throughout the run. However, if IINC>0,
then the short-range interaction list will be re-evaluated every IINC steps.

TEMP0 Varies the target temperature TEMP0.

TA UTP Varies the coupling parameter, TAUTP, used in temperature scaling when tempera-
ture coupling options NTT=1,2 or 3 are used.

CUT Varies the non-bonded cutoff distance.

NSTEP0 If present, this instruction will reset the initial value of the step counter (against
which ISTEP1/ISTEP2 and NSTEP1/NSTEP2 are compared) to the value ISTEP1.
An NSTEP0 instruction only has an effect at the beginning of a run. For this card
(only) ISTEP2, VALUE1, VALUE2 and IINC are ignored. If this card is omitted,
NSTEP0 = 0. This card can be useful for simulation restarts, where NSTEP0 is set
to the final step on the previous run.

STPMLT If present, the NMR step counter will be changed in increments of STPMLT for
each actual dynamics step. For this card, only VALUE1 is read. ISTEP1, ISTEP2,
VALUE2, IINC, and IMULT are ignored. Default = 1.0.

DISAVE

ANGAVE

TORAVE If present, then by default time-averaged values (rather than instantaneous values)
for the appropriate set of restraints will be used. DISAVE controls distance data,
ANGAVE controls angle data, TORAVE controls torsion data.

See below for the functional form used in generating time-averaged data.

For these cards: VALUE1 =τ (characteristic time for exponential decay)
VALUE2 = POWER (power used in averaging; the nearest integer of value2 is
used)

Note that the range (ISTEP1→ISTEP2) applies only to TAU; The value of
POWER is not changed by subsequent cards with the same ITYPE field, and time-
av eraging will always be turned on for the entire run if one of these cards appears.

Note also that, due to the way that the time averaged internals are calculated,
changingτ at any time after the start of the run will only affect the relative weight-
ing of steps occurring after the change inτ .

Separate values forτ and POWER are used for bond, angle, and torsion averaging.

8/25/97

SANDER module Input section TWO Page 157

The default value ofτ (if it is 0.0 here) is 1.0D+6, which results in no exponential
decay weighting. Any value ofτ ≥ 1.D+6 will result in no exponential decay.
If DISAVE,ANGAVE, or TORAVE is chosen, one can still force use of an instan-
taneous value for specific restraints of the particular type (bond, angle, or torsion)
by setting the IFNTYP field to "1" when the restraint is defined (IFNTYP is
defined in section 3 below).
If time-averaging for a particular class of restraints is being performed, all
restraints of that class that are being averaged (that is, all restraints of that class
except those for which IFNTYP=1) *must* have the same values of NSTEP1 and
NSTEP2 (NSTEP1 and NSTEP2 are defined below).

(For these cards, IINC and IMULT are ignored)

See the discussion of time-averaged restraints following the input descriptions.

DISAVI

ANGAVI

TORAVI ISTEP1: Ignored.

ISTEP2: Sets IDMPAV . If IDMPAV > 0,and a dump file has been specified
(DUMPAVE is set in the file redirection section below), then the time-averaged
values of the restraints will be written every IDMPAV steps. Only one value of
IDMPAV can be set (corresponding to the first DISAVI/ANGAVI/TORAVI card
with ISTEP2 > 0), andall restraints (even those with IFNTYP=1) will be
"dumped" to this file every IDMPAV steps. The values reported reflect the current
value ofτ .

VALUE1: The integral which gives the time-averaged values is undefined for the
first step. By default, for each time-averaged internal, the integral is assigned the
current value of the internal on the first step. If VALUE1≠0, this initial value of
internal r is reset as follows:

-1000. < VALUE1 < 1000.: Initial value = r_initial + VALUE
VALUE1 <= -1000.: Initial value = r_target + 1000.

1000. <= VALUE1 : Initial value = r_target - 1000.

r_target is the target value of the internal, given by R2+R3 (or just R3, if R2 is 0).
VALUE1 is in angstroms for bonds, in degrees for angles.

VALUE2: This field can be used to set the value ofτ used in calculating the time-
av eraged values of the internal restraints reported at the end of a simulation (if
LISTOUT is specified in the redirection section below). By default, no exponential
decay weighting is used in calculating the final reported values, regardless of what
value ofτ was used during the simulation. If VALUE2>0, thenτ = VALUE2 will
be used in calculating these final reported averages. Note that the value of
VALUE2 = τ specified here only affects the reported averaged values in at the end
of a simulation. It does not affect the time-averaged values used during the simula-
tion (those are changed by the VALUE1 field of DISAVE, ANGAVE and TORAVE
instructions).

IINC: If IINC = 0, then forces for the class of time-averaged restraints will be cal-
culated exactly as (dE/dr_ave) (dr_ave/dx). If IINC = 1, then then forces for the
class of time-averaged restraints will be calculated as (dE/dr_ave) (dr(t)/dx). Note

8/25/97

SANDER module Input section TWO Page 158

that this latter method results in a non-conservative force, and does not integrate to
a standard form. But this latter formulation helps avoid the large forces due to the
(1+i) term in the exact derivative calculation--and may avert instabilities in the
molecular dynamics trajectory for some systems. See the discussion of time-
av eraged restraints following the input description.

Note that the DISAVI, ANGAVI, and TORAVI instructions will have no affect
unless the corresponding time average request card (DISAVE, ANGAVE or
TORAVE, respectively) is also present.

(For these cards, ISTEP1 and IMULT are ignored).

If formatted input is being read (&formwt was specified), any line which starts
with a pound symbol (#) is considered a comment line, and will be skipped.

END END of this section.

NOTES:

(1) All weights are relative to a default of 1.0 in the standard force field.

(2) Weights are not cumulative.

(3) For any range where the weight of a term is not modified by the above, the weight reverts to
1.0. For any range where TEMP0, SOFTR or CUTOFF is not specified, the value of the rele-
vant constant is set to that specified in the input file.

(4) If a weight is set to 0.0, it is set internally to 1.0D-7. This can be overridden by setting the
weight to a negative number. In this case, a weight of exactly 0.0 will be used.However,if any
weight is set to exactly 0.0, it cannot be changed again during this run of the program.

(5) If two (or more) cards change a particular weight over the same range, the weight given on the
last applicable card will be the one used.

(6) Once any weight change for which NSTEP2=0 becomes active (i.e. one which will be effective
for the remainder of the run), the weight of this term cannot be further modified by other
instructions.

(7) Changes to RSTAR result in exponential weighting changes to the attractive and repulsive
terms (proportional to the scale factor**6 and **12, respectively). For this reason, scaling
RSTAR to a very small value (e.g.≤0.1) may result in a zeroing-out of the vdw term.

8/25/97

SANDER module Input section THREE Page 159

6.7. SECTION THREE: File redirection commands.

Input/output redirection information can be read as described here. The inclusion of these cards
is optional. By default (if not redirected here), all input is taken from the standard input file. Redirec-
tion cards, if provided, must follow the end of the SECTION TWO input. Redirection card input is
terminated by the first non-blank line which does not start with a recognized redirection TYPE (e.g.
LISTIN, LISTOUT, etc.).

The format of the redirection cards is
TYPE = filename

where TYPE is any valid redirection keyword (see below), and filename is any character string. The
equals sign ("=") is required, and TYPE must be given inuppercaseletters.

Valid redirection keywords are:

LISTIN An output listing of the restraints which have been read, and their deviations from
the target distancesbeforethe simulation has been run. By default, this listing is
not printed. If POUT is used for the filename, these deviations will be printed in
the normal output file.

LISTOUT An output listing of the restraints which have been read, and their deviations from
the target distances_after the simulation has finished. By default, this listing is not
printed. If POUT is used for the filename, these deviations will be printed in the
normal output file.

DISANG The file from which the distance and angle restraint information described below
(Section 4) will be read.

NOESY File from which NOESY volume information (Section 5), if any, will be read.

SHIFTS File from which chemical shift information (Section 6), if any, will be read.

DUMPAVE File to which the time-averaged values of all restraints will be written, if DISAVI /
ANGAVI / TORAVI has been used to set IDMPAV≠0. If either IDMPAV has not
been set, or DUMPAVE is not specified, this file will not be written.

8/25/97

SANDER module Input section FOUR Page 160

6.8. SECTION FOUR: Distance, angle and torsional restraints.:

The input/output redirection cards (if any) are followed by the distance and angle restraints,
which are read ifnmropt> 0. Namelist rst ("&rst ") contains the following variables; it is read repeat-
edly until a namelist&rst statement is found with IAT(1)=0.

In many cases, the user will not prepare this section of the input by hand, but will use the auxil-
iary programsmakeDIST_RSTandmakeCHIR_RSTto prepare input from simpler files.

Variables in the&rst namelist:

IAT(1)→IAT(4) If IRESID = 0 (normal operation):

The atoms defining the restraint. If IAT(3)≤0, this is a distance restraint.
If IAT(4) ≤0, this is an angle restraint. Otherwise, this is a torsional (or J-
coupling, if desired) restraint.

If this is a distance restraint, and IAT1 <0, then a group of atoms is
defined below, and the coordinate-averaged position of this group will be
used in place of the coordinates of atom 1 [IAT(1)]. Similarly, if IAT(2) <
0, a group of atoms will be defined below whose coordinate-averaged
position will be used in place of the coordinates for atom 2 [IAT(2)].

If IRESID=1:

IAT(1) → IAT(4) point to the numbers of the *residues* containing the
atoms comprising the internal. Residue numbers are the absolute numbers
in the entire system. In this case, the variables ATNAM(1)→ ATNAM(4)
must be specified, and give the character names of the desired atoms
within the respective residues.

If IAT(1) < 0 or IAT(2) < 0, then group input will still be read in place of
the corresponding atom, as described below.

Defaults for IAT(1)→IAT(4) are 0.

ATNAM If IRESID = 1, then the character names of the atoms defining the internal are con-
tained in ATNAM(1)→ATNAM(4). Residue IAT(1) is searched for atom name
ATNAM(1); residue IAT(2) is searched for atom name ATNAM(2); etc. On
machines using the portable namelist code, the form is
atnam(1)=’AT1’,atnam(2)=’AT2’ etc, otherwise the form atnam=’AT1’,’AT2’ etc
can be used.

Defaults for ATNAM(1)→ATNAM(4) are ’ ’.

IRESID Indicates whether IAT(I) points to an atom # or a residue #. See descriptions of
IAT() and ATNAM() above.

Default = 0.

NSTEP1

NSTEP2 This restraint is applied for steps/iterations NSTEP1 through NSTEP2. If NSTEP2
= 0, the restraint will be applied from NSTEP1 through the end of the run. Note
that the first step/iteration is considered step zero (0).

8/25/97

SANDER module Input section FOUR Page 161

Defaults for NSTEP1, NSTEP2 are both 0.

IRSTYP Normally, the restraint target values defined below (R1→R4) are used directly. If
IRSTYP = 1, the values given for R1→R4 define relative displacements from the
current value (value determined from the starting coordinates) of the restrained
internal. For example, if IRSTYP=1, the current value of a restrained distance is
1.25, and R1 (below) is -0.20, then a value of R1=1.05 will be used.

Default is IRSTYP=0.

IFVARI If IFVARI > 0, then the force constants/positions of the restraint will vary with step
number. Otherwise, they are constant throughout the run. If IFVARI >0, then the
values R1A→R4A, RK2A, and RK3A must be specified (see below).

Default is IFVARI=0.

NINC If IFVARI > and NINC > 0, then the change in the target values of of R1→R4 and
K2,K3 is applied as a step function, with NINC steps/ iterations between each
change in the target values. If NINC = 0, the change is effected continuously (at
ev ery step).

Default for NINC is the value assigned to NINC in the most recent namelist where
NINC was specified. If NINC has not been specified in any namelist, it defaults to
0.

IMULT If IMULT=0, and the values of force constants RK2 and RK3 are changing with
step number, then the changes in the force constants will be linearly interpolated
from rk2→rk2a and rk3→rk3a as the step number changes.

If IMULT=1 and the force constants are changing with step number, then the
changes in the force constants will be effected by a series of multiplicative scal-
ings, using a single factor, R, for all scalings.i.e.

rk2a = R**INCREMENTS * rk2
rk3a = R**INCREMENTS * rk3.

INCREMENTS is the number of times the target value changes, which is deter-
mined by NSTEP1, NSTEP2, and NINC.

Default for IMULT is the value assigned to IMULT in the most recent namelist
where IMULT was specified. If IMULT has not been specified in any namelist, it
defaults to 0.

R1→R4

RK2,RK3

R1A→R4A

RK2A,RK3A The restraint is a well with a square bottom with parabolic sides out to a defined
distance, and then linear sides beyond that. Force constants are in units of
kcal/mol. If R is the value of the restraint in question:

R < r1 Linear, with the slope of the "left-hand" parabola at the point R=r1.

r1 <= R < r2 Parabolic, with force constant k2. E=0 at R=r2.

r2 <= R < r3 E = 0.

r3 <= R < r4 Parabolic, with force constant K3. E=0 at R=r3.

8/25/97

SANDER module Input section FOUR Page 162

r4 <= R Linear, with the slope of the "right-hand" parabola at the point R=r4.

For torsional restraints, the value of the torsion is translated by +-n*360, if neces-
sary, so that it falls closest to the mean of r2 and r3.

Specified distances are in Angstroms. Specified angles are in degrees. Force con-
stants for distances are in kcal/mol-A2. Force constants for angles are in
kcal/mol-rad2. (Note that angle positions are specified in degrees, but force con-
stants are in radians, consistent with typical reporting procedures in the literature).

IFVARI = 0 The values of r1→r4, rk2, and rk3 will remain constant through-
out the run.

IFVARI > 0 The values r1a, r2a, r3a, r4a, r2ka and r3ka are also used. These
variables are defined as for r1→r4 and rk2, rk3, but correspond
to the values appropriate for NSTEP = NSTEP2: e.g., if IVARI
>0, then the value of r1 will vary between NSTEP1 and
NSTEP2, so that, e.g. r1(NSTEP1) = r1 and r1(NSTEP2) = r1a.
Note that yourmust specify an explicit value fornstep1and
nstep2if you use this option.

Defaults for r1→r4,rk2,rk3,r1a→r4a,rk2a and rk3a are the values assigned to
them in the most recent namelist where they were specified. They should always be
specified in the first&rst namelist.

(IGR1(i),i=1→200)
If IAT(1) < 0 and IAT(3)=IAT(4)=0, then IGR1() gives the atoms defining the
group whose coordinate averaged position is used to define "atom 1" in a distance
restraint. If IRESID = 0, absolute atom numbers are specified by the elements of
IGR1(). If IRESID = 1, then IGR1(I) specifies the number of the residue contain-
ing atom I, and the name of atom I must be specified using GRNAM1(I). A maxi-
mum of 200 atoms are allowed in any group. Only specify those atoms which are
needed.

RJCOEF(1)→RJCOEF(3)
By default, 4-atom sequences specify torsional restraints. It is also possible to
impose restraints on the vicinal3J-coupling value related to the underlying torsion.
J is related to the torsionτ by the approximate Karplus relationship:
J = Acos2(τ) + B cos(τ) + C. If you specify a non-zero value for either
RJCOEF(1) or RJCOEF(2), then a J-coupling restraint, rather than a torsional
restraint, will be imposed. At every MD step, J will be calculated from the Karplus
relationship with A = RJCOEF(1), B = RJCOEF(2) and C = RJCOEF(3). In this
case, the target values (R1->R4, R1A->R4A) and force constants (RK2, RK3,
RK2A, RK3A) refer to J-values for this restraint. RJCOEF(1)->RJCOEF(3) must
be set individually for each torsion for which you wish to apply a J-coupling
restraint, and RJCOEF(1)->RJCOEF(3) may be different for each J-coupling
restraint.

With respect to other options and reporting, J-coupling restraints are treated identi-
cally to torsional restraints. This means that if time-averaging is requested for tor-
sional restraints, it will apply to J-coupling restraints as well. The J-coupling
restraint contribution to the energy is included in the "torsional" total. And changes
in the relative weights of the torsional force constants also change the relative
weights of the J-coupling restraint terms.

8/25/97

SANDER module Input section FOUR Page 163

Setting RJCOEF has no effect for distance and angle restraints.

Defaults for RJCOEF(1)->RJCOEF(3) are 0.0.

(IGR2(i),i=1→200)
If IAT(2) < 0 and IAT(3)=IAT(4)=0, then IGR1 gives the atoms defining the group
whose coordinate averaged position is used to define "atom 2" in a distance
restraint. If IRESID = 0, absolute atom numbers are specified by the elements of
IGR2(). If IRESID = 1, then IGR2(I) specifies the number of the residue contain-
ing atom I, and the name of atom I must be specified using GRNAM1(I). A maxi-
mum of 200 atoms are allowed in any group. Only specify those atoms which are
needed.

Default value for any unspecified element of IGR1 or IGR2 is 0.

(GRNAM1(i),i=1→200)

(GRNAM2(i),i=1→200)
If group input is being specified (IAT(1) or IAT(2) < 0 and IAT(3)=IAT(4)=0),and
IRESID = 1, then the character names of the atoms defining the group are con-
tained in GRNAM1(i) or GRNAM2(i)), as described above. In the case IAT(1) < 0,
each residue IGR1(i) is searched for an atom name GRNAM1(i) and added to the
first group list. In the case IAT(2) < 0, each residue IGR2(i) is searched for an
atom name GRNAM2(i) and added to the second group list.

Defaults for GRNAM1(i) and GRNAM2(i) are ’ ’.

IR6 If a group coordinate-averaged position is being used (see IGR1 and IGR2 above),
the average position can be calculated in either of two manners: If IR6 = 0, center-
of-mass averaging will be used. If IR6=1, the <r −6 >−1/6 av erage of all interaction
distances to atoms of the group will be used.

Default for IR6 is the value assigned to IR6 in the most recent namelist where IR6
was specified. If IR6 has not been specified in any namelist, it defaults to 0.

IFNTYP If time-averaged restraints have been requested (see DISAVE/ANGAVE/TORAVE
above), they are, by default, applied to all restraints of the class specified. Time-
av eraging can be overridden for specific internals of that class by setting IFNTYP
for that internal to 1. IFNTYP has no effect if time-averaged restraint are not being
used.

Default value is IFNTYP=0.

Namelist&rst is read for each restraint. Restraint input ends when a namelist statement with iat(1) =
0 (or iat(1) not specified) is found. Note that comments can precede or follow any namelist statment,
allowing comments and restraint definitions to be freely mixed.

8/25/97

SANDER module Input section FIVE Page 164

6.9. SECTION FIVE: NOESY volume restraints.

After the previous section, NOESY volume restraints may be read. This data described in this
section is only read if NMROPT = 2. The molecule may be broken in overlapping submolecules, in
order to reduce time and space requirements. Inputfor each submoleculeconsists of namelist "&noe-
exp ", followed immediatelyby standard AMBER "group" cards defining the atoms in the sub-
molecule. In addition to the submolecule input ("&noeexp "), you may also need to specify some
additional variables in thecntrl namelist in section ONE; see the "NMR variables" description in
that section.

In many cases, the user will not prepare this section of the input by hand, but will use the auxil-
iary programmakeNOEEXPto prepare input from simpler files.

Variables in the&noeexp namelist:

For each submolecule, the namelist "&noeexp " is read (either fromstdinor from the NOESY redirec-
tion file) which contains the following variables. There are no effective defaults fornpeak, emix, ihp,
jhp, andaexp: you must specify these.

NPEAK(imix) Number of peaks for each of the "imix" mixing times; if the last mixing time is
mxmix, set NPEAK(mxmix+1) = -1. End the input when NPEAK(1) < 0.

EMIX (imix) Mixing times (in seconds) for each mixing time.

IHP(imix,ipeak)

JHP(imix,ipeak) Atom numbers for the atoms involved in cross-peak "ipeak" at mixing time "imix"

AEXP(imix,ipeak)Experimental or target integrated intensity for this cross peak.

ARANGE(imix,ipeak)
"Uncertainty" range for this peak: if the calculated value is within±ARANGE of
AEXP, then no penalty will be assessed. Default uncertainties are all zero.

AWT(imix,ipeak) Relative weight for this cross peak. Note that this will be multiplied by the overall
weight given by the NOESY weight change cards in the weight changes section
(Section 1). Default values are 1.0.

If AWT is negative, this cross peak is part of a set of overlapped peaks. The com-
puted intensity is added to the peak that follows; the next time a peak with AWT >
0 is encountered, the running sum for the calculated peaks will be compared to the
value of AEXP for that last peak in the list. Hence, when AWT < 0, its magnitude
is ignored, and the corresponding entry in the AEXP array is also ignored. In other
words, a set of overlapping peaks is represented by one or more peaks with AWT <
0 followed by a peak with AWT > 0. The computed total intensity for these peaks
will be compared to the value of AEXP for the final peak, making use of the value
given for AWT in the final peak.

OMEGA Spectrometer frequency, in Mhz. Default is 500. It is possible for different sub-
molecules to have different frequencies, but omega will only change when it is
explicitly re-set. Hence, if all of your data is at 600 Mhz, you need only setomega
to 600. in the first submolecule.

8/25/97

SANDER module Input section FIVE Page 165

TA UROT Rotational tumbling time of the molecule, in nsec. Default is 1.0 nsec. Like
omega, this value is "sticky", so that a value set in one submolecule will remain
until it is explicitly reset.

TA UMET Correlation time for methyl jump motion, in ns. This is only used in computing
the intra-methyl contribution to the rate matrix. The ideas of Woessner are used,
specifically as recommended by Kalk & Berendsen,J. Magn. Res.24, 343 (1976).
Default is 0.0001 ns, which is effectively the fast motion limit. The default is con-
sistent with the way the rest of the rate matrix elements are determined (also in the
fast motion limit,) but probably is not the best value to use, since methyl groups
appear to have T1 values that are systematically shorter than other protons, and this
is likely to arise from the fact that the methyl correlation time can be near to the
inverse of the spectrometer frequency. A value of 0.02 - 0.05 ns is probably better
than 0.0001, but this is still an active research area, and you are on your own here!
A couple of recent papers that deal with this subject are Olejniczak & Weiss,J.
Magn. Res.86, 148-155 (1990) and Ishima, Shibata & Akasas,ibid. 91, 455-465
(1991); these papers also provide references to earlier work. As withomega,
taumetcan be different for different sub-molecules, but will only change when it is
explicitly re-set.

ID2O Flag for determining if exchangeable protons are to be included in the spin-
diffusion calculation. If ID2O=0 (default) then all protons are included. If
ID2O=1, then all protons bonded to nitrogen or oxygen are assumed to not be pre-
sent for the purposes of computing the relaxation matrix. No other options exist at
present, but they could easily be added to the subroutineindexn. Alternatively, you
can manually rename hydrogens in theprmtopfile so that they do not begin with
"H": such protons will not be included in the relaxation matrix. (Note: for techni-
cal reasons, the HOH proton of tyrosine must always be present, so setting
ID2O=1 will not remove it; we hope that this limitation will be of minor impor-
tance to most users.) Theid2o variable retains its value across namelist reads,i.e.
its value will only change if it is explicitly reset.

OSCALE overall scaling factor between experimental and computed volume units. The
experimental intensities are multiplied byoscalebefore being compared to calcu-
lated intensities. This means that the weights WNOESY and AWT always refer to
"theoretical" intensity scales rather than to the (arbitrary) experimental units. The
oscale variable retains its value across namelist reads,i.e. its value will only
change if it is explicitly reset. The initial (default) value is 1.0.

The atom numbersihp and jhp are the absolute atom numbers assigned in the EDIT module of
AMBER. For methyl groups, use the number of the last proton of the group; for the delta and epsilon
protons of aromatic rings, use the delta-2 or epsilon-2 atom numbers. Since this input requires you to
know the absolute atom numbers assigned by AMBER to each of the protons, you may wish to use the
separategetsubprogram which provides some facility for turning human-readable names into atom
numbers, and also assists in dividing a large molecule into submolecules.

Following namelist "&noeexp ", give the AMBER "group" cards that identify this submolecule.
This combination of "&noeexp " and "group" cards can be repeated as often as needed for many sub-
molecules, subject to the limits described in the "resize.com" shell script. As mentioned above, this
input section ends when NPEAK(1) < 0, or when and end-of-file is reached.

8/25/97

SANDER module Input section SIX Page 166

6.10. SECTION SIX: Chemical shift restraints.

After reading NOESY restraints above (if any), read the chemical shift restraints in namelist
&shf, or the pseudocontact restraints in namelist&pcshift. In many cases, the user will not prepare
this section of the input by hand, but will use the auxiliary programsmakeSHFor fantasianto prepare
input from simpler files.

Variables in the &shf namelist. (Defaults are only available forshrang, wt, nter, andshcut; you
must specify the rest.)

NRING Number of rings in the system.

NATR(i) Number of atoms in thei-th ring.

IATR(j,i) Absolute atom number for thej-th atom of thei-th ring.

NAMR(i) Eight-character string that labels thei-th ring. The first three characters give the
residue name (in caps); the next three characters contain the residue number (right
justified); column 7 is blank; column 8 may optionally contain an extra letter to
distinguish the two rings of trp, or the 5 or 8 rings of the heme group.

STR(i) Ring current intensity factor for thei-th ring. Older values are summarized by
Cross and Wright, J. Magn. Res. 64:220-231 (1985); more recent empirical
parametrizations based on a larger database give improved results (K. Osapay and
D.A. Case,J. Am. Chem. Soc.113,9436-9444 (1991).

NPROT Number of protons for which penalty functions are to be set up.

IPROT(i) Absolute atom number of thei-th proton whose shifts are to be evaluated. For
equivalent protons, such as methyl groups or rapidly flipping phenylalanine rings,
enter all two or three atom numbers in sequence; averaging will be controlled by
thewt parameter, described below.

OBS(i) Observed secondary shift for thei-th proton. This is typically calculated as the
observed value minus a random coil reference value.

SHRANG(i) "Uncertainty" range for the observed shift: if the calculated shift is within
±SHRANG of the observed shift, then no penalty will be imposed. The default
value is zero for all shifts.

WT(i) Weight to be assigned to this penalty function. Note that this value will be multi-
plied by the overall weight (if any) given by the SHIFTS command in the assign-
ment of weights (above). Default values are 1.0. For sets of equivalent protons,
give a neg ative weight for all but the last proton in the group; the last proton gets a
normal, positive value. The av erage computed shift of the group will be compared
to obsentered for the last proton.

SHCUT Values of calculated shifts will be printed only if the absolute error between calcu-
lated and observed shifts is greater than this value.Default = 0.3 ppm.

NTER Resiude number of the N-terminus, for protein shift calculations;default = 1.

CTER Residue number of the C-terminus, for protein shift calculations. Believe it or not,
the current code cannot figure this out for itself.

8/25/97

SANDER module Input section SIX Page 167

The PCSHIFT module allows the inclusion of pseudocontact shifts as constraints in energy mini-
mization and molecular dynamics calculations on paramagnetic molecules. The pseudocontact shift
depends on the magnetic susceptibility anisotropy of the metal ion and on the location of the resonat-
ing nucleus with respect to the axes of the magnetic susceptibility tensor. For the nucleus i, it is given
by:

δ i
pc =

j
Σ 1

12π r 3
ij



∆χ j

ax(3n2
ij − 1) + (3/2)∆χ j

rh(l2
ij − m2

ij)



wherel ij , mij , andnij are the direction cosines of the position vector of atom i with respect to the j-th
magnetic susceptibility tensor coordinate system,r ij is the distance between the j-th paramagnetic cen-
ter and the proton i,jax and jrh are the axial and the equatorial anisotropies of the magnetic suscepti-
bility tensor of the j-th paramagnetic center. For a discussion, see: Lucia Banci, Ivano Bertini, Gio-
vanni Gori-Savellini, Andrea Romagnoli, Paola Turano, Mauro Andrea Cremonini, Claudio Luchinat
and Harry B. Gray "Pseudocontact shifts as Constraints for Energy minimization and molecular
dynamics calculations on solution structures of paramagnetic metalloproteins", Proteins: Structure,
Function and Genetics, in press.

The PCSHIFT module to be used needs a namelist file which includes information on the mag-
netic suscepibility tensor and on the paramagnetic center, and a line of information for each nucleus.
This module allows to include more than one paramagnetic center in the calculations. To include
pseudocontact shifts as constraints in energy minimization and molecular dynamics calculations the
NMROPT flag should be set to 2, and aPCSHIFT=filenamestatement entered in section THREE.

To perform molecular dynamics calculations it is necessary to eliminate the rotational and
traslational degree of freedom about the center of mass (this because during molecular dynamics cal-
culations the relative orientation between the external reference coordinate system and the magnetic
anisotropy tensor coordinate system has to be fixed).This option could be obtained with the NTCM,
NSCM and NDFMIN flags of SANDER.

Variables in thepcshift namelist.

NPROT number of pseudocontact shift constraints.

NME number of paramagnetic centers.

NAMEPCM name of the paramagnetic atom

OPTPHI(n)

OPTTETA(n)

OPTOMG(n)

OPTA1(n)

OPTA2(n) the five parameters of the magnetic anisotropy tensor for each paramagnetic center.

OPTKONST force constant for the pseudocontact shift constraints

Following this, there is a line for each nucleus for which the pseudocontact shift information is
given has to be added. Each line contains :

IPROT(i) atom number of the i-th proton whose shift is to be used as constraint.

OBS(i) observed pseudocontact shift value, in ppm

8/25/97

SANDER module Input section SIX Page 168

WT(i) relative weight

TOLPROT(i) relative tolerance ix mltprot

MLTPROT(i) multiplicity of the NMR signal (for example the protons of a methyl group have
mltprot(i)=3)

Example. Here is a &pcshf namelist example: a molecule with three paramagnetic centers and 205
pseudocontact shift constraints.

&pcshf

nprot=205,

nme=3,

namepmc=’FE ’,

optphi(1)=-0.315416,

optteta(1)=0.407499,

optomg(1)=0.0251676,

opta1(1)=-71.233,

opta2(1)=1214.511,

optphi(2)=0.567127,

optteta(2)=-0.750526,

optomg(2)=0.355576,

opta1(2)=-60.390,

opta2(2)=377.459,

optphi(3)=0.451203,

optteta(3)=-0.0113097,

optomg(3)=0.334824,

opta1(3)=-8.657,

opta2(3)=704.786,

optkonst=30,

iprot(1)=26, obs(1)=1.140, wt(1)=1.000, tolprot(1)=1.000, mltprot(1)=1,

iprot(2)=28, obs(2)=2.740, wt(2)=1.000, tolprot(2)=.500, mltprot(2)=1,

iprot(3)=30, obs(3)=1.170, wt(3)=1.000, tolprot(3)=.500, mltprot(3)=1,

iprot(4)=32, obs(4)=1.060, wt(4)=1.000, tolprot(4)=.500, mltprot(4)=3, --

iprot(5)=33, obs(5)=1.060, wt(5)=1.000, tolprot(5)=.500, mltprot(5)=3, | methyl

iprot(6)=34, obs(6)=1.060, wt(6)=1.000, tolprot(6)=.500, mltprot(6)=3, - -

...

...

iprot(205)=1215, obs(205)=.730, wt(205)=1.000, tolprot(205)=.500, mltprot(205)=1,

&end

An mdin file that might go along with this, to perform a maximum of 5000 minimization cycles, start-
ing with 500 cycles of steepest descent. PCSHIFT=./pcs.in redirects the input from the namelist
"pcs.in" which contains the pseudocontact shift information.

Example of minimization including pseudocontact shift constraints

&cntrl

8/25/97

SANDER module Input section SIX Page 169

ibelly=0,imin=1,nrun=0,nsnb=10,ntpr=100,

ntwx=100,ntwe=100,ioutfm=0,ntr=0,maxcyc=5000,

ncyc=500,ntmin=1,dx0=0.0001,dxm=1.0,dele=1.0e-07,

drms=.1,cut=10.,idiel=0, scee=2.0,

nmropt=2,pencut=0.1, ipnlty=2,

&end

&wt type=’REST’, istep1=0,istep2=1,value1=0.,

value2=1.0, &end

&wt type=’END’ &end

DISANG=./noe.in

PCSHIFT=./pcs.in

LISTOUT=POUT

8/25/97

SANDER module Example input files Page 170

6.11. Example input files.

In this section, we give some commented examples of files for various common tasks. We hope
these represent "good AMBER practice," but please recognize that there are many ways to use this
program. Comments in parentheses should not be placed in the input file; comments following a "#"
sign may be placed in the input files.

1. Simple restrained minimization

Minimization with cartesian restraints
&cntrl

imin=1, maxcyc=200, (invoke minimization)
scee=2.0, idiel=0, cut=12.0, (force field options)
nsnb=20, (update non-bonded list)
ntpr=5, (print frequency)
ntr=1, (turn on cartesian restraints)

&end
Group input for restrained atoms

1.0 (force constant for restraint)
RES 1 58 (all atoms in residues 1-58)
END
END

2. "Plain" molecular dynamics run

molecular dynamics run
&cntrl

imin=0, irest=1, ntx=7, (restart MD)
scnb=8.0, scee=1.2, idiel=1, cut=9.0, (force field options)
ntt=1, temp0=300.0, tautp=0.2, (temperature control)
ntp=2, taup=0.2, (pressure control)
ntb=2, ntc=4, ntf=2, nsnb=25, (SHAKE, periodic bc.)
nstlim=500000, (run for 0.5 nsec)
ntwe=100, ntwx=100, ntpr=200, (output frequency)

&end

8/25/97

SANDER module Example input files Page 171

3. Simulated annealing NMR refinement

15ps simulated annealing protocol

&cntrl

nstlim=15000, ntt=1, (time limit, temp. control)
scee=1.2, (scee must be set - 1-4 scale factor)
ntpr=500, pencut=0.1, (control of printout)
ipnlty=1, nmropt=1, (NMR penalty function options)
vlimit=10, (prevent bad temp. jumps)

&end

#
Simple simulated annealing algorithm:
#
from steps 0 to 1000: raise target temperature 10->1200K
from steps 1000 to 3000: leave at 1200K
from steps 3000 to 15000: re-cool to low temperatures
#

&wt type=’TEMP0’, istep1=0,istep2=1000,value1=10.,

value2=1200., &end

&wt type=’TEMP0’, istep1=1001, istep2=3000, value1=1200.,

value2=1200.0, &end

&wt type=’TEMP0’, istep1=3001, istep2=15000, value1=0.,

value2=0.0, &end

#
Strength of temperature coupling:
steps 0 to 3000: tight coupling for heating and equilibration
steps 3000 to 11000: slow cooling phase
steps 11000 to 13000: somewhat faster cooling
steps 13000 to 15000: fast cooling, like a minimization
#

&wt type=’TAUTP’, istep1=0,istep2=3000,value1=0.2,

value2=0.2, &end

&wt type=’TAUTP’, istep1=3001,istep2=11000,value1=4.0,

value2=2.0, &end

&wt type=’TAUTP’, istep1=11001,istep2=13000,value1=1.0,

value2=1.0, &end

&wt type=’TAUTP’, istep1=13001,istep2=14000,value1=0.5,

value2=0.5, &end

&wt type=’TAUTP’, istep1=14001,istep2=15000,value1=0.05,

value2=0.05, &end

(continued on next page)

8/25/97

SANDER module Example input files Page 172

3. Simulated annealing NMR refinement(continued)

#
"Ramp up" the restraints over the first 3000 steps:
#

&wt type=’REST’, istep1=0,istep2=3000,value1=0.1,

value2=1.0, &end

&wt type=’REST’, istep1=3001,istep2=15000,value1=1.0,

value2=1.0, &end

&wt type=’END’ &end

LISTOUT=POUT (get restraint violation list)
DISANG=RST.f (file containing NMR restraints)

8/25/97

SANDER module Example input files Page 173

4. Part of the RST.f file referred to above

first, some distance constraints prepared by makeRST:
(comment line is input to makeRST, &rst namelist is output)
#
#(proton 1 proton 2 upper bound)
#---
#
2 ILE HA 3 ALA HN 4.00

#

&rst iat= 23, 40, r3= 4.00, r4= 4.50,

r1 = 1.3, r2 = 1.8, rk2=0.0, rk3=32.0, ir6=1, &end

#

3 ALA HA 4 GLU HN 4.00

#

&rst iat= 42, 50, r3= 4.00, r4= 4.50, &end

#

3 ALA HN 3 ALA MB 5.50

#

&rst iat= 40, -1, r3= 6.22, r4= 6.72,

igr1= 0, 0, 0, 0, igr2= 44, 45, 46, 0, &end

#

.......etc......
#
next, some dihedral angle constraints, currently prepared "by hand":
#

&rst iat= 213, 215, 217, 233, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, &end

&rst iat= 233, 235, 237, 249, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, &end

.......etc.......

8/25/97

SANDER module Example input files Page 174

4. Part of the RST.f file referred to above(continued)

#
#

next, chirality and omega constraints prepared by makeCHIR_RST:

#

#

chirality for residue 1 atoms: CA CG HB2 HB3

&rst iat= 3 , 8 , 6 , 7 ,

r1=10., r2=60., r3=80., r4=130., rk2 = 10., rk3=10., &end

#

chirality for residue 1 atoms: CB SD HG2 HG3

&rst iat= 5 , 11 , 9 , 10 , &end

#

chirality for residue 1 atoms: N C HA CB

&rst iat= 1 , 18 , 4 , 5 , &end

#

chirality for residue 2 atoms: CA CG2 CG1 HB

&rst iat= 22 , 26 , 30 , 25 , &end#

#

......etc........

trans-omega constraint for residue 2
&rst iat= 22 , 20 , 18 , 3 ,

r1=155., r2=175., r3=185., r4=205., rk2 = 80., rk3=80., &end

#
trans-omega constraint for residue 3

&rst iat= 41 , 39 , 37 , 22 , &end

#
trans-omega constraint for residue 4

&rst iat= 51 , 49 , 47 , 41 , &end

#
......etc........
#

8/25/97

SANDER module Example input files Page 175

5. Sample NOESY intensity input file
#
A part of the NOESY intensity file we use for plastocyanin:

&noeexp

id2o=1, (exchangeable protons removed)
oscale=6.21e-4, (scale between exp. and calc. intensity units)
taumet=0.04, (correlation time for methyl rotation, in ns.)
taurot=4.2, (protein tumbling time, in ns.)
NPEAK = 13*3, (three peaks, each with 13 mixing times)
EMIX = 2.0E-02, 3.0E-02, 4.0E-02, 5.0E-02, 6.0E-02,

8.0E-02, 0.1, 0.126, 0.175, 0.2, 0.25, 0.3, 0.35,

(mixing times, in sec.)
IHP(1,1) = 13*423, IHP(1,2) = 13*1029, IHP(1,3) = 13*421,

(number of the first proton)
JHP(1,1) = 78*568, JHP(1,2) = 65*1057, JHP(1,3) = 13*421,

(number of the second proton)
AEXP(1,1) = 5.7244, 7.6276, 7.7677, 9.3519,

10.733, 15.348, 18.601,

21.314, 26.999, 30.579,

33.57, 37.23, 40.011,

(intensities for the first cross-peak)
AEXP(1,2) = 8.067, 11.095, 13.127, 18.316,

22.19, 26.514, 30.748,

39.438, 44.065, 47.336,

54.467, 56.06, 60.113,

AEXP(1,3) = 7.708, 13.019, 15.943, 19.374,

25.322, 28.118, 35.118,

40.581, 49.054, 53.083,

56.297, 59.326, 62.174,

&end

SUBMOL1

RES 27 27 29 29 39 41 57 57 70 70 72 72 82 82 (residues in this submol)
END

END

8/25/97

SANDER module Example input files Page 176

6. A more complicated constraint

1) Define two centers of mass. COM1 is defined by
{C1 in residue 1; C1 in residue 2; N2 in residue 3; C1 in residue 4}.
COM2 is defined by {C4 in residue 1; O4 in residue 1; N* in residue 1}.
(These definitions are effected by the igr1/igr2 and grnam1/grnam2
variables; You can use up to 200 atoms to define a center-of-mass
group)
#
2) Set up a distance restraint between COM1 and COM2 which goes from a
target value of 5.0A to 2.5A, with a force constant of 1.0, over steps 1-5000.
#
3) Set up a distance restraint between COM1 and COM2 which remains fixed
at the value of 2.5A as the force slowly constant decreases from
1.0 to 0.01 over steps 5001-10000.
#
4) Sets up no distance restraint past step 10000, so that free (unrestrained)
dynamics takes place past this step.
#

&rst iat=-1,-1, nstep1=1,nstep2=5000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=5.0000,r3=5.0000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=1.0000,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

&end

&rst iat=-1,-1, nstep1=5001,nstep2=10000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=2.5000,r3=2.5000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=0.0100,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

&end

8/25/97

SANDER module Theory Page 177

6.12. Overview of NMR refinement using SANDER.
We find the SANDER module to be a flexible way of incorporating a variety of restraints into a

optimization procedure that includes energy minimization and dynamical simulated annealing. How-
ev er, there is not, as yet, a generally-accepted and complete "recipe" for obtaining solution structures
from NMR data. The comments below are intended to provide a guide to some commonly-used pro-
cedures.

Sanderis part of a general environment for performing molecular refinements using nmr data as
input. Generally speaking, the programs required to do this can be divided into three parts: 1)front-
endmodules, which interact with nmr databases that provide information about assignments, chemical
shifts, coupling constants, NOESY intensities, etc.; 2)restrained molecular dynamics,which is at the
heart of the conformational searching procedures; and 3)back-endroutines that do things like compare
families of structures, generate statistics, simulate spectra, and the like.

Sanderprovides facilities for carrying out the molecular dynamics part of this scheme. Some of
the front-end and back-end programs that we use in conjuction withsander are provided in the
src/nmr_aux/prepare_inputsubdirectory. The basic front-end program ismakeDIST_RST, which con-
verts information in assignment databases intosanderformat. Different NMR-processing programs
will clearly require somewhat different input processing. We mostly useFelix, marketed by MSI, but
other formats should be easily accommodated as well.

We also find it useful to add chirality constraints andtrans-peptide ‘omega‘ constraints (where
appropriate) to prevent chirality inversions or peptide bond flips during the high-temperature portions
of simulated annealing runs. The programmakeCHIR_RSTwill create these constraints.

For simulations with NOESY volume restraints, chemical shift penalties or pseudo-contact shift
restraints, the programsmakeNOEEXP, makeSHF_RSTand fantasianshould be helpful in preparing
input files.

The principal back-end programs we use areintenseandspectrum, which compute NOESY or
ROESY spectra, and the correlation function analysis programsmdcorrp2 (and their companions).
Details about these programs are given in the Utilites section.

8/25/97

SANDER module Theory Page 178

6.12.1. Refinements using distance and angle restraints.

The most common approach at present is to interpret NOESY intensities as distance constraints
and coupling constants in terms of dihedral angle constraints. To implement this, setnmropt = 1and
provide input for sectionsoneto four. Theplastocyaninsubdirectory in the demo files provides some
examples from our work, including a demonstration of how to set up a simulated annealing protocol.

In carrying out such simulations, it is common to modify the standard force field. Theifstrp
variable allows one to treat nonbonded interactions as soft repulsions with no electrostatic contribu-
tions. Since bonds and angles are kept close to ideal values by the force constants inherent in the stan-
dard force field, and since the intrinsic dihedral barriers for single bonds are also quite small, this pro-
vides a "generic" or simplified representation of the allowed conformational space that may appeal to
some users.

Other users will wish to use force fields that incorporate more of what we know about relative
conformational energies, i.e. a more elaborate force field. Even here, though, some modifications may
be advisable. For example, modifications we have found useful for peptides/proteins include increas-
ing the torsional force constant for the peptide bond (to reduce the tendency of restained simulations to
produce badly distorted bonds) and a reduction in the net charge of charged side chains (to compensate
in part for neglect of explicit solvent). These changes are incorporated into a database and afrcmod
file in thesrc/nmr_aux/forcefieldsubdirectory; see the README file in that directory.

The basic ideas of this scheme owe a lot to the general experience of the nmr community over
the past decade. Some good papers to look at are:

(1) "Computational methods for determining protein structures from NMR data," by G.P. Gippert,
P.F. Yip, P.E. Wright and D.A. Case,Biochem. Pharm.40,15-22 (1990).

(2) "Determination of high resolution NMR structures of proteins", by D.A. Case and P.E. Wright,
in NMR in Proteins, G.M. Clore and A.M. Gronenborn, eds. (New York: McMillan, 1993), pp.
53-91.

(3) D.A. Case, H.J. Dyson and P.E. Wright. Use of chemical shifts and coupling constants in
nuclear magnetic resonance structural studies on peptides and proteins.Methods in Enzymol-
ogy239,392-416 (1994).

These papers outline procedures in the Scripps group, from which a lot of the NMR parts of
SANDER are derived. They are by no means the only way to proceed. We hope that the flexi-
bility incorporated into SANDER will encourage folks to experiment with refinement proto-
cols.

6.12.2. Direct refinement into J-coupling constants
A good alternative to interpreting J-coupling constants in terms of torsion angle restraints is to

refine directly against the coupling constants themselves, using a appropriate Karplus relation. See the
discussion of the variableRJCOEF, above.

6.12.3. Time-averaged restraints.
The model of the previous sections involves the "simgle-average-structure" idea, and tries to fit

all constraints to a single model, with minimal deviations. A generalization of this model treats dis-
tance constraints arising from from NOE crosspeaks (for example) as being the average distance deter-
mined from a trajectory, rather than as the single distance derived from an average structure. Time-

8/25/97

SANDER module Theory Page 179

av eraged bonds and angles are calculated as

(1)r = (1/C)




t

0
∫ e(t′−t)/τ r (t′)−ipowerdt′





−1/ipower

where

r = time-averaged value of the internal coordinate (distance or angle)

t = the current time

τ = the exponential decay constant

r(t’) = the value of the internal coordinate at time t’

ifR = average is over internals to the inverse of i. Usually i = 3 or 6 for NOE dis-
tances, and −1 for angles and torsions (linear averaging).

C = a normalization integral.

Time-averaged torsions are calculated as

(2)< φ > = tan−1(< sin(φ) > / < cos(φ) >)

whereφ is the torsion, and < sin(φ) > and < cos(φ) > are calculated using the equation above with
sin(φ (t′)) or cos(φ (t′)) substituted for r(t’).

Forces for time-averaged restraints can be calculated either of two ways. This option is chosen
with the DISAVI / ANGAVI / TORAVI commands (Section 1). In the first (the default),

(3)∂E/∂x = (∂E/∂r) (∂r /∂r (t)) (∂r (t)/∂x) ,

(and analogously for y and z). The forces then correspond to the standard flat-bottomed well func-
tional form, with the instantaneous value of the internal replaced by the time-averaged value. For
example, whenr3 < r < r4,

(4)E = k3(r − r3)2

and similarly for other ranges ofr .

When the second option for calculating forces is chosen (IINC = 1 on a DISAVI, ANGAVI or
TORAVI card), forces are calculated as

(5)∂E/∂x = (∂E/∂r) (∂r (t)/∂x) .

For example, whenr3 < r < r4,

(6)∂E/∂x = 2 k3 (r − r3) (∂r (t)/∂x) .

Integration of this equation does not give Equation (4), but rather a non-intuitive expression for the
energy (although one that still forces the bond to the target range). The reason that it may sometimes
be preferable to use this second option is that the term∂r /∂r (t), which occurs in the exact expression
[Eq. (3)], varies as (r /r (t))1+i . When i=3, this means the forces can be varying with the fourth power
the distance, which can possibly lead to very large transient forces and instabilities in the molecular
dynamics trajectory. [Note that this will not be the case when linear scaling is performed, i.e. when
i=−1, as is generally the case for valence and torsion angles. Thus, for linear scaling, the default
(exact) force calculation should be used].

It should be noted that forces calculated using Equation (5) are not conservative forces, and
would cause the system to gradually heat up, if no velocity rescaling were performed. The tempera-
ture coupling algorithm should act to maintain the average temperature near the target value. At any

8/25/97

SANDER module Theory Page 180

rate, this heating tendency should not be a problem in simulations, such as fitting NMR data, where
MD is being used to sample conformational space rather than to extract thermodynamic data.

This section has described the methods of time-averaged restraints. For more discussion, the
interested user is strongly urged to consult recent studies:

(1) "Time Averaged Nuclear Overhauser Effect Distance Restraints Applied to Tendamistat" by
A.E. Torda, R.M. Scheek & W.F. van Gunsteren (1989)J. Mol. Biol.214, 223-235; and

(2) "Are Time-Averaged Restraints Necessary for NMR Refinement: A Model Study for DNA" by
D.A. Pearlman and P.A. Kollman (1991)J. Mol. Biol.220,457-479.

(3) "Structure refinement using time-averaged J-coupling constant restraints", by A.E. Torda, R.M.
Brunne, T. Huber, H. Kessler and W.F. van Gunsteren, (1993)J. Biomol. NMR3, 55-66.

(4) "How well do time-averaged J-coupling restraints work?", by D.A. Pearlman (1994).J.
Biomol. NMR4, 279-299.

(5) "How is an NMR structure best defined? An analysis of molecular dynamics distance-based
approaches", by D.A. Pearlman (1994)J. Biomol. NMR4, 1-16.

6.12.4. Multiple copies refinement using LES
(This section of the manual is still under development.)

6.12.5. Refinements using NOESY volume restraints.
Refinement directly against measured NOESY volume restraints is the newest and most special-

ized functionality of the SANDER module. These can be used in either of two modes:

(1) "Single-point" mode (imin=1, maxcyc=1, nrun=0). In this case, the NOESY intensities or ring
current contributions can be calculated for a given structure. Allows "back calculation" of the
spectrum corresponding to a putative conformation.

(2) Dynamic refinement mode. In this case, measured NOESY and chemical shift data are
included in penalty functions that depend upon (I − I0) where I0 is the experimentally mea-
sured value, andI is the value corresponding the current conformation; the functional form of
the penalty depends upon theipnlty variable. Careful experimentation will undoubtedly be
required for each data set to define a reasonable penalty function. Simply weighting each
observed peak equally (with the default values ofawt andarange) is almost certainly a bad
idea, since this effectively gives too much influence to the strong peaks at the expense of
longer-range information. Several groups are trying calculations such as these, and some gen-
eral guidelines about penalty functions should emerge soon.

Some good references to look at are:

(1) "Characterization of biomolecular structure and dynamics by NMR cross relaxation," by R.
Bru

..
schweiler and D.A. Case.Progress in NMR Spectroscopy,26, 27-58 (1994). Detailed

exposition of most of the theory behind NMR dipolar relaxation simulations.

(2) "A new analysis of proton chemical shifts in proteins,", by K. O" sapay and D.A. Case.J. Am.
Chem. Soc.113,9436-9444 (1991). Presents the chemical shift algorithm used in SANDER.

(3) R. Bru
..
schweiler and D.A. Case. A collective NMR relaxation model applied to protein

dynamics. Physical Review Letters72, 940-943 (1994). Discusses ways in which normal
modes can be used to compute motional correction factors ("order parameters"); this facility is

8/25/97

SANDER module Theory Page 181

built into SANDER and NMODE.

8/25/97

GIBBS module Page 182

7. Gibbs

Usage: gibbs [gibfile] [-O] -i gibin -o gibout

-p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden

-inf mdinfo -ms micstat

-cm constmat -cs cnstscrt -a patnrg

−O Overwrite output files.

7.1. Introduction
This is a guide togibbs, the AMBER module concerned with free energy calculations. This

module of the AMBER suite of programs calculates the free energy difference,∆G, between two states
"0" and "1":

(1)∆G = G1 − G0

In the prep/link/edit/parm modules,State 1is defined in the PREP module and State 0 is defined
in the PARM module. In LEaP,State 1is the default state and State 0 is defined by setting the per-
turbed atom parameters in the "Edit selected atoms" table in the xleap Unit Editor and using the
saveAmberParmPert command to make the topology and coordinate files. In both types of setup, all
the force field and topology information for States 1 and 0 is contained in the topology file.

The free energy difference is calculated in a series of incremental steps which connect physical
states 1 and 0 through a series of not-necessarily-physical intermediates. The character of the system at
each of these intermediate steps is related to a parameterλ .

7.2. Free Energy Techniques Available in GIBBS
There are several techniques available in GIBBS/AMBER 4.0 for evaluating the free energy dif-

ference between two states, all based on various statistical mechanical relationships. These include:

(1) Free Energy Perturbation (FEP) Window Growth: The free energy is calculated at discrete and
uniformly spaced intervals ofλ using the formulae:

(2)Gλ(i+1) − Gλ(i) = − RT ln < exp−[(Vλ(i+1) − Vλ(i))/RT] >λ(i)

(3)∆G = G1 − G0 =
i
Σ Gλ(i+1) − Gλ(i)

where G0 and G1 are the free energies of states 0 and 1, respectively,Vλ(i) is the potential

energy function representative of stateλ(i), and <>λ(i) means use the ensemble average of the
enclosed quantity, representative of stateλ(i). The ensemble is evaluated from an MD

8/25/97

GIBBS module Page 183

trajectory run with V = Vλ(i) The user specifies the numbers of equilibration (NSTPE or NST-
MEQ) and data collection (NSTPA or NSTMUL) steps for eachλ(i)→λ(i + 1) "window".

(2) Slow growth − the same as window growth, except lambda changes by a small amount at every
step. Lambda changes slowly enough that it is assumed the system remains in equilibrium at
ev ery step (i.e. NSTPE=0, NSTPA=1). Thus the ensemble average in Equation (2) is replaced
by its instantaneous value at each step.

(3) Thermodynamic integration − instead of Equations (2) and (3), we use

(4)G1 − G0 =
1

0
∫ < ∂V/∂λ >λ dλ

to calculate the free energy difference. In practice, the integral is approximated by a summa-
tion over discrete intervals inλ . Thermodynamic integration can use the particle-mesh-Ewald
method of handling long-range interactions. This option is discussed in thesandersection of
the manual.

(4) Dynamically Modified Windows − the equations of FEP (2 and 3) are used as described for
method 1 above. But instead of using pre-chosen uniformly-spaced intervals ofλ , the width
(δ λ = λ(i + 1) − λ(i)) of each window is determined during the run, based on the recent value
of the slope,∂G/∂λ , of the accumulated free energy versusλ curve. This allows the simula-
tion to be run more "slowly" when the free energy is changing very quickly, and more
"quickly" when it is not.

(5) Dynamically Modified Thermodynamic Integration − Uses the sameλ adjustment algorithm
as for FEP (method 4), but the intervals inλ correspond to the points at which the integrand in
Equation (4) is evaluated to approximate the integral.

(6) Potential of Mean Force (PMF) Calculations − the user can elect to constrain any chosen set of
internals (distances, angles, torsions) to a chosen lambda-dependent pathway. By selecting the
appropriate option (NCORC=1), the contribution to the free energy from such constraints will
be calculated. This constitutes a PMF calculation. PMF calculations can be carried out as part
of either a FEP Window Growth or Dynamically Modified Windows run (1 and 3 above).

7.3. Understanding the Output

(a) Window growth, slow growth, dynamically modified windows: At specified intervals during
the simulation, the energies calculated up to that point will be reported in the format:

Current Lambda = 0.850000

Last F.E. update: Lambda = 0.800000 Step = 4000 Method = F.E.P.

Accumulated "forward" quantities (Nonbond change)

Lam+d_lam = 0.850000 F_energy = +0.64300

ELEC = 0.000 NONB = +0.643 14NB = 0.000

14EL = 0.000 BADH = 0.000

Accumulated "reverse" quantities (Nonbond change)

Lam-d_lam = 0.750000 F_energy = -0.62130

ELEC = 0.000 NONB = -0.621 14NB = 0.000

14EL = 0.000 BADH = 0.000

8/25/97

GIBBS module Page 184

When the free energies reported were last updated, the values of lambda and step number were
as given on the second line. Note that thecurrent values ofλ and Step may be different, if the free
energies have not yet been updated to reflect the ensemble now being generated. Also reported on the
second line is the method being used to calculate free energy differences: F.E.P. is Free Energy Pertur-
bation (standard or Dynamically Modified Windows); T.I. is Thermodynamic Integration (standard or
Dynamically Modified Windows); Slow Growth is self explanatory.

Both "forward" and "reverse" accumulated free energies are reported. By default, GIBBS carries
out "double-wide sampling", which means that at every value ofλ we calculate the free energies both
for going λ→λ + δ λ and for goingλ→λ − δ λ . The values "Lam+d_lam" and "Lam-d_lam" which
are reported were the values at the last free energy update. If there were no sampling errors in our cal-
culations, the independent sums of the "forward" and "reverse" values over the entire simulation would
be the same, except for sign. Their actual difference gives us alower boundon the error. By conven-
tion, the "forward" energy always corresponds to the energy for the process represented byλ increas-
ing 0→1. Similarly, the "reverse" energy corresponds to the process represented byλ decreasing
1→0. This is true regardless of the direction in which the actual simulation was run..

Along with the total accumulated free energies in the "forward" and "reverse" directions, a com-
ponent breakdown of the energies is given. Components listed include: ELEC (electrostatics, except
1-4’s); NONB (non-bonds, except 1-4’s); 14NB (1-4 nonbonds); 14EL (1-4 electrostatics) and BADH
(bonds, valence angles and torsion angles).Note that for Windows and Dynamically Modified Win-
dows, these components are only estimates. For slow growth and thermodynamic integration, they are
exact.

If PMF calculations are performed, a sixth component will be listed, CORC. The procedure used
to perform a PMF makes it difficult to separate contributions due to the constraints themselves from
those due to non-bonded/electrostatic interactions. For this reason, in these cases CORC will reflect
the sum total of all three types of contributions and the individual non-bonded/electrostatic contribu-
tions will be reported as 0’s.

(b) Thermodynamic integration: The output is similar to that described above, except that,
because of the integral which must be evaluated in thermodynamic integration (TI) (Equation 4), dou-
ble-wide sampling is not possible. Thus, only a "forward" set of energies is reported. Again, by con-
vention, these value have the sign appropriate for the 0→1 conversion, regardless of the direction in
which the simulation was actually run.

If the calculation of individual entropy/enthalpy contributions is requested, these will also be
included in the output, following the same forward/reverse conventions as above.

7.4. Defining States and Obtaining Appropriate Starting Coordinates
Using the "old" AMBER (prep/link/edit/parm), the state defined in PREP is theλ=1 state and the

state given in the PARM is theλ=0 state. Using LEaP, the default state isλ=1 and the state set in the
xleap Unit Editor’s "Edit selected atoms" table isλ=0.

The default state from which to start the perturbation is usuallyλ=1, because the coordinates
which are carried from EDIT to PARM to SANDER to GIBBS correspond to the PREP state. How-
ev er, you can equilibrate at eitherλ=1 orλ=0 (or any arbitrary value ofλ) as follows:

Set ISLDYN (line 14) to +-2 or +-3;
Set NRUN (line 5) to 1;
Set NSTLIM (line 8) to the number of steps of equilibration desired;
Set ALMDA (line 14) to the value ofλ at which equilibration is to take place;

8/25/97

GIBBS module Page 185

And set NSTMEQ (line 14) to any value greater than NSTLIM.

The program is capable of handling periodic boundary conditions with the solute in a solvent
bath either with constant volume or constant pressure. All the data required for boundary conditions is
passed from the EDIT and PARM modules. Additionally, it is possible to decouple the free energy
into electrostatic and van der Waals contributions, if desired.

8/25/97

GIBBS module Page 186

7.5. Suggested introductory references
The papers listed here emphasize the theory and experience with the AMBER programs; beyond

listing "general reviews", we have not attempted to list the many other papers that would be relevant to
the field.

General Reviews:

(1) D.L. Beveridge and F.M. Di Capua (1989) "Free Energy Via Molecular Simulation: Applica-
tions to Chemical and Biomolecular Systems." Annu. Rev. Biophys. Biophys.18, 431-492.

(2) P.A. Kollman (1993) "Free Energy Calculations: Applications to Chemical and Biochemical
Phenomena." Chem. Rev.93, 2395-2417.

Discussion of issues pertinent to free energy perturbation:

(3) D.A. Pearlman and P.A. Kollman (1989) "Free Energy Perturbation Calculations: Problems
and Pitfalls Along the Gilded Road." In: Computer Simulation of Biomolecular Systems: The-
oretical and Experimental Applications (W. van Gunsteren and P.K. Weiner, eds.), pp.
101-119, Escom Science Publishers, Netherlands.

(4) W.F. van Gunsteren, "Methods for Calculation of Free Energies and Binding Constants: Suc-
cesses and Problems," ibid, pp.27-59.

(5) D.A. Pearlman and P.A. Kollman (1989) "The Lag Between the Hamiltonian and the System
Configuration in Free Energy Perturbation Calculations." J. Chem. Phys.91, 7831-7839.

(6) D.A. Pearlman and P.A. Kollman (1991) "The Overlooked Bond-Stretching Contribution in
Free Energy Perturbation Calculations." J. Chem. Phys.94, 4532-4545.

(7) D.A. Pearlman (1994) "Free energy derivatives: A new method for probing the convergence
problem in free energy calculations.", J. Comp. Chem.15, 105-123.

(8) D.A. Pearlman (1994) "A comparison of alternative approaches to free energy calculations.", J.
Phys. Chem.98, 1487-1493.

(9) R.J. Radmer and P.A. Kollman (1997) "Free energy calculation methods: A theoretical and
empirical comparison of numerical errors and a new method for qualitative estimates of free
energy changes." J. Comp. Chem.18, 902-919.

Some Recent Applications:

(10) D.A.Pearlman and P.R. Connely (1995) "Deterimation of the Differential Effects of Hydrogen
Bonding and Water Release on the Binding of FK506 to Native and Y82F FKBP-12 Proteins
Using Free Energy Simulations.", J. Mol. Biol.148, 696-171.

(11) J.L. Miller and P.A.Kollman, (1996) "Solvation Freen Energies of the Nulceic Acid Bases.", J.
Phys. Chem.100, 8587-8594.

(12) E.C. Meng, J.W. Caldwell, and P.A. Kollman, (1996) "Investigating the Anomalous Solvations
Free Energies of Amines with a Polariazable Potential.", J. Phys. Chem.100, 2367-2371.

Description and characterization of dynamically modified windows:

(13) D.A. Pearlman and P.A. Kollman (1989) "A New Method for Carrying Out Free Energy Per-
turbation Calculations: Dynamically Modified Windows." J. Chem. Phys.90, 2460-2470.

Use of internal constraints:

8/25/97

GIBBS module Page 187

(14) D.J. Tobias and C.L. Brooks, III (1988) "Molecular Dynamics with Internal Coordinate Con-
straints." J. Chem. Phys.89, 5115-5127.

(15) D.A. Pearlman (1993) "Determining the contributions of constraints in free energy calcula-
tions: Development, characterization, and recommendations", J. Chem. Phys.98, 8946-8957.

Generating potentials of mean force:

(16) D.A. Pearlman and P.A. Kollman (1991) "Evaluating the Assumptions Underlying Force Field
Development and Application, Using Free Energy Conformational Maps for Nucleosides." J.
Am. Chem. Soc.113, 7167-7177.

(17) C. Chipot, P.A. Kollman and D.A. Pearlman (1996) "Alternative approaches to potential of
mean force calculations: free energy pertubation versus thermodynamics integration. Case
study of some representative nonpolar interactions", J. Comp. Chem.17, 1112-1131.

In addition, it is strongly suggested that the user read the discussion which follows the descrip-
tion of the input variables before using GIBBS.

8/25/97

GIBBS module Page 188

7.6. Assigning files
GIBBS incorporates a file assignment protocol which is easy to use, and which will work on all

computers. In addition, on Unix machines, file assignments can optionally be specified using flags on
the command line, as in version 3A.

For Unix machines, the program is invoked:

gibbs [gibfile] [-O] [-i PIN] [-p PPARM] [-c PINCRD]

[-o POUT] [-r PREST] [-inf PINFO] [-ms MICSTAT]

[-cm CONSTMAT] [-cs CNSTSCRT] [-a PATNRG]

[-x PCOORD] [-v PVEL] [-e PEN] [-ref PREFC]

where PIN, PPARM, etc. are replaced by the appropriate filenames to be assigned. The meanings of
the various files are given below.

If "gibfile" is present, it must be the first option given, and this file will be read to make the file
assignments. In this case, any remaining flags are ignored. Otherwise, all assignments are made using
command-line flags. Any flags not specified default to the given name (e.g. if -o is not specified, out-
put would be in file POUT).

For other machine types (and if gibfile is given on a Unix machine), file assignments are read at
run-time from a file named "GIB.FILE" (non-Unix machines) or the file specified as "gibfile" (Unix
machines). GIB.FILE contains file assignments, one per line, in the following format:

Filetype = Filename

"Filetype" is the type of file, from the list of GIBBS I/O file assignments listed below.It must be given
in upper case letters.Filename is the actual name to be used in opening that file. E.g.

POUT = test.out

would place the results and diagnostics in a file named test.out. The order in which files are defined is
not important. Any line that does not contain the "=" character will be considered a blank line. The
GIB.FILE file is opened and read when the run is commenced, and then closed. Once the file defini-
tions have been read, the user is free to discard or change the GIB.FILE file (to e.g. start up a second
Gibbs run).

8/25/97

GIBBS module Page 189

GIBBS I/O FILE ASSIGNMENTS

file unit purpose

INPUT:

PIN 5 Control data for the run (described below).

PPARM 8 Topology file (created by PARM)

PINCRD 9 Initial positions and (optionally) velocities.

PREFC 10 Reference coordinates for optional position

restraints (only if NTR = 1)

OUTPUT:

POUT 6 Formatted results and diagnostics

PREST 16 Restart coordinates and velocities.

For restarts, this file should be assigned to PINCRD.

PINFO 7 Short file containing a summary of current energies.

For monitoring runs which are executing.

MICSTAT 27 A concise summary of important energy information

for each window/interval.

CONSTMAT 28 Contains data related to the matrix of free

energy data generated. Only used when IPER>0 for

one or more of the constraints/restraints defined

with INTR > 0 (see line 13).

CNSTSCRT 42 Contains data required when generating

a matrix of free energies corresponding to two

independent sets of constraints (IPER>0 and INTR>0;

see line 13).

PCOORD 12 Archived coordinate sets (if NTWX > 0)

PVEL 13 Archived velocity sets (if NTWV > 0)

PEN 15 Archived energy related data (if NTWE > 0)

8/25/97

GIBBS module Page 190

7.7. Control parameters
The title (line 1) must be the first line in PIN. All remaining standard flags are entered in the

namelist&cntrl.

TIMLIM Time limit for the job (in seconds). Default = 999999.

IREST Flag to restart the run.

= 0 Normal start (default)

= 1 Job to be restarted. The accumulated free energies, current value of
lambda, and other required quantities are read from the end of the input
coordinate file (PINCRD). This file should be the PREST file written by
the simulation being restarted.

IBELLY Flag for belly type dynamics.

= 0 No belly run (allow all atoms to move; default).

= 1 Belly run. The subgroups of atoms which are allowed to move are read as
groups from file PIN. See the section on GROUP in the Appendices.

ICHDNA Option to modify the charge of end hydrogens during in vacuo simulations. With-
out this option, molecular dynamics calculations on nucleotides will result in bond-
ing between the 5’ and 3’ hydrogens and the corresponding phosphate groups.

= 0 no charge modification (default)

= 1 modify charge

IPOL for inclusion of polarizabilities in the force field.

= 0 non polar calc (no polarizabilities read from "prmtop"; default).

= 1 turn on polarization calculation.

I3BOD For 3-body terms with a polarization calc.

= 0 No 3-body terms to be defined. Default.

= 1 Read and use 3-body interaction definitions (see card 18). 3-Body terms
only have an effect when polarization is turned on (IPOL=1).

IEWALD Set to 1 to invoke particle-mesh-Ewald evaluation. This requires additional lines
of input after the&cntrl namelist. See thesandermodule input description for
more information. Default is 0, which disables the PME code. PME requires extra
input in order to control the simulation. As in sander, this input, consisting of three
lines of free format numerical input (not namelist input) palced just after the

8/25/97

GIBBS module Page 191

regular namelist and before any weight change information.

LINE 1 Unit Cell parameters: BOXX,BOXY<BOXZ,ALPHA,BETA,GAMMA

BOXX,BOXY,BOXZ unit cell boxlengths in each dimension.

ALPHA,BETA,GAMMA unit cell angles, in usual crystallographic

setup. See sander documentation for more information.

LINE 2 Interpolation and control information: NFFT1,NFFT2,NFFT3,

SPLINE_ORDER,ISCHARGED,VERBOSE

NFFT1,NFFT2,NFFT3

These give the size of the grid to interpolate the

charge onto, in each dimension. See the discussion in

the Sander manual

SPLINE_ORDER

Order of the spline interpolation. See the sander manual.

ISCHARGED

If ISCHARGED=0, the unit cell is neutralized by taking the

excess charge and spreading it uniformly across all atoms.

If ISCHARGED=1, a uniform neutralizing plasma is assumed.

Note that in Gibbs, these operations are applied to the

unit cell at both the beginning and ending states of the

perturbation. Note that in some cases the charge state of

unit cell may change during the simulation, such as when

calculating the free energy of charging an ion. In these

cases it is better to use ISCHARGED=1.

VERBOSE

Standard use is to set VERBOSE=0. Setting VERBOSE=1 will

print out direct, self, adjustment and reciprocal

components of the energy and virial. Setting VERBOSE=3

will in addition print out details of the nonbond list.

LINE 3 The direct sum tolerance DSUM_TOL. See the discussion in Sander

manual.

Special notes about the PME in GIBBS. (See the Sander manual for additional
such notes). As yet, there is not much experience with the PME in Gibbs, so it
should be considered an experimental option. The PME has only been imple-
mented into the thermodynamic integration module (IDIFRG=1), with the new
mixing rules (IOLEPS=0). It has been tested only with "standard" window growth
(ISLDYN = -3). In addition INTPRT must be >0 but not equal to 3. Thus intra-pert

8/25/97

GIBBS module Page 192

group nonbond interactions ARE accumulated. The PME option should be compat-
ible with constraint forces calculated via the potential forces method (ITIMTH=0).
PME/gibbs will not work with the 1991 force field if the 10-12 parameters are
changing during the perturbation.

NTX Option to read the initial coordinates and velocities.

Options 1-3 are used when no set of starting velocities is available (e.g.
when starting from a set of minimized coordinates). Options 4-5 are used
when: 1) a starting set of velocities is available (e.g. after MD equilibra-
tion or on an MD RESTART); and 2) The coordinates/velocities were
generated with MD run either without periodic boundary conditions, or
with constant VOLUME periodic boundary conditions. (Box dimensions,
if any, are taken from the PARM file). Options 6,7 are used when both a
starting set of velocities are available and the coordinates/velocities were
generated with MD run using constant PRESSURE periodic boundary
conditions. Note: box dimensions only appear in coordinate files written
(as PREST) after simulations using periodic boundary conditions (con-
stant volume or constant pressure).

= 1 X is read; no velocity information read (Amber format); default

= 2 X is read; no velocity information read (unformatted)

= 4 X and V are read (unformatted)

= 5 X and V are read (Amber format)

= 6 X, V and BOX are read (unformatted)

= 7 X, V and BOX are read (formatted)

NTXO Option to write the final coordinates and velocities.

= 0 X, V and BOX are written to file ’PREST’ (unformatted)

= 1 X, V and BOX are written to file ’PREST’ (Amber format); default.

IG The seed for the random number generator. The MD starting velocity is dependent
on the random number generator seed. The generator works most effectively when
the seed is large and an odd or a prime number (e.g. 71277, the default).

TEMPI Initial temperature, default is 0.0. If TEMPI > 1.0e-06, the velocities are taken
from a maxwellian distribution with TEMPI (K). Choosing a low initial tempera-
ture (e.g. 10K) allows the calculation to reach the equilibrium conditions with the
residual forces in the system during the initial steps. TEMPI is ignored if NTX >
3.

HEAT If ABS(HEAT) .GE. 1.0E-06, all the velocities are multiplied by HEAT. Default is
0.0.

8/25/97

GIBBS module Page 193

NTB Flag for periodic boundary conditions. If NTB .EQ. 0 then the boundary condi-
tions are NOT applied. The periodic box may be rectangular or monoclinic
depending on the value of BETA.

= 0 no periodicity is applied; default.

= 1 constant volume

= 2 constant pressure.

IFTRES Flag to remove the nonbonded cutoff from the solute.

= 0 ALL solute - solute nonbonded interactions are calculated, and the bound-
ary conditions are not applied to the solute. For simulations of highly
charged solutes in a water bath, it can be useful to calculate ALL solute -
solute nonbonded interactions in order to reduce electrostatic problems.
Note that this option is intended for small solutes, and will generate many
more nonbonded pairs than the normal method if the solute is large. This
option is useful for DNA and counterions. Note: if counterions are added
in edit, then they are considered part of the solute.

= 1 Nonbondeds are evaluated normally; default.

Note: IFTRES will only have an effect when periodic boundary condi-
tions are employed (NTB > 0). When NTB=0, IFTRES=1 behavior (nor-
mal nonbond generation) always occurs.

BOXX(1..3) Lengths of the edges of the periodic box. If IBXRD > 0, then the values specified
here will be used. Otherwise, the values specified here are ignored and the values
in the PARM output file (if NTX < 7) or the values in PINCRD (if NTX >= 7) will
be used.

BETA Angle between the x- and z- axes of the box in degrees. The y- axis is assumed to
be orthogonal to the other axes. (0 < BETA < 180). The information given for
BOX(1..3) above applies to BETA as well. Non-orthogonal systems do not cur-
rently work correctly. Therefore, if IBXRD > 1, BETA must be set to 90.0, which
is the default.

IBXRD If IBXRD > 0, then the values of BOX(1..3) and BETA specified here will be used.
Otherwise, the values in the PPARM or PINCRD file will be used (see above).

NRUN Number of MD-runs of NSTLIM steps to be performed; default is 1. Since the
restart coordinates are written only at the end of each run, it is sometimes desirable
to break a long run into a series of shorter steps. If NRUN is set > 1, one should
ensure that the number of equilibration+data_collection steps (if performing win-
dows/TI) divides evenly into NSTLIM (line 8). The number of picoseconds of
molecular dynamics is equal to the product of NRUN X NSTLIM X DT.

8/25/97

GIBBS module Page 194

NTT Switch for temperature scaling. Note that several of he temperature coupling
options available here are new to version 4 of GIBBS. Several of these are rather
ad-hoc, and may not result in a thermodynamically relevant ensemble. (They may
be useful when using MD strictly to sample conformational space). For free
energy calculations, it is recommended you stick with NTT = 0 (constant energy),
NTT = 1 (constant temperature) or NTT = 5 (constant temperature, separate
solute/solvent temperature scaling).

< 0 Re-assign random velocities whenever the current temperature deviates by
more than DTEMP from DTEMP0 (target temperature), and every
ABS(NTT) steps. Velocities are assigned in a Maxwellian distribution.
By default, velocities are are reset for all atoms. If NSEL > 0 (see below),
NSEL atoms are selected at random each time a velocity reassignment is
to take place, and only those atoms have their velocities reassigned. (Be
sure to set DTEMP0 to a very large value if you wish to disable its action
with this option).

Note that the procedure which assigns velocities makes the assignments as
if all particles possessed three independent degrees of translational free-
dom. If SHAKE is used, this will not strictly be the case, and the effec-
tive temperature immediately after velocity assignment will be higher than
the target temperature. As velocity contributions along the constrained
directions are dissipated, the temperature will rapidly adjust towards the
target.

= 0 Classical dynamics. Never rescale/reassign velocities after the start. [The
total energy (kinetic + potential) is conserved; same as in older versions of
GIBBS.]

= 1 Constant temperature, using the Berendsen coupling algorithm. A single
scaling factor for velocities is used (same as in older versions of GIBBS).
This is the default.

= 2 Constant temperature, using the Berendsen coupling algorithm. But only
consider the solute temperature in determining the velocity scaling on
each step. Could result in solvent atoms having very high temperature,
and not generally recommended.

= 3 Constant temperature, using Berendsen algorithm. But only rescale when
temperature deviates from TEMP0 by more than TEMP0. Single scaling
factor.

= 4 When temperature deviates from TEMP0 by more than DTEMP, do one
quick scale of the velocities to bring them back to TEMP0. Otherwise, do
not scale.

= 5 Constant temperature, using the Berendsen coupling algorithm, and with
separate solute/solvent velocity scaling factors. This option is recom-
mended as a replacement for NTT=1, and can help alleviate the "cold
solute/hot solvent" problem.

TEMP0 Reference temperature at which the system is to be kept if NTT not = 0. Default is
298.

8/25/97

GIBBS module Page 195

DTEMP The deviation allowed in the constant temperature MD-runs (read but ignored if
NTT=0,1,2 or 5). Default is 10.

TA UTP Temperature relaxation time when NTT .gt. 0. This is a damping factor which pre-
vents abrupt changes in the system, if the temperature exceed specified deviations.
Generally, values for TAUTP should be in the range of 0.1-0.4. Smaller values of
TA UTP result in "tighter" coupling. Default is 0.1.

TA UTS If NTT=5, then TAUTP is the temperature relaxation time for the solute, while
TA UTS is the relaxation time for the solvent. If is specified as 0.0, TAUTS is set
equal to TAUTP. Generally, TAUTS should be in the range of 0.1-0.4, with smaller
values resulting in "tighter" coupling. If NTT.NE.5, TAUTS is read but ignored.
Default is 0.1.

ISOLVP Only used if NTT = 2 or 5 (sep. solute/solvent temp coupling)

= 0 default solvent atom pointer is used. If periodic boundary conditions are
being used, this is the last solute atom. Otherwise, it will be the last atom
of the system (which results in no separate solute/solvent coupling). Note
that counterions are by default considered part of the _solute_.

> 0 Giv es the number of the last atom to be considered part of the "solute".
ISOLVP should generally be specified if NTT = 5 and NTB = 0. ISOLVP
only affects temperature scaling.

NSEL Only used if NTT < 0 (random velocity reassignments)

= 0 When velocity reassignment takes place, velocities for all atoms are reas-
signed (default).

> 0 When velocity reassignment takes place, NSEL atoms are randomly
selected, and only the velocities for those atoms are reassigned.

DTUSE The value of d_TEMP used in approximating the temperature derivatives by finite
differences. DTUSE is only used when individual enthalpy/entropy values are
being calculated (ISANDE = 1, line 12). DTUSE should generally be <= 1.0
(larger values often cause floating overflows/ underflows). Default is 1.0.

NTP Flag for constant pressure dynamics. This option MUST be set to 1 or 2 when the
MD calculation is done with constant pressure periodic boundary conditions
(NTB=2, line 4).

= 0 Classical dynamics without any Pressure Monitoring (default)

= 1 MD with isotropic position scaling

= 2 MD with anisotropic diagonal (x-,y-,z-) position scaling

8/25/97

GIBBS module Page 196

NPSCAL Flag for the type of scaling in case of constant pressure run.

= 0 Uniform coordinate Scaling (default)

= 1 Sub molecules Center of mass Scaling

PRES0 Reference pressure at which the system is maintained (when NTP > 0) in units of
bars, where 1 bar ˜ 1 atm. Default = 1.0.

COMP Inverse compressibility of the system when NTP > 0. The unit is in 1.0E-06/bar
(the default value of 44.6 is recommended).

TA UP Pressure relaxation time when NTP .gt. 0 The recommended value is between 0.1
and 1.0 ps-1. Default is 0.4.

NDFMIN Number of degrees of freedom that will be subtracted from the total number of
degrees of freedom to account for center of mass removal, belly runs, etc. (This
will be a value between 0 and 6). By default (if NDFMIN.GE.0), this value will
be set automatically. For nearly all simulations, you should accept the default cal-
culated when NDFMIN = 0. If you set NDFMIN<0, then ABS(NDFMIN) addi-
tional degrees of freedom will be subtracted *in addition to* the number calculated
automatically. This option is provided so that you can account for systems contain-
ing extended linear moities that reduce the true number of degrees of freedom from
that which would be calculated by a simple 3N-6 determination. For example, if
you used a linear triatomic molecule for your solvent, you would need to set
NDFMIN = -(number of solvent molecules).

NTCM Flag for the removal of translational and rotational motion from the initial veloci-
ties. NOTE: this flag is automatically set to 0 if belly option is used.

= 0 The translational and rotational motion about the center of mass is not
removed (default)

= 1 The above motion is removed and NTCM is reset to 0. If velocities are
being periodically reassigned according to a Boltzmann distribution (NTT
< 0) and NTCM = 1, then center of mass motion will be removed after
each reassignment.

NSCM After NSCM steps the above motion will be removed again if NTB .EQ. 0. This
flag should be set to -1 if the belly option is used. This results in NSCM .EQ. 90
000 000 steps. Default is -1.

ISVAT Residue-based periodic imaging flag ISVAT is ignored when periodic boundary
conditions are not used.

= 1 Residue-based periodic boundary conditions are used (default). For each
residue, imaging is determined based on the position of the atom in the

8/25/97

GIBBS module Page 197

residue which is closest to the residue’s initial center of mass. Both solute
and solvent atoms are imaged on a residue basis. Each atom of any solute
or solvent residue "sees" the same image of any interacting residue.

= 2 Same as 1, except that for each atom of the _solute_, different whole-
residue images on interacting residues may be used. Can be useful when a
solute residue is fairly long in one or more dimensions. The code
required to implement ISVAT=2 does not vectorize, and may result in a
substantial hit to performance on vector machines. For this reason,
ISVAT=1 should be used except where ISVAT=2 is clearly required.

= 3 No residue-based periodic imaging. Separate imaging is done for each
atom-atom pair. This is the way imaging was done in versions≤ 3 of
GIBBS (and MD). In typical operation, you would NOT want to use this
option. Setting ISVAT<3 allows a cutoff of as large as∼ 1/2 the smallest
box dimension to be used. When ISVAT=3 with periodic boundary condi-
tions, a much smaller cutoff/box ratio must be used.

NSTLIM

> 0 Number of MD-steps per run to be performed. NRUN such runs will be
carried out.

= -1 Continue simulation until done, or until TIMLIN is exceeded. This option
is often used with dynamically modified procedures (since we don’t know
at the outset how many total steps will be required). This is the default.

INIT Flag for different starting procedures. If option NTX is less than 5, INIT should be
equal to 3. If option NTX is greater than or equal to 5, this option should be equal
to 4.

= 3 V(T-DT/2) is obtained by calculating force(T); default.

= 4 Input V(T-DT/2) is used for the starting velocity

T The time at the start (psec). Only for your own use. Not important for the simula-
tion. Default is 0.0.

DT The time step (psec); default is 0.001. (Note that in the special case where window
growth is requested by using the unrecommended flag combination (IFTIME = 0
and ISLDYN = 0; line 14), DT is replaced by the value of DTA on line 15).

VLIMIT Limiting velocity; default is 0.0. If .ne. 0.0, then any component of the velocity
that is greater than abs(VLIMIT) will be reduced to VLIMIT (preserving the sign),
and a warning message will be printed. This can be used to avoid occasional insta-
bilities in molecular dynamics runs. VLIMIT should generally be set (if at all) to a
value like 20., which is well above the most probable velocity in a Maxwell-
Boltzmann distribution at room temperature. Note that although it is anticipated
that use of a liberal (large) value of vlimit should not adversely affect the statistics
accumulated during a free energy simulation, this has not yet been definitively

8/25/97

GIBBS module Page 198

demonstrated.

IVEMAX Maximum times VLIMIT may be exceeded. If IVEMAX >0, then IVEMAX spec-
ifies the number of times the limiting velocity VLIMIT can be exceeded in a simu-
lation. If VLIMIT is exceeded >= IVEMAX times, the simulation will stop. If
IVEMAX =0, there is no limit on the number of times VLIMIT can be exceeded.
Default is 0.

NTC Flag for SHAKE to perform bond length constraints. Constraining the bond
lengths removes the highest frequency motions from the system and usually allows
somewhat larger timesteps to be used.

= 1 SHAKE is not performed (default)

= 2 bonds involving hydrogen are constrained. No bonds which are part of the
pert group are constrained.

= 3 all bonds are constrained

TOL Relative geometrical tolerance for bond constraints in SHAKE. Smaller values
give tighter tolerances. The (default) recommended value is <= 0.0005 Angstrom

TOLR2 Relative geometrical tolerance for angle and torsion constraints (radians). Smaller
values give tighter tolerances. The (default) recommended value is <= 0.0001 rad.

NCORC Constraint energy flag.

= 0 No constraint contributions to the free energy are calculated (default).

= 1 The contributions to the free energy from any constraint whose equilib-
rium value changes with lambda will be calculated. This includes: A)
Any constrained internals defined at the end of the input (see flag INTR,
line 13); and B) any SHAKE-en bonds (see NTC).

If NCORC=1 is specified, the program will determine which atoms of the
system have positions which are dependent on the constraints, and all of
these will effectively be included in the "perturbed group". This forces
some time- consuming calculations. If no constraints are changing with
lambda, be sure to set NCORC=0.

The procedure used to perform a PMF makes it difficult to separate contri-
butions due to the constraints themselves from those due to non-
bonded/electrostatic interactions. For this reason, in these cases CORC
will reflect the sum total of all three types of contributions and the indi-
vidual non-bonded/ electrostatic contributions will be reported as 0’s.

Note: If you are using a "belly" with NCORC=1, you must ensure that all
residues of the pert group are part of the moving belly, and that, addition-
ally, any residues sharing constrained bonds with the pert group (if any)
are part of the moving belly.

8/25/97

GIBBS module Page 199

ISHKFL Flag which determines what the program will do in the event of a SHAKE/internal
constraint failure.

= 0 Program halts immediately. This is what the old versions of Amber did.

= 1 Program will write a restart file containing the coordinates before the
failed call to the constraint routine (+ velocities, if applicable). The pro-
gram will then halt. > 1 The coordinates will not be constrained on any
iteration for which the constraint routine fails. If constraint failure occurs
on more than ISHKFL-1 contiguous steps, the program will stop as
described for ISHKFL=1. This is the default

ITIMTH Defines which method should be used to calculate constraint free energy contribu-
tions when NCORC=1 and the Thermodynamic Integration method (IDIFRG=1)
approach is being used.

= 0 Use the Potential Forces (PF) method (default).

= 1 Use the Constraint Forces (CF) method.

=-1 Use the PF method, override program warnings about constraints within
closed rings.

Tw o methods for determining the constraint free energy contributions dur-
ing TI have been derived in the literature. The PF method appears to be
more efficient, and so is the default. However, PF method cannot be used
when any constraints of the system which are changing with lambda (and
hence contribute to the free energy) are part of a closed ring. In this case,
the CF method must be used. The program will flag any constraints of the
perturbed group which are part of a closed ring, and will stop with a warn-
ing if TI is used with PF in such a case. If none of these constrained bonds
change with lambda, you can still use the PF method, but must specify
ITIMTH=-1 here to ensure you have considered whether this will be
appropriate. It is suggested you NOT set ITIMTH=-1 automatically, but
only after ensuring that it will be appropriate.

JFASTW Fast water definition flag. By default, the system is searched for TIP3P waters, and
special fast routines are used for these molecules. There are two types of fast rou-
tines specific to TIP3P water: 1) A faster, analytic SHAKE algorithm for 3-point
water; 2) A faster routine to calculate non-bonded TIP3P-TIP3P water interactions.

In normal operation, the program defaults will be acceptable. However, in rare
instances (e.g. for debugging purposes, or when the user has redefined the defini-
tion of a TIP3P water), one may wish to inhibit the use of these fast routines and/or
redefine the default definition used in Amber to define TIP3P waters. This option
makes this possible.

= 0 Normal (default) operation. The default AMBER definition of TIP3P
water is used, and the fast water routines are used where appropriate.

8/25/97

GIBBS module Page 200

= 1 Use the fast routines for water SHAKE and non-bonds, but redefine the
names the program uses to recognize TIP3P waters. The redefinition
names are provided below.

= 2 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds.

= 3 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds. Redefine the names the program uses to recognize TIP3P
waters. The redefinition names are provided below (line 17).

= 4 Do not use fast water routines for either SHAKE or non-bonds.

NTF Flag for force evaluation. Typically set to the same value as NTC.

= 1 complete interaction is calculated (default)

= 2 bond interactions involving H-atoms omitted, except bonds in the per-
turbed group (use with NTC = 2, see above SHAKE options)

= 3 all the bond interactions are omitted (use with NTC = 3)

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle interactions are
omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions are omitted

NTID Flag for solvent pairlist behavior.

= 0 only the first atom of each solvent molecule is used when generating the
non-bonded pairlist for a periodic system (for water, this is the oxygen).
If this atom lies within the specified cutoff, the entire solvent molecule is
included in the non-bonded pairlist. This can result in a substantial
speedup in non-bonded pairlist generation, and is recommended when
using water as the solvent. This is the default.

=86 all atoms in a solvent molecule are considered when generating the non-
bonded pairlist for a periodic system. If any atom of the solvent molecule
lies within the specified cutoff, all atoms of the solvent molecule will be
included in the non-bonded list. This is the behavior of versions of
AMBER <= 3.0.

A value of NTID=0 is suggested for calculations using water as a solvent.
For calculations using larger solvent molecules, one should carefully con-
sider whether using only the first atom is appropriate. Regardless of the
value of NTID, all atoms of the *solute* are considered when deciding
whether to include a second residue in the interacting non-bonded list for
the solute residue. NTID will have no affect for non-periodic systems.

8/25/97

GIBBS module Page 201

NTNB Flag for non-bonded pair list generation.

= 0 no pair list will be generated (unlikely you would choose this).

= 1 pair list will be generated (default)

NSNB After NSNB steps the non-bonded pair list will be updated. Default = 50.

IDIEL Type of dielectric function to be used.

= 0 distance dependent dielectric function (for in vacuo simulations of "aque-
ous" systems).

= 1 constant dielectric function (always use with explicit solvent, e.g. water);
default.

IELPER Flag to control the "electrostatic decoupling" of the perturbation energy

= 0 Regular run; no electrostatic decoupling (default).

= 1 Only the electrostatic contribution to the free energy is calculated keeping
the geometry and the VDW parameters pertaining to LAMBDA = 1.

=-1 Only the non-electrostatic (VDW, etc.) contributions to the free energy are
calculated and the system changes from that characteristic of LAMBDA =
1 to 0 (or from that characteristic of LAMBDA = 0 to LAMBDA = 1
depending on the signs of IFTIME or ALMDEL).

In electrostatic decoupling, two runs have to be performed, one for elec-
trostatic and the other for VDW etc. contributions. This is useful when a
polar or charged group is being established or removed. However, the
LAMBDA = 1 state must pertain to the established group (the residue
generated by PREP) and the LAMBDA = 0 to the removal of the group
(as designated in the PARM input). The decoupling MUST go through
the following perturbation cycle: electrostatic LAMBDA = 1 -> 0 with
LAMBDA(vdw) = 1, followed by van der Waals LAMBDA = 1 -> 0. If
the simulation is started at LAMBDA = 0, then reverse the above proce-
dure. In this way, charges never appear on atoms which do not possess a
vdw radius which avoids very close contacts due to charge-charge attrac-
tions.

Notes: (1) Two separate runs are needed to fully carry out the decoupling
calculation. (2) In the IELPER=+1 phase, any added restraints/constraints
(if INTR > 0) will be fixed at the values they hav e when lambda=1. (They
will still only be applied, however, over the ranges specified). (3) The free
energy contribution from internal constraints is never calculated during
the IELPER=+1 phase (it is calculated during the IELPER=-1 phase).

8/25/97

GIBBS module Page 202

To summarize:

IELPER internals/vdw electrostatics

+1 fixed @ lambda=1 vary

(non-pert) values

-1 vary fixed @ lambda=0

(pert) values

IMGSLT Flag to control the Solute-Solvent interaction in the case of PB simulation

= 0 The Boundary condition is applied to solute-solvent interactions (default)

= 1 No Solute-Solvent imaging. Solute does not see image solvent. This
assumes that the solute is centered in the periodic system, and is not free
to migrate. Do not use this with mobile solutes. This option is mainly
useful for large solutes.

IDSX0 Flag which controls how the mixed van der Waals parameters are calculated for
atom pairs where one atom vanishes (at either lambda=1 or lambda=0). (See Ref.
6).

= 0 r*(state where one atom vanishes) = r*(non-vanishing atom) (This is the
way AMBER has done this in the past) Default.

> 0 r*(lambda) will be calculated so that r*(state where one atom vanishes) =
IDSX0/1000 r*(state where both atoms exist) = r*(A) + r*(B)

= -1 results in r*(state where one atom vanished) = 0.0

ITRSLU During a periodic boundary conditions simulation, controls whether SOLUTE
molecules which exit the primary image box will be translated back into the central
box. SOLVENT molecules which exit the central image box are always translated
back into the box. A molecule is considered to have floated out of the central box if
the first atom of the molecule exits the box.

= 1 Both SOLUTE and SOLVENT molecules which exit the primary image
box will be translated back into the box. The system will be translated
ev ery 500 steps so that the center of geometry of the solute is centered in
the primary image box. (Default; recommended for most systems).

= 2 Same as 1, except that the system as a whole is not periodically translated
to keep the solute centered in the primary image box.

= 0 Only SOLVENT molecules will be translated back into the primary image
box. SOLUTE molecules are not translated.

8/25/97

GIBBS module Page 203

IOLEPS Controls how parameter mixing is performed for non-bonded interactions.

= 0 Mixing of epsilon (well-depth) van der Waals parameters done as

ε (λ) = λ * ε (mixed, λ = 1) + (1 − λ) * ε (mixed, λ = 0)

Mixing of electrostatic interactions done as

q1q2(λ) = λ * q1q2(λ = 1) + (1 − λ) * q1q2(λ = 0)

This is the default

= 1 Mixing of epsilon done as

ε (λ) = √ (ε i (λ)ε j (λ))

Mixing of electrostatics done as

q1q2(λ) = q1(λ)q2(λ)

Setting IOLEPS=1 forces mixing to be done as in older versions (e.g. 3.0,
3A) of AMBER. The "new" mixing scheme (IOLEPS=0) has several
advantages, including A) a finite derivative for van der Waals interactions
involving an atom which "disappears" at one end point; and B) Interaction
between pairs of atoms where one/both atoms "disappear" at both end
points never contribute to the energy. [One side- benefit of this is that it
allows duplicate topologies; thus one can perform perturbations using the
"CHARMM" methodology, if desired]. Note that if IDIFRG = 1 (thermo-
dynamic integration), the epsilon parameters are always mixed as
described for IOLEPS = 0.

INTPRT Determines which energies contribute to the calculation of the free energy change.

= 0 No intra-perturbed group energies are accumulated (Default; same as
pre-4.0 versions of AMBER)

= 1 intra-pert. group non-bond energies accumulated as well (but no 1-4’s).

= 2 intra-pert. group non-bond energies accumulated (including 1-4’s).

= 3 intra-pert group internal energies accumulated (bonds, angles, torsions)

= 4 intra-pert group non-bond and internal energies accumulated

= 5 intra-pert group non-bond, 1-4, and internal energies
accumulated

Note: If any PMF contributions are being calculated (NCORC = 1, line 9),
all intra-perturbed group non-bonded contributions will be calculated if
INTPRT = 1,2,4 or 5 (when NCORC=1, 1-4’s are not broken out sepa-
rately).

ITIP By default (ITIP=0), GIBBS assumes that if you are running a periodic boundary
conditions (PBC) simulation with solvent, the solvent is TIPNP water. A special
characteristic of this solvent model is that there are no h-bond (10-12) interactions
between any pair of solvent molecules. A potential speedup is thus obtained by

8/25/97

GIBBS module Page 204

skipping all such h-bond interactions. If you choose to use a solvent model where
there should be h-bond (10-12) interactions calculated between pairs of solvent
molecules, set ITIP to any value other than 0. Note that in either case, all 10-12
interactions between solvent and solute molecules will still be determined nor-
mally.

CUT The primary cutoff distance for the non-bonded pairs. Default = 8.0.

SCNB The scale factor for 1-4 vdw interactions; if (SCNB .EQ. 0.0) then SCNB = 2.0,
which is the default.

SCEE The scale factor for 1-4 electrostatic interactions There is no namelist default, since
the 1991 and previous force fields used 2.0, while the 1994 force field uses 1.2.

DIELC Dielectric constant for the electrostatic interactions; if (DIELC .LE. 0.0) then
DIELC = 1.0. Default is 1.0.

CUT2ND An (optional) secondary cutoff. If CUT2ND > 0.0, then at every nonbonded update
(every NSNB steps), the energies and forces due to interactions in the range CUT<
Rij <= CUT2ND will be determined. These energies and forces will be added to
the non-bonded interactions within CUT distance at every timestep. The idea is
that long-range interactions change more slowly than short range interactions, and
thus this dual cutoff method allows one to include longer-range information at only
a moderate additional cost. Default is 0.0.

CUTPRT An (optional) alternative cutoff to be used for interactions with the perturbed
group. If CUTPRT and CUT2ND are both defined, interactions in the range CUT-
PRT < Rij <= CUT2ND will constitute the secondary cutoff range for interactions
with the perturbed group. Default is 0.0.

NTPR Flag for printing energy related quantities. for every NTPR steps these quantities
will be output. Default is 100.

NTWX Flag for packing the coordinates. For every NTWX steps the coordinates will be
dumped through file ’PCOORD’ in format (10F8.3). If NTWX=-1 (default), no
dumping will be performed.

NTWV For every NTWV steps the velocities will be written in file ’PVEL’ in format
(8F8.4). If NTWV=-1 (default), no dumping will be performed.

NTWE Every NTWE steps energy info is written in file ’PEN’ in formatted form. If
NTWE=-1 (default), no dumping will be performed.

NTWXM After NTWXM steps the NTWX switch will be inactive. Default is 999999.

8/25/97

GIBBS module Page 205

NTWVM After NTWVM steps the NTWV switch will be inactive. Default is 999999.

NTWEM After NTWEM steps the NTWE switch will be inactive. Default is 999999.

IOUTFM Flag for format of velocity and coordinate sets

= 0 Formatted (default)

= 1 Binary

ISANDE Flag to output enthalpies and entropies, as well as free energies. Note that these
quantities are typically an order of magnitude or more less precise than free energy
values, and will be much more sensitive than free energies to the completeness of
the ensemble statistics collected. See the discussion following the input description
for more information. Setting ISANDE = 1 will also force the printing of the inte-
grand quantity <∂V/∂λ > when Thermodynamic Integration is being performed
(see the IDIFRG flag, 14.6). This can be useful if the user wishes to apply an alter-
native integration algorithm. Default is 0.

IPERAT Request that free energy components or derivatives be calculated. Note that free
energy components can be determined during any standard free energy simulation.
Free energy derivatives can only be calculated in a special simulation where
lambda does not change.

= 0 No free energy components or derivatives will be calculated (default).

= 1 Report free energy components. Components will be be reported in file
PATNRG on a per-atom basis.

= 2 Report free energy components. Components will be be reported in file
PATNRG on a per-residue basis.

= 3 Report free energy components. Components will be be reported in file
PATNRG on a per-molecule basis.

= 4 Calculate/report free energy components or derivatives (depending on the
flag ICMPDR). Values will be reported in file PATNRG for the
atoms/groups defined at the end of input using GROUP input.

For free energy components, free energies will be logged as defined by the
GROUP definition, subject to the condition that only those atoms which
are part of the perturbed group or which move with an added CONstraint
will ultimately be included. All atoms not explicitly included in a group
will be put in a final single group. For free energy derivatives, derivatives
will be logged only for those atoms included in a group definition. Any
atom of the system may be designated as part of any group (but each atom
will be a member of at most one group). Typically, you will place indi-
vidual atoms in their own groups when calculating derivatives.

IATCMP If free energy components are being reported, by default only the total free energy
per atom/residue/molecule/ group is reported. By setting IATCMP > 0, one can

8/25/97

GIBBS module Page 206

force the components to be broken down into electrostatic, non-bonded and inter-
nal contributions. IATCMP has no affect when free energy derivatives are being
calculated.

= 0 Do not break free energy components into contributions (default).

= 1 break free energy componenets into contributions.

NTATDP Free energy components/derivatives will only be reported every NTATDP steps.
Note that if free energy components are being logged, a free energy report will
occur at a particular multiple of NTATDP steps only if the free energy accumula-
tors have been updated since the last report. For free energy derivatives, energies
will be reported every NTATDP steps in all cases. If NTATDP = -1, it is set to
NTPR; default is 0.

ICMPDR

= 0 no free energy derivatives (default).

= 1 If IPERAT=4, log the free energy derivatives with respect to charge and
the non-bonded parameters epsilon and r*. If the contributions of con-
straints to the free energy are being calculated (NCORC = 1), then
derivatives with respect to constraints in the perturbed group (and added
constraints) will also be calculated.

Free energy derivatives can only be calculated for lambda = 0 or lambda =
1. It is sufficient to define a "null" perturbed group in PARM if you sim-
ply wish to determine the non-bonded free energy derivatives of specified
atoms.

NCMPDR If free energy derivatives are being calculated (IPERAT=4 and ICMPDR=1),
NCMPDR gives the number of steps of effective "equilibration." After the first
NCMPDR steps, the accumulators for the free energy derivatives are cleared and
reset. Free energy derivatives reported from this point forward will only reflect
av eraging since the accumulators were cleared. Some people prefer to use a post-
processing program to analyze free energy derivatives. Such programs can usually
"remove" a giv en initial portion of the free energy derivative information from sub-
sequent totals. In such a case, you may wish to set NCMPDR=0 here (no "equili-
bration" phase), and pick the amount of data to discard in the post-processing pro-
gram.

NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the size of
the coordinate / velocity archive files, by only including that portion of the system
of greatest interest. (E.g. one can print only the solute and not the solvent, if so
desired).

= 0 Coord/velocity archives will include all atoms of the system (default).

< 0 Coord/velocity archives will include only the solute atoms.

8/25/97

GIBBS module Page 207

> 0 Coord/velocity archives will include only atoms 1->NTWPRT.

NTR Flag for restraining specified atoms.

= 0 Classical MD (default)

=
MD with restraint of specified atoms

NTRX Flag for reading the cartesian coordinates for restraint from unit PREFC. Note: the
program expects coordinates for all atoms from which a subset is selected by the
GROUP input which follows.

= 0 binary form

= 1 formatted form (default)

TA UR The relaxation time for restraint. Default is 1.0 ps.

INTR

= 0 No additional internal restraints or constraints will be read (default).

> 0 Additional internal restraints/constraints will be read following the normal
input. Storage will be allocated for a maximum of INTR added
restraints/constraints. These restraints/constraints can be used for e.g. a
PMF calculation.

IBIGM To calculate the free energy contributions of a constraint (if NCORC=1), the free
energy at lambda±d_lambda is evaluated by shifting the value of the constraint to
its value at lambda±d_lambda. This change in the value of the constraint can be
effected either by performing half of the shift at each end/side of the internal, or by
performing the entire shift at one end.

= 0 Half of the shift is performed at each end of the internal.

= 1 The entire shift occurs at the end/side of the internal which results in
fewer atoms being moved. This is the default.

The number of atoms whose positions change with shifting the constraint
affects how quickly the calculation can be performed. Setting IBIGM = 1
can significantly speed up some calculations (e.g. when rotating a ring
about a constrained torsion which joins it to a protein), and IBIGM should
typically be set to 1 forin vacuosimulations. In all cases, GIBBS deter-
mines which interatomic nonbonded distances depend on constraint val-
ues, and only these are recalculated when NCORC=1.

ISFTRP Causes the 6-12/10-12 functions used for non-bonded interactions to be replaced
by "soft repulsion" terms of the form

8/25/97

GIBBS module Page 208

RWELL* (r 2 − r *2)2

where r* is the optimal interaction distance between a pair of atoms, calculated
from their respective van der Waals radii. This function is sometimes useful in
structure refinement, but should *not* typically be used in free energy calculations.
Atoms in the perturbed group are always treated by normal (6-12 or 10-12) non-
bonded forces, regardless of the value of ISFTRP.

= 0 regular 6-12/10-12’s. No soft repulsion. Default.

= 1 replace 6-12’s by soft repulsion.

= 2 replace 10-12’s by soft repulsion, as well.

RWELL Force constant (in kcal/mol) used for soft repulsion interactions. Default is 5.0.

IFTIME Mutation flag. If ISLDYN=0, then if IFTIME = 0 (default) a standard Window
Free Energy Perturbation will be carried out. The perturbation will start at lambda
= ALMDA, and proceed in equally spaced intervals of delta(lambda) = ALMDEL
until 1 (ALMDEL > 0) or 0 (ALMDEL < 0) is reached. At each value of lambda,
NSTPE steps of equilibration and NSTPA steps of data collection (see line 15) will
be performed, and energy evaluated using Equation 2. If IFTIME =±1 A "Slow
Growth" perturbation will be carried out. The simulation will start at lambda =
ALMDA, and will be run in either the 0->1 direction (IFTIME = +1) or 1->0 direc-
tion (IFTIME = -1). CTIMT gives the number of psec of dynamics which would be
used to perform the complete change 0->1 (or 1->0). The actual length of the simu-
lation will depend on the starting value ALMDA.NOTE IFTIME is included for
backwards compatibility with input files created for previous versions (< 4) of
AMBER. However, it is strongly recommended that you use the ISLDYN flag to
specify the type of simulation desired. If ISLDYN.NE.0, IFTIME is ignored.

CTIMT The total length of the MD simulation (in psec) to be carried out in performing a
slow growth simulation which transforms state lambda = 0 into lambda = 1 (or
vice-versa). Note that this variable does not control the number of steps which
will actually be run. For example, if CTIMT = 10psec, ALMDA = 0.0, ISLDYN =
+1, and NRUN*NSTLIM*DT = 5psec, only half of the desired simulation would
be carried out. The remainder would have to be carried out by a restart. CTIMT is
only used when ISLDYN =±1 or (IFTIME=±1 and ISLDYN = 0). Default is 0.0.

ALMDA The starting value of lambda for this simulation. The value can be on the inclusive
interval 0.0-> 1.0. Default is 1.0.

ALMDA = 1 corresponds to the "initial" state defined by the structure described in
PREP. ALMDA = 0 corresponds to the "final" state defined by the structure
described in PARM. Intermediate "states" are defined by a linear combination of
the parameters representative of (lambda = 0) and (lambda = 1). For restart simu-
lations (IREST=1, line 2), ALMDA is read directly from the restart file, and the
value specified here is ignored.

8/25/97

GIBBS module Page 209

ALMDEL For _Standard_ (fixed width) Window and TI simulations, ABS(ALMDEL) gives
the width of each window or integration interval. If double-wide sampling is used
with Window Growth (default), at each value of lambda, the free energies to both
+ALMDEL and -ALMDEL are evaluated. This results in "double wide sampling"
(see the introductory text). If (IFTIME=0 and ISLDYN=0), the sign of ALMDEL
determines the direction of the change. If ISLDYN=±3, the sign of ISLDYN deter-
mines the direction of the change. ALMDEL should be chosen so that the free
energy change over any interval is not too large. It has been suggested (somewhat
arbitrarily) that as a rule the free energy change/window should not exceed 2RT.
ALMDEL is only used when ISLDYN =±3 or (IFTIME=0 and ISLDYN = 0).
Default is 0.1.

ISLDYN Free Energy Method flag. It is recommended that you use this flag exclusively, and
ignore IFTIME. Default is -3.

= ±1 Perform a Slow Growth simulation. The simulation will be started at
ALMDA, and CTIMT psec will be required to complete the conversion to
the end (0 or 1). If ISLDYN = +1, the simulation will be carried out in the
direction 0-> 1. If ISLDYN = -1, the simulation will be carried out in the
direction 1-> 0.

= ±2 Perform a Dynamically Modified Window simulation. The simulation will
be started at ALMDA and progress either in the direction 0-> 1 (if ISL-
DYN = +2) or 1-> 0 (if ISLDYN = -2). The numbers of equilibration and
data collection steps performed at each window are given by NSTMEQ
and NSTMUL (on this line). If IDIFRG = 0, the energy will be evaluated
at each interval using Equation 2 (FEP). If IDIFRG = 1, thermodynamic
integration will be carried out using Equation (4).

= ±3 Perform a "standard" Window Growth simulation (with fixed width
lambda intervals). The perturbation will start at lambda = ALMDA, and
proceed in equally spaced intervals of delta(lambda) = abs(ALMDEL)
until 1 (ISLDYN > 0) or 0 (ISLDYN < 0) is reached. At each value of
lambda, NSTMEQ steps of equilibration and NSTMUL steps of data col-
lection (see this line) will be performed. If IDIFRG = 0, the energy will
be evaluated at each interval using Equation 2 (FEP). If IDIFRG = 1, ther-
modynamic integration will be carried out, using Equation (4).

IDIFRG Thermodynamic integration flag.

= 0 No thermodynamic integration (default).

= 1 If windows or dynamically modified windows have been specified, the
energy will be calculated using thermodynamic integration (TI) (Equation
4). The integrand will be evaluated at the endpoints of each "window",
and the integral will be approximated using the trapezoidal rule (see the
discussion following the input description). In addition to the integrated
free energy, if ISANDE is set = 1 (see flag 12.10), the value of <∂V/∂λ >
will be output at every energy update, so a different integration algorithm

8/25/97

GIBBS module Page 210

can be applied by the user, if desired. If slow growth has been requested,
setting IDIFRG=1 has the effect of performing the slow growth summa-
tion using the non-averaging equivalent of the TI equation (4), rather than
the FEP equation (2).

NSTMEQ number of steps of equilibration to be used for each window if ISLDYN =±2 or
+-3. (Note that if windows are instead requested using the flag combination
IFTIME = 0 and ISLDYN = 0, NSTPE is used). Default is 2.

NSTMUL number of steps of data collection to be used for each window if ISLDYN =±2 or
+-3. (Note that if windows are instead requested using the flag combination
IFTIME = 0 and ISLDYN = 0, NSTPA is used). Default is 2.

NDMPMC Every NDMPMC windows, statistics will be dumped to the statistics file (MIC-
STAT). The statistics file contains a condensed format record of the free energy for
each window interval. The MICSTAT file is not written with slow growth, or if
NDMPMC is set < 0. By default NDMPMC=100. NDMPMC cannot exceed 100.

IDWIDE Allows double-wide sampling to be turned off with FEP.

= 0 Double-wide sampling performed when FEP windows are being calcu-
lated (default).

= 1 Double-wide sampling turned off when FEP windows are being calcu-
lated.

Double wide sampling means at each value we calculate the free energy in
both the "forward" and "reverse" direction. This gives an intra-run consis-
tency check (lower bound on the error), but requires we calculate every
interval twice. The simulation can be run in roughly half the time, without
the forward/reverse consistency check, by setting IDWIDE=1. The nature
of thermodynamic integration (IDIFRG=1) is such that double wide sam-
pling is never carried out. IDWIDE has no effect for such calculations.

IBNDLM By default (IBNDLM=0), lambda±d_lambda is constrained to the range
0<lambda±d_lambda<1. If IBNDLM=1, then lambda±d_lambda can exceed the
range 0->1. Useful when doing PMF-type calculations. Ignored for regular slow
growth.

IAVSLP The current dG/dLAMBDA slope will be approximated by a linear fit to the Accu-
mulated G vs. LAMBDA data for the previous IAVSLP windows. Maximum value
= 1000; default is 8.

IAVSLM Until IAVSLM windows have been collected, the window spacings will be fixed at
ALMDL0 (line 14c). When IAVSLM windows have been collected, the slope will
be calculated over all available windows, until IAVSLP windows are available.
Default is 2.

8/25/97

GIBBS module Page 211

i.e. #_windows < IAVSLM : dLAMBDA = ALMDL0

IAVSLM <= #_windows < IAVSLP :

dLAMBDA calculated from slope over #_windows

#_windows >= IAVSLP :

dLAMBDA calculated from slope over previous IAVS L

windows

If IAVSLM=-1, window widths will be fixed at ALMDL0 until IAVSLP windows
are available.

ISLP Determines the direction in which the slope is calculated.

= 0 (default) use the appropriate value of ISLP (-1 or 1) to calculate the slope
from energies calculated in the same direction as the simulation (recom-
mended).

= 1 the slope is calculated from the forward (0->1) energy at each step.

=-1 the slope is calculated from the reverse (1->0) energy at each step.

= 2 the slope is calculated using the average of the redundant free energy val-
ues (from double wide sampling) over the interval in the direction oppo-
site to the simulation, i.e. G(reverse[curr window] - G(forware[prev win-
dow])/2 or G(forward[curr window] - G(reverse[prev window])/2 for sim-
ulations run 0->1 and 1->0, respectively. This option can be useful when
very few points are used to evaluate each slope (e.g. IAVSLP = 2).

= 3 the slope is calculated using the average of the forward and reverse ener-
gies at each lambda.

For best results in most cases, the slope should be calculated in the same
direction as the simulation. This is the default behavior (ISLP=0). With
thermodynamic integration, or when double-wide sampling is defeated,
ISLP has no effect. Only options ISLP=0 or ISLP=3 should typically be
used when AMXRST > 0.

CORRSL If the correlation coefficient for a linear fit to the previous IAVSLM windows is <
CORRSL, the number of windows over which the slope is calculated will be
halved (for this determination of the slope only), and the slope calculated again.
This process continues until the correlation coefficient is > CORRSL. Default is
0.8.

AMXMOV The target free energy change per window. If M is the slope over the previous
IAVSLP windows, the next value of dLAMBDA is chosen as dLAMBDA = AMX-
MOV/M Note that when double wide sampling is defeated (IDWIDE=1) while
using a window FEP technique (IDIFRG=0), the free energy change at a window is
defined as the total ("forward" + "reverse") energy change. This differs from the
definition when double wide sampling is used, where the free energy change at a
window is approximately 1/2 * ("forward" + "reverse"). Thus, AMXMOV should
be suitably increased when IDWIDE = 1. Default is 0.1.

8/25/97

GIBBS module Page 212

IAVDEL Number of windows over which the forward and reverse energies will be com-
pared. If IAVDEL<0, no comparisons will be carried out. IAVDEL should always
be set <0 when thermodynamic integration is used (IDIFRG = 1). Maximum value
= 1000; default is -1.

IAVDEM The relationship between IAVDEL and IAVDEM is analogous to that between
IAVSLP and IAVSLM. Default is 2.

AMXDEL If < ABS (DA(for)-DA(rev)) > .GT. ABS(AMXDEL) then the next dLAMBDA
will be scaled as [< ABS (DA(for) - DA(rev)) > / AMXDEL] **2 * dLAMBDA
If AMXDEL < 0, then scaling occurs in all cases. Default is 1.0.

ALMDL0 Until enough intervals have been calculated to allow determination of
dG/d_lambda and d_lambda consistent with IAVSLP and IAVSLM, an interval
width of ALMDL0 will be used. Default is 0.0001.

DLMIN The minimum allowable window width. Default is 1.0D-6.

DLMAX The maximum allowable window width Default is 0.1.

AMXRST If the free energy change, dG, over any window is greater than AMXRST, then the
data collection phase for that window will be re-performed using a reduced value
of dLAMBDA. The new value of dLAMBDA is determined as dLAMBDA(new) =
(dLAMBDA(old)/dG) * AMXMOV. AMXRST should not be set too close to
AMXMOV, or too many windows will be recalculated (which is inefficient). By
default, AMXRST=5.*ABS(AMXMOV).

NORSTS If this is a restart run, and NORSTS=1, then the restart information relating to
dynamically modified windows is not read (cold start for the dynamically modified
windows). NORSTS is ignored if this is not a restart run. Normally, NORSTS
should be set to the default of 0.

NTSD The statistics relating to dynamically modified windows are written to file POUT
ev ery NTSD. If NTSD=0, then NTSD is set equal to NTPR (line 12), and these
statistics will be output every time the standard energy information is printed.
Default is 0.

ALMSTP(1) Allows the values of AMXMOV, DLMIN, DLMAX, AMXRST, and NTSD to be
different for different ranges in LAMBDA.

> 1 or < 0
the values defined in lines 14a-14c will remain in effect for the whole run.

> 0 and
< 1 the values defined in lines 14b-14d will remain in effect for the

range of LAMBDA ALMDA-> ALMSTP(1). In this case, _additional

8/25/97

GIBBS module Page 213

line(s)_ are read with the values of the above variables over various ranges
of LAMBDA. Each line has the format

AMXMOV, DLMIN, DLMAX, AMXRST, NTSD, ALMSTP(I)

FORMAT(4F14.9,I5,F14.9)

These lines are read until ALMSTP(I) > 1 or ALMSTP(I) < 0. Each set
of values applies to the range in LAMBDA ALMSTP(I-1) -> ALM-
STP(I). Note that the for the last line, ALMSTP(I) must be greater than 1,
or less than 0 (not equal to). This is avoid machine precision problems.
Note also that, at present, "namelist"-format input always assumes ALM-
STP(1) < 0 (i.e. AMXMOV, DLMIN, etc. remain fixed over the entire
run). If you wish to use the functionality described above for ALMSTP(),
you must use formatted input.

NSTPE The number of steps of Equilibration before collecting the Free Energy Statistics.
For each window the system is equilibrated for NSTPE steps. (When ISDYN=±2
or ±3, NSTMEQ serves the same purpose). Default is 2.

NSTPA The number of steps for data collection. The averaging is performed over this
number of steps. (When ISLDYN=±2 or ±3, NSTMUL serves the same purpose).
Default is 2.

DTA The time-step used for window runs specified by IFTIME=0 and ISLDYN=0. All
other runs use the time-step specified on line 8. Default is 0.001

IVCAP Flag to control Cap Option. The Cap option is to solvate a spherical portion of a
solute and to hold the solvent from evaporating through a half-harmonic potential.

= 0 Cap will be in effect if it is passed from the the parm module (default).

= 1 Cap will be activated except that the Cap atom pointer would be modified.

= 2 Cap will be inactivated.

NATCAP The Cap atom pointer It is the last Non-Cap atom number. If IVCAP.EQ.1 then the
pointer passed from the PARM Module will be overwritten by this number.
Default is 0.

FCAP The Force Constants for the Cap Atoms. Default is 0.0

WA TNAM The residue name the program expects for TIP3P waters. Default is "WAT".

OWTNM The atom name program expects for the TIP3P oxygen. Default is "O ".

8/25/97

GIBBS module Page 214

HWTNM1 The atom name program expects for the TIP3P 1st H. Default is "H1 ".

HWTNM2 The atom name program expects for the TIP3P 2nd H. Default is "H2 ".

--

-- These card is read only if I3BOD.NE.0 --

This information must be provided in the formatted form given,

even if namelist format input is used above.

- 18A- 1) N3B, NION

FORMAT(2I5)

The number of 3body interactions to be defined, and the number

of ions in the system.

== Include N3N cards 18B to define all 3-body interactions ==.

- 18B- 1)AT1(I) 2)AT2(I) 3)ACON1(I) 4)BETA31(I) 5)GAMMA31(I)

6)ACON0(I) 7)BETA30(I) 8)GAMMA30(I)

FORMAT(A4,A4,2X,6E10.3)

AT1(I): The second atom in this 3-body interaction.

AT2(I): The third atom in this 3-body interaction.

ACON1(I): The pre-exponential factor for this 3-body

interaction for the lambda = 1 state.

BETA31(I): The beta value for this 3-body interaction,

for the lambda = 1 state.

GAMMA31(I): The gamma value for this 3-body interaction,

for the lambda = 1 state.

ACON0(I): The pre-exponential factor for this 3-body

interaction for the lambda = 0 state.

BETA30(I): The beta value for this 3-body interaction,

for the lambda = 0 state.

GAMMA30(I): The gamma value for this 3-body interaction,

for the lambda = 0 state.

--

- 19 - IDENTIFICATION OF ATOMS WITH POSITION CONSTRAINTS

*** ONLY IF NTR = 1 ***

Constraint reference atoms are obtained by first reading

coordinates for the entire structure through file ’PINCRD’

8/25/97

GIBBS module Page 215

or ’PREFC’, then specific constraint atoms are selected by

group. See the section on GROUP in the Appendices for format.

Does not support a namelist convention.

--

- 20 - IDENTIFICATION OF ATOMS FOR BELLY RUN

***** ONLY IF IBELLY .GT. 0 *****

The belly atoms are loaded as groups. Consult the GROUP section

in the Appendices for a description of how to define a group.

The group definition immediately follows the end of the &cntrl

namelist. The GROUP input does not support a namelist convention.

--

- 21 - DEFINITION OF GROUP INPUT FOR FREE ENERGY COMPONENTS

OR DERIVATIVES

***** (ONLY IF IPERAT = 4) *****

For free energy components, free energies will be logged

as defined by the GROUP definition, subject to the condition

that only those atoms which are part of the perturbed group

or which move with an added CONstraint will ultimately

be included. All atoms not explicitly included in a group

will be put in a final single group.

For free energy derivatives, derivatives will be logged

only for those atoms included in a group definition. Any

atom of the system may be designated as part of any group

(but each atom will be a member of at most one group).

Typically, you will place individual atoms in their own groups

when calculating derivatives.

Note that in GIBBS, GROUP input supports two new features that

can be helpful in defining the input for free energy components

or derivatives. Both allow the creation of multiple single-atom

groups:

ATOM -IAT1 IAT2

(1st atom number negative) will place each atom from IAT1 to

IAT2 in its own group.

RES -IRES1 -IRES2

(both residue numbers negative) will place each atom of every

residue in the range IRES1->IRES2 in a separate group.

8/25/97

GIBBS module Page 216

Group definition syntax is otherwise the same as described in

the manual.

--

- 22 - DEFINITIONS OF INTERNAL RESTRAINTS/CONSTRAINTS

*** ONLY IF INTR > 0 (line 13) ***

BRIEF DESCRIPTION:

Setting INTR > 0 allows the user to define here a series of

internal restraints and constraints whose force constants and

equilibrium values are a function of lambda.

Restraint/constraint definitions must be entered in the
formatted form shown below, not in a namelist.

Restraints/constraints are read in as pairs of lines:

line A: IAT1,IAT2,IAT3,IAT4,IUMB,IZE,ITOR,RLMDA1,RLMDA2

FORMAT (7(I5,1X),2F10.5)

line B: RKEQ1,REQ1,RKEQ2,REQ2,IPER,IPER2

FORMAT (4F10.5,2I5)

As many restraints/constraints may be defined as are desired.

A blank record signals the end of the input. This data must be

entered in the formatted form shown.

It does not support a namelist convention.

INPUT VARIABLES

----- ---------

IAT1-->IAT4:

The absolute atom numbers for the atoms defining the restraint.

If an atom number is <0, the absolute value of the atom number

is used (additional behavior for <0 values is defined when

IZE=1; see below).

IAT3 = IAT4 = 0 : Bond restraints/constraints

IAT4 = 0 : Angle restraints/constraints

IAT1->IAT4 non-zero: Torsion restraints/constraints

RLMDA1

RLMDA2:The restraint/constraint will be applied only over the range in

lambda (RLMDA1, RLMDA2).

RKEQ1

REQ1 :The force constant in kcal/mol and equilibrium value,

respectively, for the restraint/constraint at lambda = RLMDA1.

RKEQ2

8/25/97

GIBBS module Page 217

REQ2 :The force constant in kcal/mol and equilibrium value,

respectively, for the restraint/constraint at lambda = RLMDA2.

If RLMDA1=RLMDA2, the force constant and eq. value are fixed

at RKEQ1 and REQ1 (RKEQ2 and REQ2 are ignored).

RKEQ1 and RKEQ2 are ignored for constraints (ITOR=2).

If REQ1=999. or REQ2=999., the corresponding equilibrium value

is set to the current value of the internal coordinate (as

determined from the input set of coordinates PINCRD).

If ABS(REQ1) > 1000, the corresponding equilibrium value is set

REQ1 < 0: REQ1 = current_value - [ABS(REQ1)-1000.]

REQ1 > 0: REQ1 = current_value + [ABS(REQ1)-1000.]

If ABS(REQ2) > 1000, REQ2 is analogously reset.

Intermediate Keq(λ) and Req(λ)
are determined by linear interpolation between the force

constants and equilibrium values at RLMDA1 and RLMDA2.

No restraint/constraint is applied outside the range

(RLMDA1,RLMDA2).

IZE:

= 0 The restraint/constraint defined here is used _in addition to_

other parameters corresponding to this atom sequence from parm

(if any).

= 1 The restraint parameters defined here _replace_ overlapping

parameters from parm (if any) for this atom sequence.

When IZE=1, any atom number IAT1->IAT4 which was specified as

< 0 has a special meaning: It allows a "wildcard" match to the

corresponding atom number when replacing parameters from parm.

For example, the sequence -1 3 8 -14 would result in a torsional

restraint which would replace parameters for all torsions

centered on the bond between atoms 3 and 8.

IZE is read but ignored when ITOR=2 (constraints).

IUMB: Determines the type of restraint.

= 0 The restraint is to be considered part of the molecular force

field. The free energy contribution from the restraint is

calculated by the standard formula (c.f. Equation 2).

= 1 The restraint is considered to be an "umbrella" term. The

8/25/97

GIBBS module Page 218

effects on the ensemble of the restraint are evaluated using

the following function in place of Equation 2:

∆G = − RT ln(< e−∆V/RTeφ /RT >V+φ / < eφ /RT >V+φ) ,

where φ is the sum of all umbrella restraint terms and

∆V is as described for Equation 2.

IUMB is ignored for constraints (ITOR=2).

IUMB = 1 will not work correctly with slow growth or

thermodynamic integration.

ITOR: Functional form/constraint flag

= 0 If this is a torsional restraint, a potential of the form

Ktor (τ − τ0)2

is used. This functional form is always used for bonds and

angles (ITOR = 0 has no effect for bonds/angles).

= 1 If this is a torsional restraint, a potential of the form

Ktor (1 − cos(τ − τ0))

is used. (ITOR = 1 has no effect for bonds/angles).

= 2 Then a constraint, rather than restraint, is applied to the

corresponding internal coordinate. This is applicable to all

types of internal coordinates (distances, angles, torsions).

If NCORC = 1 (line 9), then an effective "potential of mean

force" (PMF) contribution to the free energy will be calculated

for this internal coordinate.

General "holonomic" internal constraints are used, as described

in Reference 7.

When ITOR = 2 (internal is being constrained), IZE is ignored,

and the following occurs:

For bonds and angles, if the constrained internal matches an

internal in the topology file, force constant parameters

for matching internal will be set to 0.

For torsions, if the constrained internal matches an internal

in the topology file, A) forces for all torsions centered on

the same bond will be omitted B) The contributions to the

free energy of all torsions centered on the same bond as the

constraint will be calculated. This is necessary because

several torsions can be centered on a central bond, and

there is no fixed relative arrangement for these torsions.

IPER: IPER can be used to define a simulation where two internal

8/25/97

GIBBS module Page 219

coordinates will be varied with two independent values of lambda.

Such a simulation can be used to generate a free energy

internal-internal map (sort of a free energy equivalent to a

Ramachandran map) to be generated.

NOTE
The output of this option is somewhat complex, and

is intended for post-processing by a separate program. Any 2-D

run of value will necessarily be very compute-intensive, and a

number of issues must be considered before undertaking such a

simulation. This option should generally be avoided by the novice

user. If you are considering performing such a simulation, you

are urged to read Reference 8 (see above) first.

For use with the IPER flag, we define:

"primary" lambda: the "normal" lambda; that is, the lambda used

in standard GIBBS runs to describe how the

system varies between the initial and final

states.

"secondary" lambda: a second lambda, which is translated from

0->1 at each value of the "primary" lambda.

= 0 This restraint will vary with the primary lambda; i.e. the

equilibrium value and force constant will be a function only of

the primary lambda. This is standard behavior.

> 0 This restraint will vary with the secondary lambda; i.e. the

equilibrium value and force constant will be a function only of

the secondary lambda. Lambda will be varied from 0->1 for this

restraint in a series of IPER equally-spaced intervals (windows).

The "secondary" lambda is not used unless one or more restraints

are defined with IPER > 0.

The number of windows used for each "primary" restraint will

be the same, and the number used for each "secondary" restraint

will be the same. The first IPER(I) > 0 sets the number of

windows used for _all_ secondary restraints.

If secondary restraint(s) are requested, the value of IPER2 (see

below) corresponding to the first value of IPER(I) > 0 defines

the number of windows used for every primary restraint. Note

that any dynamically modified window or slow growth flags (card

14) will be defeated in this case.

When calculating PMF-type energies (if NCORC=1),

8/25/97

GIBBS module Page 220

constraints will be applied in two cycles. First, dG will be

calculated for +-d(internal) for only those internals for which

IPER=0. Then a dG will be calculated +-d(internal) for only

those internals for which IPER>0.

Any parameters (other than constraints) that vary with lambda

will only change when lambda for the primary constraints changes.

You will typically define the "perturbed group" (see the PARM

module) to contain no atoms, when using "secondary" restraints/

constraints.

If IPER > 0, window or dynamically-modified window growth must

have been requested (line 14). IPER cannot be set > 0 with

slow growth or with thermodynamic integration (IDIFRG > 0).

The matrix of energies from a 2-D run is contained in file

CONSTMAT. A matrix can be generated with either IDWIDE = 0 or

IDWIDE = 1, but it is strongly recommended that IDWIDE = 1

(no double-wide sampling) be used. In this case, five free

energy difference are evaluated from each ensemble,

corresponding to moves from (lam1, lam2) to

(lam1, lam2+d_lam2), (lam1, lam2-d_lam2), (lam1+d_lam1, lam2),

(lam1-d_lam1, lam2), (lam1-d_lam1, lam2-d_lam2). This set

allows the whole free energy map to be evaluated most

efficiently (see the Pearlman and Kollman reference [8] noted

above).

The "secondary" lambda always changes in the "forward" direction,

always starts at 0.0, and always ends at 1.0. After lambda has

gone from 0->1. The primary lambda is incremented one step, the

secondary lambda is reset to 0, and another cycle of secondary

lambda changes occurs. At the start of each cycle of changes in

the "secondary" lambda, the current coordinates are stored in

file CNSTSCRT.

IPER2:If IPER > 0 for a particular restraint/constraint ("secondary"

restraints defined), IPER2 gives the number of "windows" used

in translating the "primary" lambda from 0 to 1. See the

description of IPER above. If IPER > 0, IPER2 fixed-width windows

will be used for the "primary" restraints, regardless of the

behavior requested by ISLDYN, etc. (lines 14-ff).

8/25/97

GIBBS module Page 221

7.8. Choices Affecting Free Energy Calculations

David A. Pearlman
Dept. of Pharmaceutical Chemistry

University of California, San Francisco, CA 94143-0446
1/91

The development of ever-more-powerful computers, combined with the wide dissemination of
modeling packages like AMBER, puts the power to perform valuable calculations in the hands of an
increasingly large number of scientists. It is tempting to say that, given the increasing sophistication of
such programs, all one needs is the appropriate hardware and software to perform good experiments.

But this is not the case. As modeling programs have grown more sophisticated, they hav e
sprouted an ever-increasing array of options−options which must be properly chosen, if worthwhile
results are to be obtained. And even if the options are appropriately set, one must ensure that the pro-
gram is properly suited for the chosen application. Nowhere in AMBER is this more true than the
GIBBS free energy module.

Here we discuss several issues which impinge on developing an appropriate GIBBS input file,
and on interpreting the results produced. One is also strongly encouraged to review the literature refer-
enced here and in the preface to the GIBBS program.

7.8.1. I. What method should be used to calculate the free energy?
GIBBS version 4.0 offers five choices of method for calculating the free energy difference

between two states. These include the general classes slow growth, free energy perturbation, and ther-
modynamic integration, as well as dynamically modified variants of the latter two. These were
described in the introduction to GIBBS. As yet, it has not been shown conclusively what method is
"best" for any particular type of problem.

(1) Slow growth: Some early studies indicated that slow growth might be a more efficient tech-
nique for free energy calculation than fixed-width windows1. More recent work2 has indicated
that the implicit assumption of slow growth−thatλ changes slowly enough that the system can
be assumed to be in equilibrium at each step−does not strictly hold. The consequences of this
"Hamiltonian lag" have not been quantified.

(2) Window Growth: The equations of window growth, or Free Energy Perturbation (FEP) are
exact, and, in principal, if one has the computer resources to perform sufficient sampling, one
can obtain very accurate results. In practice, FEP suffers from two significant difficulties. The
first is that, in reality, we do not always sample to convergence. Unfortunately, no reliable test
to prove convergence has been developed. The second problem with FEP is that Equation (2)
requires that we obtain the ensemble average of a quantity which relies of thedifference
between the potential functions representative of both statesλ(i) andλ(i + 1). But the average
is evaluated from the ensemble of states visited when MD is run using the potential function
for stateλ(i). Thus, if statesλ(i) and λ(i + 1) are too dissimilar, it will be very difficult to
obtain reliable statistics. Reducing the spacing between adjacentλ states helps circumvent this
problem, but at a significant additional cost. And even then we do not have any reliable meth-
ods for assuring the problem has been avoided3.

(3) Thermodynamic Integration (TI): TI is appealing because it avoids the problem in sampling
V(λ(i + 1))-V(λ(i)) described for FEP above. But TI has its own problem: The driving equa-
tion of TI is an integral (Equation 4), which in practice must be calculated approximately by

8/25/97

GIBBS module Page 222

evaluating the integrand at finite intervals ofλ . Of course, TI is also susceptible to errors
when a simulation is not run sufficiently long to obtain a converged value of the averaged
quantity which serves as the integrand.

At this time, the relative rates of convergence of the averaged quantities required by FEP and
TI, which will directly impinge on the reliabilities of the two techniques, have not been deter-
mined.

Note that we approximate the integral using the trapezoidal algorithm, i.e.

(5)∆Gi = G(λ(i + 1)) + G(λ(i)) = (< ∂V/∂λ >λ(i+1) − < ∂V/∂λ >λ(i)) (λ(i + 1) − λ(i))/2 .

This integration method should be reasonably accurate in most cases. But in case the user
wishes to try their own integration scheme, setting ISANDE = 1 with TI will also force report-
ing of the values of <∂V/∂λ >λ(i) and several other averages at every evaluation point (the
other values reported relate to calculating the enthalpy/entropy, as described below).

(4) Dynamically Modified Windows (DMW): In dynamically modified windows3, theδ λ spacing
between consecutive windows in FEP or TI is continually changing, to achieve a relatively
constant free energy change per window. This should improve the efficiency of the calculation,
by focusing proportionately more simulation time on those ranges ofλ where the free energy
is changing more rapidly. We hav e, in fact, shown that dynamically modified windows signifi-
cantly improve the sampling efficiency of FEP simulations for model compounds3. The
biggest drawback to DMW is that, because we do not knowa priori the exact shape of the free
energy versusλ curve when we start a simulation, we cannot predict with certainty how long
the simulation will take to go to completion. This caveat noted, it appears that DMW would be
beneficial to most FEP and TI simulations.

7.8.2. II. Enthalpies and entropies
GIBBS Version 4 allows the user to request that the enthalpy and entropy changes be reported in

addition to the free energy (which is always reported). Two different schemes are used to calculate
these quantities, depending on the free energy calculation method. Note that in either case, the
enthalpy and entropy are necessarily dependent on being able to reliably extract small differences
between averages of (often large) total system energies. In the case of free energy, on the other hand,
we need only measure the average of a potential difference or a derivative. For this reason,
enthalpy/entropy estimates are typically more than an order of magnitude less accurate than their free
energy counterpart. One should be very cautious when interpreting them.

For FEP, the approximate equations derived in Ref. 4 are used. These approximate the required
temperature derivatives by a finite difference. The equations used are derived from the FEP expression,
and the sum of the resulting (enthalpy - T*entropy) will equal the reported free energy.

For TI, the enthalpy and entropy are evaluated using exact-form integral relationships presented
in Ref. 5. The (enthalpy - T*entropy) calculated by this method will not necessarily equal the reported
total free energy; the difference between the two quantities can be taken as a crude indication of the
reliability of the enthalpy/entropy values. The integrals are approximated by the trapezoidal rule, as
described above (Equation (5)).

8/25/97

GIBBS module Page 223

7.8.3. III. Mixing rules for vanishing atoms
By default (and without exception in older versions of Gibbs), the optimal interactionr * ij

between two atoms i and j is given by

(6)r * ij (λ) = r * i (λ) + r * j (λ)

This is fine when neither atom "vanishes" at eitherλ endpoint. But now consider the case where atom
i vanishes atλ=0. Then

(7)r * ij (0) = r * i (0) + r * j (0) = r * j (0) .

Thus,r * ij never gets smaller thanr * j (0). At λ=0, the mixed well depth,ε (0), will also be 0. But at
any value ofλ just slightly >0,ε ≠0, and suddenly a steric "gap" between atoms i and j ofr * j will be
required. This can lead to sampling inefficiencies. A better solution is to shrinkr * ij (λ) to a user-
chosen small value as one of the atoms "vanishes". This is the effect of variable IDSX0 (line 10).

7.8.4. IV. Using Dynamically Modified Windows
The theory of DMW, and some exploratory applications, are described in Ref. (3). A sample

input for GIBBS is shown below, follow by a few important explanatory notes.

line

14 0 40.00000 0.00000 -0.02500 +2 0 100 100 0 0 0 0

14a 8 2 0 0.8000000 0.0100000

14b -10 20 0.0001000

14c 1.0D-5 1.D-10 1.0D-2 0.10000000 0 0 -1.00

(format compressed to fit page)

Line 14
We set ALMDEL = 0, ISLDYN=+2, IDIFRG=0, NSTMEQ=100, and NSTMUL=200. This results in
dynamically modified window FEP, with 100 steps of equilibration and 100 steps of data collection per
window.

Line 14a:
On the next line, we set IAVSLP = 8, IAVSLM=2, and CORRSL=0.8. This means that, at most, the 8
most recently calculated (λ , accumulated_free_energy) points will be used in approximating the
∂G/∂λ slope. IAVSLM=2 means that as soon as 2 points are available, we will calculate the slope from
all available points, until the maximum of 8 is reached. If the best-fit line through the points fits the
data with a correlation coefficient (CC) < 0.8, then the number of points used in the current slope
determination will be halved, the slope and CC will be recalculated, and the comparison against CC
will be performed again. A minimum of two points are always used to calculate the slope.

AMXMOV, which is set to 0.01 here, is the target change in free energy per window we are aiming for.
Theδ λ change on the next step is calculated as

(8)δ λ =
AMXMOV

(∂G/∂λ)

Note that since we don’t knowa priori what the free energy versusλ curve will look like, we do not
know exactly how many steps will be required to complete the simulation. The total number of MD
steps required will depend both on AMXMOV and on NSTMEQ and NSTMUL (line 14). NSTLIM
can be set to -1 on line 8 to force the program to continue until the total required number of steps have

8/25/97

GIBBS module Page 224

been performed. Also note that the value of AMXMOV used will often depend on the magnitude of
the total anticipated free energy change. For example, one would not typically want to use AMX-
MOV=0.01 and NSTMEQ=NSTMUL=100 if the total energy change is 50 or 100 kcal/mole, as it can
be for certain electrostatic changes.

line 14b:
IAVDEL < 0, which means that the∆G forward − ∆Greversecomparisons will not be used in scaling the
widths ofλ windows. The viability and reliability of changes made using these types of comparisons
has not yet been established.

line 14c:
ALMDL0 is set to 1.0D-5. This means that the first IAVSLM window steps (before we have enough
points to calculate a slope) will be made with this small step size. This step is chosen to be small in
case the energy is changing quickly in this region.

DLMIN is set to 1.0D-10. Typically, a value of DLMIN such as this would have no effect, since it is
unlikely that the slope and AMXMOV would be such to require a step this small in the first place. At
any rate, steps calculated to be smaller than DLMIN are reset to DLMIN. DLMIN can be valuable in
some cases when one wishes to limit how slowly a simulation can progress.

DLMAX is set to 1.0D-2. Setting an appropriate value for DLMAX is important. If the G versusλ
curve has any points of inflection, we might calculate a slope of approximately 0 at one or more
points. In this case, the simple formula used to determine the next step size would indicate a very large
step (as large as 1.0, the whole simulation length). This would be incorrect, as the slope could clearly
turn significantly non-0 in a future range ofλ . DLMAX bounds the change in such cases.

AMXRST is set to 0.10. The slope we calculate is only an approximation of the "true" instantaneous
slope, and the current slope is only an estimate of the slope over the nextλ interval (window). Thus, it
is possible that when we calculate the actual free energy change over the next window, it will be an
unacceptable amount larger than the target value. In such a case, we may want to decrease theλ step
size for this window and re-evaluate the energy. AMXRST is the largest allowable energy for a step. If
the energy is > AMXRST, theδ λ stepsize is reduced, and the energy for the window recalculated.
Note that setting AMXRST too close to AMXMOV will result not only in too many windows being
reevaluated (inefficient), but can also lead to biased sampling.

ALMSTP(1) is set to -1.0. If 0 < ALMSTP(1) < 1.0, one can prescribe that the values of AMXMOV,
DLMIN, DLMAX and AMXRST vary over different ranges inλ , as described in the input discussion.

7.8.5. V. Potential of Mean Force (PMF) calculations
It is often of interest to determine the free energy difference between two states which differ in

conformation, rather than in composition. For example, one might be interested in the free energy pro-
file for rotation about a ring in a protein. Such a profile can be determined by performing a PMF simu-
lation. To perform such a simulation, one must be able to define conformation as a function of lambda
within the context of an otherwise free MD simulation. Fortunately, methods have been developed
which allow selected internal coordinates to be constrained to chosen values, while otherwise affecting
the MD trajectory only minimally. The best known of these is the SHAKE method for bond con-
straints. The methods of SHAKE have recently been extended to be generally applicable to angles and
torsions6. one can calculate the free energy changes that accumulate as the internal constraints are
translated from those of the initial state to those of the final state. If one graphs the free energy changes
as a function of the restraint target values (themselves a function ofλ), one gets the free energy profile
for conformational changes.

8/25/97

GIBBS module Page 225

Any constraint with a target value which is itself a function ofλ will contribute to the free energy
as lambda changes. This means that if SHAKE is used to constrain bonds of the perturbed group, and
any of those bonds "grow" or "shrink" during the simulation, there will be a corresponding contribu-
tion to the free energy. In earlier work, this contribution has been overlooked, but we have shown that
it must be included to reliably calculate free energies using the FEP method7. The contribution in such
a case can be calculated simply by setting NCORC=1.

Constraints other than SHAKE-en bonds can be defined by setting INTR > 0 (line 14) and pro-
viding the definitions after the standard input (see above). Any internal coordinate can be used; Be
aw are, however, that any internal coordinate which is part of a closed ring will present a special set of
(often tricky) considerations (see below). In typical use, no compositional (or topological) change is
performed when a PMF simulation is being carried out. A GIBBS-format topology file is still required
from PARM or LEaP, though. An appropriate topology file with no atoms in the "perturbed group"
can be generated by using the PERT option in PARM, but with no atoms defined in the pert group; i.e.

Title: Generic PERT topology with no atoms changing

BIN FOR STDA PERT

0 0 0

0 0 0 0

PERTURBATION

No atoms change

END

END

Similarly, in LEaP, one does not define any per-atom perturbations ("edit molecule" / Selection / Edit
selected atoms to turn per-atom pert on/off) and does a

> saveamberparmpert molecule nullpert.top nullpert.crd

In general, PMF calculations within GIBBS may be performed with any method − FEP, TI or
slow growth. (Before version 4.1, only FEP could be used for PMF calculations.) Note that there is one
scenario whereonly the TI (with "constraint forces") method may be used: when any constrained inter-
nals whose target values change with lambda lie within a closed loop. The loop can either be part of
the molecular topology,or as a result of the added topology of the constraint(s). To understand why
neither FEP nor TI with "potential forces" can be used in such a case, you must recognize that for
these latter methods, part of the procedure for calculating constraint contributions requires that we
determine which atoms of the system are affected by a rigid body translation/rotation about the con-
strained internals. But the requisite set of atoms is not unambiguously defined when the constraint lies
within a closed loop. Fortunately, the "constraint force" implementation of TI doesn’t require that we
make such a determination.

It is important to note that PMF calculations are typically very compute-intensive. For FEP,
Gibbs will determine which non-bonded pairs have an interatomic distance which varies with one or
more constraints, and only these are re-evaluated in determiningVλ(i+1). This helps reduce the amount
of computer time required for a FEP simulation, although the total amount of time can remain high.
The additional cpu overhead for calculating constraint energies with TI is negligible in all cases.

While we have a good error check for some torsional PMF’s (the free energy values after rotating
360° should be the same), we typically have no reliable way of determining that for other simulations
enough sampling has carried out to determine a converged PMF curve. Our best guard against spurious
results is careful consideration of the specific problem and the inherent relaxation timescales of the

8/25/97

GIBBS module Page 226

surroundings.

7.8.6. VI. Error estimates and convergence
One of the thorniest issues related to free energy calculations is estimating the error in the

results7−9. At present, this error is typically estimated in one of four ways:

(1) Two separate free energy simulations can be run, one withλ progressing from 0→1, the sec-
ond with λ progressing from 1→0. These two calculations should yield the same free energy
value, and the difference between them (the "hysteresis") gives a lower bound on the estimate
in the calculation. Errors derived in this way often underestimate the actual error7.

(2) The difference between "forward" and "backward" values for a single run. As described in the
introduction, when FEP or slow growth is performed, double-wide sampling can be carried
out. This ultimately results in two pseudo-independent values for the free energy, one calcu-
lated from the sum of all theλ(i)→λ(i + 1) energies, and the other calculated from the sum of
all the λ(i)→λ(i − 1). If the results were exact, these values would be the same. In practice,
they will not be, and their difference gives a crude lower bound on the inherent error. Error
estimates derived in this manner tend to be even less reliable than those estimated using
method (1), and are usually worthless for slow growth type runs8.

(3) Two or more simulations are run under equivalent but different conditions. For example, star-
ing with different randomly assigned sets of velocities. The difference between the free ener-
gies provide an estimate to inherent errors. These estimates are subject to the same problems
as (1) above.

(4) A series of simulations is run which differ in the respective amounts of sampling done. For
example, simulation 1 might use 100 steps of equilibration and 100 steps of data collection at
each window, while simulation 2 used 200 steps of each. If the value from the shorter simula-
tion was accurate, the value from the second simulation should be acceptably close to it. If it is
not, the simulation must be run even longer to confirm convergence. This method probably
provides the best insurance that convergence has been reached, but it is not definitive, and it is
also the most costly.

It must be understood that none of the above methods allows a completely reliable error estimate.
At best, they provide alower boundon the error. A large apparent error is a good indication that the
results obtained are not appropriately converged. But a low apparent error does not necessarily indi-
cate a converged and accurate simulation. This is clearly shown in Reference (7).

7.8.7. VII. Changing parameters versus dual topologies
In "standard" operation, free energy changes in GIBBS are effected by transforming the potential

representative of state 1 to that representative of state 2. The topology of the system does not change.
To make atoms non-interacting at one of the endpoints, they are assigned zeroed non-bond and electro-
static parameters at this endpoint.

The improved mixing rules which can be used in GIBBS Version 4 (IOLEPS = 0, line 10) allow
a second method to be used. One result of these new mixing rules is that if any pair of atoms "exist"
only at mutually exclusive endpoints (e.g. atom i exists in state 1 but not state 2; atom j exists in state
2, but not in state 1), then effectively no non-bonded interactions are ever calculated between them.
This means that, in lieu of the "standard" method which uses a single topology, we can define dual
topologies, one corresponding to theλ = 0 endpoint, and the other corresponding to theλ = 1

8/25/97

GIBBS module Page 227

endpoint. For the former topology, all non-bonded parameters would be defined to be 0 in theλ = 1
state. Similarly, all non-bonded parameters for the latter topology would be 0 atλ = 0. The two
topologies would then never "see" each other at intermediate values ofλ . Defining dual topologies
can aid in performing free energy calculations where bond connectivities must change. Dual topolo-
gies is the method incorporated into the "CHARMM" program.

On an efficiency basis, the relative merits of the two methods have not been established. Addi-
tional discussion of the two methods can be found in Ref. (7).

7.9. References

(1) Straatsma, T.P., Berendsen, H.J.C. & Postma, J.P.M. (1986)J. Chem. Phys.85, 6720.

(2) Pearlman, D.A. & Kollman, P.A. (1989)J. Chem. Phys.91, 7831

(3) Pearlman, D.A. & Kollman, P.A. (1989)J. Chem. Phys.90, 2460.

(4) Fleischman, S.H. & Brooks, C.L. (1987)J. Chem. Phys.87, 3029.

(5) Yu, H.-A. & Karplus, M. (1988)J. Chem. Phys.89, 2366.

(6) Tobias D.J. & Brooks, C.L. III (1988)J. Chem. Phys.89, 5115.

(7) Pearlman, D.A. & Kollman, P.A. (1991)J. Chem. Phys.94, 4532.

(8) Pearlman, D.A. & Kollman, P.A. (1989) In:Computer Simulation of Bimolecular Systems: Theoret-
ical and Experimental Applications(van Gunsteren, W. and Weiner, P.K, eds.), p. 101, Escom Sci-
ence Publishers, Netherlands; van Gunsteren

(9) van Gunsteren, W.,ibid, p 27.

8/25/97

LES module Page 228

8. LES
The LES functionality for sander and gibbs was written by Carlos Simmerling, based on his the-

sis work and the experiences of the Elber group. It basically functions by modifying theprmtopfile
using the programaddles . The modifiedprmtopfile is then used with a slightly modified version of
sander calledsander.LES .

Information on usingaddles for sander is given here. The gibbs version is not yet ready. PME
is not currently supported.

8.1. ADDLES for sander
The old topology file is replaced by a new one with the new atoms. All residues are left intact-

the new atoms are placed together in the same residue as the original atom. Coordinates can be
obtained for the new topology file, including velocities and box coordinates. A different program is
available for taking this new topology file and splitting the copies apart into separate residues, if
desired.

SAMPLE INPUT FILE:

˜

˜ a ’˜’ is a comment line

˜

˜ all commands are 4 letters

˜

˜ use ’file’ to specify an input/output file

˜ then the type of file

˜ ’rprm’ means this is the file to read the parm or topology

˜ the ’read’ means it is an input file

˜

file rprm name=(solv200.topo) read

˜

˜ ’rcrd’ reads the original coordinates- optional, only if you want

˜ a set of coords for the new topology

˜ you can also use ’rcvd’ for coords+velocities, ’rcvb’ for coords,

˜ velos and box dimensions

˜

file rcrd name=(solv200.coords) read

˜

˜ ’wprm’ is the new topology file to be written. the ’wovr’ means to

˜ write over the file if it exists already, ’writ’ means don’t write over.

file wprm name=(91lesparm) wovr

˜

˜ ’wcrd is for writing coords, it will automatically write the velos and box

˜ if they were read in by ’rcvd’ or ’rcvb’

˜

file wcrd name=(91lescrd) wovr

˜

˜ now put ’action’ before creating the subspaces

˜

8/25/97

LES module Page 229

action

˜

˜ the default behavior is to scale masses by 1/N. omas leaves all

˜ masses at the original values

˜

omas

˜

˜ now we specify LES subspaces using the ’spac’ keyword, followed

˜ by the number of copies to make and then a pick command to tell which atoms

˜ to copy for this subspace

˜

˜ 3 copies of the fragment consisting of monomers 1 and 2

˜

spac numc=3 pick #mon 1 2 done

˜

˜ 3 copies of the fragment consisting of monomers 3 and 4

˜

spac numc=3 pick #mon 3 4 done

˜

˜ 3 copies of the fragment consisting of monomers 5 and 6

˜

spac numc=3 pick #mon 5 6 done

˜

˜ 2 copies of the side chain on residue 1

˜ note that this replaces each of the side chains ON EACH OF THE 3 COPIES

˜ MADE ABOVE with 2 more copies - net 6 copies but they are not identical!

˜

˜ each of the 3 copies of residue 1-2 has 2 side chain copies.

˜ the ’#sid’ command picks all atoms in the residue except

˜ C,O,CA,HA,N,H and HN.

˜

spac numc=2 pick #sid 1 1 done

˜

˜ 2 copies of the side chain on residue 2

˜

spac numc=2 pick #sid 2 2 done

˜

˜ 2 copies of the side chain on residue 3

˜

spac numc=2 pick #sid 3 3 done

˜

˜ 2 copies of the side chain on residue 4

˜

spac numc=2 pick #sid 4 4 done

˜

˜ 2 copies of the side chain on residue 5

˜

spac numc=2 pick #sid 5 5 done

˜

8/25/97

LES module Page 230

˜ use the *EOD to end the input

˜

*EOD

(end of sample input)

What this does: all of the force constants are scaled by 1/N for N copies. Charges and VDW
epsilon values are also scaled. New bond, angle, torsion and atom types are created. Any of the origi-
nal types that were not necessary (this happens with parm sometimes) are discarded.

Since each LES copy should not interact with other copies of the SAME subspace, the other
copies are placed in the exclusion list. The coordinates are simply copied- that means that all of the
copies occupy the same positions in space. In this setup, the potential energy should be identical to the
original system- this is a good test to make sure everything is functioning properly. Do a single energy
evaluation of the LES system and the original system, using the copied coordinate file. All terms
should be nearly identical (to within machine precision and roundoff).

A side effect of this is that the copies will all feel the same forces, and since the coordinates are
identical, they will move together unless the initial velocities are different. If you are initializing veloc-
ities using init=3, this is not a problem. When you read in velocities and copy them, if ’modv’ is speci-
fied the program will multiply each of the copies’ velocities by a random number between 0.9 and 1.1.
You should think about this and change the behavior to suit your needs- it is in addspace.f, the variable
is velfac. The program scales the velocities by sqrt(N) for N copies to maintain the correct thermal
energy (˜mvˆ 2), but only when the masses are scaled (not using omas option). Again, this requires
some thought and you may want different behavior. Reg- ardless of what options are used for the
velocities, equilibration should be carried out. These options are simple attempts to keep the system
close to the original state. For more information, see references 13 and 14 below.

It is important to understand that each subsequent pick command acts on the ORIGINAL particle
numbers. Making a copy of a giv en atom number also makes copies of all copies of that atom that
were already created. This was the simplest way to be able to have a heirarchical LES setup, but you
can’t make a extra copies of part of only one of the copies already made. I’m not sure why you would
want to, or if it is even correct to do so, but you should be warned. Copies can be anything- spanning
residues, copies of fragments already copied, non-contiguous fragments, etc. Pay attention to the order
in which you make the copies, and look carefully at the output to make sure you get what you had in
mind.

Using addles: there is a makefile, check the flags to make sure the proper FORTRAN command,
etc is used. I’ve only run it on the SGI. After compiling, simply run it :

addles < inputfile > outputfile

There are array size parameters in source/SIZE.BLOCK, I apologize in advance for the poor documen-
tation on these. Mail carlos@cgl.ucsf.edu if you have any questions of problems.

8.2. Using the new topology/coordinate files
These topology files are ready to use in Sander with one exception: all of the FF parameters have

been scaled by 1/N for N copies. This provides the correct LES behavior for all interactions except
those between pairs of atoms in the same subspace. For example, consider a system where you make 2
copies of a sidechain in a protein. Each charge is scaled by 1/2. For these atoms interacting with the
rest of the system, each interaction is sclaed by 1/2 and there are 2 such interactions. For a pair of

8/25/97

LES module Page 231

particles inside the sub-space, however, the interaction is scaled by 1/2*1/2=1/4, and since the copies
do not interact, there areonly 2 such interactions and the sum is not correct. Therefore, the interaction
must be scaled up by a factor of N. This change is included in the LES version of Sander.

To handle this, each particle is assigned a LES ’type’ (each new set of copies is a new type), and
for each pair of types there is a scaling factor for the nonbond interactions between LES particles of
those types. Most of the scaling factors are 1.0, but some are non-zero- such as the diagonal terms
which correspond to interactions inside a given subspace, and also off-diagonal terms where only some
of the copies are in common. An example of this type is the side chain example given above- each of
the 3 backbone copies has 2 sidechains, and while interactions inside the side chains need a factor of 6,
interactions between the side chain and backbone need a factor of 3. This matrix of scaling factors is
stored in the new topology file, along with the type for each atom, and the number of types. The
changes made in sander relate to reading and using these scale factors.

8.3. More information on the options

file: open a file, also use one of :

rcrd : read coords from this file

rcvd: read coords + velo from file

rcvb: read coords, velo and box from file

wcrd: write coords (and more if rcvd, rcvb) to file

wprm: write new topology file

les0: write gibbs topology for single to multiple

corresponding to original lambda=0

les1: write gibbs topology for single to multiple

corresponding to original lambda=1

action: start run, all of the following options must come AFTER action

modv: slightly randomize the velocities of the copies so that they move apart

spac: add a new subspace definition, using a pick command

defp: define which atoms should be in the ’perturbed’

group during the single -> multiple perts.

uses a pick command to select the atoms.

IN ADDITION TO LES ATOMS WHICH MUST BE INCLUDED!

omas: leave all masses at original values (otherwise scale 1/N)

bigm: allows user to pick a set of atoms and assign a new mass

pert: must be specified to use perturbation (gibbs) topologies

PERT is not yet functional in the current ADDLES release- check

the AMBER web page for updates (http://www.amber.ucsf.edu)

Here are a few that control how the scaling of the LES extra copies are handled for gibbs topolo-
gies: note that one must be very careful when changing the relative weight of different terms in poten-
tial functions, and also when creating a LES system where the endpoints do not exactly match the real

8/25/97

LES module Page 232

system, introducing error into to thermodynamic cycle being modeled.

sdih: dihedral terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, leave ’extra’ copies at 1/N while ’real’ copy goes to 1

sdi2: dihedral terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, all copies will go to scale factor of 1 (not just

the 1 ’real’ copy)

ndih: dihedral terms will be left at 1 (not scaled) during the

multiple copy to multiple copy stage, and also left at 1 during

single to multiple stages.

ndi2: dihedral terms will be left at 1/N (scaled) during the

multiple copy to multiple copy stage, and also left at 1/N during

single to multiple stages.

EITHER SDIH, SDI2 NDIH or NDI2 MUST BE USED (for perturbations)!

sang: angle terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, leave ’extra’ copies at 1/N while ’real’ copy goes to 1

san2: angle terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, all copies will go to scale factor of 1 (not just

the 1 ’real’ copy)

nang: angle terms will be left at 1 (not scaled) during the

multiple copy to multiple copy stage, and also left at 1 during

single to multiple stages.

nan2: angle terms will be left at 1/N (scaled) during the

multiple copy to multiple copy stage, and also left at 1/N during

single to multiple stages.

EITHER SANG, SAN2 NANG or NAN2 MUST BE USED (for perturbations)!

sbon: bond terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, leave ’extra’ copies at 1/N while ’real’ copy goes to 1

sbo2: bond terms will be scaled to 1/N during the multiple

copy to multiple copy stage. during the single to multiple

stages, all copies will go to scale factor of 1 (not just

the 1 ’real’ copy)

8/25/97

LES module Page 233

nbon: bond terms will be left at 1 (not scaled) during the

multiple copy to multiple copy stage, and also left at 1 during

single to multiple stages.

nbo2: bond terms will be left at 1/N (scaled) during the

multiple copy to multiple copy stage, and also left at 1/N during

single to multiple stages.

EITHER SBON, SBO2 NBON or NBO2 MUST BE USED (for perturbations)!

nonbond force constants and charges are always scaled 1/N in the LES

state, and scaled to either 1 for ’real’ copy or 0 for ’extra’ copies

during the single to multiple stages. other options would not be

appropriate.

Sample ’pick’ commands:

#prt A B | picks the atom range from A to B by atom number

#mon A B | picks the residue range from A to B by residue number

#cca A B | picks the residue range from A to B by residue number, ’

but dividing the residue between CA and C; the CO for A-1

is included, and the CO for monomer B is not. See reference 4

for an example of where this can be useful.

chem prtc A | picks all atoms named A, case sensitive

chem mono A | picks all residues named A, case sensitive

Completion wildcards are acceptable for names: H* picks H, HA, etc.

Note that H*2 will select all atoms starting with H and ignore the 2.

The user should carefully check the output file to ensure that the

proper atoms were selected.

8.4. Unresolved issues
(1) Sander can’t currently maintain groups of particles at different temperatures (important for

dynamics, less so for optimization. See references 13 and 14).

(2) Initial velocity issues as mentioned above.

(3) Analysis programs may not be compatible.

(4) Visualization can be difficult, especially with programs that use distance-based algorithms to
determine bonds.

(5) Water should not be copied- the fast water routines have not been modified. For most users this
won’t matter.

(6) Copies should not span different ’molecules’ for pressure coupling issues. Copies of an entire
’molecule’ should result in the copies being placed in new, separate molecules- currently this
is not done.This would include copying things such as counterions and entire nucleic acid
strands.

8/25/97

LES module Page 234

(7) Although this document includes information on perturbation options, the final version of LES
Gibbs is not quite ready.

(8) PME is not currently supported, but the code is being tested and should be available very soon.

(9) Copies are placed into the same residue as the original atoms- this can make some residues
much larger than others, and may result in less efficient parallelization with algorithms that
assign nonbond calculations based on residues.

(10)

8.5. References for LES and other multiple-copy methods
(not meant to be an exhaustive list, just a place to start)

(1) Elber, R.; Karplus, M. J. Am. Chem. Soc. 1990, 112, 9161

(2) Roitberg, A.; Elber, R. J. Chem. Phys. 1991, 95, 9277

(3) Li, H. Y.; Elber, R.; Straub, J. E. J. Biol. Chem. 1993, 268, 17908

(4) Simmerling, C.; Elber, R. J. Am. Chem. Soc. 1994, 116, 2534

(5) Simmerling, C. L.; Elber, R. Proc. Nat. Acad. Sci. USA 1995, 92, 3190

(6) Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F. Chem. Phys.
Lett. 1994, 222, 529

(7) Czerminski, R.; Elber, R. Proteins 1991, 10, 70

(8) Verkhivker, G.; Elber, R.; Gibson, Q. H. J. Am. Chem. Soc. 1992, 114, 7866

(9) Zheng, Q.; Kyle, D. J. Mol. Biol. 1994, 19, 324

(10) Huber, T.; Torda, A. E.; van Gunsteren, W. F. Biopolymers 1996, 39, 103

(11) Miranker, A.; Karplus, M. Proteins 1991, 11, 29

(12) Rosenfeld, R.; Zheng, Q.; Vajda, S.; DeLisis, C. J. Mol. Biol. 1993, 234, 515

(13) Straub, J. E.; Karplus, M. J. Chem. Phys. 1991, 94, 6737

(14) Ulitsky, A.; Elber, R. J. Chem. Phys. 1993, 98, 3380

(15) Huber, G. A.; McCammon, J. A. Physical Review E 1997, 55, 4822

8/25/97

Index 235

Index

This index is designed to help locate information for particular variable names. The Table of Contents
should be used to identify subject areas.

A

acon 140
add 78
addAtomTypes 79
addIons 79
addPath 79
addPdbAtomMap 80
addPdbResMap 80
aexp 164
alias 81
alignAxes 82
all 155
almda 208
almdel 209
almdl0 212
almstp(1) 212
alpha 150
amxdel 212
amxmov 211
amxrst 212
angav e 156
angavi 157
angle 155
arange 164
at1 140
at2 140
atnam 160
attract 155
awt 164

B

beta 150, 193
beta3 140
bond 83, 155
bondByDistance 83
boxx 150, 193
boxy 150
boxz 150

C

center 84
charge 84
check 84
clearPdbAtomMap 85
clearPdbResMap 85
clearVariables 85
combine 86
comp 146, 196
copy 86
corrsl 211
createAtom 87
createParmset 87
createResidue 87
createUnit 88
crossLink 88
cter 166
ctimt 208
cut 138, 156, 204
cut2nd 139, 204
cutprt 204

D

debugOff 89
debugOn 89
debugStatus 89
desc 90
deSelect 92
dielc 138, 204
disang 159
disave 156
disavi 157
displayPdbAtomMap 92
displayPdbResMap 92
dlmax 212
dlmin 212
drms 142
dsum_tol 151
dt 143, 197
dta 213
dtemp 144, 195

8/25/97

Index 236

dtuse 195
dumpave 159
dx0 141
dxm 141

E

edit 92
elec 155
emix 164
exact_ewald 151

F

fcap 148, 213

G

gamma 150
gamma3 140
grnam1 163
grnam2 163
groupSelectedAtoms 92

H

hb 155
heat 143, 192
help 93
hwtnm1 148, 214
hwtnm2 148, 214

I

i3bod 190
iat 160
iatcmp 205
iatr 166
iavdel 212
iavdem 212
iavslm 210
iavslp 210
ibelly 141, 190
ibigm 207
ibndlm 210
ibxrd 193
ichdna 139, 190
icmpdr 206
id2o 165

idiel 137, 201
idifrg 209
idsx0 202
idwide 210
ielper 201
iewald 149, 190
ifntyp 163
iftime 208
iftres 147, 193
ifvari 161
ig 143, 192
igr1 162
igr2 163
ihp 164
iinc 154
imgslt 147, 202
imin 134
impose 93
improp 155
imult 154, 161
init 142, 197
intern 155
intprt 203
intr 207
ioleps 203
ioutfm 136, 205
iperat 205
ipnlty 149
ipol 140, 190
iprot 166, 167
ir6 163
iresid 160
irest 135, 190
irstyp 161
isande 205
iscale 149
ischarged 151
isftrp 139, 207
ishkfl 199
isldyn 209
islp 211
isolvp 144, 195
istep1 154
istep2 154
isvat 196
itimth 199
itip 203
itrslu 202
ivcap 148, 213

8/25/97

Index 237

iv emax 198

J

jfastw 147, 199
jhp 164

L

list 94
listin 159
listOff 94
listout 159
loadAmberParams 95
loadAmberPrep 96
loadOff 97
loadPdb 97
loadPdbUsingSeq 98
logFile 99

M

matcap 148
matchVariables 99
maxcyc 141
measureGeom 99
mxsub 149

N

n3b 140
namepcm 167
namr 166
natcap 213
natr 166
nb 155
ncmpdr 206
ncorc 198
ncyc 141
ndfmin 142, 196
ndmpmc 210
nfft1 150
nfft2 150
nfft3 150
ninc 161
nion 140
nme 167
nmropt 134
noeskp 149

noesy 155, 159
norsts 212
npeak 164
nprot 166, 167
npscal 146, 196
nring 166
nrun 142, 193
nscm 142, 196
nsel 195
nsnb 138, 201
nstep0 156
nstep1 160
nstep2 160
nstlim 142, 197
nstmeq 210
nstmul 210
nstpa 213
nstpe 213
ntatdp 206
ntb 137, 193
ntc 146, 198
ntcm 142, 196
nter 166
ntf 137, 200
ntid 138, 200
ntmin 141
ntnb 138, 201
ntp 145, 195
ntpr 136, 204
ntr 141, 207
ntrx 135, 207
ntsd 212
ntt 143, 194
ntwe 136, 204
ntwem 136, 205
ntwprt 136, 206
ntwr 136
ntwv 136, 204
ntwvm 136, 205
ntwx 136, 204
ntwxm 136, 204
ntx 135, 192
ntxo 135, 192

O

obs 166, 167
omega 164
opta1 167

8/25/97

Index 238

opta2 167
optkonst 167
optomg 167
optphi 167
optteta 167
oscale 165
owtnm 148, 213

P

pencut 149
pres0 146, 196

Q

quit 100

R

r1a→r4A 161
r1→r4 161
remove 100
removeBond 101
removeOffLibEntry 102
removeRestraint 103
repulse 155
rest 155
restl 155
restrainAngle 103
restrainBond 103
restrainTorsion 105
rests 155
rjcoef 162
rk2a,rk3a 161
rk2,rk3 161
rstar 155
rwell 139, 208

S

saveAmberParm 105
saveAmberParmPert 106
saveOff 106
savePdb 106
scalm 149
scee 138, 204
scnb 138, 204
select 107
sequence 108

set 109
setBox 111
shcut 166
shifts 155, 159
short 155
shrang 166
softr 155
solvateBox 111
solvateCap 112
solvateDontClip 113
solvateShell 114
source 114
spline_order 151
stpmlt 156
str 166

T

t 142, 197
taumet 165
taup 146, 196
taur 207
taurot 164
tausw 149
tautp 144, 156, 195
tauts 145, 195
tauv 145
tauv0 145
temp0 143, 156, 194
tempi 143, 192
timlim 134, 190
tol 147, 198
tolprot 168
tolr2 198
torave 156
toravi 157
torsion 155
transform 115
translate 116
type 154

V

value1 154
value2 154
vdw 155
verbose 151
verbosity 116
vlimit 145, 197

8/25/97

Index 239

vzero 145

W

watnam 148, 213
wt 166, 167

Z

zMatrix 116

8/25/97

