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ABSTRACT

NASA's Satellite Laser Ranging Network was originally developed during the 1970s to track satellites carrying corner cube
reflectors.  Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations
that track 17 international satellites.  To meet the tracking demands of a steadily growing satellite constellation within existing
resources, NASA is embarking on a major automation program.  While manpower on the current systems will be reduced to a single
operator, the fully automated SLR2000 system is being designed to operate for months without human intervention.  Because
SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise
environment.  The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close
the tracking loop to optimize data yield.  To accomplish the autotracking tasks, we are investigating (1) improved satellite force
models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite
returns from noise, and (4) angular detection and search techniques to acquire the satellite.  A Monte Carlo simulator has been
developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking
performance against system truth.  A combination of simulator and preliminary field results will be presented.
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2. INTRODUCTION

NASA, in cooperation with a large number of international partners, has been operating an international network of manned,
centimeter accuracy satellite laser ranging (SLR) systems  for over 25 years.1 The network supports a number of scientific and
engineering investigations in the fields of geodynamics, Earth gravity, oceanography, lunar physics. relativity, time transfer, and
fundamental physics2. In 1996 alone, the number of satellites tracked by laser will increase by 33%, i.e. from 17 to 24. This rapidly
increasing workload, combined with falling government scientific budgets worldwide, has spurred development of the "SLR2000"
system. 

SLR2000 is a system concept for an autonomous, unmanned satellite laser ranging station with a single shot range precision of one
centimeter or better. The goal of the program is to provide 24 hour tracking coverage and to reduce both capitalization and operating
and maintenance costs by an order of magnitude relative to current outlays. The dominant cost driver in present systems is  the
onsite manpower required to operate the system,  to service and maintain the complex subsystems (most notably the laser),  and
to ensure that the transmitted laser beam is not a hazard to onsite personnel or overflying aircraft. The SLR2000 system consists
of an optical head mounted to a concrete pier which in turn contains a single rack of electronic equipment. The system
communicates  via Internet  for the purposes of obtaining updated satellite schedules and orbits and  transmitting range and ancillary
data and general housekeeping information.



To keep the cost of the tracking telescope and mount subsystems within reasonable bounds (~$100K),  the SLR2000 telescope
aperture is being constrained to a diameter of roughly 30 cm, which is comparable in size to present transportable SLR systems.
Single pulse energy is maximized, within eye hazard constraints, by filling the available receive aperture with the transmit beam.
Our baseline design assumes use of  the 532 nm doubled Nd:YAG wavelength with Single Photoelectron Avalanche Detection
(SPAD), but final wavelength selection will depend on the success of  programs, external to NASA, in developing a high speed,
high quantum efficiency infrared detector. 

To counteract  the negative effects of a roughly three order of magnitude reduction in laser energy relative to present systems,
SLR2000 must operate at kilohertz pulse repetition rates with a three times narrower beam divergence (on the order of 10 arcseconds
between 1/e2 intensity points) in order to achieve a minimum 100 range measurements within a two minute LAGEOS satellite
normal point bin. Such rates and energies can be achieved simultaneously with 100 picosecond pulsewidths by relatively simple
diode pumped, Q-switched microlasers and  passive multipass amplifiers, thereby eliminating the need for the unreliable and
short-lived flashlamps and associated  high voltage power supplies, complex switching and modulation electronics, and the long,
thermally stable resonators characteristic of modelocked lasers. The microlaser packages are sufficiently lightweight and compact
that they can be mounted to the same structure as the telescope, eliminating the need for multimirror Coude systems and vastly
improving alignment stability. Beam divergence can be adapted to the satellite being tracked through the use of zoom optics.

To handle the higher repetition rates, event timers similar to those used in lunar laser ranging (LLR) will displace single stop time
interval counters in present systems. Station epoch time will be maintained to better than 100 nsec with respect to USNO time by
a GPS-steered oscillator. More effective spectral, spatial, and temporal filtering will be required  to maintain  desirable signal to
noise ratios  during daylight ranging.

Acquiring and tracking satellites with this extremely low light level system will involve realtime signal detection processing. Current
SLR systems rely on the operator to acquire the satellite and compute whatever biases are needed for tracking.  SLR2000 must be
able to automatically determine signal from noise, and follow the signal by modifying the predictions  in realtime. To do this, the
system will utilize the information in the “range window” which gives the differences between the commanded and measured ranges
shot by shot.  Since the error in the measured range is small (less than 70psec), it can be taken to be exact.  The data in the range
window can then be analyzed using data processing techniques such as Poisson filtering (adapted from LLR) and correlation
analysis (discussed later in this paper) to differentiate between signal and noise.  Once the signal is found, the predictions can be
corrected to center and maintain the ranging returns in the range window and narrow the window itself.  To reduce the time spent
in acquisition and to increase the number of acquisition successes, we are also working on improving the predictions, by improving
the satellite force models used to produce the data, and also by increasing the frequency of updates.

This paper discusses our preliminary development work in determining the SLR2000 system characteristics and acquisition
requirements, in developing techniques for differentiating signal and noise, and in automating the acquisition and tracking of
satellites.  Our work involved the development of a Monte Carlo satellite laser ranging system simulator, whose design,
development, and use in testing autotracking algorithms is also presented.

3. ORBITAL PREDICTIONS

The satellite targets for SLR2000 follow a variety of orbits, each of which is determined by fitting tracking data to continuous arcs
of several days in length, using a weighted least squares batch data reduction scheme, such as in the NASA developed orbital
program, GEODYN.   The main limitation to accurately defining and predicting the orbit is error in the dynamic force model.  The
effect of this error grows in time and so the choice of arc length requires a compromise between definitive orbit accuracy, within
the data arc, and predictive capability, for acquisition in the future.  Short arcs allow us to define the orbit well, but do not sample
the long period model error terms which are important for prediction.  Sequential estimators based on Kalman theory, which can
also be implemented as modifications to a batch process, can improve definitive orbit accuracy and short-term predictions. However,
unless the statistical behavior of the system is well known, sequential methods cannot match the longer term prediction capability
of batch methods if they are based on a comprehensive orbit model. The optimum definitive arc length depends on the modeling
capability for the particular satellite target, and for well-behaved geodetic satellites, such as LAGEOS, arcs of several months can
be fitted to a few centimeters error in the range observations from a large network. These orbits can be used for accurate prediction
over several months, with very little error build-up. The largest prediction error is usually along the orbit track, and can be
compensated by a timing term, which can be monitored by the network as each station acquires. 

The critical modeling factors for orbit determination depend mainly on satellite altitude,  and these are listed in Table 1 for a number
of different types of retro-reflector-carrying satellites. Spacecraft in lower altitude orbits are strongly affected by atmospheric drag,
which is driven by solar flux conditions. In order to model this drag force, the satellite's area to mass ratio should be well



Table 1: Expected SLR2000 Prediction Errors

Satellite Altitude (km) Timebias
(msec)

Angle
Error
(urad)

Range
Error
(nsec)

GPS 20000 100 3.0 200

ETALON 19115 2 0.5 5

LAGEOS 5912 2 0.8 30

AJISAI 1476 10 2.0 40

TOPEX 1337 10 2.0 50

STARLETTE 806 10 4.0 60

ERS-1 783 10 8.0 60

determined, and timely solar flux information must be available, although its behavior is difficult to predict. In general, the lower
satellites such as ERS and Starlette are maintained in relatively short arcs of a few days in length, and their prediction accuracy is
short-lived. Attitude modeling is also required for non-geodetic satellites such as ERS and Topex, to allow for their orientation
relative to the center of mass of the spacecraft, as well as to adequately compute the area exposed to atmospheric drag and solar
radiation pressure.

The simple shape of passive retroreflector-only geodetic satellites such as Starlette, Ajisai, LAGEOS and ETALON eases the orbit
determination and prediction task. For these targets, the geopotential must be modeled to a resolution which is finer for the lower
satellites and must also include orbit-dependent resonance terms. The size of the geopotential force model can be limited to degree
and order 12 for high satellites such as LAGEOS and ETALON, but should have 20 by 20 dimensions to adequately model the
motion of satellites at Starlette's altitude. The main limitation to orbit determination accuracy for GPS targets is in the solar radiation
model, and the description of these vehicles' orbits requires a complex paramaterization of the solar pressure forces, as the orbit
accuracy depends strongly on eclipse conditions. Much smaller solar radiation and re-radiation forces on LAGEOS and ETALON
must be modeled to maintain precise orbit determination for these satellites over long time intervals.

The movement of the station position on the Earth must also be adequately represented if we require an accurate orbit. Polar motion,
the movement of the Earth's axis, can be taken from standard sources, or estimated directly from the SLR observations. The

rotational position of the Earth must however be derived from external sources, as the satellite orbit defines a non-inertial system
in which station longitude, Universal time, and the right ascension of the node of the orbit cannot be separated. The positions of
the stations in a geocentric system can quickly be determined to a few centimeters, although preliminary surveys based on GPS
would provide positions adequate for beam pointing.

With the best force models and a modest quantity of ranging data on which to base the prediction, accurate acquisition can be
maintained for periods of several days or even months by applying simple along-track error compensation. Complicated or sparsely
tracked vehicles present a challenge to timely and accurate look-angle predictions for placing the target within the station's beam,
and range predictions for placing the target within the range gate. Search mechanisms have been developed to improve acquisition
speed, but as communication become cheaper and computers more powerful, the acquisition process can be simplified by computing
the orbits more often, so that errors have less time to build up. Some of the computer power for this new procedure can reside within
the instrument, which already has a capable machine for the real-time tracking task, and so each station can share the burden with



Figure 1: Example of STARLETTE prediction errors

a central facility.  Testing of more frequently
updated predicts is currently  taking place in our
existing SLR Network.  The predicts
are produced  automatically on a daily basis at a
central facility and are electronically  downloaded
by the stations.   Table 1 shows the expected errors
in the daily predicts for SLR satellites with various
altitudes and characteristics.  The timebias is the
dominant error source in the predicts, and manifests
itself in both angular and range error.   The errors in
Table 1 were estimated by comparing the predicted
data against orbits generated from actual tracking
data.   Figure 1 plots the errors over the course of a
pass for a 75 degree maximum elevation
STARLETTE pass.  These daily predicts have much
smaller errors in both range and angle than the
existing operational predicts which can have range
errors of a microsecond and hundreds of
microradians of angular error due to the uncertainty
in the time and crosstrack coordinates.  These new
predicts are, for many of the satellites, capable of
placing the laser beam directly  on the satellite
without any adjustment, making the  system errors (due to unmodeled or time varying misalignments) the dominant error source
in acquisition.  Results of testing at existing SLR stations, where the laser divergence is larger than most of the systematic errors,
show that systems can acquire the satellites using these new predicts immediately upon the start of tracking.

4. ACQUISITION REQUIREMENTS

All target satellites must be tracked by SLR2000 in a totally  autonomous fashion.  Key orbit characteristics for some typical SLR
target satellites are provided in  Table 2. We assume in presenting the optical radar cross-section data that the three basic functions -
acquisition, tracking, and ranging  - will be accomplished using some combination of the fundamental and second harmonic
wavelengths of the Nd:YAG laser at 1064 and 532 nm. Our initial uncertainties in angular pointing, time, and range are based on
hardware characteristics, past experience, and analyses of the type presented in the last section.

Table 2: Typical Target Satellites* Characteristics and Acquisition Requirements3,4

Starlette LAGEOS GPS
Altitude (km) 960 5,900 ~ 20,000

Period (Hr/Min/Sec) 1/43/55.8 3/45/26.5 11/49/4.14
Velocity (km/second) 7.39 5.7 3.894

Maximum Time-in-View , 200 to 200 (Minutes) 8.805 51 239.86
Maximum Slew Rate (milliradians/second) 7.7 @ zenith 0.967 @ zenith 0.195 @ zenith 

Initial Acquisition Elevation Angle (Degrees) < 20° < 20° ~30°
Cross-Section:  5320 nm / 1064 nm (106 meters2) 0.65 / 0.52 7 / 5.7 18 / 14.4
Initial System Pointing Uncertainty (µ-radians) ± 72.7 ± 72.7 ± 72.7

Initial Time Uncertainty (msec) ± 10 ± 2 ± 100 
Derived Acquisition Angular Uncertainties (µ-radians) ± 80 @ 20° El

± 120 @ 90° El
± 80 @ all El ± 80 @ all El

Initial Range Uncertainty  (nsec) ± 100 ± 100 ± 200 
Maximum Initial Rate of Change of Range Rate (nsec/sec2) ~ 300 ~ 10 < 1

Time to Acquire  (seconds) < 10*s up to 120 up to 300
Probability of Acquisition ~ 90% ~ 90% ~90%

Eye-Safety At aperture At aperture At aperture



Energy per Pulse (uJ)

532nm           1064nm
     75     0
     70   47
     60 147
     50 247
     40 347
     30 447
     20 547
     10 647
       5 697
       0 297

Table 3: Simultaneously 
Eye-safe Energies/Pulse

5. EYE SAFETY

To keep the cost of the tracking telescope and mount subsystems  within reasonable bounds,  the SLR2000 telescope aperture is
presently constrained to about 30 cm, which is comparable in size to present NASA transportable systems. Furthermore, it was
decided early in our deliberations that eyesafe beams are to be preferred over active aircraft radars in ensuring eye safety. Taking
this approach has several important advantages. From an engineering and economic standpoint, the passive eyesafe approach is
absolutely failsafe and eliminates the need for an additional  large and expensive aircraft radar subsystem. Furthermore, from a
political and legal standpoint, it should be easier to obtain approval from local regulatory agencies, such as the Federal Aviation
Administration (FAA) in the United States for such a system to operate in an unattended mode. The principal disadvantage is that
combining the eyesafe requirement with the small aperture results in a maximum single pulse energy which is significantly less than
a millijoule at the visible and near infrared wavelengths commonly used in SLR. As we shall see shortly when we discuss
probability of detection,  SLR2000 must operate at kilohertz pulse repetition rates with a narrower beam divergence on the order
of 10 arcseconds  ( between 1/e2 intensity points) in order to counteract  the negative effect of a roughly three order of magnitude
reduction in laser energy relative to present systems and to achieve a minimum 100 range measurements within a two minute
LAGEOS  normal point bin. However, such rates and energies can be easily achieved simultaneously with 100 picosecond
pulsewidths by a relatively simple Q-switched  microlaser followed by a single multipass amplifier. It is demonstrated elsewhere
that a Nd:YAG microlaser operates most efficiently at roughly a 2 KHz rate when pumped by a CW diode.5  These microlaser
packages are sufficiently lightweight and compact that they can be mounted to the same structure as the telescope, eliminating the
need for multimirror Coude systems and vastly improving long term alignment stability.

Clearly, single pulse energy is maximized, within the eye hazard constraints, by filling the available aperture with the transmit beam.
In calculating the eyesafe energy at a particular wavelength  according to U.S. ANSI standards,6 one must take into account
cumulative multiple pulse effects on the human retina according to the equation

where Emax  is the eyesafe energy, MPE is the maximum permissible exposure (5 x 10-7 J/cm2 @ 532 nm and 5 x 10-6 J/cm2 @ 1064
nm), PRF is the pulse repetition frequency, T is the exposure time in seconds, and A is the
area of the telescope aperture. For visible wavelengths, readily seen by the observer, a
reaction or integration  time of 0.25 seconds must be assumed. For infrared wavelengths,
invisible to the observer, the ANSI standards require longer integration times on the order of
ten seconds. Assuming a repetition rate of 2 kHz and an aperture area A = 0.07 m2, the
maximum allowable transmitted energy  per pulse is 297 microjoules for the fundamental
(1064 nm) and about 75 microjoules for the frequency-doubled (532 nm) wavelengths of
Nd:YAG respectively.

We hypothesize that, if both wavelengths are present simultaneously,  the pulse exposure time
can be reduced  to 0.25 seconds for both wavelengths resulting in an expression for the total
eyesafe energy given by

Table 3 shows the trade-off  between  green and  infrared energy  provided by the latter equation for 2 kHz PRF and 30 cm aperture
diameter telescope.   Subsequent analyses performed in this paper assume 30 uJ of green laser energy and 447 uJ of infrared.

In the authors'  opinion, the use of so-called “eyesafe” wavelengths longer than about 1.4 microns does not, at least at the present
time, offer any real advantages to SLR2000. These wavelength regions suffer from relatively inefficient, low gain, and
technologically immature laser materials and  exotic detector materials typically characterized by relatively low quantum efficiency
and high internal noise. Furthermore, going to longer wavelengths to take advantage of the higher eyesafe pulse energies
reintroduces many of the undesirable features of high energy laser systems which are largely  eliminated by the use of the low
energy, diode-pumped microlaser. For example, high energy lasers must be pumped either by flashlamps (with their accompanying
large high voltage power supplies and cooling systems) or by rather expensive high power laser diode arrays. Furthermore, these
larger lasers are more likely to damage optics and  cannot be directly mounted to a small telescope which then requires the use of



a more complex Coude or similar multimirror system, further increasing cost and endangering the long term reliability and
alignment stability in an unattended mode. 

6. OPTICAL RADAR LINK EQUATION

The mean number of signal photoelectrons seen by the detector is given by the radar link equation1

The definitions of the parameters used in the above equation, the values used for analysis, and the minimum elevation angles for
three satellites, are given in Table 4.  Figure 2 presents daylight 532 nm results for the three satellites, for all elevation angles.

Table 4:  Parameters for Satellite Signal Level Estimation

Parameter Symbol Value for 532 nm Value for 1064 nm
Quantum Efficiency 0 0.40 0.20  

Energy /pulse at 
aperture(µJ)

Ep(t 30 447

Photon Energy (J) h< 3.73 (10-19) 1.87 (10-19) 
One way path transmission Ja

Jc

0.75 @ 20° elevation
0.12 @ 20° elevation

0.8 @ 20° elevation
0.15 @ 20° elevation

Optical Cross-section (m2) F 0.65(106) for STARLETTE
7 (106)  for LAGEOS

20 (106) for GPS

0.52 (106) STARLETTE
5.7 (106) LAGEOS,

14.4 (106) GPS
Slant Range (Km):

Starlette
LAGEOS

GPS

R
2052 @ 20°  elevation
8532 @ 20° elevation
23503 @ 30° elevation

same as for 532nm

Receiver Optics
Transmission

(r 0.12 (day)
0.50 (night)

0.12 (day)
0.50 (night)

Receiver  Area (m2) Ar 0.07 for 30 cm diam. 0.07 for 30 cm diam.
Turbulence Parameter (trb 1.5 1.25

Aperture Fitting Parameter G 0.5 0.5
Transmitter half-angle

beamwidth (µrad)
2t  20  20

Mean signal pe`s per pulse
Starlette (20°)

LAGEOS (20°)
GPS (30°)

npe
s cirrus / clear

0.0028 / 0.194
0.000078 / 0.0054
0.00015 / 0.0104

cirrus / clear
0.136 / 6.06

0.00483 / 0.215
0.0025 / 0.0159

The above quantum efficiency is available in the green either from European developers of Single Pulse Avalanche Detectors
(SPADs), or in a more conventional form as Model 280 Intensified Photo-diodes from Intevac ATD.  The 1064 nm quantum
efficiency is available in a photon counting developmental device, the TE-IPD, currently being developed by EOO, Inc. and Intevac
ATD under a NASA/GSFC SBIR.



Figure 2: Mean single pulse photo-electron levels for a 532nm beam under
daylight cirrus conditions and using the parameters in Table 4

7. OPTICAL BACKGROUND NOISE

The governing equation  is where N<(8) is the  background spectral radiance in

watts/meter2-ster-Å , Bopt is the optical filter bandpass in Å, Sr = B2r
2 is the solid angle field-of-view in steradians, and 2r is the half

angle of the  receiver field-of-view in radians. This equation is evaluated in Table 5 for both green and infrared.  The night-time
values are negligible, but the daytime values are comparable to the signal levels.

Table 5:  Background photo-electrons per range gate, 532 and 1064 nm, using parameters from Table 4,
with Bopt=1.0 D and Sr=9.6(10-10) steradians.

Condition 532 nm Background
Spectral Radiance4:

N<(8)
(watts/meter2-srad-Å)

532 nm-generated
photo-electrons per
1 usec range-gate: 

npe
b

1064 nm Background
Spectral Radiance4:

N<(8)
 (watts/meter2-ster-Å)

1064 nm-generated
photoelectrons per 1

usec range-gate: 
npe

b

Night: Clear 1.46 (10-8) 0.00000014 7.3 (10-9) 0.000000016
Day: Clear 1.46 (10-3) 0.014 7.3 (10-4) 0.0016

8. DETECTOR DARK CURRENT NOISE

Even in the absence of optical background noise, some detectors generate a substantial dark count rate which will compete with

the valid signal pulses.  The governing equation is given by for single pixel devices, while for multi-
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Figure 3: Returns in the Range Window

pixel detectors or receivers the expression  is   where  Id is the dark current density at the cathode in

amps/cm2 , e is the electron charge (1.6 x 10-19 coulombs), Dd  is the diameter of the photocathode (cm),  ipix
dc is the dark current in

amperes per pixel or array element at the cathode equal to idc/Npix and where idc is the total cathode dark current and Npix = number
of pixels in the field of view / detector array.  

For a single pixel green receiver, assuming a typical dark current density of 10-15 amps/cm2 and a cathode diameter of 1.2 cm, the
number of dark counts in a 1 usec range gate is 0.007.  For a 16 pixel 1064 nm TE detector, and for a total cathode dark current of
0.1 picoamps, the number of dark counts in a 1 usec range gate = 0.039 per pixel.  As can be seen from Figure 2, these levels are
commensurate with the signal  levels for the higher satellites.  Autotracking will, therefore, require the development of analysis
techniques to extract the signal from the noise.

9. TARGET ACQUISITION

Acquiring the satellite consists of determining if the system is hitting the satellite, estimating how far off the range and angles are,
and then making use of that information to optimize the pointing and ranging control.  Also required in the acquisition scenario is

the ability to search for the satellite if
no signal is found, and to be
confident that the algorithm being
used will seldom fail to find the
signal or mistake noise for satellite
signal.  As can be seen from the
above discussion, for SLR2000 all
acquisition must be accomplished in
an environment where the expected
mean per pulse signal returns are in
general quite small, even with a
relat ively narrow ±20: rad
beamwidth, and where the daylight
noise rates are comparable to the
mean signal levels, even assuming
reasonable range gates of 100 nsec to
1:sec.

The range return is the SLR’s most accurate measurement (1cm shot to shot) and is therefore the best information to make use of
in the acquisition process.   Range returns are analyzed in the form of observed minus calculated (O-C) graphs where the range
returns minus the predicted ranges (called range deltas) are plotted on a shot by shot basis in the range window as shown in Figure
3.  When the prediction biases are held constant, the range deltas form a straight line for a period of up to many seconds.  The slope
of this line is a function of the error in the dependent variable, time (called timebias).  With the advances in the accuracy of the
predictions, this error has become small.  This  gives the range delta plots a very small slope, and causes the range deltas to change
very little in vertical positioning over the course of a few seconds.

We are investigating two methods for distinguishing signal from noise in the range window.  Both generate a histogram from O-C
data  by  binning the range deltas over a period of time.  Both rely upon a small slope in the range delta data to ensure that most
of the signal will fall within a single histogram bin.  Lower expected return rates, higher range rates, and larger errors in the timebias
all require an increase in the histogram bin size.  The optimum bin size is just large enough to ensure that the signal remains in a
single bin, since the larger the bin, the higher the noise count, and the higher the probability of false acquisition.  The range-rate
and the information in Table 1 is known, but other parameters (such as atmospheric transmission) are unknown and must be
accounted for conservatively in any algorithm.

9.1 Acquisition Probability
The Poisson Filtering Algorithm was developed for Lunar Laser Ranging in the late 1960s7 and was ported to Satellite Laser
Ranging analysis in the late 1980s8 to remove noise in the non-realtime post processing and analysis of the data.  In current SLR
data, the signal to noise ratio is often extremely high whereas, in the SLR2000 system, the signal will often be dominated by the



Figure 4: PK($3)

noise, as is true in the lunar case.  Unlike the lunar case, however, the nonzero O-C slope and possible nonzero range bias of the
data adds an extra challenge in the algorithm development.  The algorithm uses the number of returns over a period of time, called
a Frame, to estimate the noise rate.  The noise is assumed to be Poisson.   A histogram of the range window is generated as shown
in Figure 3, and the noise rate is divided by the number of bins to find a noise rate per bin.  Assuming a Poisson distribution for the
number of noise returns per bin, the algorithm then determines a noise count which has less than a 50% probability.  Any bin which
has more returns in it than this count is assumed to be signal.   If no bin has more returns than this number, the process can be
extended and the histogram continues to fill until either the signal is found, or the period of time becomes too long.

The Correlation Detection Technique, which members of our team  developed,  also produces a histogram of the range deltas.  In
this process, however, multiple Frames are examined to see if any bin is correlated in at least two of the Frames.  Here correlation
is defined as having three or more points in the same bin.   For an algorithm to be viable the probability that the signal will be
correctly identified must be greater than 90% and the probability of incorrectly identifying noise as signal must be less than 10%.
The probability that three or more signal photo-electrons are detected by correlation identification is given by

where:
npe

s = mean # signal photoelectrons per return
Npe

s = mean # of signal photoelectrons after K returns
K = # of range returns accumulated before a decision

is made (called a Frame).

We can see from Figure 4 that in order to have greater than 90%
probability of successful correlation detection the mean value of
signal returns must be 6 or more.  From the expected signal levels
in Figure 2, this means that for LAGEOS (daylight cirrus at 30
degrees elevation) the Frame must be three-quarters of a second,
for STARLETTE (daylight cirrus at 20 degrees elevation) a
quarter of a second is sufficient, and for GPS (daylight cirrus at
30 degrees elevation) the Frame will have to be 20 seconds long.
Tracking GPS during the night, however, allows a broader band
spectral filter to be used, which increases the system transmission.
Here the expected return for GPS is four times greater, improving
the Frame size to 5 seconds.  The uncertainty in the timebias
(from Table 1), along with the satellite range rate error and the
Frame times determine the histogram bin size for each satellite.
Table 6 lists the bin sizes required for each.

Table 6: Correlation Detection Histogram Bin Size Requirements (532nm)

Satellite Prediction
timebias
(seconds)

Rate of change
of range rate
(nsec/sec2)

Time (seconds)
for 5 Frames

Bin size 
(nsec)

Starlette (day) 0.010 300. 1.25 3.75

LAGEOS (day) 0.002 10.0 3.75 < 0.50

GPS (day) 0.100 0.4 100.0 4.0

GPS (night) 0.100 0.4 25.00 1.0

9.2 False Acquisition
The problem of false correlations, caused by noise photoelectrons generated by the optical background or the cathode dark current,
is equally as important as a successful correct identification of signal.  The governing equation is:



where
m = the mean number of noise photoelectrons collected
   during the decision time (ie the Frame)
k = the correlation number (k=3 here)
nbin = number of histogram bins.

This equation applies during both acquisition and ranging, but false correlation is more of an issue during acquisition because the
number of noise photoelectrons may be far greater per bin due to the larger bin size required.  Using the numbers given in Table
6 required for successful signal identification and the expected noise levels during a clear day for optical background at 532nm
(1.46x10-3 watts/meter2-srad-D) and detector dark current (1x10-15  amps/cm2), we see in Table 7 that all three satellites can be
successfully acquired and tracked at 532nm using Correlation Detection except for GPS during the daylight.  More work is required
to determine if an algorithm can be developed that can acquire a GPS daylight pass at 532nm.  The possibility of using the infrared
for acquisition instead of the green is also being investigated,  and the next section presents some of our analysis of acquisition using
the infrared.   Simulator tests using the Table 7 values are shown at the end of this paper.

Table 7: Probability of False Correlation (532nm)
for a 1:sec Range Gate

Satellite Noise
(pes/gate)

Bin Size
(nsec)

Frame
Time

(# shots)

Average
noise in

Frame per
bin (m/nbin)

# Bins
(nbin)

Probability of
False

Correlation

Starlette(day) 0.02 3.75 500 0.013 266 negligible

LAGEOS(day) 0.02 0.50 1500 0.020 2000 0.3%

GPS (day) 0.02 4.00 40,000 1.136 250 100%

GPS(night) 0.007 1.00 10,000 0.071 1000 5.5%

9.3 Angular Aids to Acquisition
Finally, the system must be able to put the laser beam on the satellite in order to acquire and track.  We have been examining the
use of the 1064nm beam for angular corrections.   From Table 2, the initial angular uncertainty during acquisition is typically
±80:rad.  Since a typical  cone of uncertainty will encompass about 16 beamwidths, target acquisition will require the
implementation of one of the acquisition approaches described in Table 8.

Table 8: Appropriate Acquisition Approaches

Transmitter Beam Receiver/Detector Comment
Full uncertainty beam Full uncertainty receiver FOV Minimum SNR; Requires zoom for  localization
Full uncertainty beam Multiple pixel Better SNR; multiple parallel processing, zoom

transmitter
Small beam, << uncertainty Small (single pixel) Best SNR, minimal parallel processing, 

scanning required
Intermediate Size beam Intermediate number of pixels Balance for optimization, some combination of

parallel processing, zooming, and scanning will
be required

We must treat this acquisition process like a photon counting optical radar, in which case only 1064 nm photon counting detectors
are useful -- the  Geiger Mode APDs (GM-APDs or SPAD) and the emerging TE device mentioned earlier.  

The same method of Correlation Detection described for 532nm will be used in the identification of the signal for each of the
1064nm detectors.  When analysis of acquisition was examined for high satellites (such as LAGEOS and GPS) with the large (80



:radian) beams and the 16 pixel detectors, it was found that the Probability of False Acquisition was 100%. Consequently , we
considered a small spot transmitter (20 :radians) and a 2 x 2 pixel receiver. This means that 16 spots must be scanned in order to
cover the same uncertainty area as for the fully flooded technique. The signal beam is, however, sixteen times smaller, so the signal
photo-electron rate is 16 times greater which  means that the same probability of signal acquisition can occur 16 times faster, the
frame length can be 16 times smaller, and the number of noise photo-electrons per 20 :radian field of view would in turn be 16
times smaller.

Analysis using Correlation Detection for a 200 nsec range gate with a noise rate of 63.3 pe/sec in the gate gives 0.01 for a
probability of false acquisition.  This result shows substantial design freedom.  The single frame dwell time required for this
acquisition is 0.4 seconds, so  the 16 spots would be actively viewed for 6.4 seconds.  Since the acquisition requirement is 120
seconds, there is more than enough time to accelerate, move, and settle between the spots.

For the low satellites (such as Starlette) we considered the full flood beam again, and  the False Acquisition Probabilities varied
from 23% to 53%, which we consider to be very marginal performance.  On the other hand, using the 20 :radian beam and the 2
x 2 detector, the Probability of False Acquisition was n 0.01. We also, therefore,  considered an intermediate case, with a 40 :radian
transmit beamwidth and the 2 x 2 detector, which gave a Probability of False Acquisition of 3%.   This is good performance which
allows for modifications to the design parameters, and requires a maximum dwell time of 4 x 0.125 = 0.5 seconds, with four spots
to be addressed by the scanner over the allowable 10 seconds.  Since it  only requires processing of 4 channels of information, this
is our design choice.

A summary of the 1064nm acquisition hardware and performance parameters (for the lowest elevation angles and worst case path
transmission) are given in the following two tables.

Table 9:   1064 nm Acquisition Baseline Hardware Parameters
Transmitter Receiver

Wavelength:  1064 nm Filter Bandpass:  1 Å
Energy Per Pulse at  Aperture:  447 µjoules Detector Quantum Efficiency:  20%

Average Pulse Repetition Frequency:  2 kHz Detector Mode:  Photon Counting
Average Power at the  Aperture:  0.894 Watts Cathode Dark Current:  10-13 amps

Pulsewidth:  < 500 picoseconds (nominal) Resolution:  < 1 nanosecond
Transmitter Aperture:  30 cm diameter Receiver Aperture:  30 cm diameter

Optics Transmission:  Implicit in energy and power
levels at the transmitter aperture

Optics Transmission:  12%, receiver aperture to
detector cathode

Transmitter Beamwidth:  Selectable, depending on
satellite target  

Receiver Field-of-View:  Selectable, depending
on satellite target.

Green output During Acquisition:  30 µjoules per
pulse, 2 kHz, at the transmitter aperture

Pixilated Field of View / Multiple Pixels per
Detector or multiple Detectors

Table 10: Optical beamwidths, Fields-of-View, Acquisition Times, Scanner and Zoom Optics Parameters 
Starlette LAGEOS GPS

Transmitter Beam Width (Half-Angle), µradians 40 20 20
Receiver FOV (per pixel)  (Half-Angle), µradians 20 10 10

Time to Acquire (per spot), seconds 0.125 0.4 0.4
Initial Angular Uncertainty , µradians ± 80 by ± 80 ± 80 by ± 80 ± 80 by ± 80

Required Number of “Spots” ~ 4 ~ 16 ~ 16
Time to Cover the “Spots”, seconds 0.50 6.4 6.4

Total Scanner Overhead Time Allowed, seconds 9.50 113.6 293.6
Zoom Optics Range 2:1 1:1 1:1

It is anticipated that tracking will continue after acquisition, during the ranging function, by continued use of the 1064 nm signal
and the quadrant detector.  We estimate that drift corrections could be provided even at the lowest elevation angles with update rates
of 0.2 seconds for Starlette and 6.5 seconds for the higher satellites.
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10. SLR2000 SIMULATOR

The SLR simulator was developed to check candidate autotracking algorithms prior to hardware development . Figure 5 shows the
overall block design.  A main routine provides operator interaction, inputs the required parameters and develops the desired plotting
data and statistical information.    A separate subroutine computes the “Truth” about the satellite’s position, a “Hardware” subroutine
calculates the system response to the satellite tracking and ranging, while the “Field Software” subroutine performs the tasks
expected of the onsite computer(s).  The simulator can be used to test algorithms for extracting signal from noise, automated
acquisition and tracking, and realtime prediction update.  The program models the tracking subsystem, the receiver subsystem, the
laser, the satellite, the environment, and their associated errors.  Only those parts of these subsystems that affect the autotracking
are modeled; there is no attempt to make a complete system simulation.  The functions/errors modeled in the simulator are shown
in Table 11.  The models used include those given in this paper along with others from the references.1,9   Table 12 lists the
parameters used in the simulation test results.  For the most part these values match those given in Table 4.

Figure 5: SLR2000 Simulator Design

Both the Poisson Filtering Technique and the Correlation Detection Technique were incorporated as subroutines into the Simulator
for extracting signal from noise.  Either algorithm can be used, and both have been tested with success.  The plots in Figure 6 show
simulator test results for acquisition of STARLETTE, LAGEOS and GPS using the Correlation Detection Technique.   The plots
show all events (noise or signal) in the range window as dots; this would be what the SLR2000 system would see.  The squares
mark actual returns from the satellite; this information is not available to the SLR2000 system.  Initially the predictions contain
errors in both time and range.  The Field Software collects the data and every Frame runs the Correlation Detection Algorithm to
check if there are satellite returns.  Once the signal is found, the field software calculates and applies the required time and range
biases needed to center the range returns in the window.  The field software then closes the range window down to 10 nanosecond
and enters tracking mode.  The STARLETTE and LAGEOS tests were during daylight but due to the narrow filter used (1.0 D)
and relatively narrow range gate (1 :sec) little noise enters the range window. The prediction timebias error for the STARLETTE
pass was 10 milliseconds, and the histogram binsize used was 3.75 nanoseconds.  The LAGEOS prediction timebias error was 2
milliseconds, and the histogram binsize used was 0.5 nanosecond.    The short Frame time, coupled with the small timebias, gives
the signal a nearly  zero slope in the range window and allows both algorithms to work successfully.

The signal level from the GPS satellite is extremely low, due to a relatively small reflector area for its high altitude,10 and is not
representative of other satellites at this altitude such as Etalon and GLONASS.  Because this pass was at night, the system was
able to use the 3 D filter (ensuring a higher signal rate due to this filter’s higher transmission) .   The Frame used was 5 seconds,
and the algorithm took the minimum 10 seconds to find the satellite.  The prediction timebias error for this pass was 100
milliseconds and, due to the small GPS range rate, the algorithm was still able to use a histogram binsize of 1.0 nanosecond.  The
Poisson Filtering Algorithm yielded similar results for all three cases.  Neither algorithm, however, was able to find the GPS signal



in the daylight.

Table 11
Functions/Errors currently modeled in the Simulator

! Pointing System
- Bias of mount system (error in mount model)
- Random repeatability error

! Receiver Timing
- Model receiver (PMT or photon-counting APD)
- TIU error modeled as random Gaussian noise
- Assume no gating error or start time error
- Compute background noise above threshold
- System delay bias can be applied

! Receiver Energy
- Assume fixed transmitter energy
- Assume Gaussian pulse
- Compute transmitter gain as function of laser divergence
- Attenuate with system and atmospheric transmission 
- Attenuate as function of pointing error
- Treat satellite as single cube with given cross-section

Table 12
Hardware Parameters for SLR2000 Test Runs

Shot repetition rate........................................2000 Hz
Wavelength........................................532 nanometers
Spectral bandwidth................1.0 (day) / 3.0 (night)D
Laser divergence.........................20 urad (half-angle)
Transmit energy..................................30 microjoules
Mount repeatability.........................5 urad (1-sigma)
Mount model error.......................7.2 urad (1-sigma)
System delay......................................20 nanoseconds
TIU error..........................0.02 nanoseconds (1-sigma)
Receiver area.........................................0.071 meters2

Receiver FOV (solid angle)........9.6D-10 steradians
System transmission (rcv).......0.12(day) / 0.50(night)
Detector quantum efficiency................................0.40
Detector dark current...........................1.0D-15 amps
Atmospheric transmission...................0.75 (at zenith)
Solar irradiance (day).......0.0014 Watts/Ang-ster-m2

GPS lidar cross-section......................20.0D6 meters2

LAGEOS lidar cross-section...............7.0D6 meters2

STARLETTE lidar cross-section........0.8D6 meters2

11. CONCLUSION

We have demonstrated that a low energy, high repetition rate, eye-safe satellite laser ranging system can be designed to acquire
and track the existing  constellation of laser ranging satellites.   Whether the high satellites such as GPS can be tracked during the
daylight is unclear as yet, and the details of how this system will be automated remains to be determined.  Theory and simulation,
however, both show that with the emerging technologies available, there will be enough margin between signal and noise to acquire
and track all current and planned retro-reflector carrying satellites.
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Figure 6: SLR2000 Simulator Acquisition Testing
 (Returns in the Range Window)

Initial two seconds of a Starlette pass
   on 41/1996 at 19:18Z (Daylight)

Timebias of predicts = 10 msec
Elevation of satellite at acq = 20 deg
 

Initial two seconds of a LAGEOS pass
   on 41/1996 at 18:18Z (Daylight)

Timebias of predicts = 2 msec
Elevation of satellite at acq = 30 deg
 

Initial twelve and a half  seconds of a
   GPS35 pass on 51/1996 at
   03:41Z (Night)

Timebias of predicts  = 100 msec
Elevation of satellite at acq = 30 deg


