

High Level Assembler for MVS & VM & VSE IBM

Toolkit Feature User’s Guide
Release 5

 GC26-8710-08

High Level Assembler for MVS & VM & VSE IBM

Toolkit Feature User’s Guide
Release 5

 GC26-8710-08

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 327.

Ninth Edition (June 2004)

This edition applies to IBM High Level Assembler for MVS & VM & VSE, Release 5, Program Number 5696-234 and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
 J87/D325

555 Bailey Avenue
SAN JOSE, CA 95141-1003
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . v
Who Should Use This Book . v
Syntax Notation . v

Summary of Changes . ix
Disassembler . ix
Enhanced SuperC . ix
Interactive Debug Facility . ix

Chapter 1. Toolkit Feature Introduction . 1
Toolkit Feature Components . 2
Potential Uses for the Toolkit Feature . 6

Chapter 2. Using Structured Programming Macros 11
Introduction to Structured Programming Macros 11
Accessing the Macros . 12

| The ASMMREL Macro . 13
The IF Macro Set . 14
The DO Macro Set . 21
The SEARCH Macro Set . 31
The CASE Macro Set . 34
The SELECT Macro Set . 37

Chapter 3. Using the Disassembler . 41
Introduction to the Disassembler . 41
Invoking the Disassembler . 42
Control Statements . 48
Disassembling a Module for the First Time . 52
Output Description . 53
Disassembler CMS Messages . 55
Disassembler Messages . 57

Chapter 4. Using the Program Understanding Tool 61
Introducing ASMPUT . 62
Working with ADATA files . 67
Working with the control flow graph . 74
ASMPUT windows and window areas . 91

| Restrictions . 95
Using online help . 96
ASMPUT messages . 97

Chapter 5. Using the Cross-Reference Facility 105
Introduction to ASMXREF . 106
Invoking the Cross-Reference Facility . 108
ASMXREF Control Statements . 125
ASMXREF Token Statement . 128
ASMXREF Options . 132
ASMXREF XRFLANG Statements . 132
ASMXREP Options . 135
Understanding the Reports . 135

 Copyright IBM Corp. 1992, 2004 iii

ASMXREF Messages . 158
ASMXREF User Abends . 169

Chapter 6. Using Enhanced SuperC . 171
Introduction to Enhanced SuperC . 174

| How SuperC and Search-For Filter Input File Lines 177
| How SuperC Corrects False Matches . 178
| How SuperC Partitions and Processes Large Files 179
| Comparing Load Modules . 179
| Comparing CSECTs . 179

Invoking the SuperC Comparison . 180
Invoking the SuperC Search . 205
Process Options . 226
Process Statements . 236
CMS Command Line Option Directives . 266
CMS Command Line Statement Option Directives 267
Understanding the Listings . 269
Update Files . 292
CMS File Selection List . 305
How SuperC Pairs CMS Files and Members . 311
CMS Files Used by SuperC . 312
Reasons for Differing Comparison Results . 313
Return Codes . 314
SuperC Messages . 316

Notices . 327

Glossary . 329

Bibliography . 337
High Level Assembler Publications . 337
Toolkit Feature Publications . 337
Related Publications (Architecture) . 337
Related Publications for MVS . 337
Related Publications for VM . 338
Related Publications for VSE . 338

Index . 339

Windows is a trademark of Microsoft Corporation. Windows NT is a registered
trademark of Microsoft Corporation.

iv HLASM V1R4 Toolkit Feature User’s Guide

About This Book

This book describes how to use the following components of the High Level
Assembler Toolkit Feature:

� Structured Programming Macros
 � Disassembler
� Program Understanding Tool (ASMPUT)
� Cross-Reference Facility (ASMXREF)

 � Enhanced SuperC

Throughout this book, we use these indicators to identify platform-specific
information:

� Prefix the text with platform-specific text (for example, “Under CMS...”)

� Add parenthetical qualifications (for example, “(CMS only)”)

� Bracket the text with icons. The following are some of the icons that we use:

 Informs you of information specific to MVS

 Informs you of information specific to CMS

 Informs you of information specific to VSE

| MVS is used in this manual to refer to Multiple Virtual Storage/Enterprise Systems
| Architecture (MVS/ESA), to OS/390, and to z/OS.

| CMS is used in this manual to refer to Conversational Monitor System on z/VM.

| VSE is used in this manual to refer to Virtual Storage Extended/Enterprise Systems
| Architecture (VSE/ESA), and z/VSE.

Who Should Use This Book
This book is for programmers who code in the High Level Assembler language or
wish to use a component of the HLASM Toolkit Feature.

To use this book, you need to be familiar with the High Level Assembler language,
the MVS, VM, or VSE operating system, the publications that describe your system,
and job control language (JCL) or EXEC processing.

 Syntax Notation
Throughout this book, syntax descriptions use the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──�� indicates the end of a statement.

 Copyright IBM Corp. 1992, 2004 v

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Keywords appear in uppercase letters (for example, ASPACE) or upper and
lower case (for example, PATHFile). They must be spelled exactly as shown.
Lower case letters are optional (for example, you could enter the PATHFile
keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

Variables appear in all lowercase letters in a special typeface (for example,
integer). They represent user-supplied names or values.

� If punctuation marks, parentheses, or such symbols are shown, they must be
entered as part of the syntax.

� Required items appear on the horizontal line (the main path).

��──INSTRUCTION──required item───��

� Optional items appear below the main path. If the item is optional and is the
default, the item appears above the main path.

 ┌ ┐─default item──
��──INSTRUCTION─ ──┼ ┼─────────────── ──��
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──INSTRUCTION─ ──┬ ┬─required choice1─ ───────────────────────────────────────��
 └ ┘─required choice2─

If choosing one of the items is optional, the whole stack appears below the
main path.

��──INSTRUCTION─ ──┬ ┬────────────────── ───────────────────────────────────────��
 ├ ┤─optional choice1─
 └ ┘─optional choice2─

� An arrow returning to the left above the main line indicates an item that can be
repeated. When the repeat arrow contains a separator character, such as a
comma, you must separate items with the separator character.

 ┌ ┐─,───────────────
��──INSTRUCTION─ ───

┴─repeatable item─ ──��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

vi HLASM V1R4 Toolkit Feature User’s Guide

The following example shows how the syntax is used.

 Format

 �A� �B� �C�

 ┌ ┐─,───────
��─ ──┬ ┬─────────────── ─INSTRUCTION─ ───

┴─┤ �1� ├─ ─��

 └ ┘ ─optional item─

�1�:
├─ ──┬ ┬─operand choice1─── ─┤
 ├ ┤─operand choice2───(1)

 └ ┘─operand choice3───

Note:
1 operand choice2 and operand choice3 must not be specified together

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by �1� is a required operand. Allowable choices for
this operand are given in the fragment of the syntax diagram shown
below �1� at the bottom of the diagram. The operand can also be
repeated. That is, more than one choice can be specified, with each
choice separated by a comma.

 About This Book vii

viii HLASM V1R4 Toolkit Feature User’s Guide

Summary of Changes

Date of Publication June 2004

Form of Publication Ninth Edition, GC26-8710-08

This manual has been amended to incorporate the following technical changes:

 Disassembler
 � New options:

NEWNUM Allows numeric fields within control statements to be entered
as either hexadecimal or decimal values.

OPTABLE Allows the operation code table to be used in disassembling
the CSECT to be specified.

VSESVC Uses the VSE description for SVCs, not the MVS description.
Used to disassemble VSE code while running on MVS.

 Enhanced SuperC
� New process option:

SYSIN Allows an alternate DD name to be specified for process
statements (MVS only).

� New process statements:

NEWDD Allows alternative names to be specified for the new file on
MVS.

OLDDD Allows alternative names to be specified for the old file on
MVS.

UPDDD Allows alternative names to be specified for the output update
file on MVS.

WORKSIZE Allows the maximum size of the comparison set to be adjusted
for comparing large files.

Interactive Debug Facility
� LUNAME now supported on MVS.

� In addition to a native TSO session, IDF can be run in either a TSO batch job
or an MVS batch job if VTAM is used for the IDF terminal session.

 Copyright IBM Corp. 1992, 2004 ix

x HLASM V1R4 Toolkit Feature User’s Guide

Chapter 1. Toolkit Feature Introduction

The High Level Assembler Toolkit Feature is an optional, separately priced feature
of IBM High Level Assembler for MVS & VM & VSE* (HLASM*). It provides a
powerful and flexible set of tools to improve application recovery and development
on OS/390*, MVS/ESA*, VM/ESA*, and VSE/ESA* systems. These
productivity-enhancing tools are:

Structured Programming Macros
A complete set of macro instructions that implement the most widely
used structured-programming constructs (IF, DO, CASE, SEARCH,
SELECT). These macros simplify coding and help eliminate errors in
writing branch instructions.

Disassembler
A tool which converts binary machine language to assembler language
source statements. It helps you understand programs in executable
(object or “load”) format, and enables recovery of lost source code.

Program Understanding Tool
A workstation-based program analysis tool. It provides multiple and
“variable-magnification” views of control flows within single assembled
programs or across entire load modules.

Cross-Reference Facility
A flexible source code cross-referencing tool. It helps you determine
variable and macro usage, and locates specific uses of arbitrary strings
of characters.

Interactive Debug Facility
A powerful and sophisticated symbolic debugger for applications written
in assembler language and other compiled languages. It simplifies and
speeds the development of correct and reliable applications. For details
on the Interactive Debug Facility see the HLASM Toolkit Feature
Interactive Debug Facility User's Guide and the HLASM Toolkit Feature
Debug Reference Summary.

Enhanced SuperC
A versatile comparison and search facility for comparing two sets of data
and showing the differences in an easy-to-read format.

Special features allow for the “smart comparison” of dates.

You can exclude certain data from the comparison.

Enhanced SuperC also provides an extensive search tool.

Together, these tools provide a powerful set of capabilities to speed application
development, diagnosis, and recovery.

The following sections describe these components in three phases. Each phase is
typical of program development, maintenance, conversion, and enhancement
activities such as:

� Recovery and reconstruction of symbolic assembler language source code
� Analysis and understanding of complex assembler language programs
� Modification and testing

 Copyright IBM Corp. 1992, 2004 1

 Toolkit Feature Components

Toolkit Feature Components
First, a description of each of the components. Note that you can use the Toolkit
Feature's components independently of HLASM.

Toolkit Feature Structured Programming Macros
The HLASM Toolkit Structured Programming Macros simplify the coding and
understanding of complex control flows, and help to minimize the likelihood of
introducing errors when coding test and branch instructions. For details on
Structured Programming Macros see Chapter 2, “Using Structured Programming
Macros” on page 11.

These macros support the most widely used structured-programming control
structures and eliminate the need to code most explicit branches.

You can use the Toolkit Feature Structured Programming Macros to create the
following structures:

IF/ELSE/ENDIF
One-way or two-way branching, depending on simple or complex test
conditions.

DO/ENDDO and STRTSRCH/ORELSE/ENDLOOP/ENDSRCH
A rich and flexible set of looping structures with a variety of control and
exit facilities.

CASENTRY/CASE/ENDCASE
Fast N-way branching, based on an integer value in a register. Deciding
which branch to take is made at the CASENTRY macro; a direct branch
to the selected CASE is then done, followed by an exit at the ENDCASE
macro.

There is no OTHRWISE facility within this macro set.

SELECT/WHEN/OTHRWISE/ENDSEL
Sequential testing, based on sets of comparisons. These macros create
a series of tests that are evaluated in the order they are specified in the
program. If a test is true, the WHEN section of code for that test is
executed, followed by an exit at the ENDSEL macro.

If no test is satisfied, then the OTHRWISE section (if present) is
performed.

All the macro sets may be nested, and there are no internal limits to the depth of
nesting. Tests made by the various ENDxxx macros ensure that each structure's
nesting closure is at the correct level, and diagnostic messages (MNOTEs) are
issued if they are not.

Toolkit Feature Disassembler
The HLASM Toolkit Feature Disassembler lets you extract single control sections
(CSECTs) from object modules or executables such as load modules and phases.
It converts them to assembler language statements that you can assemble to
generate the same object code. For details on the Disassembler see Chapter 3,
“Using the Disassembler” on page 41.

2 HLASM V1R4 Toolkit Feature User’s Guide

 Toolkit Feature Components

Your first control statement specifies the module and control section you are to
disassemble. Adding control statements provides further guidance and helpful
information to the Disassembler, allowing it to create a more readable program.
You can supply sets of control statements in the primary input stream to the
Disassembler, or (as each set is developed) you can save them in a library and
direct the Disassembler to read them using COPY control statements.

� You can describe the layout of the control section with control statements
asserting that certain areas of the module contain data only, instructions only,
or are known to be uninitialized.

� You can request symbolic resolutions of halfword base-displacement storage by
supplying control statements giving base addresses and the base registers for
addressing.

� You can define data structures (DSECTs) and assign your own labels to
designated positions in the program.

� The Disassembler automatically assigns symbolic names to registers. Branch
instructions use extended mnemonics where possible, and identifies supervisor
call (SVC) instructions when known.

� The Disassembler listing provides a full summary of the inputs and outputs of
the disassembly, and places the reconstructed assembler language source
program in a separate PUNCH file.

If you use the High Level Assembler with the ADATA option to assemble
disassembler-generated statements, High Level Assembler generates a
SYSADATA file (sometimes called the ADATA file). You can use this file as input to
other Toolkit Feature components. This combination of facilities can help you
recover lost source code written in any compiled language.

Toolkit Feature Program Understanding Tool
The Program Understanding tool (ASMPUT) helps you analyze and extract
information about assembler language applications, using an OS/2 or a Windows
graphical user interface to display graphical and textual views of an application's
structure. ASMPUT extracts application analysis information from the SYSADATA
file generated during host assembly by HLASM; you must download this ADATA file
to your workstation for analysis. For details on Program Understanding Tool see
Chapter 4, “Using the Program Understanding Tool” on page 61.

You can use ASMPUT to display selected programs and modules in these linked
views:

� A Content view
� An Assembled Listing view
� A graphical Control Flow view
� An Expanded Source Code view

These views provide complete high-level to low-level information about assembler
language applications:

� At the highest level, you can discover the relationships among programs and
within modules.

� You can gradually descend program layers discovered by analysis of the
individual programs to arrive at the lowest level, where you can examine details
of internal control flows within each program.

 Chapter 1. Toolkit Feature Introduction 3

 Toolkit Feature Components

ASMPUT lets you display multiple views of a given program or module. These
multiple views are linked: scrolling through one view automatically scrolls through
all other open views of that program, module, or application. Linked views help you
see quickly the association between the assembled source code and the graphical
control-flow representations of the program.

At any time, you can narrow or expand the focus of your analysis by zooming in or
out on areas of particular interest. For example, you can use the View Contents
window to scroll through the contents of an application and simultaneously see the
change in control flow information displayed in the View Control Flow window.

ASMPUT displays several folders which provide a complete inventory of application
analysis information, program samples, tools, documentation, help files, and a
detailed tutorial to help you learn to use ASMPUT to analyze assembler language
applications.

Toolkit Feature Cross-Reference Facility
The High Level Assembler Toolkit Cross-Reference Facility (ASMXREF) supports
your maintenance tasks by scanning assembler language source, macro definitions,
and copy files for symbols, macro calls, and user-specified tokens. For details on
ASMXREF see Chapter 5, “Using the Cross-Reference Facility” on page 105.

You can use ASMXREF for identifying fields of application importance such as
DATE, TIME, and YYMMDD. You can use an arbitrary “match anything” character
(sometimes called a wildcard character) to create generic tokens such as “"YY�"”;
the scan then searches for occurrences of the token with any other characters
allowed in the position of the arbitrary character. You may also specify tokens to
be excluded from a generic search, so that an exclude token such as “SUMMER”
rejects matches of SUMMER when the include token is �MM�.

ASMXREF scans source code, in the following languages, for user-specified and
default tokens:

 � Assembler
 � C
 � C++

 � COBOL
 � FORTRAN
 � PL/I
 � REXX

ASMXREF provides several reports:

Control Flow (CF) Report
The CF report tabulates all intermodule program references as a function of
member or entry point name, and lists them in the order of the members
referring to the subject entry point or the entry point names referred by the
subject member.

Lines of Code (LOC) Report
Provides a count, arranged by part and by component, of the number of source
lines and comments in the part, and the shipped source instructions (SSI),
which are the number of instructions within each part scanned, both executable
and non-executable, that are not spaces or comments. As well, the report
shows the changed source instructions (CSI), which are the number of unique

4 HLASM V1R4 Toolkit Feature User’s Guide

 Toolkit Feature Components

SSI that have been modified in each part categorized by added, changed,
deleted, moved, and so on. In addition, the LOC Report provides a summary
report of CSI arranged by programmer.

Lines of OO Code (LOOC) Report
Provides, for C++, the Lines of Code (LOC) per Class and per Object, and
Objects per Class.

Macro Where Used (MWU) Report
Lists all macros invoked and all segments copied, including the type and
frequency of the invocation or reference.

Symbol Where Used (SWU) Report
Lists all symbols referenced within the source members, and the type of
reference. These symbols can be variables or macros.

Spreadsheet Oriented (SOR) Report
A comma-delimited file suitable for input into a standard spreadsheet
application. It shows for each module scanned the number of lines of code,
the number of occurrences of each token, and the total number of token
matches. This information helps you identify the critical modules in an
application and estimate the effort required for modifications.

Token Where Used (TWU) Report
Contains similar information to the SOR report, but in an easily readable
format.

Before ASMXREF generates the TWU report, it creates a Tagged Source
Program (TSP). This program contains special inserted comment statements
where tokens are found, so that subsequent assembly of the “tagged” file helps
you track important variables during control-flow analysis using ASMPUT, see
“Toolkit Feature Program Understanding Tool” on page 3.

Toolkit Feature Interactive Debug Facility
The HLASM Toolkit Feature Interactive Debug Facility (IDF) supports a rich set of
capabilities that speed error detection and correction. Although IDF is intended
primarily for debugging assembler language programs on MVS, VM, and VSE, you
can also use it to debug programs written in most high-level languages.

� IDF provides multiple selectable views of a program, including separate
windows for address stops, breakpoints, register displays, object code
disassembly, storage dumps, language-specific support, register histories,
non-traced routines, and other information. You can use these views in any
order or combination.

� You can control execution of a program by stepping through individual
instructions or between selected breakpoints or routines.

� If source code is available (which is almost always the case for programs
assembled with HLASM), IDF can display source statements as it executes the
program.

� The power of IDF is greatly magnified by its ability to pass control from any
breakpoint to user exit routines written in REXX or other languages that can
capture and analyze program data, and respond dynamically to program
conditions.

� You can count instruction executions, and IDF can maintain an instruction
execution history.

 Chapter 1. Toolkit Feature Introduction 5

 Potential Uses for the Toolkit Feature

� You can dynamically modify storage areas and register contents during
debugging by simply typing new values on the displays.

� IDF supports a special class of conditional breakpoints called watchpoints,
which IDF triggers only when a user-specified condition occurs.

� A command-level record and playback facility allows a debugging session to be
re-executed automatically.

� Extensive tailoring capabilities allow you to establish a familiar debugging
environment. Most debugging actions can be easily controlled by PF-key
settings.

For more details on Interactive Debug Facility see the HLASM Toolkit Feature
Interactive Debug Facility User's Guide and the HLASM Toolkit Feature Debug
Reference Summary.

 Enhanced SuperC
The Enhanced SuperC (known as SuperC) is a versatile comparison and search
facility that can be used to compare two sets of data (using the SuperC
Comparison) or to search a specific set of data for a nominated search string (using
the SuperC Search).

At a minimum, the SuperC Comparison requires only the names of the two items to
be compared. The SuperC Search requires only the name of the item to be
searched and the search string.

You can tailor the comparison or search using process options and process
statements. Process options are single keywords that you enter on the PARM
parameter (MVS and VSE), a menu (CMS), or the command line (CMS). Process
statements consist of a keyword and one or more operands; you pass these to
SuperC in an input file.

For example, you can use the process option ANYC (“Any Case”) so that SuperC
treats uppercase and lowercase characters as the same. (Thus, “d” and “D” are
considered to be the same.) You can use the process statement DPLINE (“Do not
Process Lines”) to ignore the lines (being compared or searched) that contain a
specified character string. For example, DPLINE '$' causes all lines that contain
the single-character string “$” to be ignored.

Potential Uses for the Toolkit Feature
The following figure shows three phases of a redevelopment project. This section
describes potential uses for the Toolkit Feature during each of these phases.

┌────────────┐ ┌────────────┐ ┌────────────────────┐

│ Recovery ├───────�┤ Analysis ├───────�┤ Modification and │

│ Phase │ │ Phase │ │ Testing Phase │

└────────────┘ └────────────┘ └────────────────────┘

Figure 1. Typical Phases for Toolkit Feature Usage

1. Recovery and reconstruction of assembler language source statements from
object modules, or load modules, for which the original source is lost. The
disassembler initially produces non-symbolic assembler language source from

6 HLASM V1R4 Toolkit Feature User’s Guide

 Potential Uses for the Toolkit Feature

object code. You can add control statements iteratively to help define code,
data, USINGs, labels, and DSECTs symbolically.

2. Analysis and understanding of assembler language source programs can
benefit from three Toolkit components: the Cross-Reference Facility, the
Program Understanding Tool, and the Interactive Debug Facility.

a. You can use the Cross-Reference Facility token scanner to locate important
symbols, user-selected tokens, macro calls, and other helpful data.
ASMXREF also creates an “impact-analysis” file for input to a spreadsheet
application for effort estimation and impact assessment. Another
ASMXREF output is a Tagged Source Program: when assembled with the
ADATA option, this program produces a SYSADATA file for you to use with
the Program Understanding Tool.

b. The Program Understanding Tool provides graphic displays of program
structure, control flow, a simplified listing, and other views with any desired
level of detail. With the ADATA file created from the tagged source
produced by ASMXREF, you can rapidly locate and analyze key areas of
the program.

c. The Interactive Debug Facility is by design a “program understanding” tool
that lets you monitor the behavior of programs at every level of detail. You
can monitor and trace data flows among registers and storage, even
showing the operations of individual instructions!

You can use the Disassembler, Cross-Reference Facility, Program
Understanding Tool and Interactive Debug Facility together to help reconstruct
lost assembler language source (with the same function as that produced by a
high level language compiler).

3. Modification and Testing of updated programs is simplified by using the
powerful Interactive Debug Facility. At the same time, you can simplify program
logic by replacing complex test/branch logic with the Structured Programming
Macros.

You can use the Enhanced SuperC to compare an original source file with a
modified source file, or a pre-migration application output file with a
post-migration output file, and report the differences between the files.
Enhanced SuperC can report all differences, or you can set options to exclude
the reporting of differences when those differences are correctly-modified date
fields. You can also limit the comparison to date fields only.

Recovery and Reconstruction
During the Recovery and Reconstruction phase, you typically begin with a program
in object or executable format. Using the Disassembler, and by providing suitable
control statements, you can create an assembler language source program with as
much structure and symbolic labeling as you like.

 Chapter 1. Toolkit Feature Introduction 7

 Potential Uses for the Toolkit Feature

┌───────────┐ ┌──────────────┐ ┌───────────┐ Recovered

│Lost source│ │ │ │ Assembler │ Assembler

│(object or ├──┬─�┤ Disassembler ├──�┤ Language ├─�─┬──� Language

│executable)│ │ │ │ │ Source │ │ Source Code

└───────────┘ │ └──────────────┘ └───────────┘ │

 �

 │ ┌────────────────────┐ ┌────┴────┐

│ │ Inspect assembly, │ │ │

└─�──┤ create appropriate ├�─────┤ HLASM │

│ control statements │ │ │

 └────────────────────┘ └─────────┘

Figure 2. Toolkit Feature: Recovery and Reconstruction Phase

Repeat the disassembly/analysis/description/assembly cycle until you obtain
satisfactory assembler language source code.

The initial steps do not require reassembly of the generated assembler language
source, as appropriate control statements are usually easy to determine from the
Disassembler's listing. As the recovered program approaches its final form, you
should assemble it with HLASM to ensure the validity of your new source program.

Analysis and Understanding
The most complex aspect of application maintenance and migration is analyzing
and understanding the code. There are three components of Toolkit Feature that
can help:

ASMXREF Can locate all uses of a variable name or any character string. You can
also produce a Tagged Source Program.

ASMPUT Provides graphical views of control flows within and among programs and
modules.

IDF Helps you monitor and track the behavior of individual instructions and
data items.

 ┌─────────────────────┐

│ Control statements, │

│ token lists │

 └───────┬─────────────┘

┌───────────┐

│ Assembler │ ┌────┴────┐ ┌──────────┐ ┌────────┐ List of

│ language ├──┬─�┤ ASMXREF ├──�┤ ASMPUT ├──�┤ ASMIDF ├──� desired

│ source │ │ └────┬────┘ └────┬─────┘ └───┬────┘ changes

└───────────┘ │ � �

 │ Tagged ├─────────────┘

 │ source ADATA

 │ │ �

 ┌────┴─────┐

 └─�─────┴───────�┤ HLASM │

 └──────────┘

Figure 3. Toolkit Feature: Analysis and Understanding Phase

While each of these components has valuable capabilities, using them in
combination can provide great synergy in analyzing and understanding program
behavior.

8 HLASM V1R4 Toolkit Feature User’s Guide

 Potential Uses for the Toolkit Feature

Modification and Testing
After you have used the Disassembler, ASMXREF, and ASMPUT components to
determine the needed modifications, you can add Structured Programming Macros
to simplify the coding and logic of the program.

You can then test the updated code using the rich and flexible features of the
Interactive Debug Facility. After each assembly/debug cycle, you can further
modify the source code, repeating the process until the completed application is
accepted for installation in a production library. You can use Enhanced SuperC to
compare the original source with the modified source, checking that all references
to date have been correctly modified.

 ┌─────────────┐

 │ Structured │

│ Programming │

 │ Macros │

 └──────┬──────┘

┌───────────┐

│ Assembler │ ┌──────┴──────┐ ┌───────┐ ┌────────┐ ┌──────┐ Completed,

│ Language ├─┬�─┤ Source Mods ├─�┤ HLASM ├─�┤ ASMIDF ├─�┤SuperC├──┐ Revised

│ Source │ │ └─────────────┘ └───┬───┘ └────┬───┘ └──────┘ │ Application

└───────────┘ │ � │

 └──�ADATA──�┘

 │ │

└�───── modify/assemble/test cycle �─────────────────┘

Figure 4. Toolkit Feature: Modification and Testing Phase

 Summary
These phases illustrate how the HLASM Toolkit Feature provides a varied and
powerful set of tools supporting all aspects of application development,
maintenance, enhancement, and testing. The following figure summarizes these
capabilities:

┌─────────────┐ ┌─────────┐

│Lost source │ │ SP macs │

│(object,load)│ └────┬────┘

└─────┬───────┘

 ASMXREF ASMPUT │

┌─────┴───────┐ ┌───────────┐ ┌─────────┐ ┌────┴─────┐ ┌────────┐ ┌───────┐

│Disassembler ├─�───Source──�┤ CrossRef ├─�┤ ProgUnd ├─�─Updated─�┤ HLASM ├──�──┤ IDF ├─�─┤SuperC │

└──┬─────┬────┘ Code └─────┬─────┘ └────┬────┘ Source └────┬─────┘ └───┬────┘ └───┬───┘

� │ │ � � │

│ │ │ � │ │ │ │

┌┴─────┴┐ │ ┌───┴───┐ │ │ └─────ADATA─────┘ │

│ HLASM │ └───────�─┤ HLASM ├───ADATA─┘ └────────────modifications──────────────┘

 └───────┘ └───────┘

 �───Recovery───� �─────Analysis─────� �───────Modify and Test───────�

 Phase Phase Phase

Figure 5. Toolkit Feature: Summary of Usage Phases

A typical process for managing the full spectrum of application recovery,
development, and maintenance activities includes several steps. Table 1 on
page 10 shows the Toolkit Feature tools useful each step.

 Chapter 1. Toolkit Feature Introduction 9

 Potential Uses for the Toolkit Feature

Table 1. Toolkit Feature Components

Activity Toolkit Feature Components

Inventory and assessment The Disassembler can help recover programs previously
unretrievable or unmodifiable.

Locate date fields and uses The Cross-Reference Facility pinpoints date fields and
| localizes references to them in single or multiple modules.
| SuperC provides powerful string-search facilities.

Application understanding The Program Understanding Tool provides powerful
insights into program structures and control flows. The
Interactive Debug Facility monitors instruction and data
flows at any level of detail.

Decide on fixes and
methods

Implement changes The Structured Programming Macros clarify source
coding by reducing the need for coding branches and tests,

| replacing them with readable structures. SuperC helps
| verify that source changes are complete.

Unit test The Interactive Debug Facility provides powerful
debugging and tracing capabilities for verifying the
correctness of changes.

Debug The Interactive Debug Facility helps debug complete
applications, including dynamically loaded modules.

| Validation| SuperC checks regressions, validates correctness of
| updates.

10 HLASM V1R4 Toolkit Feature User’s Guide

 Introduction

Chapter 2. Using Structured Programming Macros

Introduction to Structured Programming Macros 11
Accessing the Macros . 12

| The ASMMREL Macro . 13
The IF Macro Set . 14

IF Macro Option A . 15
IF Macro Option B . 16
IF Macro Option C . 16

| IF Macro Option D . 17
IF Macros with Boolean Operators . 18

| The ELSEIF Macro . 20
The DO Macro Set . 21

The DO Indexing Group . 22
DO Loop Terminator Generation . 22
Infinite Loop . 23

| Branching To the ENDDO . 23
| Leaving a Nested DO . 25

Explicit Specification . 26
Counting . 27
Backward Indexing . 27
Forward Indexing . 28
Register Initialization . 29
The UNTIL and WHILE Keywords . 29

The SEARCH Macro Set . 31
The CASE Macro Set . 34
The SELECT Macro Set . 37

Introduction to Structured Programming Macros
The complexity of control flow in a program strongly affects its readability, the early
detection of coding errors, and the effort needed to modify it later. You can usually
simplify control flow (though sometimes at the cost of less efficiency and more
redundant code) by restricting the ways in which branches occur. One way to
restrict branches is to use only those necessary to implement a few basic
structures such as:

� Executing one of two blocks of code according to a true-false condition

� Executing a block of code repeatedly until some limit is reached

� Executing a specific block of code, in a given set, where the block was
previously computed

If statements exist for all these structures in a programming language, then they
are used exclusively. If some are missing, then simple branches are used to
simulate those structures but only in standard patterns. In the case of OS
assembler language, only the basic branch and branch-and-link instructions are
implemented but macros that simulate the first three structures are available.

The first two structures are sufficient to implement any “proper” program (that is,
with one entry point and one exit) provided that its blocks of code are suitably
ordered. It is assumed that the structures may be nested to any depth. The

 Copyright IBM Corp. 1992, 2004 11

 Accessing the Macros

technique of writing programs using only these structures for branching is known as
"structured programming".

The standard structured programming figures have been implemented for the
assembler language programmer through the following five sets of related macros.

� The IF macro set:

 IF
 ELSE (optional)

| ELSEIF (optional)
 ENDIF

� The DO macro set:

 DO
 DOEXIT (optional)

| ITERATE (optional)
| ASMLEAVE (optional)

 ENDDO

� The CASE macro set:

 CASENTRY
CASE (one must be present)

 ENDCASE

� The SEARCH macro set:

 STRTSRCH
 EXITIF
 ORELSE
 ENDLOOP
 ENDSRCH

� The SELECT macro set:

 SELECT
 WHEN
 OTHRWISE (optional)
 ENDSEL

| � The ASMMREL macro set:

| ASMMREL

Accessing the Macros
To use these macros:

� Ensure the macro library provided as part of the Toolkit Feature is included; for
MVS, in the SYSLIB concatenation; for CMS, in the GLOBAL MACLIB
command; or for VSE, in the LIBDEF SOURCE search chain.

| For MVS, the default SMP/E target library is hlq.SASMMAC2.

| For VSE, the default sublibrary is PRD2.PROD.

| For CMS, the default location is userid P696234H disk 29E macro library
| ASMSMAC MACLIB.

� Add the following statement to the program:

12 HLASM V1R4 Toolkit Feature User’s Guide

 The ASMMREL Macro

COPY ASMMSP

Add this statement prior to any line containing a macro. You can add this
statement either directly by updating the actual file or by using the PROFILE
facility of High Level Assembler. This COPY statement must be inserted before
any use is made of these macros.

The ASMMSP member contains all the macros described here. This has been
done to avoid name collisions with any existing macros. If there is a collision,
then use OPSYN statements following the COPY statement to rename macros
using duplicate names. Any use of these macros must refer to the new names.

The following restrictions apply when using these macros:

� The macros generate labels of the following format:

| #@LBn DC �H

where n is a sequence number starting at 1.

Do not use these names for any labels within the user's program.

� The macros use a set of global macro variables for processing. The definitions
for these variables are in ASMMGBLV (this is a member in the supplied library).
These macro variable names must not be used in any other macros.

� The following words are reserved keywords and must not be used for operands
or instructions: AND, OR, ANDIF, ORIF.

� It is strongly suggested that you do not use the mnemonic keywords in Table 3
on page 15 as labels or operands.

| The ASMMREL Macro
| By default, the structured programming macros generate base branch on condition
| instructions. You can get the macros to generate branch relative on condition
| instructions using the ASMMREL macro.

| The ASMMREL macro can be used as follows:

| ASMMREL ON

| This macro sets a global variable that causes all subsequent macro expansions to
| use branch relative instructions. The operand is optional and the default is ON. To
| revert to using base displacement branches then insert the following statement in
| the program:

| ASMMREL OFF

| Using ASMMREL causes the following:

| 1. The DO macro generates LHI where it can to initialise registers.

| 2. DO loop terminator is generated according to:

| ASMMREL OFF - one of: BC BXH BXLE BCT BCTR

| ASMMREL ON - one of: BRC BRXH BRXLE BRCT BCTR

| 3. The CASENTRY macro generation alters the contents of R0.

 Chapter 2. Using Structured Programming Macros 13

 The IF Macro Set

The IF Macro Set
The IF macro set implements the IF THEN ELSE program figure. The flowchart for
this figure is:

 ┌──────┐

 │ │

┌───�───┤ F1 ├────�────┐

 │true │ │ │

 │ └──────┘ │

 ┌──┴──┐ ┌──┴──┐

 │ │ │ │

 ────�───┤IF(P)│ │ENDIF├─────�

 │ │ │ │

 └──┬──┘ └──┬──┘

 │ ┌──────┐ │

 │false │ │ │

└───�───┤ F2 ├────�────┘

 │ │

 └──────┘

In this figure, the test of the predicate p is represented by the IF macro, which
determines whether process F1 or F2 is to be executed. The exit path from the
macro is represented by the terminator ENDIF macro. The general IF macro set is
written:

| In the IF examples that follow, the parentheses surrounding the predicate are
| optional.

IF p THEN

Code for F1

 ELSE

Code for F2

 ENDIF

If the ELSE is not used, the flowchart is reduced to one that does not contain
function F2 and is written:

IF p THEN

Code for F1

 ENDIF

The format of the predicate p may take one of the forms discussed in Table 2. In
each form the keywords AND, OR, ANDIF, and ORIF are optional. THEN is a
comment and must be preceded by one or more spaces if used.

| All of these forms of the predicate p may be used in the DOEXIT, EXITIF, and
| WHEN macros.

Table 2. Predicate values and Connector/Terminator Values

Note: Do not use the connectors AND, OR, ANDIF, and ORIF as program labels.

Predicate Values Connector/Terminator

numeric condition code (1 to 14)
condition mnemonic
instruction, parm1, parm2, condition
compare-instruction, parm1, condition, parm2

AND
OR
ANDIF
ORIF

14 HLASM V1R4 Toolkit Feature User’s Guide

 The IF Macro Set

IF Macro Option A

��──IF─ ──(condition) ───��

Option A tests the previously set condition code. It uses the Extended Branch
Mnemonics for the branch instruction or the numeric condition code masks to
indicate the condition. Table 3 following the examples shows the mnemonics and
their complements.

IF (H) THEN

Code for F1

 ELSE

Code for F2

 ENDIF

generates this code:

IF (H) THEN

 BC 15-2,#@LB1

Code for F1

 ELSE

 BC 15,#@LB3

#@LB1 DC �H

Code for F2

 ENDIF

#@LB3 DC �H

The same example, using a numeric condition code mask, is:

IF (2) THEN

Code for F1

 ELSE

Code for F2

 ENDIF

This generates the same code.

Table 3. Mnemonics and Complements

Notes:

1. Do not use the mnemonics and complement symbols as program labels.

2. The mnemonics shown in the table can be in lowercase.

Case Condition
Mnemonics

Meaning Complement

After compare
instructions

H, GT
L, LT
E, EQ

high, greater than
low, less than
equal

NH, LE
NL, GE
NE

After arithmetic
instructions

P
M
Z
O

plus
minus
zero
overflow

NP
NM
NZ
NO

After test under
mask instructions

O
M
Z

ones
mixed
zeros

NO
NM
NZ

 Chapter 2. Using Structured Programming Macros 15

 The IF Macro Set

IF Macro Option B

��──IF─ ──(instruction mnemonic,parm1,parm2,condition) ──────────────────────��

Option B needs all four parameters.

The instruction mnemonic is any other than a compare, that sets the condition
code. (Use option A if the condition code has been set previously.)

The parameters parm1 and parm2 are the two fields associated with the instruction.

Condition is the value that the condition code mask must assume for the THEN
clause to be executed. The condition parameter is either one of the condition
mnemonics given in Table 3 on page 15, or a numeric condition code.

This example of option B:

IF (TM,BYTE,X'8�',Z) THEN

Code for F1

 ELSE

Code for B2

 ENDIF

generates:

IF (TM,BYTE,X'8�',Z) THEN

 TM BYTE,X'8�'

 BC 15-8,#@LB1

Code for F1

 ELSE

 BC 15,#@LB3

#@LB1 DC �H

Code for B2

 ENDIF

#@LB3 DC �H

Option B also provides for three-operand instructions such as those that are
available on the System/370. For example:

 IF (ICM,R1,M3,B2(D2),4)

generates:

 ICM R1,M3,B2(D2)

 BC 15-4,L1

In all option B formats, the instruction is coded first, followed by the appropriate
operands in the same order as used in open code, and followed by the condition
operand.

IF Macro Option C

��──IF─ ──(compare instruction,parm1,condition,parm2) ───────────────────────��

Option C needs all four parameters.

16 HLASM V1R4 Toolkit Feature User’s Guide

 The IF Macro Set

Any compare instruction is valid. However, with a compare instruction, the
condition mnemonic appears between parm1 and parm2, instead of after both of
them as in option B.

In all cases, parm1 and parm2 must agree, as if you were writing the instruction in
assembler language.

The condition parameter is either condition mnemonic from Table 3 on page 15, or
a numeric condition code.

This example of option C:

IF (CLI,�(2),EQ,X'4�') THEN

Code for F1

 ELSE

Code for F2

 ENDIF

generates:

IF (CLI,�(2),EQ,X'4�') THEN

 CLI �(2),X'4�'

 BC 15-8,#@LB1

Code for F1

 ELSE

 BC 15,#@LB3

#@LB1 DC �H

Code for F2

 ENDIF

#@LB3 DC �H

| Option C also provides for three-operand compare instructions. An example is:

 IF (CLM,R1,M3,NE,B2(D2))

In all option C formats, the instruction is coded first, followed by the appropriate
operands in the same order as used in open code, with the condition code operand
in the next to last position.

| IF Macro Option D
|

| ��──IF─ ──CC=condition_code ───��

| Where:

| condition_code Numeric condition code

| Option D tests the previously set condition code. It uses the numeric condition code
| to indicate the condition.

| The following example:

| IF CC=2 THEN

| Code for F1

| ELSE

| Code for F2

| ENDIF

| generates the following:

 Chapter 2. Using Structured Programming Macros 17

 The IF Macro Set

| IF CC=2 THEN

| BC 15-2,#@LB1

| Code for F1

| ELSE

| BC 15,#@LB3

| #@LB1 DC �H

| Code for F2

| ENDIF

| #@LB3 DC �H

| Note: This form of the IF macro cannot be used with Boolean Operators

IF Macros with Boolean Operators
All the options described in the preceding sections can be combined into longer
logical expressions using Boolean operators AND, OR, ANDIF, and ORIF. (These
are reserved keywords and cannot be used as operands of instructions.) A NOT
operator has not been implemented since a complement exists for each of the
alphabetic condition mnemonics described previously.

All logical expressions are scanned from left to right. When the AND and OR
connectors are used, the code generated is such that as soon as the expression
can be verified as either true or false the appropriate branch to process either the
code for F1 or the code for F2 is taken without executing the remaining tests.
Statements that are continued onto more than one line must have a non-space
character in the continuation indicator column (usually column 72) of all statements
except the last. Continued statements must have a non-space character in the
continuation column (usually column 16)

This example:

 IF (1�),OR, X

 (AR,R2,R3,NZ),AND, X

 (ICM,R1,M3,B2(D2),4) THEN

Code for F1

 ELSE

Code for F2

 ENDIF

generates:

 IF (1�),OR, X'4�') X

 (AR,R2,R3,NZ),AND, X

 (ICM,R1,M3,B2(D2),4) THEN

 BC 1�,#@LB2

 AR R2,R3

 BC 15-7,#@LB1

 ICM R1,M3,B2(D2)

 BC 15-4,#@LB1

#@LB2 DC �H

Code for F1

 ELSE

 BC 15,#@LB3

#@LB1 DC �H

Code for F2

 ENDIF

#@LB3 DC �H

18 HLASM V1R4 Toolkit Feature User’s Guide

 The IF Macro Set

Note that if the condition code mask setting is 10 upon entering the IF code, the
program immediately branches to the F1 code. If it is not 10, and if the next
condition code setting is such that the desired relation is not true, the branch is
made around the third test to the F2 code. This is done since the AND condition
cannot be met if the second relation is false.

The ANDIF and ORIF are used to give a parenthetical grouping capability to the
logical expressions. The use of either of these two as connectors of logical
groupings, the use of AND or OR indicates a closing parenthesis on the preceding
group and an opening parenthesis on the one following. Therefore, if the previous
example is modified by replacing the AND by an ANDIF, this means that either the
first or second condition must be true as well as the third one in order to execute
F1.

An example of this:

 IF (1�),OR, X

 (AR,R2,R3,NZ),ANDIF, X

 (ICM,R1,M3,B2(D2),4) THEN

Code for F1

 ELSE

Code for F2

 ENDIF

generates:

 IF (1�),OR, X

 (AR,R2,R3,NZ),ANDIF, X

 (ICM,R1,M3,B2(D2),4) THEN

 BC 1�,#@LB2

 AR R2,R3

 BC 15-7,#@LB1

#@LB2 DC �H

 ICM R1,M3,B2(D2)

 BC 15-4,#@LB1

Code for F1

 ELSE

 BC 15,#@LB4

#@LB1 DC �H

Code for F2

 ENDIF

#@LB4 DC �H

For a better illustration of the effect of the ANDIF and ORIF usage, the examples
which follow use capital letters to indicate the conditions that are tested.

If you write: A OR B AND C, the implied grouping is A OR (B AND C).

If you write: A OR B ANDIF C, the grouping is (A OR B) AND C.

The ORIF may be similarly used: A AND B ORIF C OR D is interpreted as (A AND
B) OR (C OR D).

 Chapter 2. Using Structured Programming Macros 19

 The IF Macro Set

| The ELSEIF Macro
| The ELSEIF macro is an optional part of the IF macro set. It provides the means
| for a series of checks, where a function is executed once the predicate condition
| has been satisfied. The flowchart for an IF including an ELSEIF is:

| ┌────────────┐ True ┌────┐

| ────�┤ IF(P1) ├──────�┤ F1 ├──�──────────┐

| └─────┬──────┘ └────┘ │

| │

| │ False │

| │

| ┌─────┴──────┐ True ┌────┐ │

| │ ELSEIF(P2) ├──────�┤ F2 ├──�──────────┤

| └─────┬──────┘ └────┘ │

| │ False

| │

| ┌─────┴──────┐ True ┌────┐ │

| │ ELSEIF(P3) ├──────�┤ F3 ├──�──────────┤

| └─────┬──────┘ └────┘ │

| │ False

| │

| │ │

| . .

| . .

| .

| ┌─────┴──────┐ True ┌────┐ │

| │ ELSEIF(Pn) ├──────�┤ Fn ├──�──────────┤

| └─────┬──────┘ └────┘ │

| │ False │

|

| ┌─────┴──────┐ ┌────┐ ┌───┴─┐

| │ ELSE ├──────�┤Code├────────�┤ENDIF├─�

| └────────────┘ └────┘ └─────┘

| The predicate for the ELSEIF macro is one of the forms permitted for the IF macro.

| This example:

| if (clc,a,eq,b)

| mvc a,d

| elseif (clc,e,eq,f)

| mvc g,h

| elseif (clc,g,eq,h)

| mvc i,k

| endif

| generates:

20 HLASM V1R4 Toolkit Feature User’s Guide

 The DO Macro Set

| if (clc,a,eq,b)

| + clc a,b

| + BC 15-8,#@LB1

| mvc a,d

| elseif (clc,e,eq,f)

| + BC 15,#@LB3

| +#@LB1 DC �H

| + clc e,f

| + BC 15-8,#@LB4

| mvc g,h

| elseif (clc,g,eq,h)

| + BC 15,#@LB6

| +#@LB4 DC �H

| + clc g,h

| + BC 15-8,#@LB7

| mvc i,k

| endif

| +#@LB7 DC �H

| +#@LB6 DC �H

| +#@LB3 DC �H

The DO Macro Set
The flowchart represented by this set depends on the keywords used with the
predicate p. If the UNTIL or the indexing group of key words (FROM, TO, BY) is
used, the flowchart is:

 ┌──────────�───────────┐

 │ │false

 │ �

 ┌─────┐ ┌──┴──┐

 │ │ │ │ │

───�──┴──�───┤ F ├──�───┤IF(P)├──────�

 │ │ │ │ true

 └─────┘ └─────┘

If the WHILE keyword is specified, the flowchart is:

 ┌─────┐

 │ │

┌───�───┤ F ├──────�──────┐

 │ │ │ │true

 │ └─────┘ │

 �

 │ ┌──┴──┐

 │ │ │

 ──�──┴──────────────�─────────┤IF(P)├─────�

 │ │false

 └─────┘

The general DO macro set is written as:

 DO P
Code for F

 ENDDO

The DO macro accepts zero or one positional parameter and five possible
keywords. The positional parameter may be INF, BXH, or BXLE. The keywords
are FROM, TO, BY, WHILE, and UNTIL. The FROM, TO, and BY keywords form

 Chapter 2. Using Structured Programming Macros 21

 The DO Macro Set

an indexing group that specifies ranges and increments when indexing through a
loop. They indicate loop termination tests, which are made after execution of the
function code F, and the determination of whether to repeat the loop is made by
one of the four indexing instructions: BXH, BXLE, BCT, or BCTR. If an indexing
instruction is not given explicitly as a positional parameter, one is derived from the
other values given. Infinite looping is also permitted through use of the INF
positional parameter.

The function of the UNTIL keyword is similar to that of the loop terminator, except
that the determination of whether to repeat the function code F depends upon the
result of any condition code setting instruction. It may not be used with the
indexing group. See also “The DO Indexing Group.”

The WHILE keyword, on the other hand, generates a test prior to entering the
function code of the loop. It may be used with either the indexing group or the
UNTIL keyword to provide tests at both initiation and termination of the function
code.

| The following combinations of keywords are valid with the DO macro:

| FROM, TO, BY
| FROM, TO, BY, WHILE
| WHILE, UNTIL

| In all cases, the structure must be terminated by the ENDDO macro.

The DO Indexing Group
The indexing group permits five types of counting and testing to be performed.
Each different requirement for counting and testing has a corresponding set of
keywords and values, and results in the generation of appropriate loop initialization
and termination instructions. The five variations are described in the following
paragraphs and are summarized in the table below. The tests to determine which
variation is to be used are performed in the order described in Table 3 on page 15.

In the indexing group, each of the three keywords is permitted to indicate a register
designation and an optional value. Thus, an indexing DO statement could appear
as:

 DO FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)

if all keywords in the group were used.

The format of the keywords is keyed to the BXH and BXLE indexing instructions,
and the restrictions on the use of these instructions are carried over into the
macros. Therefore, if the BY register Ry is an even-numbered register, then the
TO register must be Ry+1. If the BY register Ry is an odd-numbered register, then
the TO register must be the same register, and hence the TO and BY values (j and
k, respectively) must be identical.

DO Loop Terminator Generation
The table below summarizes the various instructions that are generated to
terminate DO loops. The types of loops are discussed following the table, including
examples.

22 HLASM V1R4 Toolkit Feature User’s Guide

 The DO Macro Set

Table 4. DO Loop Terminator Generation

Type Keywords Other conditions Result

Infinite
Loop

Neither FROM
WHILE nor
UNTIL

INF parameter BC 15

Explicit
Specification

FROM, plus
TO and/or
BY

BXH parameter
BXLE parameter

BXH
BXLE

Counting FROM
(only)

Two values
Three values

BCT
BCTR

Backward
Indexing

FROM,
TO and
BY

FROM and TO
numeric
FROM value greater
than TO value

BXH

Backward
Indexing

FROM
BY

BY numeric and
less than zero

BXH

Forward Indexing Any combination not
covered in the above
cases

BXLE

 Infinite Loop
If you wish to execute a loop until some external terminating event takes place (for
example, an end of file), then you may do so by specifying the INF positional
parameter.

Thus, coding:

 DO INF

Code for F

 ENDDO

generates:

 DO INF

#@LB2 DC �H

Code for F

 ENDDO

 BC 15,#@LB2

In order to generate an infinite loop, no FROM, WHILE, or UNTIL keywords can be
present. TO and BY keywords, if present, are ignored.

| Branching To the ENDDO
| The ITERATE macro causes a branch to the point prior to the ENDDO macro
| associated with the active DO macro. If a label is specified, then the ITERATE
| branches to the point prior to the ENDDO macro associated with the DO macro
| with the label. Here is the flowchart for this structure:

 Chapter 2. Using Structured Programming Macros 23

 The DO Macro Set

| ┌─�───�─┐Not Done
| │ ┌──Loop Body───┐ �
| ┌──┐ ┌────┐ � ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
| │DO├─
│Init├─
┴─
┤WHILE├───
 : some code :──
┬─
│UNTIL├────
┤Count├─
┬─
┤ENDDO│
| └──┘ └────┘ │Test │ : ┌──────────┐ : � │Test │ │Test │ � └─────┘
| └──┬──┘ : │ ITERATE ├────
┤ └──┬──┘True └─────┘ │
| │False : └──────────┘ : │ │
| │ └──────────────┘ └────
 outer ENDDO │
| └──────────────────────────
───────────────────────
┘

| In the following example, iterate outer creates a branch from the inner DO loop
| to the point just before the outer ENDDO, associated with the labeled DO loop,
| while the iterate without a label creates a branch to just before the ENDDO of the
| inner DO loop:

| outer do while=2

| do while=4

| mvc a,d

| if (clc,a,eq,b)

| iterate outer

| else

| iterate

| endif

| enddo

| enddo

| This generates the following:

| outer do while=2

| +outer DC �H

| + BC 15,#@LB2

| +#@LB3 DC �H

| do while=4

| + BC 15,#@LB7

| +#@LB8 DC �H

| mvc a,d

| if (clc,a,eq,b)

| + clc a,b

| + BC 15-8,#@LB11

| iterate outer

| + BC 15,#@LB2

| else

| + BC 15,#@LB13

| +#@LB11 DC �H

| iterate

| + BC 15,#@LB7

| endif

| +#@LB13 DC �H

| enddo

| +#@LB7 DC �H

| + BC 4,#@LB8

| enddo

| +#@LB2 DC �H

| + BC 2,#@LB3

| +#@LB1 DC �H

24 HLASM V1R4 Toolkit Feature User’s Guide

 The DO Macro Set

| Leaving a Nested DO
| It is possible to leave a nested DO macro by specifying a label on the DO macro
| and the same label as a parameter on a contained ASMLEAVE macro. Here is the
| flowchart for this structure:

| ┌─�───�─┐Not Done
| │ ┌──Loop Body───┐ �
| ┌──┐ ┌────┐ � ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
| │DO├─
│Init├─
┴─
┤WHILE├───
 : some code :─
──│UNTIL├────
┤Count├─
┬─
┤ENDDO│
| └──┘ └────┘ │Test │ : : │Test │ │Test │ � └─────┘
| └──┬──┘ : ┌──────────┐ : └──┬──┘True └─────┘ │
| │ : │ ASMLEAVE ├───
─┬────────────────────
┤
| │ : └──────────┘ : └──
 outer ENDDO │
| � └──────────────┘ │
| └──────────────────────────
─────────────────────
┘

| If a label is not specified, then the current macro is exited.

| In the following example, asmleave loop breaks from the inner DO loop to the end
| of the outer (labeled) DO loop, while the asmleave without a label just breaks to the
| end of the current DO loop:

| loop do while=2

| do while=4

| mvc a,d

| if (clc,a,eq,b)

| asmleave loop

| else

| asmleave

| endif

| enddo

| enddo

| This generates the following:

 Chapter 2. Using Structured Programming Macros 25

 The DO Macro Set

| loop do while=2

| +loop DC �H

| + BC 15,#@LB2

| +#@LB3 DC �H

| do while=4

| + BC 15,#@LB7

| +#@LB8 DC �H

| mvc a,d

| if (clc,a,eq,b)

| + clc a,b

| + BC 15-8,#@LB11

| asmleave loop

| + BC 15,#@LB1

| else

| + BC 15,#@LB13

| +#@LB11 DC �H

| asmleave

| + BC 15,#@LB6

| endif

| +#@LB13 DC �H

| enddo

| +#@LB7 DC �H

| + BC 4,#@LB8

| +#@LB6 DC �H

| enddo

| +#@LB2 DC �H

| + BC 2,#@LB3

| +#@LB1 DC �H

 Explicit Specification
If you want to specify an explicit BXH or BXLE loop terminator, you may do so by
including it in the form of a positional parameter:

 DO BXH,FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)

Code for F

 ENDDO

generating, for example:

 DO BXH,FROM=(R1,2�),TO=(R3,1��),BY=(R2,4)

 LA R1,2�

 LA R3,1��

 LA R2,4

#@LB2 DC �H

� Code for F

 ENDDO

#@LB3 DC �H

 BXH R1,R2,#@LB2

The FROM and either the BY or TO keywords must be present in order to provide
register designations required for the generation of the BXH or BXLE instruction.
The register specified for the BY keyword is used unless it is not present, in which
case the one for the TO keyword is used.

26 HLASM V1R4 Toolkit Feature User’s Guide

 The DO Macro Set

 Counting
This case applies when a count is to be decremented by 1 each time, and the loop
is to be terminated when the count reaches zero. This is achieved by specifying
just the FROM keyword. In the situation where only two parameters are used, a
BCT loop terminator is generated.

For example:

 DO FROM=(Rx,number)

Code for F

 ENDDO

generates:

 DO FROM=(R15,3)

 LA R15,3

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 BCT R15,#@LB2

For a slightly shorter loop, write the FROM keyword with three parameters to
designate an additional register. In this case, a BCTR is generated as the loop
terminator.

For example:

 DO FROM=(Rx,=A(TEST),Ry)

Code for F

 ENDDO

generates:

 DO FROM=(R15,=A(LIMIT),R14)

 LA R14,#@LB2

 L R15,=A(LIMIT)

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 BCTR R15,R14

If no value appears in the FROM keyword, the load instruction is not generated.

 Backward Indexing
To index backward through an array (from high to low storage addresses), you
need a BXH test, to end the loop when the lowest address is reached. This may
be achieved in two ways.

The first way uses all three keywords, with numeric values for the FROM and TO
values i and j, where the FROM value i is greater than the TO value j. Although no
test on the BY value k is performed, it should be negative. Also, while the FROM
and TO values i and j need not be positive, they are assumed to be negative
numerics if and only if a leading minus sign occurs.

Thus, with i greater than j:

 Chapter 2. Using Structured Programming Macros 27

 The DO Macro Set

 DO FROM=(Rx,6),TO=(Ry+1,-6),BY=(Ry,-4)

Code for F

 ENDDO

generates:

 DO FROM=(R1,6),TO=(R3,-6),BY=(R2,-4)

 LA R1,6

 LH R3,=H'-6'

 LH R2,=H'-4'

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 BXH R1,R2,#@LB2

The other way is to omit the TO keyword. The BY value k is a negative numeric (it
has a leading minus sign), indicating backward indexing. Although no test on the
register number Ry is performed, it must have an odd value.

When k is negative, then:

 DO FROM=(Rx,=A(END-START)),BY=(Ry,-2)

Code for F

 ENDDO

generates:

 DO FROM=(R1,=A(END-START)),BY=(R3,-2)

 L R1,=A(END-START)

 LH R3,=H'-2'

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 BXH R1,R3,#@LB2

 Forward Indexing
To index forward through an array (from low to high storage addresses), you need
a BXLE test, to end the loop when the highest address is reached. If no explicit
terminator is specified, and if none of the preceding combinations of keywords and
values exist, then forward indexing is assumed, and a BXLE terminator is
generated.

For example:

 DO FROM=(Rx,1),TO=(Ry+1,1�),BY=(Ry,2)

Code for F

 ENDDO

generates:

28 HLASM V1R4 Toolkit Feature User’s Guide

 The DO Macro Set

 DO FROM=(R1,1),TO=(R3,1�),BY=(R2,2)

 LA R1,1

 LA R3,1�

 LA R2,2

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 BXLE R1,R2,#@LB2

 Register Initialization
If you wish to load a register yourself, or the register remains loaded from a
previous operation, then omitting the corresponding value field prevents generation
of a register load instruction. If you supplied one or more of the values i, j, or k,
thus indicating that you want the macro processor to generate the L, LH, LR, or LA
instructions, the following rules apply.

For a positive number greater than zero and less than 4096, an LA is generated.
The L or LH instruction is generated when a value is identified as a negative
number (determined by the presence of a leading minus sign), or a positive number
greater than 4095. The value is also converted to a literal, thus generating
=F'number' or =H'number' as appropriate, and is substituted as the second operand
of the load instruction.

If any value is zero, an SR to clear the designated register is generated.

In all other cases (non-numeric or undefined values, as indicated by the type
attribute of the macro), an L instruction is generated. In this case, whatever is
present for the value is directly substituted as the second operand of the
instruction. If it is a literal, it is your responsibility to supply the equal sign.

The table below summarizes the rules followed in initializing registers.

Table 5. Generated Instructions for Given Values

Value given Instruction generated

None None
Zero SR Rx,Rx

0 <= number < 4096 LA Rx,number

-32767 <= number < 0, or
4096 < number < 32768

LH Rx,=H'number'

number < -32767, or
 number >= 32768

L Rx,=F'number'

(Register number) LR Rx,Register number

Other Rx,Other

The UNTIL and WHILE Keywords
The test generated by the UNTIL keyword, as with those generated by the indexing
group, is used at the loop termination. The test generated by the WHILE keyword,
on the other hand, tests whether to enter a loop at all prior to its execution. For

| both keywords, the parameterization is identical to that of the IF macro. The UNTIL
| and WHILE operands accept compound predicates in the same format as used on
| the IF statement, with the exception that the CC= keyword operand is not allowed.

 Chapter 2. Using Structured Programming Macros 29

 The DO Macro Set

The DO WHILE example:

 DO WHILE=(TM,FLAGS,X'8�',O)

Code for F

 ENDDO

generates:

 DO WHILE=(TM,FLAGS,X'8�',O)

 BC 15,#@LB2

#@LB3 DC �H

Code for F

 ENDDO

#@LB2 DC �H

 TM FLAGS,X'8�'

 BC 1,#@LB3

 BC 1,L1

The DO UNTIL is coded in the same manner:

 DO UNTIL=(TM,FLAGS,X'8�',O)

Code for F

 ENDDO

and generates:

 DO UNTIL=(TM,FLAGS,X'8�',O)

#@LB2 DC �H

Code for F

 ENDDO

#@LB3 DC �H

 TM FLAGS,X'8�'

 BC 15-1,#@LB2

It is possible to create a compound DO with both UNTIL and WHILE parameters on
the same macro. For example:

 DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=1�

Code for F

 ENDDO

generates:

 DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=1�

#@LB2 DC �H

 SRP AMOUNT,64-3,5

 BC 15-4,#@LB1

Code for F

 ENDDO

#@LB5 DC �H

 BC 15-1�,#@LB2

#@LB1 DC �H

| The operand formats for the WHILE and UNTIL keywords are the same as those of
| the IF-type macros and can be used with Boolean operators as in the following
| example:

30 HLASM V1R4 Toolkit Feature User’s Guide

 The SEARCH Macro Set

| DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,EQ,4), X

| UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)

| Code for F

| ENDDO

| generates (with ASMMREL ON in effect):

| DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,EQ,4), X

| UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)

| #@LB2 DC �H

| CLI WORD1,2

| BRC 8,#@LB4

| CLI WORD1,4

| BRC 15-8,#@LB1

| #@LB4 DC �H

| Code for F

| ENDDO

| #@LB5 DC �H

| CLI WORD1,1

| BRC 8,#@LB7

| CLI WORD1,3

| BRC 15-8,#@LB2

| #@LB7 DC �H

| #@LB1 DC �H

| To obtain the equivalent capability of logical expressions for looping operations, the
DOEXIT or EXITIF macro may also be used, within their respective sets. For a
Boolean WHILE, the above macros are placed immediately following the DO or
STRTSRCH while for the UNTIL the placement of these macros is immediately
before the ENDDO or ENDLOOP.

| EXITIF can only be coded within a STRTSRCH structure. Multiple DOEXITs are
| allowed.

| DOEXIT must be placed within a DO macro set, and can be placed within a nested
| IF macro set. In the following example the DOEXIT macro statement causes the
| generation of a branch instruction to a label at the ENDDO macro statement.

| do from=2

| if (clc,a,eq,b)

| mvc a,d

| doexit (2)

| else

| mvc g,h

| endif

| enddo

The SEARCH Macro Set
The SEARCH macro set is provided to allow more complex loops to be coded. All
of the operands noted above for DO loops may also be used on the STRTSRCH
macro.

The flowchart for the SEARCH macro set is:

 Chapter 2. Using Structured Programming Macros 31

 The SEARCH Macro Set

 ┌─────────────────�───────────────────────────┐

 � not finished

 │ ┌────┴────┐

│ ┌───┐ ┌───────────┐ false ┌───┐ │test for │ ┌───┐

──────�┴─�─┤ A ├─�─┤ EXITIF (x)├─�──────┤ C ├─�─┤end loop ├─�─┤ D ├─�─┬──�

STRTSRCH └───┘ └─────┬─────┘ └───┘ │condition│ └───┘ �

 true ORELSE └─────────┘ ENDSRCH │

 ┌──┴──┐ ENDLOOP │

│ B ├─────────────────────────────────────�───┘

 └─────┘

The general structure of the SEARCH macro set is:

STRTSRCH (any DO-type loop operands)

Process Code A

EXITIF (any IF-type operands)

Process Code B

 ORELSE

Process Code C

 ENDLOOP

Process Code D

 ENDSRCH

Multiple EXITIFs are permissible. However, for each EXITIF, an ORELSE must
appear at some point in the code before the next EXITIF. However, the last
ORELSE (the one before the ENDLOOP macro) is optional.

For example:

 STRTSRCH UNTIL=(TM,�(R4),X'55',NO),WHILE=(CH,R9,LT,=H'58')

 Process A

 EXITIF CC=8

 Process B

 ORELSE

 Process C

 ENDLOOP

 Process D

 ENDSRCH

generates:

 STRTSRCH UNTIL=(TM,�(R4),X'55',NO),WHILE=(CH,R9,LT,=H'58')

#@LB3 DC �H

 CH R9,=H'58'

 BC 15-4,#@LB2

 Process A

 EXITIF CC=8

 BC 15-8,#@LB9

 Process B

 ORELSE

 BC 15,#@LB1

#@LB9 DC �H

 Process C

 ENDLOOP

#@LB6 DC �H

 TM �(R4),X'55'

 BC 15-14,#@LB3

#@LB2 DC �H

 Process D

 ENDSRCH

#@LB1 DC �H

32 HLASM V1R4 Toolkit Feature User’s Guide

 The SEARCH Macro Set

Another example:

 STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P

� No Process A

 EXITIF Z,AND, X

 LTR,R2,R3,O,ORIF, X

 (CLC,DEC(L,B),EQ,=C'WORD'),AND, X

 NP

 Process B

 ORELSE

 Process C

 EXITIF CC=5

 Process D

 ENDLOOP

 Process E

 ENDSRCH

generates:

 STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P

#@LB3 DC �H

 CLM R2,M1,D2(B2)

 BC 15-11,#@LB2

� No Process A

 EXITIF Z,AND, X

 LTR,R2,R3,O,ORIF, X

 (CLC,DEC(L,B),EQ,=C'WORD'),AND, X

 NP

 BC 15-8,#@LB9

 LTR R2,R3

 BC 1,#@LB1�

#@LB9 DC �H

 CLC DEC(L,B),=C'WORD'

 BC 15-8,#@LB11

 BC 15-13,#@LB11

#@LB1� DC �H

 Process B

 ORELSE

 BC 15,#@LB1

#@LB11 DC �H

 Process C

 EXITIF CC=5

 BC 15-5,#@LB12

 Process D

 ENDLOOP

 BC 15,#@LB1

#@LB12 DC �H

#@LB6 DC �H

 BC 15-2,#@LB3

#@LB2 DC �H

 Process E

 ENDSRCH

#@LB1 DC �H

 Chapter 2. Using Structured Programming Macros 33

 The CASE Macro Set

The CASE Macro Set
The CASE macro set selects one of a set of functions for execution, depending on
the value of an integer found in a specified register. The determination of which of
the functions is to be executed involves the use of either an address vector
(sequence of addresses) or a branch vector (sequence of branch instructions).

The flowchart for the CASE program figure is:

 ┌────┴────┐

 │ │

 │ IF(i) │

 │ │

 └────┬────┘

 ┌─────┐

 │i=1 │ │

 ├─────�────┤ F1 ├─�───┐

│ │ │ │

 │ └─────┘ │

 │

 │ ┌─────┐ │

│i=2 │ │ │

 ├─────�────┤ F2 ├─�───┼───�

│ │ │ │

 │ └─────┘ │

 │

 │ ┌─────┐ │

│i=m │ │ │

 └─────�────┤ Fm ├─�───┘

 │ │

 └─────┘

The macro is written like this:

 CASENTRY Rx,POWER=n,VECTOR=listtype
| CASE a,d

Code for F1

 CASE b,c

Code for F2

 CASE f

Code for F3

 .

 .

 .

 CASE t

Code for Fm

 ENDCASE

Notes:

1. listtype can be either B or BR.

| 2. Statements between the CASENTRY macro and the first CASE statement are
| assembled, but not executed. Statements should not be placed between
| CASENTRY and CASE.

| 3. An integer cannot be used more than once in a CASENTRY structure.

Where the case numbers a, b, ..., t are either members of a set of integers greater
than zero, or nonzero multiples of a power of 2 (for example, 4, 12, and 16). Zero

34 HLASM V1R4 Toolkit Feature User’s Guide

 The CASE Macro Set

(0) is not a valid case number. Rx is a positional operand that specifies a general
register containing the case number. The keyword operands POWER and
VECTOR are optional.

The operand POWER=n (where n is an integer) refers to a power of 2 and
indicates that the case numbers are multiples of that power of 2. Thus, POWER=3
indicates that the case numbers are multiples of 8.

The default value for POWER is 0 which indicates that the case numbers are
positive integers that are necessarily powers of 2.

The operand VECTOR=B or VECTOR=BR indicates that a branch vector is to be
generated rather than an address vector. Fewer instructions are generated for
branch vectors. However, you must be sure that the branch vector table is
addressable by the initialization code, that the code for each of the cases is
addressable, and that the code after the ENDCASE macro is addressable by a
current base register.

Register 0 may not be used as the case value register (Rx).

It is your responsibility to load the desired case number into Rx and to ensure that
it is within the indicated range. The macro expansion then adjusts this value
according to the POWER value (whether explicitly or implicitly specified), so that
the correct CASE is selected. The content of the register indicated in the
CASENTRY statement is destroyed and is only required during the execution of the
initial code generated by the macro expansion. Hence, it is possible to use the
same register for other purposes within the function code for any CASE(s).

This example of a CASE macro uses case numbers 1, 2, 3, 4, and 5:

 CASENTRY Rx

 CASE 2,1,4

Code for F1

 CASE 5

Code for F2

 ENDCASE

This is interpreted to mean that if a 1, 2, or 4 is present in general register Rx, the
code for F1 is executed. If a 5 is present, the code for F2 is executed. If a value
of 3 is in Rx, no function code is to be executed. In all cases, control is then to be
passed to the code after the ENDCASE macro.

The example generates:

 Chapter 2. Using Structured Programming Macros 35

 The CASE Macro Set

 SLA Rx,2

 A Rx,L3

 L Rx,�(Rx)

 BCR 15,Rx

 L3 DC A(L1)

 L4 DC �H

Code for F1

 L Rx,L1

 BCR 15,Rx

 L5 DC �H

Code for F2

 L Rx,L1

 BCR 15,Rx

 L1 DC A(L2)

 DC A(L4)

 DC A(L4)

 DC A(L2)

 DC A(L4)

 DC A(L5)

 L2 DC �H

This example shows a CASE macro using a branch vector and case number that
are multiples of 8:

 CASENTRY Rx,POWER=3,VECTOR=B

 CASE 8,24

Code for F1

 CASE 16,32

Code for F2

 ENDCASE

The example generates:

 CASENTRY Rx

 SLA Rx,2-�

 A Rx,#@LB3

 L Rx,�(,Rx)

 BCR 15,Rx

#@LB3 DC A(#@LB1)

 CASE 2,1,4

#@LB4 DC �H

Code for F1

 CASE 5

 L Rx,#@LB1

 BCR 15,Rx

#@LB5 DC �H

Code for F2

 ENDCASE

 L Rx,#@LB1

 BCR 15,Rx

#@LB1 DC A(#@LB2)

 DC A(#@LB4)

 DC A(#@LB4)

 DC A(#@LB2)

 DC A(#@LB4)

 DC A(#@LB5)

#@LB2 DC �H

36 HLASM V1R4 Toolkit Feature User’s Guide

 The SELECT Macro Set

The SELECT Macro Set
The SELECT macro set selects one of a set of functions for execution, depending
on the result of a comparison. The flowchart for the SELECT program figure is:

 ┌──────┐ ┌────────┐ True ┌────┐

 ──────�┤SELECT├────�┤WHEN (1)├──────�┤ F1 ├──�──────────┐

 └──────┘ └───┬────┘ └────┘ │

 │

 │ False │

 │

 ┌───┴────┐ True ┌────┐ │

│WHEN (2)├──────�┤ F2 ├──�──────────┤

 └───┬────┘ └────┘ │

 │ False

 │

 ┌───┴────┐ True ┌────┐ │

│WHEN (3)├──────�┤ F3 ├──�──────────┤

 └───┬────┘ └────┘ │

 │ False

 │ │

 . .

 . .

 .

 ┌───┴────┐ True ┌────┐

│WHEN (n)├──────�┤ Fn ├──�──────────┤

 └───┬────┘ └────┘ │

 │ False │

 ┌────┴────┐ ┌─────┐ ┌───┴──┐

│ OTHRWISE├──────�┤Code ├───────�┤ENDSEL├─�

 └─────────┘ └─────┘ └──────┘

OTHRWISE is optional.

This example uses the SELECT, WHEN, OTHRWISE, and ENDSEL macros:

SELECT CLI,�(R6),EQ Defines the comparison

 WHEN (X'2�')

Code for F1

 WHEN (1,5,13)

Code for F2

 WHEN (3,7,15)

Code for F3

 OTHRWISE

Code for F4

 ENDSEL

It generates:

 Chapter 2. Using Structured Programming Macros 37

 The SELECT Macro Set

SELECT CLI,�(R6),EQ Defines the comparison

 WHEN (X'2�')

 CLI �(R6),X'2�'

 BC 15-8,#@LB2

Code for F1

 WHEN (1,5,13)

BC 15,#@LB1 SKIP TO END

#@LB2 DC �H

 CLI �(R6),1

 BC 8,#@LB5

 CLI �(R6),5

 BC 8,#@LB5

 CLI �(R6),13

 BC 15-8,#@LB4

#@LB5 DC �H

Code for F2

 WHEN (3,7,15)

BC 15,#@LB1 SKIP TO END

#@LB4 DC �H

 CLI �(R6),3

 BC 8,#@LB7

 CLI �(R6),7

 BC 8,#@LB7

 CLI �(R6),15

 BC 15-8,#@LB6

#@LB7 DC �H

Code for F3

 OTHRWISE

BC 15,#@LB1 SKIP TO END

#@LB6 DC �H

Code for F4

 ENDSEL

#@LB1 DC �H

Here is another example of the SELECT Macro Set:

 SELECT CLM,2,B'11��',EQ

 WHEN (=C'AA',=C'BB')

 Process A

 WHEN =C'AB'

 Process B

 WHEN =C'12'

 Process C

 ENDSEL

It generates:

38 HLASM V1R4 Toolkit Feature User’s Guide

 The SELECT Macro Set

 CLM 2,B'11��',=C'AA'

 BC 8,LB3

 CLM 2,B'11��',=C'BB'

 BC 15-8,LB2

LB3 DC �H

 Process A

 B LB1

LB2 DC �H

 CLM 2,B'11��',=C'AB'

 BC 15-8,LB4

 Process B

 B LB1

LB4 DC �H

 CLM 2,B'11��',=C'12'

 BC 15-8,LB6

 Process C

LB6 DC �H

LB1 DC �H

The SELECT group allows a SELECT with no operands followed by WHEN macros
with IF style operands. This produces the same structure as the
IF/ELSEIF/ELSE/ENDIF macros.

For example: :

 SELECT

 WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)

<code for first condition>

 WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)

<code for second condition>

 OTHRWISE

 <otherwise code>

 ENDSEL

generates (assuming that ASMMREL ON has been coded earlier):

 Chapter 2. Using Structured Programming Macros 39

 The SELECT Macro Set

 SELECT

 WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)

 CLI WORD1,1

 BRC 8,#@LB3

 CLI WORD1,2

 BRC 8,#@LB3

 CLI WORD1,3

 BRC 15-8,#@LB2

#@LB3 DC �H

<code for first condition>

 WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)

BRC 15,#@LB1 SKIP TO END

#@LB2 DC �H

 CLI WORD2,2

 BRC 15-8,#@LB4

 CLI WORD3,3

 BRC 15-8,#@LB4

<code for second condition>

 OTHRWISE

BRC 15,#@LB1 SKIP TO END

#@LB4 DC �H

 <otherwise code>

 ENDSEL

#@LB1 DC �H

40 HLASM V1R4 Toolkit Feature User’s Guide

 Introduction

Chapter 3. Using the Disassembler

Introduction to the Disassembler . 41
Invoking the Disassembler . 42

Invoking the Disassembler on MVS . 42
MVS JCL Example . 42
Disassembler Options on MVS . 44

Invoking the Disassembler on CMS . 44
CMS Example . 45
Disassembler Options on CMS . 46

Invoking the Disassembler on VSE . 46
VSE JCL Example: . 47
Disassembler Options on VSE . 47

Control Statements . 48
Module-CSECT Statement (required) . 48

Format . 49
DATA-only Statement (optional) . 49
INSTR-only Statement (optional) . 49
DS-area Statement (optional) . 50
DSECT Definitions (optional) . 50
ULABL Statements . 51
USING Statements . 51
COPY Statement (optional) . 52
Comment Statement (optional) . 52

Disassembling a Module for the First Time . 52
Output Description . 53

SYSPUNCH (SYSPCH for VSE) Content . 53
SYSPRINT (SYSLST for VSE) Content . 54

Disassembler CMS Messages . 55
Disassembler Messages . 57

Introduction to the Disassembler
The Disassembler produces assembler language source statements and a
pseudo-listing using object code as input. You can use the Assembler Language
source file and listing for purposes such as program understanding, debugging, and
recovery of lost source code.

ASMDASM is a two-pass disassembler which produces an assembler language
source program from a CSECT within any of the following:

MVS An object module, a program object, or a load module.

CMS An object deck, or a CMS Module.

VSE An object module, or a phase.

Control statements permit specification of areas containing instructions or data or
uninitialized data areas, provide base registers so that symbolic labels are created
during disassembly, and define the DSECTs used during disassembly.

Registers are denoted thus:

� Access Registers are denoted by A0, A1,...A15.

 Copyright IBM Corp. 1992, 2004 41

 Invoking the Disassembler

� Control Registers are denoted by C0, C1,...C15.

� Floating Point Registers are denoted by F0, F1,...F15.

� General Purpose Registers are denoted by R0, R1,...R15.

� Vector Registers are denoted by V0, V1,...V15.

The Disassembler provides informational comments for recognized SVCs, and for
various branch instructions to aid in creating a documented source program.

A Warning about Copyright

When you use this utility you must be aware of and respect the intellectual
property rights of others. You are not authorized to use this utility to
disassemble, copy or create assembly listings or disassembled Assembler
Language source code in violation of any contractual or other legal obligation.
You are authorized to use this utility only for object code for which you have
verified you have the right to perform disassembly.

The Disassembler normally scans the object code for the strings specified
below. If any one of these is found, then the Disassembler issues message
ASMD010 and the disassembly stops.

The Disassembler searches for the following data:

 � (c)
 � (C)
� at code point X'B4'
� "Copyright" in any combination of upper case and lower case letters.

Invoking the Disassembler
On MVS, the Disassembler processes a program object, a load module, or an
object module.

On CMS, the Disassembler processes either a CMS Module, or an object deck.

On VSE, the Disassembler processes either an object module or a phase.

For details on the resulting output for each operating system see “Output
Description” on page 53.

Invoking the Disassembler on MVS
On MVS you invoke the Disassembler as a batch program using Job Control
Language (JCL). The following sections describe the job control language
statements you can use.

MVS JCL Example

42 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Disassembler

//DISASM EXEC PGM=ASMDASM,PARM='options' �1�
//SYSLIB DD DSN=user.loadlib,DISP=SHR �2�

| //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=363� �3�
//SYSPUNCH DD DSN=user.command.asm,DISP=(,CATLG), �4�
// UNIT=SYSDA,DCB=BLKSIZE=32��,

// SPACE=(TRK,(5,2),RLSE)

//SYSIN DD �

module_name csect_name �5�
other control statements

...

//�COPYLIB DD DSN=user.copy.name,DISP=SHR �6�

Figure 6. Sample Disassembler MVS JCL

The following details explain the lines of JCL in Figure 6 highlighted with a number
(such as �1�).

�1� Replace options with any Disassembler options that you want to use. For a list
of options, see “Disassembler Options on MVS” on page 44.

EXEC PGM=ASMDASM runs the Disassembler program named ASMDASM.

�2� To disassemble an object module, replace user.loadlib with either:

� The name of the sequential data set containing the object module

� The name of the PDS, followed by the name of the member in
parentheses, containing the object module

� The name of the PDSE, followed by the name of the member in
parentheses, containing the program object. (DFSMS/MVS 1.3 or higher is
required to support this).

To disassemble a load module, replace user.loadlib with the name of the PDS
containing the load module. Specify the load module pds_member in the
Module-CSECT process statement (for details, see �5�).

To disassemble a program object, replace user.loadlib with the name of the
PDSE containing the program object. Specify the program object
pdse_member in the Module-CSECT process statement (for details, see �5�).

SYSLIB specifies the object module or, in combination with the pds_member or
pdse_member in �5�, the load module or program object to be disassembled.

�3� If you require the assembly listing in a file, enter the name of the data set.

The optional SYSPRINT DD statement specifies the output file for the
assembly listing. You must specify the BLKSIZE as a multiple of 121.
RECFM=FBA,LRECL=121 is hard-coded.

�4� If you require the output disassembled source in a file, enter the name of the
data set.

The SYSPUNCH DD statement is an optional statement which specifies an
output file for the disassembled source. You must specify the BLKSIZE as a
multiple of 80. RECFM=FB,LRECL=80 is hard-coded.

�5� Replace the Module-CSECT control statement, consisting of module_name and
csect_name, with appropriate values for the SYSLIB you specified in �2�. If
you specified an object module or a program object in �2�, then pds_member
or pdse_member is ignored. For details, see the “Module-CSECT Statement
(required)” on page 48.

 Chapter 3. Using the Disassembler 43

 Invoking the Disassembler

Add any other control statements below the Module-CSECT statement.

SYSIN DD contains the control statements. You must specify the
module-CSECT statement. You must specify a BLKSIZE in a multiple of 80.
RECFM=FB,LRECL=80 is hard-coded.

�6� If you use the COPY control statement enter the COPYLIB DD statement.

The COPYLIB DD statement contains control statement members selected by
COPY control statement. The Disassembler opens this file only if you use the
COPY control statement. You must specify a BLKSIZE in a multiple of 80.
RECFM=FB,LRECL=80 is hard-coded.

Disassembler Options on MVS
On MVS you can specify the following options in the PARM field:

COPYRIGHTOK Allow disassembly of copyrighted module. If you use the
COPYRIGHTOK option then message ASMD008 is printed at the
start of the listing.

| HEX Generate the offset in machine instructions as a hexadecimal
| value.

| OPTABLE Specifies the operation code table to be used in disassembling
| CSECTs.

|

| ┌ ┐─UNI─
| ��─ ── ──┬ ┬─OPTABLE─ (──┼ ┼─DOS─) ────────────────────────────��
| └ ┘─OP────── ├ ┤─ESA─
| ├ ┤─XA──
| ├ ┤─37�─
| ├ ┤─ZOP─
| └ ┘─YOP─

| NEWNUM Allow any numeric field within a control statement to be specified
| either as a decimal value (a sequence of decimal digits) or a
| hexadecimal value (enclosed in single quotation marks and
| preceded by the letter X).

VSESVC Use the VSE description for SVCs, not the MVS description. Use
| this option when disassembling VSE code while running on MVS.

You can specify any of the above options together in the PARM string in any order,
separated by a comma or space.

Invoking the Disassembler on CMS
On CMS you invoke the Disassembler with the ASMD command.

��──ASMD──filename─ ──┬ ┬──────── ──┬ ┬─────────────── ─────────────────────────��
 └ ┘─MODULE─ │ │┌ ┐──────────
 └ ┘──(───

┴─option─

The ASMD command allocates all required files and then passes control to the
Disassembler module, ASMDASM. If you enter any file definitions before the
ASMD command is issued, then they are used.

44 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Disassembler

The MODULE keyword is required if and only if you are disassembling a CMS
module.

The file definitions are described below:

SYSIN This file contains control statements of which the module-CSECT
statement is required.

The ASMD command issues the following FILEDEF command:

FILEDEF SYSIN DISK filename DISASM � (RECFM FB LRECL 8� BLOCK 16���

SYSLIB Specifies the file name of the module to be disassembled.

For object decks, the ASMD command issues the following FILEDEF
command:

FILEDEF SYSLIB DISK filename TEXT � (RECFM FB LRECL 8� BLOCK 16���

For CMS Modules, no FILEDEF command is issued.

SYSPRINT Specifies the output file for the disassembler listing

The ASMD command issues the following FILEDEF command:

FILEDEF SYSPRINT DISK filename LISTING � (RECFM FBA LRECL 121 BLOCK 121�

SYSPUNCH Specifies the output file for the disassembler source.

The ASMD command issues the following FILEDEF command:

FILEDEF SYSPUNCH DISK filename PUNCH � (RECFM FB LRECL 8� BLOCK 16���

COPYLIB This contains control statement members selected by COPY control
statement. Opened only if you use the COPY control statement.

The ASMD command issues the following FILEDEF command:

FILEDEF COPYLIB DISK CMSLIB MACLIB � (RECFM FB LRECL 8� BLOCK 8���

Before using the COPY control statement, you must issue the CMS
command GLOBAL MACLIB to identify the MACLIBs to be searched
for control statement members. For more information on the
GLOBAL MACLIB command, see the applicable CMS Command and
Macro Reference.

 CMS Example
This example disassembles the CSECT COMMAND in object file PROCESS TEXT.

The following command identifies PROCESS TEXT as the object file:

ASMD PROCESS

For this example, the predefined control statements file PROCESS DISASM
contains only a Module-CSECT statement:

ANYNAME COMMAND

where ANYNAME is ignored, and COMMAND identifies the CSECT to be
disassembled.

The Disassembler outputs a listing in the file PROCESS LISTING, and the
disassembled source in the file PROCESS PUNCH.

 Chapter 3. Using the Disassembler 45

 Invoking the Disassembler

Disassembler Options on CMS
On CMS you can specify the following options:

COPYRIGHTOK Allow disassembly of copyrighted module. If you use the
COPYRIGHTOK option then the Disassembler prints message
ASMD008 at the start of the listing.

DISK Output the LISTING file to disk, this is the default.

ERASE Specifies that the existing files with a file name the same as the
file name on the ASMD command, and a file type of LISTING and
PUNCH are deleted before the Disassembly is run. Only files on
the disk on which the Disassembler writes the new listing and
source files are deleted. ERASE is the default.

| HEX Generate the offset in machine instructions as a hexadecimal
| value.

| OPTABLE Specifies the operation code table to be used in disassembling
| CSECTs.

|

| ┌ ┐─UNI─
| ��─ ── ──┬ ┬─OPTABLE─ (──┼ ┼─DOS─) ────────────────────────────��
| └ ┘─OP────── ├ ┤─ESA─
| ├ ┤─XA──
| ├ ┤─37�─
| ├ ┤─ZOP─
| └ ┘─YOP─

| NEWNUM Allow any numeric field within a control statement to be specified
| either as a decimal value (a sequence of decimal digits) or a
| hexadecimal value (enclosed in single quotation marks and
| preceded by the letter X).

NOERASE Do not erase the existing LISTING and PUNCH files before the
disassembly is run.

NOPRINT Suppress the writing of the LISTING file.

PRINT Outputs the LISTING file to the virtual printer. The listing is not
written to disk.

VSESVC Use the VSE description for SVCs, not the MVS description. Use
| this option when disassembling VSE code while running on CMS.

You can specify any of the above options together in the PARM string in any order,
separated by a comma or space.

Invoking the Disassembler on VSE
On VSE you invoke the Disassembler as a batch program using Job Control
Language (JCL). The following section describes the job control language
statements that you need to run the Disassembler.

46 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Disassembler

VSE JCL Example:

// LIBDEF �,SEARCH=(user.library,hlasm.library) �1�
// EXEC ASMDASM,PARM='options' �2�

 module_name csect_name
 /�

Figure 7. Sample Disassembler VSE JCL

The following details explain the lines of JCL in Figure 7 highlighted with a number
(such as �1�).

�1� Replace user.library and hlasm.library with the search chain for the phase or
object.

�2� Replace options with any Disassembler options that you want to use. For a list
of options, see “Disassembler Options on VSE.” If you do not need any options
omit the PARM field.

EXEC ASMDASM runs the Disassembler program named ASMDASM. The
Disassembler control statements can follow the EXEC statement, in SYSIPT as
in the example shown above. Enter each statement on a separate line, with the
last statement followed by the SYSRDR termination control characters /� on the
last line. Or you can assign SYSIPT to a file.

Disassembler Options on VSE
On VSE you can specify the following options:

COPYRIGHTOK Allow disassembly of copyrighted module. If you use the
COPYRIGHTOK option the Disassembler prints the message
ASMD008 at the start of the listing.

| HEX Generate the offset in machine instructions as a hexadecimal
| value.

| OPTABLE Specifies the operation code table to be used in disassembling
| CSECTs.

|

| ┌ ┐─UNI─
| ��─ ── ──┬ ┬─OPTABLE─ (──┼ ┼─DOS─) ────────────────────────────��
| └ ┘─OP────── ├ ┤─ESA─
| ├ ┤─XA──
| ├ ┤─37�─
| ├ ┤─ZOP─
| └ ┘─YOP─

| MVSSVC Use the MVS description for SVCs, not the VSE description. Use
| this option when disassembling MVS code while running on VSE.

| NEWNUM Allow any numeric field within a control statement to be specified
| either as a decimal value (a sequence of decimal digits) or a
| hexadecimal value (enclosed in single quotation marks and
| preceded by the letter X).

PHASE If the module processed is a PHASE that may also exist as an
object then you must specify PHASE.

Note: If you have not specified PARM='PHASE' the Disassembler

 Chapter 3. Using the Disassembler 47

 Control Statements

searches for an object first, and if the object is not found it
searches for a phase.

You can specify any of the above options together in the PARM string in any order,
separated by a comma or space.

 Control Statements
You enter control statements:

MVS In SYSIN and, optionally, in a PDS member specified by a COPY control
statement. This member must belong to the PDS specified by the COPYLIB
DD statement.

CMS In the file filename DISASM (where you invoked the Disassembler using the
command ASMD filename) and, optionally, in a MACLIB member specified
by a COPY control statement. This member must belong to a MACLIB
specified by the GLOBAL MACLIB CMS command.

VSE In SYSIPT and, optionally, in a Librarian member specified by a COPY
control statement. This member must belong to a library specified in the
search chain.

The following rules apply to control statements:

� Columns 1–72 can contain only data.

� Columns 73–80 can be used for any desired purpose. In addition, columns
beyond the last specified may be used for any purpose.

� Hexadecimal fields may contain only the hexadecimal digits 0–9 and A–F, while
decimal fields may contain only digits 0–9.

� You must specify the module-CSECT statement in the first statement in the
input stream. For more details on the Module CSECT statement see
“Module-CSECT Statement (required).”

� DSECT definitions may not include any other control statement.

� USING statements for DSECTs must be entered after the DSECT definition.

� DATA-only statements and program USING statements may be entered in any
order except within DSECT definitions.

The COPY control statement may be used to switch the input stream to a member
of the COPYLIB file which contains additional control statements. COPY statements
are not allowed in these supplemental control statement members. That is, COPY
statements may not cause nesting COPYing. After the COPY member input is
exhausted, the original input stream is resumed. This control statement is especially
helpful where a large common DSECT is used by multiple CSECTs in a module.

Module-CSECT Statement (required)
Identifies the module and CSECT to be disassembled. Must be the first control

| statement in the input stream, and specifies the module name, CSECT name, and
| optionally CLASS name for program objects.

 MVS needs the module name. If you specify the name of a PDS or
PDSE in the SYSLIB DD statement, then the module name you specify in the

48 HLASM V1R4 Toolkit Feature User’s Guide

 Control Statements

Module-CSECT statement identifies a load module or a program object to be
disassembled, which must be a member of that PDS or PDSE. Otherwise, the
name is ignored (but still needed); the PDS or PDSE member or sequential data
set identified by the SYSLIB DD statement is assumed to be an object module.
The CSECT name is optional. If it is specified, the named CSECT must exist in the
module or object module. If omitted, the CSECT with ESDID=0001 is
disassembled.

 On CMS, you must provide a module name but it is not used for object
decks. For object decks, only the first CSECT is disassembled; selection of
specific CSECTs is not possible. For CMS modules, the CSECT name is optional.
If it is specified, the named CSECT must exist in the module.

 On VSE, a phase does not contain any information allowing selection of
individual CSECTs. The phase is therefore viewed as one CSECT where the
CSECT name is determined by the CSECT name on this statement, if present;
otherwise it is the module name.

 Format
Free-form, with module name beginning in column 1. At least one space must

| separate module name and CSECT name and, if specified, CLASS name. The
names may be separated by any number of spaces.

DATA-only Statement (optional)
This describes areas of the CSECT being disassembled which contain no
instructions. Use of this statement eliminates creation of instructions from constant
data, or from areas containing values created during program linking. Up to 256
DATA-only statement may be entered. These statements may occur anywhere in
the input stream after the module-CSECT statement, but not within a DSECT
definition set.

Table 6. DATA-only statement: format

Column Contents

1–4 � literal 'DATA'

5 onwards � one or more spaces
� offset to beginning of area, in hexadecimal
� one or more spaces

| � offset to end of area (last byte), in hexadecimal

INSTR-only Statement (optional)
This describes areas of the CSECT being disassembled which are instruction
areas. This statement allows the bypassing of the following tests which might
identify valid instructions as data:

� 4 consecutive identical bytes

� 6 consecutive valid EBCDIC characters

� next instruction valid opcode

The remaining instruction tests remain in effect, and invalid instructions are still
generated as hexadecimal data statements. Up to 256 INSTR-only statements can

 Chapter 3. Using the Disassembler 49

 Control Statements

be entered. These statements can occur anywhere in the input stream after the
module-CSECT statement, but not within a DSECT definition set.

Table 7. INSTR-only statement: format

Column Contents

1–5 � literal 'INSTR'

6 onwards � one or more spaces
� offset to beginning of area, in hexadecimal
� one or more spaces
� offset to end of area (last byte), in hexadecimal

DS-area Statement (optional)
This describes areas of the CSECT being disassembled which are uninitialized
storage areas. These text areas are cleared to binary zeros before the
disassembly begins. Use of this statement forces the creation of DS assembly
opcodes, eliminating the creation of instructions or data constants. Up to 256
DS-area statements may be entered. These statements may occur anywhere in the
input stream after the module-CSECT statement, but not within a DSECT definition
set.

Table 8. DS-area statement: format

Column Contents

1–2 � literal 'DS'

3 onwards � one or more spaces
� offset to beginning of area, in hexadecimal
� one or more spaces
� offset to end of area (last byte), in hexadecimal

DSECT Definitions (optional)
A DSECT is defined by a header statement followed by up to 9999 field definition
statements. No other control statements may be entered within a DSECT
definition. Up to 256 DSECT definitions may be entered.

Table 9. DSECT header statement: format

Column Contents

1–8 � DSECT name

9 onwards � one or more spaces
 � literal 'DSECT'
� one or more spaces
� number of field statements to follow (decimal)

Table 10 (Page 1 of 2). DSECT field statement: format

Column Contents

1–8 � field name

50 HLASM V1R4 Toolkit Feature User’s Guide

 Control Statements

Table 10 (Page 2 of 2). DSECT field statement: format

Column Contents

9 onwards � one or more spaces
� offset to start of field (decimal). Maximum offset is 4095.
� one or more spaces
� length of field in bytes (decimal). Maximum length is 999.

 ULABL Statements
These statements define user labels to be placed on statements within the
program. If program base registers are set up with USING statements, these are
also generated as symbolic operands on instructions.

Table 11. ULABL statements: format

Column Contents

1–5 � literal 'ULABL'

6 onwards � one or more spaces
 � label name
� one or more spaces
� offset to start of field (hexadecimal)
� one or more spaces
� length of the named field (decimal). Maximum length is 999.

 USING Statements
These statements define base register usage. Up to 256 USING statements may
be entered. These statements permit the Disassembler to convert explicit
base-displacement addresses to symbolic labels. Labels created within the program
is 7 characters long. The first character is 'A', followed by the 6-hex-digit offset to
the label. A USING statement must be entered for each DSECT to be used.

Table 12. USING statements: format

Column Contents

1–5 � literal 'USING'

6 onwards � one or more spaces
� offset of beginning location for USING range in hexadecimal (this is

where the USING statement occurs)
� one or more spaces
� offset of ending location for USING range in hexadecimal (this is where

the DROP statement occurs)
� one or more spaces
� base register to be used (hexadecimal 1-F)
� one or more spaces
� type, P=program base, D=DSECT base
� one or more spaces
� initial base register value (if type P) in hexadecimal
� DSECT name (if type D)

 Chapter 3. Using the Disassembler 51

 Disassembling a Module for the First Time

COPY Statement (optional)
This switches the control statement input stream to the specified source member in
a data set or library, appropriate to the platform. This member contains additional
control statements which are read and processed until the COPY control
statements member is exhausted. These statements may occur anywhere in the
input stream after the module-CSECT statement, but not within a control statement
member being copied.

Table 13. COPY statement: format

Column Contents

1–4 � literal 'COPY'

5 onwards � one or more spaces
� COPY member name

Comment Statement (optional)
The comment statement allows you to enter comments in the control statement
stream which is printed as part of the entered statement, but ignored thereafter.

Table 14. Comment statement: format

Column Contents

1 � literal '*'

2–72 � comment text

Disassembling a Module for the First Time
When you first disassemble a module, do not use the SYSPUNCH (SYSPCH for
VSE) output, but print the SYSPRINT (SYSLST for VSE) listing. Use the listing to
determine which registers are used as program base registers, their initial values,
and their ranges. Make up USING statements for these. Find any places where no
instructions should be generated (only constants), and make up data-only
statements for these ranges. Find any uninitialized data areas (DS areas), and
make up DS statements for these ranges. If you can determine any registers that
are bases for areas which can be used for DSECTs, determine the range of valid
use, and make up DSECT definitions and USING statements for these. Perform a
second disassembly, including the above statements, and creating a source
program with the SYSPUNCH (SYSPCH for VSE) output.

52 HLASM V1R4 Toolkit Feature User’s Guide

 Output Description

 Output Description

SYSPUNCH (SYSPCH for VSE) Content
This output contains the disassembled source program. Statement names begin in
column 1, mnemonics begin in column 10, operands in col 16, and an occasional
comment begins in column 44. A sequence number (by tens) is in columns 73–80.
Comments are included to show the macro name associated with SVCs, and other
statements are flagged to aid in identification of certain operations:

Instruction / Addresses Comment

BALR 14,15 std linkage

BALR x,0 address set

other BALRs non-std linkage

BASR 14,15 std linkage

BASR x,0 address set

other BASRs non-std linkage

BAL 0,xxx and BAL 1,xxx parm set brch

BAL x,xxx perform

BAS 0,xxx and BAS 1,xxx parm set brch

BAS x,xxx perform

STM instructions save regs

LM instructions restore regs

| BCR 15,R14 exit

absolute location hexadecimal 10 CVT address

absolute location hexadecimal 4C CVT address

other absolute locations PSA reference

EX instructions run instr opcode

L instructions reference to ADCONS

When used explicitly in instructions, registers are denoted by:

� Access Registers by A0, A1,...A15.

� Control Registers by C0, C1,...C15.

� Floating Point Registers by F0, F1,...F15.

� General Purpose Registers by R0, R1,...R15.

� Vector Registers by V0, V1,...V15.

An ASMDREG macro is generated at the end of the program to create the
appropriate EQU statements for the symbols defining the Access, Control, Floating
Point, General Purpose, and Vector registers. If any DSECTs were defined in the

| SYSIN file, they are near the end of the source program. ASMDREG is installed by
| default in PRD2.PROD. Check with your systems programmer if HLASM Toolkit
| was installed in a different sublibrary.

 Chapter 3. Using the Disassembler 53

 Output Description

SYSPRINT (SYSLST for VSE) Content
Directory information Contains data from the directory entry of the module

containing the CSECT to be disassembled, if available.

ESD table A formatted list of all external symbol entries found in the
module.

RLD table A formatted listing of all relocation dictionary entries
pertaining to this CSECT.

User entered records A list of the records entered by you, with diagnostics, if
appropriate.

Label table A list of all the labels to be used during disassembly
including those developed from ESD entries, RLD entries,
and generated names resulting from USING statements
processing.

Text A storage-dump formatted listing of the text which
comprises the CSECT being disassembled.

Source listing A printout of the generated source program statements,
including the hexadecimal value which resulted in the
instruction's creation.

Note: The number of lines per page assumed in the disassembler listing is 60.

54 HLASM V1R4 Toolkit Feature User’s Guide

 Disassembler CMS Messages � ASMDCMS011E

Disassembler CMS Messages

ASMDCMS002E File fn ft fm not found

Explanation: The file name you included in the ASMD
command does not correspond to the names of any of
the files on your disks.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that could not be found.

System Action: RC=28. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMD with the
correct file name.

ASMDCMS003E Invalid option option

Explanation: You have included an incorrect option
that is not correct with your ASMD command.

Supplemental Information: The variable option in the
text of the message indicates the option that is not
correct.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
ASMD command, and reissue the command with the
correct option.

ASMDCMS004E Improperly formed option option

Explanation: You have included an improperly formed
option with your ASMD command.

Supplemental Information: The variable option in the
text of the message indicates the improperly formed
option.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
ASMD command, and reissue the command with the
correct option.

ASMDCMS005E Truncation of options may have
occurred because of tokenized PLIST
format

Explanation: The options have been passed to the
ASMD command in tokenized PLIST format. Any
options passed might have been truncated to 8
characters. This message is only issued when an error
has been detected in one of the options that was
specified.

System Action: The options are accepted as entered
but might have been truncated.

Programmer Response: If the options have been
truncated, invoke the ASMD command with the
extended parameter list.

ASMDCMS006E No read/write disk accessed

Explanation: Your virtual machine configuration does
not include a read/write disk for this terminal session, or
you failed to specify a read/write disk.

System Action: RC=36. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

ASMDCMS007E File 'fn ft fm' does not contain fixed
length 80 character records

Explanation: The control file you specified in the
ASMD command does not contain fixed-length records
of 80 characters.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that is in error.

System Action: RC=32. The command cannot be
processed.

Programmer Response: You must reformat your file
into the correct record length. CMS XEDIT or
COPYFILE can be used to reformat the file.

ASMDCMS010E File name omitted and FILEDEF
'ddname' is undefined

Explanation: You have not included a file name in the
ASMD command, and no FILEDEF could be found for
the ddname specified.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMD
command and specify a file name, or issue a FILEDEF
for the ddname specified.

ASMDCMS011E File name omitted and FILEDEF
'ddname' is not for DISK.

Explanation: You have not included a file name in the
ASMD command, and the FILEDEF for the ddname
specified is not for DISK.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

 Chapter 3. Using the Disassembler 55

 ASMDCMS038E � ASMDCMS075E

Programmer Response: Reissue the ASMD
command and specify a file name, or reissue the
FILEDEF for the ddname specified with a device type of
'DISK'.

ASMDCMS038E File name conflict for the SYSIN
FILEDEF.

Explanation: The file name specified on the ASMD
command conflicts with the file name on the FILEDEF
for the SYSIN ddname.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the FILEDEF
command or the ASMD command specifying the same
file name.

ASMDCMS052E Option list exceeds 512 characters.

Explanation: The string of options that you specified
with your ASMD command exceeded 512 characters in
length.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your ASMD
command with fewer options specified.

ASMDCMS062E Invalid character c in file name
file_name

Explanation: A character that is not permitted was
specified in the file name specified on the ASMD
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
option with its correct parameters, and reissue the
command with the correct parameter.

ASMDCMS070E Left parenthesis '(' required before
option list

Explanation: An option was specified after the file
name but before the left parenthesis on the ASMD
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue the ASMD command
again with the option specified after the left parenthesis.
Only the file name can be specified before the left
parenthesis.

ASMDCMS074E Required module module_name
MODULE not found

Explanation: The ASMD command was unable to
load the specified module.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Verify you have accessed
the disk containing the disassembler and issue the
ASMD command again.

ASMDCMS075E Device device invalid for file_name

Explanation: The device specified in your FILEDEF
command cannot be used for the input or output
operation that is requested in your program. For
example, you have tried to read data from the printer or
write data to the reader.

Supplemental Information: The variable device name
in the text of the message indicates the incorrect device
that was specified.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your FILEDEF
command, specifying the correct device for the required
input operation.

56 HLASM V1R4 Toolkit Feature User’s Guide

 Disassembler Messages � ASMD010

 Disassembler Messages

ASMD000 Invalid Parameter, specified: parameter

Explanation: The parameter specified is not correct.

Programmer Response: Ensure that the parameter
specified is one of the following values:

 COPYRIGHTOK
 HEX
 OPTABLE
 NEWNUM

PHASE (VSE Only)
 VSESVC

ASMD001 Member and CSECT must be entered via
SYSIN

Explanation: The member and CSECT names could
not be determined

Programmer Response: Ensure that the
module-CSECT statement is present in the control file
as the first statement.

ASMD002 Member or CSECT name over 8
characters

Explanation: Either the member name or CSECT
name on the module-CSECT statement exceeds 8
characters.

Programmer Response: Correct the member name or
the CSECT name on the module-CSECT statement to
be 8 characters or fewer.

ASMD003 No member name found on control
record

Explanation: The member name is missing from the
module-CSECT record.

Programmer Response: Add the desired member
name to the module-CSECT record.

ASMD004 Specified member not found

Explanation: The specified member was not found.

Programmer Response: Ensure that the correct
member has been specified and:

MVS The correct SYSLIB data set is being used.
VM The correct MACLIB has been referenced

with GLOBAL MACLIB.
VSE The correct library has been specified in a

LIBDEF search chain.

ASMD005 Specified CSECT not found in member

Explanation: The specified CSECT name was not
found in the ESD records for the module.

Programmer Response: Ensure that the correct
CSECT has been specified on the module-CSECT
statement.

ASMD006 Label table full

Explanation: The disassembler's label table is full.

Programmer Response: Reduce the number of user
labels requested in the control file statements.

ASMD007 CLASS name over 16 characters

Explanation: CLASS name in a program object
exceeds the maximum length.

System Action: The disassembly is unable to
proceed.

Programmer Response: Reduce the length of the
CLASS name to 16 characters or less.

ASMD008 The user of the COPYRIGHTOK option
ensures that this use is not violate any
copyright restrictions or other rights
pertaining to the code being
disassembled.

System Action: None. Processing continues

Programmer Response: None.

ASMD009 This program may be used to
disassemble only object code that you
own, or program code for which you
have a license to copy and disassemble.

System Action: None. Processing continues.

Programmer Response: None.

ASMD010 A copyright symbol has been found.
You should verify that you are allowed to
disassemble this object code.

Explanation: The disassembler has detected a
copyright symbol within the object code being
disassembled.

System Action: The disassembly is stopped

Programmer Response: Ensure that the correct
CSECT is being disassembled. Further information on
the copyright scans may be found at Chapter 3, “Using
the Disassembler” on page 41.

 Chapter 3. Using the Disassembler 57

 ASMD100 � ASMD109

ASMD100 Unidentified record

Explanation: The disassembler is unable to determine
the record type.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in.

Programmer Response: Provide a valid record type.

ASMD101 Invalid Begin value

Explanation: The data in the Begin field is invalid hex
data.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
Begin field.

ASMD102 Invalid End value

Explanation: The data in the End field is invalid hex
data, or the value is odd or the value is greater than the
length of the CSECT being disassembled.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
End field.

ASMD103 Invalid Register value

Explanation: The data in the register field is invalid
hex data, or the value is zero.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide a value between 1
and F in the register field.

ASMD104 Invalid Initial Base value

Explanation: The data in the initial base value is
invalid hex data

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
initial base value.

ASMD105 Undefined DSECT

Explanation: The DSECT name specified in columns
25 to 30 is undefined.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the DSECT name to
a defined name or provide the missing definition.

ASMD106 Over 256 USING records

Explanation: More then 256 USING records have
been specified.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Reduce the number of
USING records specified in the control file.

ASMD107 End before Begin

Explanation: The End address specified is less than
the Begin address.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change either address so
that the End address is greater then the Begin address.

ASMD108 Invalid USING type

Explanation: The USING type specified is not P or D.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the USING type to a
valid value.

ASMD109 Invalid User Label name

Explanation: The User Label Name specified has a
space as the first character.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the Label Name so
that it starts with a non-space character.

58 HLASM V1R4 Toolkit Feature User’s Guide

 ASMD110 � ASMD120

ASMD110 Invalid Offset

Explanation: The data in the Offset field is invalid hex
data,

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
Offset field.

ASMD111 Invalid Length

Explanation: The data in the Offset field is invalid hex
data or the value exceeds 4096.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
Offset field or a valid length value.

ASMD112 Label table overflow

Explanation: The disassembler's label table is full.

Programmer Response: Reduce the number of user
labels requested in the control file records.

ASMD113 Invalid DSECT name

Explanation: The DSECT name or field name
specified has a space as the first character.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the name so that it
starts with a non-space character.

ASMD114 Invalid Number of Fields

Explanation: The number of fields specified is not a
valid decimal number.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the number of fields
so that it is a valid decimal number

ASMD115 Invalid Offset

Explanation: The data in the Offset field is invalid
decimal data or the value exceeds 4096.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid decimal data in
the Offset field or a value less than or equal to 4096.

ASMD116 Invalid Length

Explanation: The data in the Offset field is invalid
decimal data, or the value exceeds 4096, or the value is
zero

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid decimal data in
the Offset field or a value between 1 and 4096.

ASMD117 Invalid Begin value

Explanation: The data in the first field (Begin) is
invalid hex data.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
Begin field.

ASMD118 Invalid End value

Explanation: The data in the second field (End) is
invalid hex data.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Provide valid hex data in the
End field.

ASMD119 End Offset before Begin

Explanation: The End offset specified is less than the
Begin offset.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change either offset so that
the End offset is greater then the Begin offset.

ASMD120 COPY already in progress

Explanation: A COPY member is already being
processed.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the use of COPY
records so that only one member is being used at a
time

 Chapter 3. Using the Disassembler 59

 ASMD121 � ASMD126

ASMD121 Invalid Member name

Explanation: The member name specified in columns
6 to 13 has a space as the first character.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Change the name so that it
starts with a non-space character.

ASMD122 COPYLIB OPEN failed

Explanation: The OPEN of the COPYLIB data set
failed

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Ensure that the COPYLIB
data set has the correct organization and record format.

ASMD123 Member not found on COPYLIB

Explanation: The member was not found in the
COPYLIB data set.

System Action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer Response: Ensure that you specified

the correct member and that it does exist as a member
within the COPYLIB data set.

ASMD124 Binder API Error RC: xxxxxx Reason:
xxxxxx.

Explanation: An internal error has occurred in the
interface between the disassembler and the program
object access module.

System Action: The disassembler stops.

Programmer Response: Check the return code in
DFSMS/MVS V1R4 Program Management SC26-4914
(or later).

ASMD125 Error occurred reading CMS Module.

Explanation: An error occurred when attempting to
disassemble a CMS Module.

System Action: The disassembler stops.

Programmer Response: Ensure you have specified
the correct CMS Module name when invoking the
disassembler.

| ASMD126 Module ASMADOP could not be loaded

| Explanation: The disassembler could not load
| common operation code table support module.

| System Action: The disassembler stops.

| Programmer Response: Contact your systems
| programmer.

60 HLASM V1R4 Toolkit Feature User’s Guide

 Using the Program Understanding Tool

Chapter 4. Using the Program Understanding Tool

Introducing ASMPUT . 62
More about nodes . 63
Getting started . 64

Other resources . 66
Working with ADATA files . 67

Opening an ADATA file . 67
Opening and closing the Control Flow Graph window 67
Viewing source code . 68

Changing font properties . 68
Restoring defaults . 69
Showing and hiding expanded lines . 69
Showing and hiding assembly diagnostics 70
Showing and hiding analysis messages . 71
Finding the next assembly diagnostic or analysis message 71
Finding text in source code . 71

Viewing ADATA file information . 72
Removing (closing) a file . 74

Working with the control flow graph . 74
Expanding and collapsing layers . 75
Adding and removing context . 81
Refreshing and redoing . 82
Hiding and showing return arcs . 83
Marking and unmarking nodes . 84
Opening and closing the Overview window . 85
Zooming . 86
Scrolling . 89
The interaction between source code and the control flow graph 89

ASMPUT windows and window areas . 91
Main window . 91

Main window file list area . 91
Main window source code area . 92
Main window information notebook . 92

Control Flow Graph window . 93
Overview window . 95

| Restrictions . 95
Using online help . 96

Using Topic Help . 96
Using What's This help . 97
The OS/2 help . 97

ASMPUT messages . 97

 Copyright IBM Corp. 1992, 2004 61

 Introducing ASMPUT

 Introducing ASMPUT
The High Level Assembler Program Understanding Tool (ASMPUT) analyzes
assembler language programs, and displays analyzed source code and the
corresponding control flow graph.

You can use the control flow graph to trace complex control flows and
inter-program linkages.

The control flow graph is made up of nodes and arcs. A node corresponds to a
group of lines of code, typically ending with a branch. An arc shows a connection
between nodes - a jump, call or return from one line of code to another. (A node
that is directly connected to another by an arc is a “linked node.”) For more
information, see “More about nodes” on page 63.

You can display different layers of the control flow graph. Higher layers display
items in less detail, lower layers reveal items in greater detail. For example, when
you expand a node by one layer, ASMPUT breaks the node holding many lines of
code into a number of nodes holding fewer lines of code plus connecting arcs.

Apart from isolated nodes, you can trace a path from one node to another, moving
along connecting arcs. The nodes immediately joined by arcs to a selected node
are the nodes of most importance. Nodes further away are less important to the
selected node. When you “remove the context” you remove the more distant nodes.
ASMPUT shows only the nodes directly related to the selected node. You can also
add context, so that nodes related to those currently displayed will also be
displayed.

By adding or removing context, and by expanding or collapsing nodes, you can
build a control flow graph that has the degree of simplicity and detail that you want.

Zooming in and out changes the size of the elements in the control flow graph,
without making any difference to the structure of the graph. “Working with the
control flow graph” on page 74 explains how you can control the display of the
control flow graph, such as by zooming and by expanding layers.

Clicking on a line of source code highlights the corresponding node in the graph.
Likewise, clicking a node in the graph highlights the corresponding lines of source
code. This means that you can trace the control flow either from the source code
listing or from the control flow graph, using whichever you find the easiest.

To prepare for using ASMPUT, you must create ADATA files for each program you
want to analyze. “Getting started” on page 64 shows how to do this, and outlines
the steps for using ASMPUT.

ASMPUT provides information from the High Level Assembler (HLASM) assembly
of the programs, for example, listing all the assembly options. “Working with
ADATA files” on page 67 lists the procedures for opening and closing ADATA files,
and viewing source code and assembly-time information.

ASMPUT has three different windows. The Main window shows the ADATA files
that are open, information about these files, and a source code listing. The
Control Flow Graph window shows the control flow graph, and the options and
icons you can use the change the structure of the graph. The Overview window
shows a small copy of the control flow graph, and an area box for quick zoom and

62 HLASM V1R4 Toolkit Feature User’s Guide

 Introducing ASMPUT

scroll control. “ASMPUT windows and window areas” on page 91 describes these
windows.

You can use ASMPUT on Windows or OS/2. The interface and processes of these
two versions are essentially the same.

More about nodes
At the lowest level, a node is a sequential group of statements that starts with an
entry point, and ends with one or more exit points. None of the statements between
the entry point and exit point are in their own right entry or exit points.

The flow of execution through a node means that control enters the node at only
one point and leaves the node at one point, via one or more exit paths.

Figure 8 shows a small example. The graphic beside the lines of code is not part
of the code, but to help in visualizing the example.

 stmt# type of statement

 ┌───┐

 1. Executable statement ┌───�─┤ 1 │

 2. Branch to Line 5 │ ┌─�─┤ 2 │

 │ │ └───┘

 │ │ ┌───┐

 3. Executable statement │ │ │ 3 ├─�─┐

 4. Executable statement │ │ │ 4 │ │

│ │ └─┬─┘ │

│ │ │

│ │ ┌─┴─┐ │

 5. Executable statement │ └─�─┤ 5 │ │

 6. Executable statement │ │ 6 │ │

 7. Conditional branch to Line 1 └──�──┤ 7 │ │

 └─┬─┘ │

 │

 ┌─┴─┐ │

 8. Executable statement │ 8 │ │

 9. Branch to Line 3 │ 9 ├─�─┘

 └───┘

Figure 8. An example of code and nodes

In this example, lines 1 and 2 are a node, with a single entry at line 1 and a single
exit via a branch statement at line 2.

Lines 3 and 4 are a node, with entry at line 3 (from line 9) and an exit at line 4 via
a fall-through to the next node. The explanatory graphic shows this fall-through
explicitly. The node ends at line 4, because line 5 is a branch target, from the
branch at line 2. This means that the next node starts at line 5.

Lines 5, 6 and 7 are a node, starting at line 5 and with two exit points at line 7. The
two exit points are via a conditional branch and via a fall-through.

Lines 8 and 9 are a node, starting at line 8 and exiting at line 9. The start at line 8
is caused by the fact that the previous node ended at line 7 and the fall-through
causes the entry to the new node at line 8.

 Chapter 4. Using the Program Understanding Tool 63

 Introducing ASMPUT

At the lowest level, a node is always displayed on the control flow graph as a
two-dimensional node.

Two-dimensional nodes are aggregated, through layering, to form a single
three-dimensional node. For example, a subroutine which is called and returns to
the caller may consist of many nodes. The layering process can hide this level of
detail, and display the routine as a single three-dimensional node.

 Getting started
The steps for using ASMPUT are:

1. Create an ADATA file

You must create an ADATA file on the host before you use ASMPUT, by
supplying the ADATA option at assembly time.

Do not use the XOBJECT or GOFF options, as ASMPUT cannot analyze the
resultant output file.

For more information about these options, see Chapter 3 “Controlling Your
Assembly With Options,” of the Programmer's Guide.

2. Download the ADATA file to your PC

Download the file to your PC as a binary file, and give it the extension “XAA”.

 3. Start ASMPUT

Start ASMPUT by the appropriate means (such as by double-clicking the
ASMPUT icon or (in Windows) by selecting from the Start menu). ASMPUT
starts with the global values in force when it was last closed, so the position
and size of the Main window are the same as when ASMPUT was last closed,
as are the sizes of the areas within this window, and the showing or hiding of
the information notebook, the zoom slider, and return arcs.

4. Open the ADATA file in ASMPUT

The Open option of the File menu opens a dialog box for you to enter file
details. After you complete opening the ADATA file, ASMPUT analyzes it. For
more information, see “Opening an ADATA file” on page 67.

Figure 9 on page 65 shows the Main window. This figure, and the following
figures in this chapter, show ASMPUT windows while two sample files
(CALCPRG.XAA and ADDPRG.XAA) are open. See “Other resources” on
page 66 for more information about the sample files. The figures in the PDF
and HTML versions of this manual show the ASMPUT windows in color.

64 HLASM V1R4 Toolkit Feature User’s Guide

 Introducing ASMPUT

Figure 9. The ASMPUT Main window

5. Open the Control Flow Graph window

ASMPUT displays the control flow graph for all currently opened modules.
When you open a new ADATA file, ASMPUT integrates the modules found in
that source code into the control flow graph.

The Show Graph option of the View menu opens the Control Flow Graph
window. For more information, see “Opening and closing the Control Flow
Graph window” on page 67.

Figure 10 on page 66 shows the Control Flow Graph window.

 Chapter 4. Using the Program Understanding Tool 65

 Introducing ASMPUT

Figure 10. The ASMPUT Control Flow Graph window

6. Peruse the control flow graph

ASMPUT offers many ways to change the appearance of the control flow
graph. For example, you can expand the number of layers, or you can remove
the context.

If you click on a node in the graph, the lines of source code corresponding to
the node are highlighted in the source code listing.

For more information, see “Working with the control flow graph” on page 74.

The prime purpose of ASMPUT is to show you a program's control flow in a
graphical representation. However, ASMPUT also lets you view source code, and
view information created by HLASM when the program was assembled.

 Other resources
There are a number of resources to help you use ASMPUT:

� The slide show demo

The slide show demo is a simple demonstration program that runs under
Windows (3.1 or Win-OS/2, 95, 98 and NT). It shows screen captures of an
ASMPUT session, with annotation. The slide show takes roughly five to ten
minutes to run. For a copy of the demonstration and more information, look in
the Demo subdirectory.

� The sample ADATA files

The sample ADATA files are in the Samples subdirectory. CALCPRG.XAA is
the main program, and most of the other sample programs are secondary
programs. For example, open CALCPRG.XAA and look at the control flow
graph. There is a gray node for the unresolved external ADDPRG. If you open
the file ADDPRG.XAA, the control flow graph is redrawn, and the gray
unresolved external node is replaced by the cyan “addprg” program entry node.

66 HLASM V1R4 Toolkit Feature User’s Guide

 Working with ADATA files

 � Online help

ASMPUT's online help has a similar structure to this chapter. It provides more
detailed step-by-step procedures, and more details for the individual fields of
the tabs in the information notebook. The Help structure also has a word
search for a word or words in any topic.

The online help does not include screen captures, and does not provide a
detailed listing of ASMPUT messages.

For more information about online help, see “Using online help” on page 96.

� The HLASM web site

The HLASM web site is at
http://www.ibm.com/software/awdtools/hlasm/
As well as the latest HLASM news and downloadable demos, the web site
provides the HLASM manuals in HTML and PDF format, ready for online
browsing, or downloading to your PC for offline browsing.

Working with ADATA files
ADATA files are produced by HLASM as part of an assembly, when the appropriate
options are specified.

The files contain a lot of information about the program. ASMPUT is able to
analyze this information, and present it graphically.

You work with existing ADATA files at the Main window (see page 91).

Before ASMPUT can do anything with an ADATA file, you must open it. If you want
to remove the contents of the file from the control flow graph, you close it (page
74). While the ADATA file is open, you can view assembly-time information about
the file (page 72), look at source code (page 68), and open the control flow graph
window (page 67).

Opening an ADATA file
1. On the Main window File menu, click Open.
2. Enter the file name in the File name box.

 3. Click Open.
ASMPUT analyzes the file, then displays the name of the file in the file list
area. If the Control Flow Graph window is open, the control flow graph is
redrawn (at the highest level of layering), to incorporate any new modules.

You can also start this process by clicking the Open file icon on the toolbar.

After you have opened a file, you can view assembly-time information, view source
code, and view the control flow graph of the code.

Opening and closing the Control Flow Graph window
The Control Flow Graph window shows the control flow graph, and controls to
manipulate the graph.

To open the Control Flow Graph window

1. Open at least one ADATA file.

 Chapter 4. Using the Program Understanding Tool 67

 Working with ADATA files

2. Click the Show Graph icon on the toolbar, or on the Main window View menu,
click Show Graph.
The Control Flow Graph window is opened.

The control options for the Control Flow Graph window are described in “Working
with the control flow graph” on page 74.

To close the Control Flow Graph window

These methods work from the Control Flow Graph window.

� On the File menu click Exit, or
� Click the Close box, or
� Press the F3 shortcut key.

The Control Flow Graph window window is closed.

Viewing source code
1. Open the ADATA file that contains the source code.

ASMPUT displays the source code for the first source file in the ADATA file.
2. To view the source code of another source file, click another Source Code tag.

(Multiple source files are created when there are many assembler source files
in the input file to the assembler, and the BATCH option has been specified.)

The source code listing is displayed in the source code area.

After the source code is displayed, you can change the font, show and hide
expanded lines from macros and COPY segments, show and hide assembly
diagnostics, show and hide analysis messages, find the next assembly diagnostic
or analysis message, and look for an item of text in the code.

If the ADATA file containing the source code you want to view is already open, click
the Source Code tag of the source code you want to view.

Changing font properties
1. On the Main window Window menu, click Fonts.
2. Select the font, the font style, the font size and any special effects that you

want.
3. When all details are acceptable, click OK.

The font changes in the source code area.

The font properties apply only to the display of the source code. Changing the font
does not change the font for the file list area, the information notebook, or the
nodes of the control flow graph.

The fonts you can change to are the monospaced fonts. They maintain the
appearance of the source code listings.

You cannot change the color of the font, since source code items are color coded
(for a description of the color code, see “Main window source code area” on
page 92).

“Restoring defaults” on page 69 describes how to change back to the original
font.

68 HLASM V1R4 Toolkit Feature User’s Guide

 Working with ADATA files

If you make the font smaller, you can see more source lines in the window. If you
make the Main window larger, the source code area adjusts, to show more source
lines.

 Restoring defaults
1. On the Main window Window menu, click Restore Defaults.

When you restore defaults, you return the windows to their original size, and return
the font in the source code area to its original font.

To change window sizes from their default sizes, drag the window frames.

You can also restore defaults for the Control Flow Graph window. Click the
Restore Defaults option on the Control Flow Graph window Window menu. This
returns the window to its original size.

“Changing font properties” on page 68 describes how to change the font.

Showing and hiding expanded lines
Expanded lines come from COPY segments or macro calls. ASMPUT can either
show the expanded lines, or hide them, at your discretion. You can show or hide
expanded lines for each particular COPY segment and macro call, or everywhere
within the program listing.

Figure 11 shows a listing without any expanded lines shown. (In this figure, the
information notebook is hidden, to provide more room for the listing.)

Figure 11. A source code listing not displaying any expanded lines

To show expanded lines

1. Display the relevant source code.
2. Scroll the source code until you find the macro call or COPY segment you want

to expand. These are displayed in magenta (pink).

 Chapter 4. Using the Program Understanding Tool 69

 Working with ADATA files

3. Double-click the line with the macro call or COPY instruction in it.

The expanded lines are displayed immediately below the related macro call or
COPY instruction, on a gray background.

Figure 12 shows the listing after the fourth line of the listing (the line containing the
GREETING macro call) has been double-clicked.

Figure 12. A source code listing displaying a set of expanded lines

If the expanded lines contain a macro, then the inner macro is also expanded.

If expanded lines are highlighted (in the current node), then they are displayed.

To show all expanded lines in the source code area, right-click in the source code
area, and from the pop-up menu, click Show Expanded Lines so that it is
checked.

To hide expanded lines

1. Double-click in the displayed expanded lines, or on the macro call or COPY
instruction immediately above the displayed expanded lines.

To hide all expanded lines in the source code area, right-click in the source code
area, and from the pop-up menu, click Show Expanded Lines so that it is
unchecked.

Showing and hiding assembly diagnostics
Assembly diagnostics are messages created by HLASM when the program is
assembled.

To show assembly diagnostics

1. Display the relevant source code.

70 HLASM V1R4 Toolkit Feature User’s Guide

 Working with ADATA files

2. Right-click in the source code area.
3. From the pop-up menu, click Show Assembly Diagnostics, so that it is

checked.

Assembly diagnostics are shown in red on a light gray background, and the
message has the prefix “ASMA.”

The Find Next Diagnostic/Message option (page 71) takes you to the next
assembly error or analysis message.

To hide assembly diagnostics

1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Assembly Diagnostics, so that it is

unchecked.

Showing and hiding analysis messages
An analysis message is an indication that ASMPUT has found an instruction that
could possibly be in error. It may be worth your while to check the instruction, to
make sure that it is correct. The analysis messages are a little like those from a
grammar checker in a word processor.

To show analysis messages

1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Analysis Messages, so that it is checked.

Analysis messages are shown as red on a light gray background, and the message
has the prefix “ASMP.”

To hide analysis messages

1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Analysis Messages, so that it is

unchecked.

Finding the next assembly diagnostic or analysis message
1. Display the relevant source code.
2. Right-click in the source code area. From the pop-up menu, click Find Next

Diagnostic/Message. Alternatively, press the Ctrl+E keys.

If assembly diagnostics and analysis messages are currently hidden, when you find
the next diagnostic or message, it is shown, and stays shown until you hide it.

Finding text in source code
1. Display the relevant source code
2. Right-click in the source code area. From the pop-up menu, click Find.

Alternatively, press the Ctrl+F keys.
3. Enter the text you want to find in the Find dialog box.
4. If you want an exact match by case, click the Match case check box.
5. Click Find Next.

The source code scrolls if necessary, and the matching text is highlighted.

 Chapter 4. Using the Program Understanding Tool 71

 Working with ADATA files

If there are no more occurrences of the text to find, ASMPUT displays the
message “ASMP032I End of search.”

To find the next occurrence of text

1. Press the Ctrl+N keys. Alternatively, right-click in the source code area, and
from the pop-up menu, click Find Next.
The source code scrolls if necessary, and the matching text is highlighted.
If there are no more occurrences of the text to find, ASMPUT displays the
message “ASMP032I End of search.”

You can find text only if it is displayed in the source code area. If necessary, show
expanded lines, assembly diagnostics, and analysis messages before you try and
find text.

Finding always starts looking for the text from the current position of the cursor.
You can position the cursor by clicking in the source code. You can move the
cursor to the start of the source code by pressing the Ctrl+Home keys.

Viewing ADATA file information
The ADATA file information contains information relating to the host assembly of
the file.

1. Open the ADATA file.
2. Click the name of the file in the File list area.
3. If necessary, display the information notebook, by clicking the Show Info

Notebook option of the Window menu so that it is checked.
4. Click a tab in the information notebook.

The tabs you can click are:

Job Id Job Information, including details of the Assembler that produced the
ADATA file, and when the file was produced.

HLASM Files
Assembler input and output file information. The number of various
output files produced, and the list of all the output file names.

Options The Assembler options used at assembly time.
Statistics Statistical information, including the number of records read and written.
Library The number and name of all the libraries read as part of the assembly.

Figure 13 on page 73 shows the Main window with the information notebook
displayed, showing the Statistics tab.

72 HLASM V1R4 Toolkit Feature User’s Guide

 Working with ADATA files

Figure 13. The information notebook Statistics tab

As well as showing names and numbers, each tab has a More button. Click this
button to see more information, displayed in a new window.

Figure 14 shows the Statistics Information More window.

Figure 14. More Statistics Information

 Chapter 4. Using the Program Understanding Tool 73

 Working with the control flow graph

Removing (closing) a file
You only need to close an ADATA file if you don't want the contents of the file
included in the display control flow graph. Since you are not making changes to any
ADATA file, you don't need to close files before you exit from ASMPUT.

1. Right-click the name of the file in the file list area.
2. From the pop-up menu, click Remove.

When an ADATA file is closed, its name is removed from the file list area, any
displayed source code is no longer displayed, and the control flow graph, if it is
displayed, is redrawn.

If you wish to close all ADATA files, but leave ASMPUT open, on the Main window
Window menu, click Remove All.

Working with the control flow graph
When you work with the control graph, you can:

� Change the structure
When you change the structure, ASMPUT adds or removes nodes and arcs.

– Expand or collapse layers
When you expand a layer, ASMPUT converts a three-dimensional node
into component nodes and arcs. (Three-dimensional and two-dimensional
nodes are explained in “Control Flow Graph window” on page 93.)

– Add or remove context
When you remove context, ASMPUT no longer displays the nodes that are
not directly related to the selected node. These nodes are “removed
context.”

– Refresh or redo
When you refresh the control flow graph, ASMPUT redraws the top level
graph as if you had just opened the Control Flow Graph window. When
you redo the control flow graph, ASMPUT redraws the current control flow
graph, adjusting the zoom level so that the entire control flow graph fits in
the control flow graph area.

� Change the appearance
When you change the appearance, the structure of the control flow graph
remains the same, but ASMPUT hides or shows elements, or changes their
color.

– Hide or show return arcs
The return arcs show returns from calls.

– Mark or unmark nodes
A marked node is colored yellow, and remains yellow if expanded or
collapsed.

� Change the view
When you change the view, you make the nodes larger (for easier viewing) or
smaller (to see the larger picture), or you look at a different part of the control
flow graph.

– Open and close the Overview window
The Overview window shows a small copy of the control flow graph. By
moving and resizing the area box, you can zoom and scroll.

– Zoom in and out

74 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Zooming changes the size of the nodes, but not the structure or
appearance of the control flow graph.

 – Scroll
Scrolling changes the part of the control flow graph displayed in the control
flow graph area.

� Interact with source code
When you click on a node, the code corresponding to the node is highlighted in
the source code area.

The colors of the nodes and the meaning of name prefixes are explained in
“Control Flow Graph window” on page 93.

Expanding and collapsing layers
When the control flow graph is initially displayed, or whenever you open a new
ADATA file, the control flow graph shows program entry nodes (cyan nodes) and
unresolved external calls (gray nodes), if there are any.

As each layer is expanded, more nodes and more arcs are displayed. The first
expansion shows program entry nodes and secondary entry nodes, the second
expansion shows all the previous nodes, plus nodes within a program, and so on.

A program entry node holds the primary entry point of the program. This is the
default entry point for the program when it is loaded and executed. It is also
possible to load a module and start executing it at other entry points. These are
secondary entry points, which are held in secondary nodes.

You can expand layers, until there are no more layers to show, and most nodes are
green.

You can also reverse the process, to collapse layers. As you collapse a layer,
fewer nodes are displayed, until you end up with the initial display, and can
collapse no further.

You can expand or collapse one layer or all layers for the entire control flow graph.
If you prefer, you can expand or collapse one layer for just one node.

If a node is marked (yellow), when you expand or collapse the node, the resultant
nodes (resulting from expanding) or node (resulting from collapsing) retain the
marking.

Figure 15 on page 76 shows a completely collapsed control flow graph.

 Chapter 4. Using the Program Understanding Tool 75

 Working with the control flow graph

Figure 15. A completely collapsed control flow graph

Expanding one layer for the control flow graph

1. On the Control Flow Graph window View menu click Expand Layer.
Alternatively, click Expand or right-click on the white area of the graph, and on
the pop-up menu click Expand Layer.

When you expand one layer, every three-dimensional node in the control flow
graph is expanded by one layer for each node. Individual nodes can be at
different layers of expansion. Each node is expanded from its own current
layer. Nodes not currently displayed in the control flow graph (because they
are in removed context) are not expanded.

In Figure 15 there are eight nodes in the third row of the control flow graph. All but
one of these nodes are unresolved external call nodes (they are labeled
“Unresolved” beneath each node). The remaining node is a program entry node. In
Figure 16 on page 77, which is the same control flow graph after it is expanded by
one layer, there are five nodes in the third row of the control flow graph. Three of
these nodes are secondary entry nodes (they are the darker, magenta, nodes).
They come from the expansion of the program nodes.

Note that in most of the figures, the zoom is adjusted to provide maximum clarity.
This means that only a portion of the graph is visible.

76 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Figure 16. A portion of the same control flow graph expanded by one layer

Expanding all layers for the control flow graph

1. On the Control Flow Graph window View menu click Expand All Layers.
Alternatively, right-click on the white area of the graph, and on the pop-up
menu click Expand All Layers.

When you expand all layers, every three-dimensional node in the control flow
graph is expanded repeatedly, until there are only two-dimensional nodes in the
control flow graph. Nodes not currently displayed in the control flow graph
(because they are in removed context) are not expanded.

Some nodes that were connected directly are now connected through
intermediate nodes.

Figure 17 on page 78 shows a portion of the same graph, completely expanded.
All of the nodes are now two-dimensional.

 Chapter 4. Using the Program Understanding Tool 77

 Working with the control flow graph

Figure 17. A portion of the same control flow graph, completely expanded

Collapsing one layer for the control flow graph

1. On the Control Flow Graph window View menu click Collapse Layer.
Alternatively, click the Collapse icon or right-click on the white area of the
graph, and from the pop-up menu click Collapse Layer.

When you collapse one layer, every node in the control flow graph is collapsed
by one layer for each node, except for nodes that are already completely
collapsed. Individual nodes can be at different layers of expansion. Each node
is collapsed from its own current layer. If a subordinate node can be collapsed,
then a superior node is not collapsed. Nodes not currently displayed in the
control flow graph (because they are in removed context) are not collapsed.

Collapsing all layers for the control flow graph

1. On the Control Flow Graph window View menu click Collapse All Layers.
Alternatively, right-click on the white area of the graph, and from the pop-up
menu click Collapse All Layers.

When you collapse all layers, each node is collapsed to the extent that the
control flow graph shows as few nodes as possible, but always shows more
than one node.

For example, if the current control flow graph shows a program entry node and
a secondary entry node and nodes for lines of code, then when the control flow
graph is collapsed all layers, it shows just the program entry node and the
secondary entry node.

As another example, if the current control flow graph for the same suite of
programs shows a few program entry nodes and a few secondary entry nodes
and some nodes for lines of code, then when Collapse All Layers is clicked,
the nodes for the lines of code and the secondary entry nodes are collapsed
into the program entry points, because the final control flow graph displays
more than one program entry node.

78 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Nodes not currently displayed in the control flow graph (because they are in
removed context) are not collapsed.

Expanding one node in context

1. Right-click the (three-dimensional) node you want to expand.

2. From the pop-up menu, click Expand in Context.

Alternatively, double-click the (three-dimensional) node you want to expand
(double-clicking a two-dimensional node collapses it), or else, if the node is
selected, on the Control Flow Graph window Selected menu click Expand in
Context.

Figure 18 shows a control flow graph with the ADDPRG node (the second row
program entry node) expanded in context. Compare this with Figure 10 on
page 66, the same graph before the node was expanded. The difference is that the
secondary entry node is now displayed on the third row.

Figure 18. One node expanded in context

When you expand a node in context, the node is expanded one layer. All other
nodes remain as they are. The resultant control flow graph is redrawn, to
accommodate the additional nodes.

Nodes not displayed in the control flow graph (because they are in removed
context), are still not displayed after the node is expanded.

Expanding one node to the window

1. Right-click the (three-dimensional) node you want to expand.

2. From the pop-up menu, click Expand to Window.

 Chapter 4. Using the Program Understanding Tool 79

 Working with the control flow graph

Alternatively, right-double-click the (three-dimensional) node you want to expand, or
else, if the node is selected, on the Control Flow Graph window Selected menu
click Expand to Window.

When you expand a node to the window, the node is expanded one layer, and all
the context for the node is removed. The resultant control flow graph shows only
the nodes and arcs that result from expanding the selected node.

Figure 19 shows the same control flow graph after the ADDPRG node is expanded
to the window. The control flow graph displays the nodes that fall within the
ADDPRG program. Note that the top node has two lines of text. The second line
denotes a call to a secondary entry.

Figure 19. One node expanded to the window

Collapsing in context

1. Right-click the node you want to collapse.

2. From the pop-up menu, click Collapse in Context.

Alternatively, double-click the (two-dimensional) node you want to collapse in
context (double-clicking a three-dimensional node expands it), or else, if the node is
selected, on the Control Flow Graph window Selected menu click Collapse in
Context.

When you collapse a node in context, the node is collapsed one layer. All other
nodes remain as they are. You cannot collapse a node in context if the resultant
control flow graph would only show one node (collapse the node to context
instead).

When you collapse in context, nodes that were not displayed in the control flow
graph (because they were in removed context) are still not displayed after the node
is collapsed.

80 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Figure 20 on page 81 shows the ADDPRG node collapsed to context. The context
is just the secondary entry node.

Figure 20. The same node collapsed to context

Adding and removing context
Each node fits within its context. The context changes depends on the current layer
that the node is at.

As an analogy, imagine a photograph of two football teams. If you are pointing at
one football team, and remove context, the other team is no longer shown. Point at
one player within the team, and remove the context, and only that player is shown.
Point to that player's mouth, and remove context, and all that is shown is the
player's face. You don't have to move through this step by step. Instead, from the
full photograph, point at a player's thumb, and remove context, and only the
player's hand is shown.

ASMPUT lets you do the same sort of thing with the control flow graph.

When you remove context, ASMPUT shows you just a part of the original control
flow graph. This makes it simpler for you to follow the control flow within the
displayed elements.

When you add context, you see how the segment of program interacts with other
elements in the program, but you add complexity.

Removing context

1. Right-click a node you want to isolate from the context.

2. From the pop-up menu, click Remove Context.

 Chapter 4. Using the Program Understanding Tool 81

 Working with the control flow graph

Alternatively, if the node is selected, on the Control Flow Graph window Selected
menu click Remove Context.

In the resultant control flow graph, some nodes may have two lines of text in them.
The first line of text is, as before, the name of the entry point or the line number of
the code. The second line of text is the name of a linked node that is not displayed,
because it is in the removed context.

You cannot remove context if the resultant control flow graph would only have one
node. In this case, consider using the Expand to Window option, which expands
the selected (three-dimensional) node by one layer, and then removes the context.

Showing context

1. On the Control Flow Graph window View menu, click Show Context.

Alternatively, click the Show Context icon or right-click the white area of the graph,
and from the pop-up menu click Show Context.

This option is not available if there is no removed context.

Redisplayed nodes retain the same layer at which they were removed from the
context.

Collapsing to context

1. On the Control Flow Graph window View menu, click Collapse to Context.

Alternatively, click the Collapse to Context icon or right-click the white area of the
graph, and from the pop-up menu click Collapse to Context.

The resultant control flow graph shows all the nodes collapsed into one, and the
context for this node. In the previous control flow graph the context was not shown.

Refreshing and redoing
Refreshing the control flow graph displays the graph as if you were opening the
Control Flow Graph window. The display shows the control flow graph at the top
level. All marking is removed, and all nodes are collapsed to the maximum, so that
only program entry nodes and unresolved nodes are displayed. The current node
(or its collapsed equivalent) remains current.

Redoing the control flow graph displays the graph with the current structure. All the
nodes that were displayed in the control flow graph before the graph was “redone”
are displayed in the graph afterwards. The graph is displayed zoomed to the
minimum magnification, which means that the entire graph is displayed in the
control flow graph area. All marking is retained, as is the currently selected node.

In either case, the display or non-display of return arcs is maintained.

Refreshing

1. On the Control Flow Graph window View menu, click Refresh.

Alternatively, click the Refresh icon, or right-click the white area of the graph, and
from the pop-up menu, click Refresh.

82 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Redoing

1. On the Control Flow Graph window Window menu, click Layout, then click
Redo Layout.

Alternatively, click the Redo icon.

Hiding and showing return arcs
Return arcs show how control is returned to a calling program. The return arcs
have a dash double dot pattern (—— - - —— - -).

At the highest level, the calling arc and return arc join the same two nodes.
However, once layers are expanded, a return arc often connects to a different node
to the node that originated the calling arc.

When return arcs are hidden, the control flow graph has fewer lines on it, and so
may be easier to follow.

Figure 21 shows a control flow graph with the return arcs hidden.

Figure 21. A control flow graph with the return arcs hidden

Hiding return arcs

1. On the Control Flow Graph window Window menu, click Show Return Arcs
so that is it unchecked. Alternatively, click the Show Return Arcs icon. The
control flow graph is redrawn, hiding the return arcs. Any marked nodes remain
marked, and the currently selected node stays selected.

Showing return arcs

1. On the Control Flow Graph window Window menu, click Show Return Arcs
so that is it checked. Alternatively, click the Show Return Arcs icon. The

 Chapter 4. Using the Program Understanding Tool 83

 Working with the control flow graph

control flow graph is redrawn, showing the return arcs. Any marked nodes
remain marked, and the currently selected node stays selected.

Figure 22 shows the same graph with the return arcs displayed.

Figure 22. A control flow graph with the return arcs displayed

Marking and unmarking nodes
When a node is marked, it is colored yellow. There is no other change to the
control flow graph. When a node is unmarked, the color of the node changes to
reflect the status of the node (program entry, secondary entry, and so on).

If a node is marked, and is subsequently expanded, then all the expanded nodes
are also marked. If a node is marked, and is subsequently collapsed, then the
collapsed node is also marked.

Marking a node

1. Select the node you want to mark.

2. On the Control Flow Graph window Selected menu click Mark.

Alternatively, right-click a node you want to mark, and from the pop-up menu click
Mark.

Unmarking a marked node

1. Select the node you want to unmark.

2. On the Control Flow Graph window Selected menu click Unmark.

Alternatively, right-click a node you want to mark, and from the pop-up menu click
Unmark.

84 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Unmarking all marked nodes

1. On the Control Flow Graph window Selected menu click Unmark All.

Opening and closing the Overview window
The Overview window shows all of the control flow graph. The shaded area box
shows the part of the control flow graph currently displayed in the control flow
graph area. By moving and resizing the area box, you can change the contents of
the control flow graph area.

To open the Overview window

1. Open the control flow graph.
2. Click the Show Overview icon on the toolbar, or on the Control Flow Graph

window Window menu click Show Overview so that the option is checked.
The Overview window is opened.

The ways in which the Overview window can be used to control zooming and
scrolling are described in “Zooming” on page 86 and “Scrolling” on page 89.

Figure 23 shows the Overview window displayed.

Figure 23. The Overview window

To close the Overview window

These methods work provided the Overview window is currently open.

1. Click the Show Overview icon on the toolbar, or on the Control Flow Graph
window Window menu click Show Overview so that the option is unchecked,
or click the Close box of the Overview window.

 Chapter 4. Using the Program Understanding Tool 85

 Working with the control flow graph

 Zooming
Zooming makes no change to the structure or color of the control flow graph.
Instead, it changes the size of nodes and lettering on the control flow graph.

When you zoom in towards maximum zoom, items become larger, which means
that you see less of the complete control flow graph, but text is easier to read.

Figure 24 shows part of a control flow graph at maximum zoom.

Figure 24. A graph at maximum zoom

When you zoom out towards minimum zoom, items become smaller, so you see
more (or all) of the complete control flow graph, but text becomes harder to read.

Figure 25 on page 87 shows part of the same graph at minimum zoom. The node
that is second from the top corresponds to the node at the top of the previous
figure.

86 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

Figure 25. A graph at minimum zoom

The graph displayed in the Overview window remains the same size when you
zoom. However, the area box changes size. As you zoom in it becomes smaller,
and as you zoom out it becomes larger.

At minimum zoom, the entire control flow graph fits in the control flow graph area.

If the control flow graph has only a few elements, you may find that the largest size
and the smallest size are the same. The intermediate levels of zoom provide
magnifications between those offered by the maximum and minimum zoom.

The zoom slider, located between the toolbar and the control flow graph area,
shows the current level of zoom. You can also use it to adjust the level of zoom.
Before you can use the zoom slider, make sure it is shown. If you hide the zoom
slider, you increase the size of the control flow graph area.

Showing the zoom slider

1. On the Control Flow Graph window Window menu, click Show Zoom Slider
so that it is checked. Alternatively, click the Show Zoom Slider icon on the
toolbar.

Hiding the zoom slider

1. On the Control Flow Graph window Window menu, click Show Zoom Slider
so that it is unchecked. Alternatively, click the Show Zoom Slider icon on the
toolbar.

Zooming in

� On the Control Flow Graph window View menu, click Zoom In, or

� On the Control Flow Graph window View menu click Zoom In Rectangle,
then click in the control flow graph, then drag to form an outline rectangle, or

 Chapter 4. Using the Program Understanding Tool 87

 Working with the control flow graph

� Click the Zoom In icon, or

� Drag the zoom slider to the right, or

� On the Control Flow Graph window Selected menu click Zoom In On, or

� Right-click a node, and from the pop-up menu click Zoom In On, or

� Click on the edge of the area box in the Overview window and shrink the area
box, or

� Click the Zoom In Rectangle icon, then click in the control flow graph, then
drag to form an outline rectangle.

When you click Zoom In On, maximum zoom is applied. When you click Zoom In,
the zoom goes up by one level. When you zoom in by shrinking the size of the
area box on the Overview window or by clicking Zoom In Rectangle, you can
zoom to intermediate levels.

When you click Zoom In Rectangle and then drag a rectangle, the area you select
is magnified to fill the control flow graph area. When you drag to select the area,
the rectangle keeps the same proportions as the control flow graph area.

If you are already at maximum zoom, the options and icon are not available.

When you click Zoom In On or Zoom In Rectangle, you zoom and scroll at the
same time.

Zooming out

� On the Control Flow Graph window View menu click Zoom Out, or

� Click the Zoom Out icon, or

� Drag the zoom slider to the left, or

� On the Control Flow Graph window Selected menu click Zoom Out From, or

� On the Control Flow Graph window View menu click Zoom Out Rectangle,
then click in the control flow graph, then drag to form an outline rectangle, or

� Right-click a node, and from the pop-up menu, click Zoom Out From, or

� Click on the edge of the area box in the Overview window, and expand the
area box, or

� Click the Zoom Out Rectangle icon, then click in the control flow graph, then
drag to form an outline rectangle.

When you click Zoom Out From, minimum zoom is applied. When you click Zoom
Out, the zoom goes down one level. When you zoom out by expanding the size of
the area box on the Overview window, or click Zoom Out Rectangle, you can
zoom to intermediate levels.

If you are already at minimum zoom, the options and icon are not available.

88 HLASM V1R4 Toolkit Feature User’s Guide

 Working with the control flow graph

 Scrolling
Scrolling shows a different part of the control flow graph in the control flow graph
window area.

You can scroll mechanically, using the scroll bars or the area box, or you can scroll
by selecting an option.

Scrolling mechanically

� On the Control Flow Graph window, click and drag the horizontal scroll bar or
the vertical scroll bar, or

� On the Control Flow Graph window, right-click the point you want to move,
drag the mouse pointer to the new position, and release the mouse button, or

� On the Overview window, click on the area box and drag it to a new position.

Scrolling by option

� Right-click an arc, and from the pop-up menu click Scroll to Source to select
the node that is at the tail of the arc, or click Scroll to Target to select the
node that is at the head of the arc. The control flow graph scrolls so that the
selected node is in the window area.

Alternatively, double-clicking the arc is the same as clicking Scroll to Target,
and right-double-clicking the arc is the same as clicking Scroll to Source.

Alternatively, if an arc is selected, on the Control Flow Graph window
Selected menu click Scroll to Target or Scroll to Source.

� Right-click a node, and from the pop-up menu, click Center On. The control
flow graph scrolls so that the selected node is in the center of the window area.
Alternatively, if a node is selected, on the Control Flow Graph window
Selected menu click Center On.

When you zoom in on a node it is centered.

When you click on lines of source code, the control flow graph is scrolled until the
selected node is displayed in the control flow graph window area. See “The
interaction between source code and the control flow graph” for more information.

The interaction between source code and the control flow graph
When you click on a node in the control flow graph (and thus select the node),
ASMPUT highlights the corresponding lines of code in the source code listing.
When you click on a line of code in the source code listing, ASMPUT selects the
corresponding node in the control flow graph.

This means you can work between the control flow graph and the source code
listing, to better understand your program.

To gain the most benefit from this, size and position the Main and Control Flow
Graph windows so that both appear on your screen at the same time (preferably
with no overlap).

Figure 26 on page 90 shows the Control Flow Graph window at the left of the
screen, and the Main window at the right of the screen. The second node in the

 Chapter 4. Using the Program Understanding Tool 89

 Working with the control flow graph

control flow graph is the selected node. The highlighted code in the source area is
the code that corresponds to this node.

Figure 26. Displaying the Control Flow Graph window and Main window side-by-side

If you select a node on the control flow graph, then the relevant source code is
always highlighted. However, if you click on a line in the source code, the
corresponding node may not be in the current control flow graph. In this case, the
highlight may move unexpectedly, not settling on the lines you clicked. To
overcome this, if you want to select a node by clicking on a line of source code,
make sure that you are showing a control flow graph of all programs, expanded to
all layers.

If you click on a selected node, and thus unselect it, then the highlighting
disappears from the source code listing.

Highlighting source code from the control flow graph

1. Right click a node.
The related code is highlighted in cyan in the source code listing, and the listing
is scrolled so that the highlighted text is in the middle of the source code area.

If you click a three-dimensional node, the highlighting is only for the lines that
correspond to the top two-dimensional node currently collapsed into the
three-dimensional node.

If you click a node, and the code for the node was in a set of hidden expanded
lines, then the lines are shown while the node is selected, but hidden after the node
is deselected.

Selecting a node from the source code

1. Click a line of source code.

90 HLASM V1R4 Toolkit Feature User’s Guide

 ASMPUT windows and window areas

The related node is selected, and the code that corresponds to the top node is
highlighted in cyan.

If the node is three-dimensional, the highlighted lines do not necessarily include the
line you clicked. Instead, they are the lines that correspond to the top
two-dimensional node if the three-dimensional node was expanded to its fullest.
There is a guaranteed correspondence only if the node is two-dimensional.

ASMPUT windows and window areas
ASMPUT has three different windows.

The Main window shows the ADATA files that are open, information about these
files, and a source code listing.

From the Main window, you can open a Control Flow Graph window. This
window shows part or all of the control flow graph, which is for all open ADATA
files. In the Control Flow Graph window you look at the control flow graph and
change its structure.

The Overview window is a subsidiary of the Control Flow Graph window. It shows
all of the control flow graph in a compressed form. The control box provides quick
zoom and scroll control.

 Main window
The Main window displays text information about open XAA files. The window has
three areas:

File list area
The list of open ADATA files

Source code area
Where the source code of one source code file is listed

Information notebook
Tabs with more information about an ADATA file

From the Main window, you control the opening and closing of ADATA files, the
viewing of source code, and the opening of the Control Flow Graph window. For
details, see “Working with ADATA files” on page 67.

You can adjust the relative sizes of the areas by dragging the thin lines between
them. When you change the size of the Main window, the areas change size
proportionately.

Main window file list area
The file list area is at the left side of the Main window. The file list area displays a
list of the open ADATA files. Files are listed in the order in which they were
opened.

A particular file is highlighted by clicking on its name. Information about the
highlighted file is displayed in the information notebook.

The source code file tags in a program are listed by clicking the + sign to the left of
the file name. The source code for a source code file is listed in the source code
area when the Source Code tag is clicked.

 Chapter 4. Using the Program Understanding Tool 91

 ASMPUT windows and window areas

Main window source code area
The source code area is at the right side of the Main window. The source code
area displays the source code that is part of an ADATA file.

The source code is color coded:

Dark red
Machine instructions

Violet
Assembler instructions

Navy blue
Machine and assembler instruction operands

Dark green
Remarks

Brown
Comments

Magenta (pink)
Macro calls and COPY segments

Gray
Labels

Blue
Sequence numbers

Red on a light gray background
Assembly diagnostics (HLASM) or analysis messages (ASMPUT)

A light gray background indicates a diagnostic, a message, a macro expansion, or
a COPY segment expansion.

A cyan (light blue) background is the highlight applied to the lines of code in the
current node. The highlight is only applied to executable lines of code, so
non-executable lines of code may be interspersed between the highlighted lines of
code. The highlight is applied even if the Control Flow Graph window is not open.
However it is not applied if the Control Flow Graph window is open, but no node
is currently selected.

In the source code area you can display and hide expanded lines, find text, and
change the font.

Main window information notebook
The information notebook is at the bottom of the Main window. (If it is not shown,
display it by clicking Show Info Notebook on the Window menu, so that it is
checked, or by clicking the Show Notebook icon on the toolbar.) The information
notebook displays assembly-time information about an ADATA file.

By selecting a tab, you can look at Job Id information, HLASM file information,
assembly options, assembly statistics, and library call information.

The online help has a topic for each tab. The help information includes a
description of each field in the tab. In Windows, you can also get “What's This”
help on the More panels by clicking the question mark (“?”) and then clicking a field
on the More panel.

92 HLASM V1R4 Toolkit Feature User’s Guide

 ASMPUT windows and window areas

Control Flow Graph window
The Control Flow Graph window displays the control flow graph. The control flow
graph is displayed in the control flow graph area, which is the white area in the
center of the window. A vertical and a horizontal scroll bar provide a means of
moving the control flow graph around in the control flow graph area. The zoom
slider (if shown) above the control flow graph area provides a means of zooming
the control flow graph. A menu and a toolbar are at the top of the window.

The control flow graph is a set of nodes and arcs.

A node is displayed as a rectangle. It corresponds to a contiguous group of lines of
source code (see “More about nodes” on page 63 for more information).

An arc connects two nodes. It leaves from a source node, and points to a target
node.

Various controls at the edge of the window let you adjust the appearance of the
control flow graph.

Nodes

Nodes can have different appearances and different colors.

The different appearances are two-dimensional nodes and three-dimensional
nodes. Three-dimensional nodes have three faces. The front face is rectangular,
and the three faces have different shadings, so that the node looks like a
three-dimensional rectangular box. The two-dimensional nodes have only one face,
a rectangle with rounded corners.

These nodes have this meaning:

Two-dimensional
The node cannot be expanded any more.
If you collapse this node, it is replaced by a three-dimensional node, and
some nodes and arcs disappear.

Three-dimensional
The node can be expanded.
When it is expanded, the node is replaced by a group of nodes and
arcs. Some of these nodes may in turn be three-dimensional, and so
can be expanded. However, eventually, every node is two-dimensional,
which means that the control flow graph cannot be expanded any more.

The different colors have these meanings:

Gray
An unresolved external call.

Cyan (light blue)
A program entry point

Magenta (pink)
A secondary entry point

Yellow
A marked node

Green
Any other node

 Chapter 4. Using the Program Understanding Tool 93

 ASMPUT windows and window areas

Sometimes the name in a node has a prefix. The prefixes have these meanings:

> Three-dimensional cyan or magenta node containing an entry

< Three-dimensional cyan node containing a program

* Two-dimensional cyan program entry

** Two-dimensional magenta secondary entry

When the context is removed, nodes may have two lines of information. The first
line is the name of the node. The second names the call to a node in the
surrounding removed context. The prefix to the name provides further information.

The currently selected node is surrounded by a red highlight. The color of the node
does not change.

If you mark a three-dimensional node, and then expand it, the nodes it expands
into remain yellow, indicating that they are marked, and any arcs that link two
marked nodes become pink.

If you mark a node, and then collapse that node in context, the resultant
three-dimensional node remains yellow, indicating that it is marked. (However, if
you now expand that node, only the node you have previously marked is shown as
marked.)

If you open a new ADATA file which is able to resolve an external call, then, in the
redrawn control flow graph, the node changes color, since the call becomes
resolved.

In general, a node is connected to another node or nodes. However, if the node
represents stand-alone code, then the node may be neither the target nor the
source for an arc.

Arcs

Arcs connect nodes. An arc must go from one node (the source node), to another
node (the target node).

Arcs have this appearance:

A long dash (—— ——)
An internal or external call

A long dash followed by two short dashes (—— - - —— - -)
A return from a called routine

A solid line (————)
Everything else

Any arc joining two marked nodes is magenta. An arc selected by clicking it is red.
Any other arc is black.

Controls

The zoom slider above the control flow graph area controls the level of zoom.
Moving it to the left makes graph elements smaller (zoom out). When graph
elements are at their smallest, the entire control flow graph fits into the control flow
graph area. Moving it to the right makes graph elements larger (zoom in).

94 HLASM V1R4 Toolkit Feature User’s Guide

 Restrictions

If the control flow graph does not fit completely into the graph area, you can use
the horizontal and vertical scroll bars to move around the graph.

For information about what you can do on the Control Flow Graph window, see
“Working with the control flow graph” on page 74.

 Overview window
The Overview window displays the entire control flow graph, at a much-diminished
size.

The structure of the control flow graph, the color of nodes, and the appearance of
arcs, are accurately reflected in the overview graph, and the selected node is
displayed with a red outline. However, the overview graph displays no lettering.

The gray rectangle on the overview graph is the area box. It indicates which part
of the control flow graph is currently displayed in the control flow window. All colors
under the area box change to complementary colors. For example, cyan changes
to red, and green changes to magenta.

The area box has the same proportions as the display area of the control flow
graph. If you resize the control flow graph window, the area box changes size.

You can move the area box around, by clicking and dragging it. When you do so,
you effectively scroll the contents of the control flow graph window.

You can change the size of the area box by clicking and dragging the edge of the
box. When you do so, you zoom the contents of the control flow graph window.

If you use other means to zoom or scroll, the area box is moved or resized in
response.

When you resize the Overview window, the overview graph is resized. By this
means you can enlarge or shrink the overview graph.

For information about opening and closing the Overview window, see “Opening
and closing the Overview window” on page 85.

| Restrictions
| When you use ASMPUT, the following restrictions apply:

| � The analysis engine cannot deal with branches involving an index register. This
| means that code using branch tables is not analyzed correctly.

| � The analysis of register usage requires further improvement. The results
| displayed by this version may not be correct in all instances.

| � It is not possible to analyze any program that specifies a non-zero entry point
| on an END statement which involves an expression for the END statement
| operand. The use of a label symbol by itself is supported.

| � The Graphic Print function:

| – May have problems in font selection varying in different printers.

| – In multi-page mode, divides a graphic into six pages regardless of the size
| of the graphic.

 Chapter 4. Using the Program Understanding Tool 95

 Using online help

| – Only prints to A4 paper size.

| � The Graphic Export function exports a graphic to a fixed-size BMP file.

| � The Graphic Print function is not supported for Windows 2000 or later.

| � Push buttons do not function on Windows 2000 or later.

| � ASMPUT only supports HLASM Release 4 format ADATA records. If you use
| HLASM Release 5 to produce the ADATA file, then the assembly must use the
| sample ADATA exit ASMAXADR to reformat to Release 4 format (ASMAXADR
| is a sample source installed as part of HLASM for MVS and VM users).

Using online help
The Windows version of ASMPUT has two forms of online help. The first is topic
help, which you access by clicking Help Topics or Index on the Help menu, or by
clicking a Help button. When you do this, ASMPUT opens the help file, which
gives you access to many topics. The second is “What's This” help. This is
accessible from the More windows of the information notebook tabs, and a few
dialog boxes, and shows you a note about the item you point at.

Using Topic Help
When you invoke topic help, ASMPUT displays the topic help file (Figure 27).

Figure 27. The Topic Help for the Job Id Tab

The right panel is the topic panel. It shows the current topic. If you invoke the help
by pressing a Help button, the current topic relates to the button you pressed. For
example, the figure shows the topic that results from pressing the Job Id tab Help
button.

96 HLASM V1R4 Toolkit Feature User’s Guide

 ASMP001S � ASMP002S

You can move to a different topic by clicking a hot link in a topic. A hot link is text
that is underlined and colored. The cursor changes to a pointing finger when it is on
a hot link.

The left panel has four tabs. They are:

Contents A structured table of contents. If you click on a topic heading, the
associated topic is displayed in the topic panel. Double-click on a topic
tagged with a book icon, and the underlying topics appear or disappear.

Index The index for the help. Find a topic by typing in the keyword. As you
type, the highlight moves. Alternatively, scroll the index. When you
double-click an index entry, the topic is displayed. If there are two or
more topics for the entry, select a topic from the displayed list.

Search Type in a keyword, and click List Topics. Then select the topic you
want from the resultant list. You can search for any word the help file.

Favorites A list of favorite topics. To add a topic to the list, display the topic in the
topic area, then click Add. Topics are listed in alphabetic order.

To show just the topic panel, click the Hide icon.

To print a selected topic, or the selected topic and the following subtopics, click the
Print icon.

You can change the font of the text in the topic panel from the Internet Options of
the Options menu.

Using What's This help
To invoke What's This help, click on the question mark beside the Close box. A
question mark is appended to the cursor. Then click on the item you want
information about. A note is displayed. Clear the note by clicking again.

The OS/2 help
The OS/2 help system works within the standard OS/2 help framework.

You can look at a table of contents, find a topic by looking through the index, or
search topics for a word.

Each individual topic is displayed in a window, and you can access a topic from the
table of contents, index or search results, or by moving to the next topic.

 ASMPUT messages

ASMP001S Unable to get system information.
Return code returncode.

Explanation: An operating system call failed when
attempting to obtain information about the executable
module.

User Response: Refer to your operating system
documentation for information about the return code.
Possibly your system is running short of some resource

such as memory. Try closing down other applications,
or reboot the system and try running ASMPUT again.

ASMP002S Cannot open ADATA file - filename.

Explanation: The requested ADATA file filename
cannot be found.

User Response: Enter a different file name, or else
select the file from a directory listing.

 Chapter 4. Using the Program Understanding Tool 97

 ASMP003E � ASMP013W

ASMP003E Unable to find ADATA header at offset
fileOffset.

Explanation: A valid ADATA header record was
expected, but not found. The ADATA file may be
corrupt, or may contain invalid data.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP004I Skipping forward charCount characters in
ADATA file.

Explanation: Data has been skipped in the ADATA
file in attempt to find a valid header record.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP005S Unable to read ADATA file at offset
fileOffset.

Explanation: A read error occurred in the ADATA file
at the specified offset.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP006S Unable to process architecture level
adataLevel at offset fileOffset.

Explanation: This version of ASMPUT only processes
level 3 ADATA files. Either an old ADATA file is being
used, or the file is corrupt.

User Response: Recreate the ADATA file and try
again. Ensure that High Level Assembler Version 1.4 is
being used to create the file, and that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP007S Unidentified record type recordType at
offset fileOffset.

Explanation: An unexpected record type was found in
the ADATA file. This should not occur. The file may be
corrupt.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP008S Bad ADATA record sequence at record
recordNumber.

Explanation: The ADATA records are not in the
proper sequence. The file may be corrupt.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP010W Unable to load help file helpFileName.

Explanation: The help file could not be found.

User Response: Check to see if the help file has
been properly installed in the ASMPUT installation
directory. If it is missing, try reinstalling ASMPUT.

ASMP012W ADATA file adataFile is already loaded.

Explanation: The specified ADATA file is already
loaded.

User Response: Open another file.

ASMP013W Unassociated recordType record at
record number recordNumber.

Explanation: The specified record could not be
associated with its proper parent type. There is a
problem with the program that produced the ADATA file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

98 HLASM V1R4 Toolkit Feature User’s Guide

 ASMP014W � ASMP023E

ASMP014W This program contains assembly
diagnostics. The analysis may be invalid.

Explanation: The assembly contains diagnostics, and
a correct analysis may not be possible.

User Response: To guarantee a valid analysis,
remove assembly errors, rebuild a new ADATA file, and
submit the new file to ASMPUT for analysis.

ASMP015S This does not appear to be a valid
ADATA file.

Explanation: The file does not appear to be a valid
ADATA file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP016S Execution directory appears to be
invalid - executableName

Explanation: The directory from which ASMPUT is
being executed appears to be invalid.

User Response: Examine the executableName and
confirm that it conforms to the standard operating
system rules for file naming. If it is invalid, reinstall
ASMPUT in a new directory.

ASMP017E Missing External Symbol Dictionary
record for ESDID esdid at record number
recordNumber.

Explanation: The specified record is missing. There is
a problem with the program that produced the ADATA
file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP018E Symbol redefinition has occurred at
record number recordNumber.

Explanation: A symbol has been defined twice. There
is a problem with the program that produced the
ADATA file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the

ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP019E Symbol cross reference to non-existent
statement statementNumber at record
number recordNumber.

Explanation: A cross reference record refers to a
non-existent statement. There is a problem with the
program that produced the ADATA file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP020E Invalid machine instruction at statement
number statementNumber.

Explanation: The machine instruction record is
malformed. Either the ADATA record is corrupt, or the
assembler is outputting machine instruction records
containing bad instructions.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP021E Attempt to change parent of label from
fromLabel to toLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP022E Unable to determine branch target.

Explanation: This is an internal flow analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP023E Multiple recordType records found at
record number recordNumber.

Explanation: Multiple records of the specified type
have been found. This is an error in the ADATA file.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

 Chapter 4. Using the Program Understanding Tool 99

 ASMP024W � ASMP035S

ASMP024W Missing branch at end of flow block at
statement number statementNumber.

Explanation: Flow analysis has detected a code block
which apparently ends without any exit point, such as a
branch or a following code block.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP025W Unable to initialize the HTML Help
system.

Explanation: The HTML Help system could not be
initialized. It may not be correctly installed.

User Response: Ensure that the file HHCTRL.OCX
exists in the Windows system directory. If necessary,
re-install HTML Help. The most recent version can be
found at
http://msdn.microsoft.com/workshop/author/htmlhelp/.

ASMP026E Missing Library record for
cross-reference record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP027E Missing Source record for
cross-reference statement
statementNumber at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP028E Node label is not a child of parent node
parentLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP029E Node label has no parent but has a
sibling siblingLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP030S Internal node not found for program
programName.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP031S Node label not found in hash table.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP032I End of search.

Explanation: A find request has reached the end of
the source file. The requested text has not been found.

User Response: Try another find request if the
required information has not been found.

ASMP033E A complex symbol expression has been
specified on the END statement. This is
not currently supported, so the program
cannot be correctly analyzed.

Explanation: Only simple variable names are
supported as entry points on the END statement.
Complex expressions are permitted by the assembler,
but are not currently supported by ASMPUT.

User Response: Change the expression on the END
statement, if possible, and re-assemble the program.

ASMP034S Internal error. Source arc arcLabel not
linked to source node nodeLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP035S Internal error. Unlinked source arc label
has sibling links.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

100 HLASM V1R4 Toolkit Feature User’s Guide

 ASMP036S � ASMP046E

ASMP036S Internal error. Target arc arcLabel not
linked to target node nodeLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP037S Internal error. Unlinked target arc
arcLabel has sibling links.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP038E ADATA files assembled with the
XOBJECT option cannot be processed.
Please re-assemble the program with the
NOXOBJECT option.

Explanation: The XOBJECT option omits essential
information from the ADATA file, so the analysis of the
program cannot be performed using this option.

User Response: Re-assemble the program with the
NOXOBJECT option.

ASMP039W registerType Register registerNumber may
be referenced before it has been set.

Explanation: Flow analysis has detected that a
register may be used by an instruction without
previously being set by another instruction.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP040W Instruction contains a reference to an
absolute memory address.

Explanation: The instruction is referencing a location
in the first 4K of low memory.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP041W Instruction uses register registerNumber
as an index register but has no base
register.

Explanation: The instruction has coded a base
register using the index register specification. This has
no effect on the final result of the instruction.

User Response: Examine the assembler source code

and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP042E Unable to resolve the second operand
address.

Explanation: This is an internal flow analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP043E Nominal value operand lengths in
ADATA storage record are inconsistent.

Explanation: This is an internal flow analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP044W Instruction reference is not aligned to
an operand boundary.

Explanation: The instruction is referencing an operand
which is not properly aligned to the operand's size.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP045E Invalid ADATA Source record type
recordType at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP046E Invalid ADATA Source record originType
origin sourceType at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

 Chapter 4. Using the Program Understanding Tool 101

 ASMP047W � ASMP057W

ASMP047W Expected operand size (instructionSize)
is greater than the referenced operand
size (operandSize).

Explanation: The expected operand for this instruction
is greater than the actual operand size (for example, a
load instruction referencing a halfword operand). This
may be valid if it is necessary to span multiple
operands.

User Response: Examine the assembler source code
and determine whether this is a genuine problem. If it
is, correct the problem and re-assemble the code.

ASMP048W Code may be unreachable.

Explanation: Flow analysis was unable to reach this
code section. This may be due to the inability of flow
analysis to resolve an indexed branch table.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP049W Instruction is referencing code as data.

Explanation: An instruction is referencing assembled
data as a code location, such as the target of a branch.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP050W registerType Register registerNumber may
not contain a valid address.

Explanation: The instruction is using the contents of
the specified register as a location address, but flow
analysis has determined that the register may contain
other data not representing a location address.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP051W A data statement has been detected
within a code sequence.

Explanation: An assembler statement which
generates data has been detected within the code
stream.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP052W Serialization and
checkpoint-synchronization function.
Degraded performance may occur.

Explanation: This special form of the BCR instruction
has been detected, and may lead to reduced
performance if it has been used unnecessarily.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP053E Unable to find executable code at entry
address entryAddress.

Explanation: There is no executable code at the
specified entry address.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP054E Unable to find original static flow record
for statement statementNumber.

Explanation: This is an internal flow analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP055E MarkAncestors found bottom node label
with missing AsmNode.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP056W Node layering cannot assign nodeCount
nodes to a layer. They are assigned to
the highest layer.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP057W Duplicate external entry entryLabel point
detected.

Explanation: Two external entry points with the same
name have been detected.

User Response: Remove the ADATA file containing
the duplicate entry point from the analysis.

102 HLASM V1R4 Toolkit Feature User’s Guide

 ASMP058E � ASMP061E

ASMP058E Unable to find external reference entry
for V-constant id externalID.

Explanation: This is an error in the ADATA file
structure.

User Response: Recreate the ADATA file and try
again. Ensure that the version of the High Level
Assembler being used to create the file is not higher
than that of the ASMPUT. Also ensure that the
recommended maintenance level as documented in the
ASMPUT installation instructions has been applied. If
the problem persists, report it to IBM service.

ASMP059W Source file compilation unit unitNumber
contains no code or data.

Explanation: There is no code or data in the file.

User Response: Examine the assembler source code
and determine whether this is a genuine problem, and if
necessary correct the problem and re-assemble the
code.

ASMP060E Internal error. Island/layer label has only
one child node childLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

ASMP061E Internal error. Bottom node label has no
island.

Explanation: This is an internal graph analysis error. It
should not occur.

User Response: Report the problem to IBM service.

 Chapter 4. Using the Program Understanding Tool 103

104 HLASM V1R4 Toolkit Feature User’s Guide

Chapter 5. Using the Cross-Reference Facility

Introduction to ASMXREF . 106
Invoking the Cross-Reference Facility . 108

Invoking ASMXREF on MVS . 109
MVS JCL Example . 109
Sample Procedures . 113

Invoking ASMXREF on CMS . 115
ASMXREF Control File . 116
ASMXREF Token Statement File . 116
ASMXREF Source List File . 117
Default Options File . 117
ASMXREF Language File . 118
ASMXSCAN EXEC . 119
ASMXRPT EXEC . 119

Invoking ASMXREF on VSE . 120
VSE JCL Example . 121

ASMXREF Control Statements . 125
* . 125
Library . 125
Include . 126
Exclude . 127
Parm . 127
Report . 128

ASMXREF Token Statement . 128
Token . 129
Scanning Rules for ASMXREF . 131

Generic Matching Rules . 131
ASMXREF Options . 132
ASMXREF XRFLANG Statements . 132

Default Token Segment . 133
Language Segment . 134

ASMXREP Options . 135
Understanding the Reports . 135

Languages Supported by Reports . 136
Control Flow (CF) Report . 136

C Family References . 137
PL Family References . 137
REXX References . 138

Lines Of Code (LOC) Report . 139
Changed Source Instruction (CSI) Measurements 140

The LOOC report . 145
The LOC per Class section . 146
The LOC per Object section . 146
The Objects per Class section . 147

Macro Where Used (MWU) Report . 147
Spreadsheet Oriented Report (SOR) . 148

File Transfer to PC . 149
Symbol Where Used (SWU) Report . 150
Token Where Used (TWU) Report . 154
Tagged Source Program (TSP) . 155

ASMXREF Messages . 158

 Copyright IBM Corp. 1992, 2004 105

 Introduction

Message List . 159
ASMXREF User Abends . 169

Introduction to ASMXREF
The Cross-Reference Facility (ASMXREF) is a flexible source code
cross-referencing tool to help you determine variable and macro usage, and to
locate specific uses of arbitrary strings of characters. ASMXREF reads libraries for
symbols, macros, and tokens and generates reports to help you evaluate the
search results.

As well as its value in maintaining applications, ASMXREF helps you quickly
identify selected fields of interest.

ASMXREF provides token scanning facilities for source code in the languages such
as:

 � Assembler
 � C
 � C++

 � COBOL
 � FORTRAN
 � PL/I
 � REXX

For details on all the languages supported by each report see Table 19 on
page 136.

ASMXREF saves any informational or error messages in a message file (for details
see “ASMXREF Messages” on page 158).

You can use ASMXREF to generate the following reports:

Control Flow (CF)
The CF report tabulates all intermodule program references as a
function of member or entry point name. It can list references either in
the order of the members referring to the subject entry point or the entry
point names referred by the subject member, depending on the sort
order.

For each part processed, the CF report can handle up to 256 internal
procedure names and 1024 entry point names.

Reference names that exceed 64 characters are truncated.

ASMXREF classifies each reference by type. The classification is
language specific. For details see “Control Flow (CF) Report” on
page 136.

Lines of Code (LOC)
Provides a count, arranged by part and by component, of the number of
source lines and comments in the part, and the shipped source
instructions (SSI), which are the number of instructions within each part
scanned, both executable and non-executable, that are not spaces or
comments. As well, the report shows the changed source instructions
(CSI), which are the number of unique SSI that have been modified in
each part categorized by added, changed, deleted, moved, and so on.

106 HLASM V1R4 Toolkit Feature User’s Guide

 Introduction

In addition, the LOC Report provides a summary report of CSI arranged
by programmer.

Lines of OO Code (LOOC)
Provides, for C++, the Lines of Code (LOC) per Class and per Object,
and Objects per Class.

Macro Where Used (MWU)
Identifies calls to all macros, functions invoked, and all copy books
copied and included. The report includes the type and frequency of the
use of the macro, or function, and the reference. This report identifies
external referenced entities. These entities can be subroutine calls,
macro invocations or the inclusion of copy books. For details see
“Macro Where Used (MWU) Report” on page 147.

Spreadsheet Oriented (SOR)
Shows occurrences of tokens in the search library. This report
processes the default set of tokens, provided with ASMXREF, which
contains useful fields of interest, such as DATE, and YY/MM/DD. You can
supplement the default tokens with your own tokens, or turn off
processing of the defaults and replace them with your own token list.
You can specify tokens that ASMXREF is to include in the search
generically (with wildcards), or explicitly (with the exact characters
ASMXREF is to include in the search). You must specify exclude tokens
explicitly. The report is in a comma-delimited format that you can import
into a spreadsheet application such as Lotus 1-2-3.

When you run the ASMXREF scan phase for the TWU and SOR
reports, ASMXREF generates the Tagged Source Program (TSP). The
ASMXREF report phase uses the TSP to create the TWU and SOR
reports. The TSP contains the original source code interspersed with
ASMXREF generated comment records in the syntax of the language
scanned. These comment records contain both the token string
encountered and a cumulative count of the number of times ASMXREF
has found the token so far in the source file. For details on the
Spreadsheet Oriented report see “Spreadsheet Oriented Report (SOR)”
on page 148. For details on the TSP see “Tagged Source Program
(TSP)” on page 155.

Symbol Where Used (SWU)
Lists all the symbols (variables or macros) used in the source code and
the type of reference to each symbol. For details see “Symbol Where
Used (SWU) Report” on page 150.

Token Where Used (TWU)
Shows occurrences of tokens in the search library. This report
processes the default set of tokens, provided with ASMXREF, which
contains useful fields of interest, such as DATE, and YY/MM/DD. You can
supplement the default tokens with your own tokens, or turn off
processing of the defaults, and replace them with your own token list.
You can specify tokens that ASMXREF is to include in the search either
generically (with wildcards), or explicitly (using the exact characters
ASMXREF is to include in the search). You must specify exclude
tokens explicitly.

When you run the ASMXREF scan phase for the TWU and SOR
reports, ASMXREF generates the Tagged Source Program (TSP). The

 Chapter 5. Using the Cross-Reference Facility 107

 Invoking the Cross-Reference Facility

ASMXREF report phase uses the TSP to create the TWU and SOR
reports. The TSP contains the original source code interspersed with
ASMXREF generated comment records in the syntax of the language
scanned. These comment records contain both the token string
encountered and a cumulative count of the number of times ASMXREF
has found the tokens so far in the source file. For details on the TWU
report see “Token Where Used (TWU) Report” on page 154. For
details on the TSP report see “Tagged Source Program (TSP)” on
page 155.

Invoking the Cross-Reference Facility
ASMXREF runs in two phases:

Scan The scan phase extracts information from the specified library to create
intermediate data files. During the scan phase ASMXREF uses:

� A control file: on MVS, in or identified with the SYSIN DD
statement; on VSE, in SYSIPT or identified with an ASSIGN
SYSIPT statement; on CMS, a file with a filetype of CNTL. The
control file contains statements that specify the library to scan, the
source files to include or exclude, and the reports to create. For
details on the control statements see “ASMXREF Control
Statements” on page 125.

� A token statement file (XRFTOKN) that contains the tokens you
have specified for the TWU and SOR reports. For details on the
token statements, see “ASMXREF Token Statement” on page 128.

� A language and default token file (XRFLANG) that contains:

– The languages supported by ASMXREF.

– The language-specific verbs excluded from the ASMXREF
scan phase.

– The default token statements used by the TWU and SOR
reports. You can turn off the processing of the default tokens
with the TOKEN NODEFLT statement, as described in
“ASMXREF Token Statement” on page 128.

For a description of the XRFLANG file, see “ASMXREF XRFLANG
Statements” on page 132.

ASMXREF scans the requested source files and writes the necessary
data to an intermediate data file for each requested report.

Report The report phase uses the intermediate data files to generate each
report.

ASMXREF runs on MVS, CMS, and VSE. The following sections describe how to
invoke ASMXREF on each of these platforms.

108 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

Invoking ASMXREF on MVS
On MVS, you invoke ASMXREF as a batch program using Job Control Language
(JCL). The following MVS files are supplied with ASMXREF:

When creating the TWU and SOR reports, ASMXREF searches the source files for
the default tokens specified in the XRFLANG file and for any tokens you have
specified in the XRFTOKN file. If you need your own tokens make a copy of the
sample token statement (XRFTOKN) file supplied with ASMXREF. Enter the token
statements you need, one per line.

If you have write access to the XRFLANG file you can modify the default tokens in
this file. You can also change, or add, the verbs under the language segment
header. Generally, the XRFLANG file is modified to suit your environment after
installation and the file need not change. Add any additional tokens that you
require to your XRFTOKN file. For details on customizing the XRFLANG file see
“ASMXREF XRFLANG Statements” on page 132.

For a description of the format of the token statements see “ASMXREF Token
Statement” on page 128.

The following sections describe how to run the supplied procedures.

Table 15. MVS Files Supplied with ASMXREF

Filename Contents

ASMXRUN Sample MVS JCL that invokes the supplied cataloged procedures.

ASMXSCAN A cataloged procedure that runs the program ASMXREF.

ASMXRPT A cataloged procedure that runs the program ASMXREP.

XRFLANG A sample XRFLANG file containing:

� The languages supported by ASMXREF and a sample of
language-specific exclude verbs.

� The default tokens.

XRFTOKN A sample XRFTOKN file containing a comment record.

ASMXREF A program that scans the specified libraries and generates
intermediate data files.

ASMXREP A program that reads the intermediate data files and creates the
required reports.

MVS JCL Example
The simplified MVS JCL in Figure 28 on page 110 shows how to create the CF,
LOC, LOOC, MWU, SWU, SOR and TWU reports. Before running this example,
edit the lines highlighted by numbers (such as �1�) as described in the instructions
following the example listing. For a full listing of the procedures supplied with
ASMXREF, see “Sample Procedures” on page 113.

Note: ASMXREF dynamically allocates data sets, therefore you do not need to
allocate DD statements.

 Chapter 5. Using the Cross-Reference Facility 109

 Invoking the Cross-Reference Facility

//ASMXRUN JOB <JOB CARD PARAMETERS> �1�
//

//��

//� �

//� Licensed Materials - Property of IBM �

//� �

//� 5692-234 �

//� �

//� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

//� �

//� US Government Users Restricted Rights - Use, �

//� duplication or disclosure restricted by GSA ADP �

//� Schedule Contract for IBM Corp. �

//� �

//��

//� �

//� ASMXRUN JOB �

//� �

//� THIS SAMPLE JCL WILL INVOKE THE ASMXSCAN AND ASMXRPT PROCEDURES. �

//� �

//� CAUTION: THIS IS NEITHER A JCL PROCEDURE NOR A COMPLETE JOB. �

//� BEFORE USING THIS JOB, YOU WILL HAVE TO MAKE THE FOLLOWING �

//� MODIFICATIONS: �

//� �

//� 1. CHANGE THE JOB CARD TO MEET YOUR SYSTEM REQUIREMENTS �

//� 2. CHANGE #jcllib TO BE THE NAME OF THE USER JCL LIBRARY DATASET. �

//� 3. CHANGE #user TO BE THE USER NAME �

//� 4. CHANGE #user.source TO BE THE SOURCE LIBRARY TO SCAN �

//� 5. CHANGE #source.name TO BE THE SOURCE MEMBER NAME. �

//� 6. CHANGE #lang TO BE THE LANGUAGE OF THE SOURCE MEMBER �

//� (E.G. ASM FOR ASSEMBLER SOURCE) �

//� �

//��

//� NOTE: UNCOMMENT THE FOLLOWING STATEMENT IF THE ASMXREF AND �

//� ASMXRPT PROCEDURES ARE PLACED IN YOUR USER JCL LIBRARY �

//� #jcllib RATHER THEN THE SYSTEM PROCEDURE LIBRARIES. �

//��

//�JCL JCLLIB ORDER=(#jcllib) �2�
//�

//��

//� STEP 1 CREATE INTERMEDIATE FILE �

//��

//STEP1 EXEC ASMXSCAN,PARM.ASMXREF='NODUP',USER=#user, �3�
// ASMPRFX=#hlq

//SYSIN DD � �4�
� SAMPLE CONTROL FILE FOR XREF

�

 LIBRARY LIB=#user.source,TYPE=PDS

 INCLUDE MOD=#source.name,LANGUAGE=#lang

�

 REPORT REPORT=CF CONTROL FLOW

REPORT REPORT=LOC LINES OF CODE

REPORT REPORT=LOOOC LINES OF OO CODE

 REPORT REPORT=MWU WHERE/WHAT USED

REPORT REPORT=SOR SPREAD SHEET ORIENTED

REPORT REPORT=SWU SYMBOL WHERE USED

REPORT REPORT=TWU TOKEN WHERE USED

/�

//���

//� STEP 1A DELETION OF INTERMEDIATE FILE IN CASE STEP1 FAILS. �

//� THIS WILL ALLOW THE JOB TO BE RERUN WITHOUT MANUAL �

//� DELETION OF � A DUPLICATE DATASET. �

Figure 28 (Part 1 of 2). Sample MVS ASMXREF JCL

110 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

//���

//DEL EXEC PGM=IDCAMS,COND=(�,EQ)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE #user.TWU.TAGGED.FILE �5�
/�

//���

//� STEP 2 THIS PRODUCES THE CONTROL FLOW REPORT. �

//���

//STEP2 EXEC ASMXRPT,REPORT=CF,RECLEN=143,BLKSIZE=143�,USER=#user,

// RPARM='6� MAC',COND=(�,NE),ASMPRFX=#hlq

//SYSINOU DD SYSOUT=�

//�

//���

//� STEP 3 THIS PRODUCES THE LINES OF CODE REPORT. �

//���

//STEP3 EXEC ASMXRPT,REPORT=LOC,RECLEN=145,BLKSIZE=145�,USER=#user,

// RPARM='6� MOD',COND=(�,NE),ASMPRFX=#hlq

//SYSINOU DD SYSOUT=�

//�

//���

//� STEP 4 THIS PRODUCES THE LINES OF OO CODE REPORT. �

//� NOTE: UNCOMMENT THE FOLLOWING STATEMENTS IF THE LOOC REPORT IS �

//� REQUIRED. THIS IS AVAILABLE FOR THE CPP LANGUAGE. �

//���

//�STEP4 EXEC ASMXRPT,REPORT=LOOC,RECLEN=99,BLKSIZE=99�,USER=#user,

//� RPARM='6�',COND=(�,NE),ASMPRFX=#hlq

//�SYSINOU DD SYSOUT=�

//�

//���

//� STEP 5 THIS PRODUCES THE MODULE WHERE USED (MWU) REPORT �

//���

//STEP5 EXEC ASMXRPT,REPORT=MWU,RECLEN=96,BLKSIZE=3936,USER=#user,

// RPARM='6� MAC',COND=(�,NE),ASMPRFX=#hlq

//SYSINOU DD SYSOUT=�

//�

//���

//� STEP 6 THIS PRODUCES THE SYMBOL WHERE USED (SWU) REPORT �

//���

//STEP6 EXEC ASMXRPT,REPORT=SWU,RECLEN=93,BLKSIZE=3999,USER=#user,

// RPARM='6� SYM',COND=(�,NE),ASMPRFX=#hlq

//SYSINOU DD SYSOUT=�

//�

//���

//� STEP 7 THIS PRODUCES THE TOKEN WHERE USED (TWU) REPORT �

//� NOTE: THE LAST STEP TO REFERENCE THE SYSINDS DATASET �

//� FOR THE TWU OR SOR REPORT SHOULD SPECIFY �

//� DISP=(OLD,DELETE) �

//���

//STEP7 EXEC ASMXRPT,REPORT=TWU,RECLEN=8�,BLKSIZE=8�,USER=#user, �6�
// RPARM='',COND=(�,NE),ASMPRFX=#hlq

//SYSINDS DD DSN=�.STEP1.ASMXREF.XRFTWU,DISP=(OLD,KEEP)

//SYSINOU DD SYSOUT=�

//�

//���

//� STEP 8 THIS PRODUCES THE SPREADSHEET ORIENTED REPORT (SOR). �

//� NOTE: THE LAST STEP TO REFERENCE THE SYSINDS DATASET �

//� FOR THE TWU OR SOR REPORT SHOULD SPECIFY �

//� DISP=(OLD,DELETE) IF YOU DON NOT WISH TO KEEP THE �

//� TASF FILE. �

//���

//STEP8 EXEC ASMXRPT,REPORT=SOR,RECLEN=8�,BLKSIZE=8�,USER=#user

// RPARM=', ''',COND=(�,NE),ASMPRFX=#hlq

//SYSINDS DD DSN=�.STEP1.ASMXREF.XRFTWU,DISP=(OLD,DELETE)

//���

//� NOTE: COMMENT THE FOLLOWING STATEMENT IF THE USER DOES NOT �

//� REQUIRE A SPREADSHEET DATASET TO BE CREATED. �

//���

//SYSINOU DD SYSOUT=�

//

Figure 28 (Part 2 of 2). Sample MVS ASMXREF JCL

�1� Add the job parameters tomeet your system requirements.

 Chapter 5. Using the Cross-Reference Facility 111

 Invoking the Cross-Reference Facility

�2� If you store the ASMXSCAN or ASMXRPT procedures in the JCL library rather
than the system procedure library, remove the comment characters on this line,
and then replace #jcllib with the data set name of the JCL library.

�3� Replace NODUP with the options you need for the ASMXREF run, and replace
#user with your userid.

EXEC ASMXSCAN runs the procedure ASMXSCAN, which runs the program
ASMXREF. ASMXREF requires that you specify at least one option with the
PARM parameter. For details of the options available with ASMXREF see
“ASMXREF Options” on page 132. The format of the ASMXREF statement is:

��──//stepname──EXEC──ASMXSCAN─ ──┬ ┬────────────────────────────── ──────�
 │ │┌ ┐─,──────

└ ┘──,PARM.ASMXREF=' ───

┴─option─ '

�─ ──┬ ┬──────────── ──┬ ┬────────────── ──────────────────────────────────��
└ ┘──,USER=user └ ┘──,ASMPRFX=hlq

�4� Enter the ASMXREF control statements you need, either immediately following
the SYSIN DD � statement, as in the sample JCL shown in Figure 28 on
page 110, or enter the name of the data set that contains the control
statements. For details on the control statements, see “ASMXREF Control
Statements” on page 125.

�5� Replace #user with your userid.

�6� Replace #user with your userid and specify any options that you need for each
report in RPARM. Run this procedure for each report that you need. The
format of the statement is:

��──//step──EXEC──ASMXRPT──,──REPORT=─ ──┬ ┬─CF─── ─,──RPARM=──'──────────�
 ├ ┤─LOC──
 ├ ┤─LOOC─
 ├ ┤─MWU──
 ├ ┤─SOR──
 ├ ┤─SWU──
 └ ┘─TWU──

�─ ──┬ ┬────────── ──┬ ┬──────────────── ──┬ ┬──────────── ──┬ ┬─────────── ────�
 └ ┘─format───(1) └ ┘─sort_order─────(1, 2) └ ┘─sep_char───(3) └ ┘─t_delim───(3)

�──'─ ──,RECLEN=record_length ──,BLKSIZE=block_size ──┬ ┬──────────── ──────�
└ ┘──,USER=user

�─ ──┬ ┬────────────── ──��
└ ┘──,ASMPRFX=hlq

Notes:
1 These options are not available for the SOR report.
2 This option not required for the LOOC report.
3 These options are available only for the SOR report.

For details of the reports available see “Understanding the Reports” on
page 135. For details of the options available, see “ASMXREP Options” on
page 135. You must specify only one report with this statement.

Note: All the parameters are positional. You must enter them in the order
shown above, or you can enter just the REP parameter and leave the other
parameters blank. If you enter the parameters in the wrong order ASMXREF
issues an error message.

112 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

 Sample Procedures
The following figures show the two sample procedures supplied with ASMXREF.
After installing ASMXREF your systems programmer must copy these procedures
into your procedure library and modify them to suit your environment. Once
modified, use the sample JCL shown in Figure 28 on page 110 to invoke the
procedures. If the names of the procedures have changed, modify the JCL to
reflect the change.

//��

//� Licensed Materials - Property of IBM �

//� �

//� 5696-234 5647-A�1 �

//� �

//� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

//� �

//� US Government Users Restricted Rights - Use, �

//� duplication or disclosure restricted by GSA ADP �

//� Schedule Contract with IBM Corp. �

//� �

//��

//��

//� �

//� ASMXSCAN PROC �

//� �

//� THIS SAMPLE JCL PROC IS INVOKED FROM THE ASMXRUN SAMPLE JCL. �

//� IT INVOKES THE ASMXREF PROGRAM. �

//� �

//� �

//��

//ASMXSCAN PROC SYSOUT='�',

// USER=USER,

// ASMPRFX=HLA

//ASMXREF EXEC PGM=ASMXREF,REGION=4M

//�

//STEPLIB DD DISP=SHR,DSN=&ASMPRFX..SASMMOD2

//�

//XRFCF DD DSN=&&CF, DATA FOR CONTROL FLOW REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,1�),RLSE)

//XRFLOC DD DSN=&&LOC, DATA FOR LINES OF CODE REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,1�),RLSE)

//XRFLOOC DD DSN=&&LOOC, DATA FOR LINES OF OO CODE REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,1�),RLSE)

//XRFMWU DD DSN=&&MWU, DATA FOR MACRO WHERE USED REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,1�),RLSE)

//XRFSWU DD DSN=&&SWU, DATA FOR SYMBOL WHERE USED REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,2�),RLSE)

//XRFSWUO DD DSN=&&SWUO, DATA FOR SYMBOL WHERE USED REPORT

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,2�),RLSE)

//XRFMDLOG DD DSN=&&MDLO,

// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(�,2�),RLSE)

//XRFTWU DD DSN=&USER..TWU.TAGGED.FILE,

// DCB=(LRECL=8�,BLKSIZE=32��,DSORG=PS),

// SPACE=(CYL,(5,1),RLSE),

// UNIT=SYSALLDA,

// DISP=(NEW,CATLG)

//XRFSYMLB DD DUMMY

//XRFSCIP DD DUMMY

//XRFTST DD DUMMY

//SYSPRINT DD SYSOUT=&SYSOUT

//XRFTOKN DD DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXTOKN) �1�
//XRFLANG DD DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXLANG) �2�
//SYSIN DD DSN=NULLFILE,DISP=SHR

Figure 29. Sample ASMXSCAN Procedure

 Chapter 5. Using the Cross-Reference Facility 113

 Invoking the Cross-Reference Facility

�1� You require this DD statement only for the TWU and SOR reports if you need
to supplement, or replace, the default tokens with your own tokens. Replace
&ASMPRFX..SASMSAM2(ASMXTOKN) with the name of the data set
containing your token statements.

If the default tokens are sufficient, and additional tokens are not required,
replace DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXTOKN) with DUMMY. For
example:

//XRFTOKN DD DUMMY

For details on the token statements see “ASMXREF Token Statement” on
page 128.

If you are not creating the TWU or SOR reports remove this statement.

�2� Replace &ASMPRFX..SASMSAM2(ASMXLANG) with the name of the data set
containing the XRFLANG file. For details of the XRFLANG file see “ASMXREF
XRFLANG Statements” on page 132.

//��

//� Licensed Materials - Property of IBM �

//� �

//� 5696-234 5647-A�1 �

//� �

//� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

//� �

//� US Government Users Restricted Rights - Use, �

//� duplication or disclosure restricted by GSA ADP �

//� Schedule Contract with IBM Corp. �

//� �

//��

//��

//� �

//� ASMXRPT PROC �

//� �

//� THIS SAMPLE JCL PROC IS INVOKED FROM THE ASMXRUN SAMPLE JCL. �

//� IT INVOKES THE ASMXRPT PROGRAM. �

//� �

//� �

//��

//ASMXRPT PROC REPORT=, A VALID 2-3 LETTER REPORT ACRONYM

// RPARM=, REPORT PARAMETERS

// RECLEN=, RECORD LENGTH

// BLKSIZE=, BLOCK SIZE

// SYSOUT='�', SYSOUT CLASS

// SPACE=5, REPORT SPACE IN TRACKS

// USER=USER, USER ID OR HIGH LEVEL QUALIFIER

// ASMPRFX=HLA HIGH LEVEL QUALIFIER FOR TOOLKIT LIBRARY

//�

//ASMXRPT EXEC PGM=ASMXREP,REGION=3M,

// PARM=('&REPORT &RPARM ')

//STEPLIB DD DISP=SHR,DSN=&ASMPRFX..SASMMOD2

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSINDS DD DSN=&&&REPORT,DISP=(OLD,PASS)

//SYSINOU DD DSN=&USER..XREFOUT.&REPORT,

// DISP=(NEW,CATLG),UNIT=SYSALLDA,

// DCB=(RECFM=FBA,LRECL=&RECLEN,BLKSIZE=&BLKSIZE),

// SPACE=(TRK,(&SPACE,5),RLSE)

Figure 30. Sample ASMXRPT Procedure

114 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

Invoking ASMXREF on CMS
On CMS you invoke ASMXREF with REXX EXECs. ASMXREF is supplied with the
following CMS files:

Take the following steps to run ASMXREF:

1. Before running ASMXREF make a copy of the following information files:

� ASMTEST CNTL, the sample control file

� ASMTEST DATATOKN, the sample token statement (XRFTOKN) file (used
only with the TWU and SOR reports where it is optional)

� ASMTEST EXEC, the sample source list file

� ASMTEST DEFAULTS, the default options file

� ASMTEST DATALANG, the sample language (XRFLANG) file

2. Modify the details in each of these files to suit your ASMXREF run.

3. Save each of the files with a new filename. They must all have the same
filename, but retain the existing filetype. For example:

MYXREF CNTL

MYXREF DATATOKN

MYXREF EXEC

MYXREF DEFAULTS

MYXREF DATALANG

Refer to the following sections for details of the information required in each of
these files.

Table 16. CMS Files Supplied with ASMXREF

Filename Filetype Contents

ASMXSCAN EXEC A REXX EXEC that runs the program ASMXREF.

ASMXRPT EXEC A REXX EXEC that runs the program ASMXREP.

ASMXREF MODULE A program that scans the specified libraries and
creates intermediate data files.

ASMXREP MODULE A program that reads the intermediate data files and
creates the required reports.

ASMTEST CNTL A sample control file.

ASMTEST DATATOKN A sample token statement (XRFTOKN) file.

ASMTEST EXEC A sample source list file.

ASMTEST DEFAULTS Contains the default ASMXREF options.

ASMTEST DATALANG A sample XRFLANG file that contains:

� The languages supported by ASMXREF and a
sample of language-specific exclude verbs.

� The default tokens used by the TWU and SOR
reports.

ASMXSEP EXEC A REXX EXEC that splits the TSP into its component
files. For a description of splitting the TSP see
“Tagged Source Program (TSP)” on page 155.

 Chapter 5. Using the Cross-Reference Facility 115

 Invoking the Cross-Reference Facility

4. Remove the comment characters from the appropriate FILEDEF XRFTOKN
statement in the ASMXSCAN EXEC. For details of this statement see
“ASMXREF Token Statement File” on page 116.

5. When the information files have been created, run the ASMXSCAN EXEC to
create the intermediate data files.

6. Run the ASMXRPT EXEC to create each report that you need.

For details on the format of the EXEC commands and details of the files
created by these EXECs, see “ASMXSCAN EXEC” on page 119 and
“ASMXRPT EXEC” on page 119.

ASMXREF Control File
The control file contains the control statements for your ASMXREF run.

Make a copy of the sample control file supplied with ASMXREF and enter the
control statements you need for your ASMXREF run. Enter each control statement
on a separate line, starting in column one. You can give the file any valid filename,
but the filetype must be CNTL.

For an example of a control file, named ASMTEST CNTL A, see Figure 31.

� Sample control file for ASMXREF

�

LIBRARY LIB=ASMTEST,TYPE=CMS,LANGUAGE=ASM

�

REPORT REPORT=CF CONTROL FLOW

REPORT REPORT=LOC LINES OF CODE

REPORT REPORT=LOOC LINES OF OO CODE

REPORT REPORT=TWU TOKEN WHERE USED

REPORT REPORT=MWU MACRO WHERE USED

REPORT REPORT=SWU SYMBOL WHERE USED

Figure 31. Example Control File for CMS ASMXREF EXEC

For full details of the control statements you can use with ASMXREF see
“ASMXREF Control Statements” on page 125.

ASMXREF Token Statement File
The token statement (XRFTOKN) file contains your token statements for the
ASMXREF run.

Use this file only when creating the TWU or SOR reports and you need to specify
tokens in addition to the default tokens in the XRFLANG file. When ASMXREF
runs the scan phase it searches for the default tokens specified in the XRFLANG
file and for any additional tokens you have specified in the XRFTOKN file.

Check the XRFTOKN file definition statements in ASMXSCAN EXEC:

� If the default tokens are sufficient and additional tokens are not required, or
when running reports other than the TWU or SOR, modify the file definition
statements as follows:

IssueFileDefs:

 /�'FILEDEF XRFTOKN DISK' FileName 'DATATOKN' WorkMode �/

 'FILEDEF XRFTOKN DUMMY'

116 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

� If you require tokens in the XRFTOKN file modify the file definition statements
as follows:

IssueFileDefs:

'FILEDEF XRFTOKN DISK' FileName 'DATATOKN' WorkMode

/�'FILEDEF XRFTOKN DUMMY' �/

When you need to supplement or replace the default tokens with your own tokens,
make a copy of the sample token (XRFTOKN) file supplied with ASMXREF. Enter
the token statements you need, one per line. For details of the default tokens see
“ASMXREF XRFLANG Statements” on page 132. For details of the token
statements you can use see “ASMXREF Token Statement” on page 128.

Save your token file with the same filename as the control file and a filetype of
DATATOKN.

Figure 32 shows an example of a token statement in a file named ASMTEST
DATATOKN A.

� Sample token statement file for ASMXREF

TOKEN INC='ABC'

Figure 32. Example Token Statement File for CMS ASMXREF EXEC

ASMXREF Source List File
Contains the names of the source files that ASMXREF scans.

Make a copy of the sample source list file supplied with ASMXREF and enter the
filenames of the files you need ASMXREF to scan. Give the source list file a
filetype of EXEC, with any filename you choose, but for consistency it is advisable
to give it the same name as the control file. You must specify this filename on the
LIB parameter of the LIBRARY control statement. For details, see “ASMXREF
Control Statements” on page 125.

The format of each line in the source list file is:

&1 &2 filename filetype filemode

where filename, filetype, and filemode identify a source file to be scanned. The
following example scans files with the filename ASMSRC and a filetype of ASSEM
on any filemode:

&1 &2 ASMSRC ASSEM �

All source files must be written in the same language for each ASMXREF run.

Default Options File
Contains the default options for ASMXREF and ASMXREP.

Make a copy of this file; give it the same filename as the control file and a filetype
of DEFAULTS.

You can change some of the default options in this file, but ASMXREF does not
allow you to change others. Comment lines in the file indicate which options you
can change.

 Chapter 5. Using the Cross-Reference Facility 117

 Invoking the Cross-Reference Facility

If you need to modify any of these options change them to suit your ASMXREF run,
and save the file. For details of the options available see “ASMXREF Options” on
page 132 and “ASMXREP Options” on page 135.

� �� �

� Licensed Materials - Property of IBM �

� �

� 5696-234 �

� �

� (C) Copyright IBM Corp. 1975, 2��4. All Rights Reserved. �

� �

� US Government Users Restricted Rights - Use, �

� duplication or disclosure restricted by GSA ADP �

� Schedule Contract with IBM Corp. �

� �

� �� �

� ---�

� This file contains Local Defaults for ASMXSCAN and ASMXRPT EXEC �

� procedures. �

� Each assignment statement must remain in proper REXX format. �

� �

� Any line beginning with an asterisk, is a comment and ignored. �

� �

� Please read the instructions preceding each group of parameters. �

� �

� ASMXSCAN and ASMXRPT will use the ASMTEST DEFAULTS file found in �

� the normal CMS search sequence. �

� Note: ASMTEST DEFAULTS is the supplied defaults file. �

� ---�

�

� ---�

� The following defaults cannot be changed. �

� ---�

DefaultASMXModule = 'ASMXREF'

DefaultReportModule = 'ASMXREP'

DefaultOpcodeTable = 'ASMOP37�'

� ---�

� The following Defaults MAY be changed. �

� ---�

DefaultDuplicates = 'DUP'

DefaultMessageLevel = '4'

DefaultPageLength = '6�'

DefaultWorkMode = 'A'

DefaultCNTLMode = '�'

DefaultReturnMsg = 'NO'

�

Figure 33. Default Options File for ASMXREF EXEC

ASMXREF Language File
Contains a list of the languages supported by ASMXREF and exclude verbs
(words) specific to the language. ASMXREF excludes the verbs (words) when it
scans a source file in the specified language. The file also contains the default
token statements.

Make a copy of this file; give it the same filename as the control file and a filetype
of DATALANG.

You can modify, or add to, the language-specific exclude words and the default
token list. ASMXREF only supports the languages supplied in the file, therefore
you cannot add any other language.

For details on the default tokens supplied with ASMXREF and the supported
languages see “ASMXREF XRFLANG Statements” on page 132.

118 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

 ASMXSCAN EXEC
The ASMXSCAN EXEC runs the scan phase. This searches the source files listed
in the source list file and creates intermediate data files named filename DATArpt
A, where filename is the name of the control file and rpt is the report acronym.
ASMXSCAN uses the options in the filename DEFAULTS A file, where filename is
the same name as the control file. The format of the ASMXSCAN EXEC command
is as follows:

 ┌ ┐ ─A────
��──ASMXSCAN──control_file─ ──┴ ┴ ─mode─ ──────────────────────────────────────��

where control_file is the name of the control file.

For example:

ASMXSCAN ASMTEST A

The previous example searches the source files listed in the file ASMTEST EXEC
A, using the control statements stored in the control file ASMTEST CNTL A, and
generates an intermediate data file for each of the required reports.

When using the control file in Figure 31 on page 116 ASMXREF creates output
files named ASMTEST DATACF, ASMTEST DATALOC, ASMTEST DATATWU,
ASMTEST DATAMWU, and ASMTEST DATASWU. The file ASMTEST DATATWU
contains the TSP for both the TWU and SOR reports.

 ASMXRPT EXEC
The ASMXRPT EXEC runs the ASMXREF report phase, creating an output file for
the requested report. The name of this file is filename OUTrpt A, where filename is
the same filename as the control file and rpt is the report acronym. You can only
specify one report each time you run the EXEC, so you must run the EXEC for
every report required. The format of the command is as follows:

��──ASMXRPT──file_name─ ──┬ ┬─CF─── ──��
 ├ ┤─LOC──
 ├ ┤─LOOC─
 ├ ┤─MWU──
 ├ ┤─SOR──
 ├ ┤─SWU──
 └ ┘─TWU──

where filename is the name of the scan phase control file.

In the following example ASMXRPT uses the input file named ASMTEST
DATATWU A, and creates the TWU report in a file named ASMTEST OUTTWU A.

 ASMXRPT ASMTEST TWU

 Chapter 5. Using the Cross-Reference Facility 119

 Invoking the Cross-Reference Facility

Invoking ASMXREF on VSE
On VSE, you invoke ASMXREF as a batch program. ASMXREF is supplied with
the following VSE files:

When creating the TWU and SOR reports, ASMXREF searches the source files for
the default tokens specified in the XRFLANG file and for any tokens you have
specified in the XRFTOKN file. If you need your own tokens make a copy of the
sample token statement (XRFTOKN) file supplied with ASMXREF. Enter the token
statements you need, one per line. If you do not need to supplement the default
tokens, enter just a comment line in the XRFTOKN file.

If you have write access to the XRFLANG file you can modify the default tokens in
this file. You can also change, or add, the verbs under the language segment
header in this file. Generally, the XRFLANG file is modified to suit your
environment after installation and the file need not change. Add any additional
tokens that you require to your XRFTOKN file.

For details of the format of the token statement see “ASMXREF Token Statement”
on page 128. For details of the default tokens supplied with ASMXREF see
“ASMXREF XRFLANG Statements” on page 132.

The following sections describe the job control statements required to run these
programs.

Note: After installing ASMXREF, or if you change the XRFLANG or XRFTOKN
files, you must copy the contents of the files into VSAM managed SAM files.
ASMXREF is supplied with a sample JCL job, named ASMXJC2S, that runs this
job. This JCL copies the contents from the librarian members (using '* $$ SLI') into
VSAM managed SAM files. if you rerun this job change the DLBL statements from
DISP=(NEW,KEEP) to DISP=(OLD,KEEP).

Table 17. VSE Files Supplied with ASMXREF

Filename Contents

ASMXRUN A sample VSE JCL job which invokes the supplied programs.

ASMXREF A program that scans specified libraries and generates intermediate
data files.

ASMXREP A program that reads the intermediate data files and creates the
required report.

XRFLANG A sample XRFLANG file containing:

� The languages supported by ASMXREF and a sample of
language-specific exclude verbs.

� The default tokens.

XRFTOKN A sample token statement file containing a comment statement.

ASMXJC2S JCL which catalogs the XRFLANG and XRFTOKN file names in the
VSAM catalog.

120 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

VSE JCL Example
The simplified JCL in Figure 34 shows how to create the CF, LOC, LOOC, MWU,
SWU, TWU and SOR reports. Before running this example edit the lines
highlighted by numbers (such as �1�) as described in the instructions following
Figure 34.

@ $$ JOB JNM=ASMXRUN,LDEST=(�,USERID),CLASS=� �1�
// JOB GSCAN

� ---

� NOTE 1: PLEASE CHANGE ALL OCCURRENCES OF "@" CHARACTER TO "�".

� ---

� �� �

� Licensed Materials - Property of IBM �

� �

� 5696-234 �

� �

� (C) Copyright IBM Corp. 1975, 2��4. All Rights Reserved. �

� �

� US Government Users Restricted Rights - Use, �

� duplication or disclosure restricted by GSA ADP �

� Schedule Contract with IBM Corp. �

� �

� �� �

 ON $ABEND GOTO LOGIT

 ON $CANCEL GOTO LOGIT

// UPSI 1

// OPTION JCANCEL,LOG,LINK,PARTDUMP

// LIBDEF �,SEARCH=(xref.test) �2�
/�

// DLBL XRFLANG,'asmxref.langfile',,VSAM,CAT=cat_name,DISP=(OLD,KEEP) �3�
// DLBL XRFTOKN,'asmxref.tokenfile',,VSAM,CAT=cat_name,DISP=(OLD,KEEP)�4�
// DLBL XRFCF,'%%XRFCF',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=143
// DLBL XRFLOC,'%%XRFLOC',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=145
// DLBL XRFLOOC,'%%XRFLOOC',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=99
// DLBL XRFMDLO,'%%XRFMDLO',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192
// DLBL XRFSWU,'%%XRFSWU',�,VSAM,DISP=(,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=93
// DLBL XRFSWUO,'%%XRFSWUO',�,VSAM,DISP=(,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192
// DLBL XRFMWU,'%%XRFMWU',�,VSAM,DISP=(,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=96
// DLBL XRFTWU,'%%XRFTWU',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8�
// EXEC ASMXREF,SIZE=(ASMXREF,2M),PARM='options' �5�
� SAMPLE CONTROL FILE FOR ASMXREF

�

 LIBRARY LIB=xref.sample,TYPE=VSE,MEMTYPE=n �6�
 INCLUDE MOD=asmtest,LANGUAGE=language
�

�

 REPORT REPORT=CF

 REPORT REPORT=LOC

 REPORT REPORT=LOOC

 REPORT REPORT=MWU

 REPORT REPORT=SWU

 REPORT REPORT=TWU

 REPORT REPORT=SOR

/�

IF $RC > � THEN

GOTO LOGIT

/�

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192
// DLBL SYSINDS,'%%XRFSWU',�,VSAM,DISP=(OLD,DELETE), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=93 ──┐

// EXEC ASMXREP,PARM='SWU 6� SYM' │

/� │

Figure 34 (Part 1 of 3). Sample ASMXREF VSE JCL

 Chapter 5. Using the Cross-Reference Facility 121

 Invoking the Cross-Reference Facility

IF $RC > � THEN │

GOTO LOGIT │

/� │

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192 │

// DLBL SYSINDS,'%%XRFMWU',�,VSAM,DISP=(OLD,DELETE), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=96 │

// EXEC ASMXREP,PARM='MWU 6� MAC' │ �7�
/� │

IF $RC > � THEN │

GOTO LOGIT │

/� │

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192 │

// DLBL SYSINDS,'%%XRFCF',�,VSAM,DISP=(OLD,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=143 │

// EXEC ASMXREP,PARM='CF'

/� │

IF $RC > � THEN │

GOTO LOGIT │

/� │

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192 │

// DLBL SYSINDS,'%%XRFLOC',�,VSAM,DISP=(OLD,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=145 │

// EXEC ASMXREP,PARM='LOC' │

/� │

IF $RC > � THEN │

GOTO LOGIT │

/� │

 � NOTE : IF "LOOC REPORT" IS REQUIRED. EXECUTE THE FOLLOWING │

 � STEP BY UNCOMMENTING THE FOLLOWING. │

 � LOOC REPORT IS AVAILABLE FOR CPP PROGRAMS. │

 � // DLBL SYSINDS,'%%XRFLOOC',�,VSAM,DISP=(OLD,KEEP), │C

 � RECORDS=(1���,5��),CAT=cat_name,RECSIZE=99 │

 � // EXEC ASMXREP,PARM='LOOC 6�' │

 � /� │

 � IF $RC > � THEN │

 � GOTO LOGIT │

 /� │

/� │

IF $RC > � THEN │

GOTO LOGIT │

/� │

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192 │

// DLBL SYSINDS,'%%XRFTWU',�,VSAM,DISP=(OLD,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8� │

// EXEC ASMXREP,PARM='TWU' │

/� │

IF $RC > � THEN │

GOTO LOGIT │

/� │

// DLBL SYSPRT,'%%SYSPRT',�,VSAM,DISP=(NEW,KEEP), │C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8192 │

// DLBL IJSYSPH,'SOR.DATA',�,SD │

// EXTENT SYSPCH,SYSWK2,1,�,511�,15 │ �8�
 ASSGN SYSPCH,DISK,VOL=SYSWK2,SHR │

// DLBL SYSINDS,'%%XRFTWU',,VSAM,CAT=cat_name │

// EXEC ASMXREP,PARM='SOR' ──────┘

/�

 CLOSE SYSPCH,FED

/�

// DLBL IJSYSIN,'SOR.DATA',�,SD

// EXTENT SYSIPT,SYSWK2,1,�,511�,15 �8�
 ASSGN SYSIPT,DISK,VOL=SYSWK2,SHR

// EXEC LIBR,PARM='ACC S=XREF.XREFN;CAT SOR.A R=Y'

/�

 CLOSE SYSIPT,FEC

/�

IF $RC > � THEN

GOTO LOGIT

Figure 34 (Part 2 of 3). Sample ASMXREF VSE JCL

122 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the Cross-Reference Facility

/�

@ $$ PUN DISP=I,PRI=6,CLASS=A

// ASSGN SYSIPT,SYSRDR

// EXEC IESINSRT

#/ JOB ASMXRCAT

// EXEC LIBR,SIZE=256K,PARM='ACC S=XREF.XREFN'

@ $$ END

// UPSI 1

// DLBL XRFTWU,'%%XRFTWU',�,VSAM,DISP=(OLD,KEEP),CAT=cat_name
// EXEC DITTO,SIZE=512K

$$DITTO SC FILEIN=XRFTWU

/�

// EXEC IESINSRT

#&

@ $$ END

/�

/. LOGIT

// UPSI 1

// DLBL SYSINDS,'%%XRFTWU',�,VSAM,DISP=(OLD,DELETE), C

 RECORDS=(1���,5��),CAT=cat_name,RECSIZE=8�
// EXEC DITTO

$$DITTO SET DATAHDR=NO

$$DITTO SPR FILEIN=SYSINDS

/�

// EXEC LISTLOG

/&

@ $$ EOJ

Figure 34 (Part 3 of 3). Sample ASMXREF VSE JCL

Replace cat_name, throughout the JCL, with the name of your VSAM catalogs.

�1� Replace node with the node, and userid with your user ID.

�2� Replace xref.test with the name of the ASMXREF executable sublibrary.

�3� Replace asmxref.langfile with the name of the XRFLANG file. See the note on
page 120.

For details of the XRFLANG file see “ASMXREF XRFLANG Statements” on
page 132.

�4� You require this DLBL statement only for the TWU and SOR reports; you can
remove it for other reports.

When you need to supplement, or replace, the default tokens with your own
tokens replace asmxref.tokenfile with the name of the file containing your token
statements. See the note on page 120. If the default tokens are sufficient,
and additional tokens are not required, enter only a comment statement in the
XRFTOKN file.

�5� Replace options with any options that you need for your ASMXREF run.

The EXEC ASMXREF runs the program ASMXREF. ASMXREF needs you to
specify at least one PARM option with the EXEC ASMXREF statement. The
ASMXREF control statements can follow the EXEC statement in SYSIPT with
each statement on a separate line, as shown in the sample JCL, or you can
assign SYSIPT to a file containing the control statements. You must follow the
last control statement with the SYSRDR termination control characters /�.

The sample JCL supplied with ASMXREF includes the statement
MEMTYPE=A. If this is not correct change to the correct member type.

For details of the options available with ASMXREF, see “ASMXREF Options”
on page 132, for details of the control statements, see “ASMXREF Control
Statements” on page 125.

The format of the command is:

 Chapter 5. Using the Cross-Reference Facility 123

 Invoking the Cross-Reference Facility

 ┌ ┐─,────────────
��──//──EXEC──ASMXREF,──SIZE=nnn──,──PARM──=─ ───

┴─'──option──'─ ───────��

�6� See “ASMXREF Control Statements” on page 125 for details of statements.

�7� Enter the options required for each ASMXREP run. The sample JCL shows
valid ASMXREP options.

You must run the EXEC ASMXREP for every report that you need. The format
of the statement is:

��──//──EXEC──ASMXREP──,──PARM=──'─ ──┬ ┬─CF─── ──┬ ┬────────── ────────────�
 ├ ┤─LOC── └ ┘─format───(1)

 ├ ┤─LOOC─
 ├ ┤─MWU──
 ├ ┤─SOR──
 ├ ┤─SWU──
 └ ┘─TWU──

�─ ──┬ ┬──────────────── ──┬ ┬──────────── ──┬ ┬─────────── ─'───────────────��
 └ ┘─sort_order─────(1, 2) └ ┘─sep_char───(3) └ ┘─t_delim───(3)

Notes:
1 These options are not available for the SOR report.
2 This option not required for the LOOC report.
3 These options are available only for the SOR report.

Note: All the parameters are positional. You must enter them in the order
shown above, or you can enter just the report parameter and leave the other
parameters blank. If you enter the parameters in the wrong order ASMXREF
issues an error message.

For details of the options available see “ASMXREP Options” on page 135, and
for details of the reports available see “Understanding the Reports” on
page 135. You must specify only one report with this statement.

�8� Change the EXTENT cards to point to free space.

124 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF Control Statements

ASMXREF Control Statements

 *
An asterisk (�) character in column one indicates a comment statement.

 Library
You can abbreviate LIBRARY to L.

You must specify one, and only one, LIBRARY statement in the control file for each
ASMXREF scan run. The minimum requirement with the LIBRARY statement is
the LIB parameter that specifies the library ASMXREF scans. The following
parameters are valid with the LIBRARY control statement:

LANGUAGE
Specifies the language of the input source files. You can specify only one
language for each ASMXREF run, therefore all source files in the
ASMXREF run must be in the same language. If you do not specify the
LANG parameter ASMXREF uses the default language of assembler. The
following table lists the supported languages and the associated keyword.

Table 18 (Page 1 of 2). XRFLANG Supported Languages

Language LANGUAGE=keyword

Assembler ASM

Assembler 86 ASM86

C C

C++ CPP

CLIST CLIST

COBOL COBOL

FORTRAN FORTRAN

Generic GENERIC

ISPF Panels IPN

ISPF Panels PANELS

ISPF Skeletons SKE

ISPF Skeletons SKELS

MASM MASM

MODULA MODULA

MODULA2 MODULA

MODULA3 MODULA

MVS or VSE JCL JCL

OS/2 Command CMD

OS/2 DEF DEF

OS/2 IPF IPF

OS/2 MAK MAKE

OS/2 RC RC

 Chapter 5. Using the Cross-Reference Facility 125

 ASMXREF Control Statements

LIB On MVS and VSE, this specifies the names of the PDS (MVS) or library
(VSE) to be scanned. ASMXREF scans all source files in the PDS or
library unless it encounters an INCLUDE or EXCLUDE control statement.

On CMS this specifies the name of the source list file that contains a list of
the files to be scanned. The source list file must have a filetype of EXEC.
For details on the source list file see “ASMXREF Source List File” on
page 117.

The LIB parameter is required.

MEMTYPE
VSE only. Specifies the source member type. If you do not specify a
source member type ASMXREF defaults the member type to A for the
library specified with the LIB parameter.

TYPE The type of library ASMXREF scans. Valid types are:

PDS (Default) An MVS partitioned data set.
SEQ An MVS sequential data set.
VSE A VSE Librarian library. ASMXREF requires this when running on

VSE.
CMS A CMS file. ASMXREF requires this when running on CMS.

MVS Example:

LIBRARY LANGUAGE=COBOL,LIB=COBOL.SOURCE,TYPE=PDS

VSE Example:

LIBRARY LANGUAGE=ASM,LIB=COMMON.XREF,TYPE=VSE,MEMTYPE=D

CMS Example:

LIBRARY LANGUAGE=PLI,LIB=SOURCE,TYPE=CMS

Table 18 (Page 2 of 2). XRFLANG Supported Languages

Language LANGUAGE=keyword

OS/2 UID UID

Panels PANELS

PASCAL PASCAL

PL/I PLI

QMF QMFQUERY

QMFQUERY QMFQUERY

REXX REXX

RPG RPG

SCRIPT SCRIPT

SQL QMFQUERY

 Include
You can abbreviate INCLUDE to I.

On MVS and VSE the INCLUDE statement defines the members of the PDS (MVS)
or library (VSE), specified with the LIBRARY LIB statement, that ASMXREF
includes in the scan. When you specify a member with the INCLUDE statement

126 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF Control Statements

ASMXREF scans only that member. If the INCLUDE statement is omitted,
ASMXREF scans all the members in the specified library except those members
excluded with the EXCLUDE statement.

ASMXREF ignores the INCLUDE statement on CMS as ASMXREF scans only
source files listed in the source list file.

Specify the following parameter with the INCLUDE control statement:

MOD Specifies the module to include.

Example:

INCLUDE MOD=FILENAME

 Exclude
You can abbreviate EXCLUDE to E.

On MVS and VSE the EXCLUDE statement defines the members of the PDS
(MVS) or library (VSE), specified with the LIBRARY LIB statement, that are
excluded from the scan. If the EXCLUDE statement is omitted, ASMXREF scans
all the members in the PDS or library specified with the LIBRARY LIB statement,
unless you specify an INCLUDE statement.

ASMXREF ignores this statement on CMS as ASMXREF scans only source files
listed in the source list file.

Specify the following parameter with the EXCLUDE control statement:

MOD Specifies the module to exclude.

Example:

 EXCLUDE MOD=FILENAME

 Parm
You can abbreviate PARM to P.

Overrides processing default values. The following parameters are valid with the
PARM statement:

ITBSIZE Default 50 000. Maximum number of tokens that ASMXREF can handle
for one source statement. Minimum number 500.

LOGSIZE Default 50 000. Maximum number of characters that ASMXREF can
handle in one statement. Minimum number 1 000.

MWUSIZE Default 1 000. Maximum number of macros that ASMXREF can handle
in the Macro Where Used (MWU) report. Minimum number 100.

| OOSIZE Default 2 000. Maximum number of OO objects and classes that that
| ASMXREF can handle for each module processed. Minimum number
| 100.

SWUSIZE Default 10 000. Maximum number of symbols that ASMXREF can
handle in the Symbol Where Used (SWU) report. Minimum number
500.

Example:

 PARM ITBSIZE=1�����

 Chapter 5. Using the Cross-Reference Facility 127

 ASMXREF Token Statement

 Report
You can abbreviate REPORT to R.

Specifies the format of the reports you require. ASMXREF requires at least one
REPORT statement in the control file. Specify the following parameter with this
control statement:

REPORT The name of the required report. Valid reports are:

CF Control Flow Report
LOC Lines of Control Report
LOOC Lines of OO Code Report
MWU Macro Where Used Report
SOR Spreadsheet Oriented Report
SWU Symbol Where Used Report
TWU Token Where Used Report

You can specify only one report on each REPORT statement. For
details on the reports available see “Understanding the Reports” on
page 135. To specify more than one report create a REPORT control
statement for each desired report.

Example:

REPORT REPORT=TWU

REPORT REPORT=MWU

ASMXREF Token Statement
A token is an arbitrary string of characters specified for inclusion or exclusion in the
ASMXREF scan. The TWU, SOR and TSP reports show occurrences of all include
tokens, unless ASMXREF matches a retrieved token with an exclude token.
ASMXREF does not use tokens in other reports.

If the language is case-insensitive, ASMXREF converts source records to
uppercase internally. This simplifies the matching process.

The XRFLANG file supplied with ASMXREF lists the default tokens included in a
scan. When you create the TWU or SOR reports ASMXREF processes the default
tokens unless you enter a TOKEN NODEFLT statement in the XRFTOKN file. For
details on the TOKEN NODEFLT statement see page 130. The default tokens
have been designed primarily for the assembler language and represent most fields
of interest, in that language. You can modify the default token list to include tokens
more suited to your site. For details of the default tokens supplied with ASMXREF,
and modifying those tokens, see “ASMXREF XRFLANG Statements” on page 132.

The default tokens may be sufficient for all your ASMXREF scans, but you may
need to supplement, or replace, the default tokens in the XRFLANG file with your
own tokens for a scan with special requirements. When you need to do this it is
not advisable to modify the default token list, but instead create your own
XRFTOKN file.

You must enclose all tokens in the XRFTOKN file within matching delimiter
characters. The delimiter character can be any non-space character but the start
and end delimiter must be the same. You can use a different pair of delimiter
characters for each token. For example, if you have a double quote (") character

128 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF Token Statement

embedded in the token, such as MM"DD, then you can use the ? character as the
delimiter and then use the " for the next token. For example:

?MM"DD?

"YY/MM"

For details of the scanning rules ASMXREF applies see “Scanning Rules for
ASMXREF” on page 131.

 Token
You can abbreviate TOKEN to T.

The following parameters are valid with the TOKEN statement:

INCLUDE You can abbreviate INCLUDE to INC.

Specifies a token to include in the scan for the TWU, SOR and TSP
reports.

To specify a token explicitly enter the exact search token between
matching delimiter characters. For example:

TOKEN INC="DATE/TIME"

ASMXREF scans all the source files specified with the ASMXREF
control statements, searching each for an exact match with the
specified explicit tokens.

You can also specify the INCLUDE token generically with a mask
character inserted in the search token. ASMXREF treats the mask
character as a wildcard and retrieves all, or any, characters in the
position of the mask character. The default mask character is the
asterisk (�) that represents any number of characters (including none).
For example:

TOKEN INC="DATE/�I�"

retrieves:

DATE/TIME

DATE/LINE

ASMXREF allows spaces within the token string but does not accept
them between the parameters and the start of the token string. The
following example is acceptable:

TOKEN INC='ab c'

The following example is not acceptable:

TOKEN INC= 'ABC'

EXCLUDE You can abbreviate EXCLUDE to EXC.

Specifies a token to exclude from the scan for the TWU, SOR and TSP
reports.

When a TOKEN INCLUDE statement contains a generic mask
(wildcard) character, the TOKEN EXCLUDE statement specifies the
exclusion of the token when it is found by the INCLUDE statement
token. You cannot enter a generic mask character in a TOKEN
EXCLUDE statement.

 Chapter 5. Using the Cross-Reference Facility 129

 ASMXREF Token Statement

Note: The TOKEN EXCLUDE statement only applies to the previous
TOKEN INCLUDE statement that must contain a generic mask. If you
need to repeat the TOKEN EXCLUDE statement, for another TOKEN
INCLUDE statement, then you must repeat the token exclude
statement.

Example:

TOKEN INC="DDMM�"

TOKEN EXC="DDMMCCYY"

retrieves:

DDMMYY

DDMMM

ASMXREF does not report the following string because it matches the
exclude token:

DDMMCCYY

MASK Specifies a wildcard character.

The asterisk (�) character is the default generic mask (wildcard)
symbol.

If you enter a search token that contains the mask character itself you
must specify an override to the mask character, with the MASK
parameter. This is applicable only to the previous TOKEN INCLUDE
statement.

If multiple MASK parameters are entered together, ASMXREF uses
only the last one for the previous INCLUDE token. The following
example shows the MASK parameter:

TOKEN INC="DA%E/�IM%"

TOKEN MASK="%"

retrieves:

DATE/�IMAGE

DANE/�IMAGINARY

In the previous example ASMXREF takes the % character as the mask
symbol for the previous TOKEN INC statement.

If you enter this statement:

TOKEN INC="���"

ASMXREF treats the statement as an explicit token and retrieve all
occurrences of ���.

Note: The TOKEN MASK statement only overrides the default for the
previous token statement. On finding another token statement
ASMXREF reapplies the default value of a � representing the mask
character.

NODEFLT Turns off processing of the default tokens supplied in the XRFLANG
file. This statement does not affect the processing of the
language-specific exclusion verbs.

Note: To create the TWU and SOR reports ASMXREF must have
tokens specified. If you turn off processing of the default tokens, with
the TOKEN NODEFLT statement, you must supply tokens in the

130 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF Token Statement

XRFTOKN file. If you do not specify a XRFTOKN file ensure default
tokens exist in the XRFLANG file.

Example:

TOKEN NODEFLT

NOSEP Suppresses the separator records in the Tagged Source Program
(TSP).

Example:

TOKEN NOSEP

ASMXREF creates separators by default and saves them in the
Tagged Source Program (TSP) that it creates in the scan phase.
Producing separators allows this file to be split into individual members
that you can use to replace or create macro or copy libraries. For
details on splitting the TSP see “Tagged Source Program (TSP)” on
page 155.

Scanning Rules for ASMXREF
The token control statements define the tokens included in or excluded from the
scan. This section explains the rules applied by ASMXREF with the token
statement.

Generic Matching Rules
You can specify a token with the mask character in the first character or last
character position. ASMXREF then searches for a match on any number of
characters before or after the token specified. If ASMXREF finds a match, in the
source record for the token, it scans forwards and backwards from the match to the
scan end character. The scan end character is a space, ' '. ASMXREF passes
the space delimited match to the matching process of the EXCLUDE tokens. If
ASMXREF matches the retrieved token with an exclude token it excludes the match
from the report.

Here is an example to help you understand this rule:

Source Record

MVC DATE(8),SYSDATETIME

ASMXREF control statements

TOKEN INC="�DATE�"

TOKEN EXC="DATETIME"

After finding the first match ASMXREF restarts the scan from the character
following the token. In the previous example the ASMXREF scanning process finds
the first occurrence of DATE. As the token is specified generically with an � in the
first and last character ASMXREF scans forwards and backwards from the match,
until it encounters the space scan end characters. ASMXREF retrieves the string
DATE(8),SYSDATETIME. ASMXREF then continues the scan from the character
following the first DATE match, which in the example is the '(', until it finds the
second match. Again ASMXREF scans forwards and backwards from this match,
until it encounters the space characters. The second match again retrieves the
string DATE(8),SYSDATETIME. ASMXREF compares the retrieved string with the
exclude statement, which in this example does not apply to either match.

 Chapter 5. Using the Cross-Reference Facility 131

 ASMXREF XRFLANG Statements

If you had specified the following exclude statement:

TOKEN EXC="DATE(8),SYSDATETIME"

ASMXREF excludes the two matches from the TWU, SOR or the TSP reports.

Another example:

Source Record

GETMAIN R,LV=(�),LOC=BELOW

ASMXREF control statements

TOKEN INC="�LV=(�)�"

TOKEN EXC="R,LV=(�),LOC=BELOW"

When ASMXREF finds the match it scans forwards and backwards until it
encounters the space end characters. In the previous example the match is
"R,LV=(�),LOC=BELOW". The exclude token "R,LV=(�),LOC=BELOW" matches the
retrieved token and so ASMXREF excludes the match.

 ASMXREF Options
On MVS and VSE, you specify ASMXREF options with the PARM parameter. On
CMS, you specify ASMXREF options in a file with the same filename as the control
file, and a filetype of DEFAULTS.

You must specify at least one option:

DUP (CMS Only) Process modules with duplicate names.

NODUP Do not process source files with duplicate names. This is the default.

MSGLEVEL The lowest level of messages ASMXREF is printed. Range is 0 to
16. The default is 0.

PAGELEN Specifies the page length for the SYSPRINT file. The default is 55.

ASMXREF XRFLANG Statements
ASMXREF is supplied with a sample language (XRFLANG) file. This file contains
two segments:

1. The default token segment contains the tokens included by default in the
ASMXREF scan phase for the TWU and SOR reports.

2. The language segment contains the languages supported by ASMXREF, and
the language-specific exclude verbs (words). ASMXREF treats these verbs in a
similar way to exclude tokens, but excludes them when scanning a file in the
specified language.

132 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF XRFLANG Statements

DEFAULT TOKENS

DATE

TIME

MM/DD/YY

MM/YY

DD/MM/YY

YY/MM/DD

YYDDD

MONTH

DAY

YEAR

YR

�DATE

DAT�

�YR'

�C''2��

�P''2��

LANG=FORTRAN

ARRAY

BACKSPACE
...

LANG=ASM

DC

EQU
...

LANG=COBOL

ACCEPT

ACCESS
...

LANG=C

&&

ANSI
...

LANG=CPP

&&

_cplusplus

LANG=PLI

%ACTIVATION

%DECLARE
...

LANG=RPG

�IN�A

�IN�B
...

Figure 35. Sample XRFLANG File

Default Token Segment
The default token segment contains a header in the format:

DEFAULT TOKENS

A list of the default tokens follows the header record. The list contains one token
on each line, each starting in column one. The sample XRFLANG file supplied with
ASMXREF contains a set of default tokens. These tokens are designed for the

 Chapter 5. Using the Cross-Reference Facility 133

 ASMXREF XRFLANG Statements

assembler language but you can modify them to suit your environment. You can
enter either explicit tokens (exactly as you need the token) or generic tokens where
you use the asterisk (�) character as a wildcard. ASMXREF does not treat a mask
character, in the XRFLANG file, as a space character, as it does when you use a
mask character in the XRFTOKN file.

When adding default tokens you do not need to enter the TOKEN INCLUDE
statement and you do not need to enclose the token in delimiters.

ASMXREF treats all tokens in the default token list as include tokens and does not
accept exclude tokens in the XRFLANG file.

If you need a token list for your own run, it is better to create your own XRFTOKN
token statement file containing your personalized tokens, rather than modifying the
default list. For details on how to create an XRFTOKN file see “ASMXREF Token
Statement” on page 128.

If you need to turn off processing of the default tokens create your own XRFTOKN
file and enter a TOKEN NODEFLT statement in the file. Remember the TWU and
SOR reports require tokens, therefore, you must have tokens in either the
XRFTOKN file or the XRFLANG file.

For a list of the default tokens see Figure 35 on page 133.

Note: These tokens are designed for the assembler language. If you are using
another language, modify them to suit your environment.

 Language Segment
The language segment contains a header in the format:

LANG=nnnnnnnn

where nnnnnnnn is the keyword representing a language supported by ASMXREF.
ASMXREF supports all the languages listed in this file; you cannot add other
languages to this file.

When you run the ASMXREF scan phase you must specify the language of the
files in the library ASMXREF is scanning. Do this with the LIBRARY

LANGUAGE=language_name control statement. The language_name is the keyword of
the language, as specified in the XRFLANG file. For details on the LIBRARY
control statement see “ASMXREF Control Statements” on page 125.

A list of exclude verbs (words), applicable to the language, follow the language
header. The ASMXREF scan excludes these verbs when it creates the TWU or
SOR reports, when the source files are in the language specified in the header
record. The sample XRFLANG file supplied with ASMXREF contains a sample set
of language-specific exclude verbs. After ASMXREF is installed, update this file
and modify the exclude verbs to suit each language used in your environment.
Specify the exclude verbs one per line starting in column one.

134 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

 ASMXREP Options
This section describes the options available with ASMXREP. On MVS you specify
ASMXREP options with the RPARM parameter; on VSE you specify ASMXREP
options with the PARM parameter; on CMS you specify ASMXREP options in a file
with the same filename as the control file and a filetype of DEFAULTS.

Format nnn (Default 60). Printer format, where nnn is the number of lines
per page. Not available with the SOR report. Enter any number
between 20 and 999. You do not need to enter a leading zero. You
can not use this option with the SOR report.

Sort Order The order in which ASMXREF sorts the report. You cannot use this
option with the SOR report.

MAC Generates the CF report in macro order.
PART Generates the CF report in module order.
MOD Generates the LOC report in module order.
COM Generates the LOC report in component order.
MAC Generates the MWU report in macro order.
MOD Generates the SWU report in module order.
PART Generates the MWU report in module order.
SYM Generates the SWU report in symbol order.

| SYMC Generates the SWU report in compact symbol order.

You can not use this option with the SOR or TWU reports.

SEP_CHAR You can only use this option with the SOR report. The separator
character for building the spreadsheet cells. The separator can be
only a comma or semicolon. Default is , (comma).

T_DELIM You can only use this option with the SOR report. The title delimiter
for each token cell. The title delimiter can be any single character
recognized by the spreadsheet application. Default is '(apostrophe).

Understanding the Reports
This section describes the reports available in ASMXREF and provides the
following information:

� The languages supported by each report

� A description of each report

� A sample of each report

 Chapter 5. Using the Cross-Reference Facility 135

 Understanding the Reports

Languages Supported by Reports
Table 19. Languages Supported by ASMXREF Reports

Language CF LOC LOOC MWU SOR SWU TWU

ASM370 √ √ √ √ √ √

ASM86 √ √ √ √

C √ √ √ √ √ √

C++ √ √ √ √ √ √ √

CLIST √

COBOL √ √ √

FORTRAN √ √ √

Generic √

ISPF √

JCL √

MASM √

MODULA 2/3 √

OS/2 cmd √

OS/2 DEF √

OS/2 IPF √

OS/2 MAK √

OS/2 RC √

OS/2 UID √

PASCAL √

PL/I √ √ √ √ √ √

QMF/SQL √

REXX √ √ √ √ √ √

RPG √ √ √

SCRIPT √

Control Flow (CF) Report
The Control Flow report tabulates all intermodule program references as a function
of member or entry point name. It can list references either in the order of the
members referring to the subject entry point or the entry point names referred by
the subject member, depending on the sort order.

For each part processed, the CF report can handle up to 256 internal procedure
names and 1024 entry point names.

Reference names that exceed 64 characters are truncated.

ASMXREF classifies each references by type. The classification is language
specific and is described in the following sections.

136 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

C Family References
ASMXREF scans the following C statements to extract Control Flow information:

 � Function declarations
 � Function definitions
 � Macro definitions
� Expressions in the each statement.

Note: A sample C program is shown in Figure 36 on page 138, with
accompanying CF report in Figure 37 on page 139.

Functional references for C code are classified as follows:

� Defined macros are identified and flagged as #define type references.

� Declared functions are recognized as declarative.

� Extern functions that are called in different expressions are identified as CALL
type of references.

� Static functions and #defined macros that are called from different expressions
are recognized as Local Calls.

� Functions defined as extern functions within the module are identified as such.

� Functions defined as static functions within the module are flagged as static
definitions.

Notes:

1. For #define and function definitions, the references are assumed to be made
from the module.

2. For Call and Local Call type of references the references are assumed to be
made from calling functions.

3. A statement of the following format is always treated as a function call unless
symbol1 is a generic data type (char, int, etc.) in C.

symbol1 (�symbol2) ;

PL Family References
ASMXREF determines references and their types by analyzing the following PL
instructions:

 � CALL
 � ?LINK
 � ?LOAD
 � ?XCTL
 � ?ATTACH
� DCL .. NONLOCAL EXTERNAL (EXTERN)
� DCL .. LOCAL EXTERNAL (EXTERN)
� EXIT TO (VCON)

External declarations are extracted as EXTERN type references if they are qualified
by LOCAL or NONLOCAL attributes. The labels in the EXIT TO instructions are
identified as VCON references. All other reference types are classified per the
instruction names.

 Chapter 5. Using the Cross-Reference Facility 137

 Understanding the Reports

 REXX References
For REXX programs, ASMXREF analyzes the following REXX instructions to
extract Control Flow references:

 � Call
 � Signal
 � Function Invocation

All reference types are CALL, and functions are assumed to be external unless the
function name is found in a Procedure statement, in which case it is flagged as
LOCAL.

/� Physical file name : moda.c �/

#define max(a,b) (a>b ? a : b)

int FunctionA(int a)

 {

a = ProcessA(a) ;

 if (ProcessB())

 return(�) ;

while(ProcessC())

printf("please wait \n") ;

a = max(a,�);

 }

static int ProcessA(int a)

 {

 return(a) ;

 }

extern int ProcessB()

 {

 return(�) ;

 }

 int ProcessC()

 {

 return(�) ;

 }

/� end of module MODA �/

Figure 36. Sample C Program Used for CF Report

138 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

 Date: �7/�9/2��4 ASMXREF V1.5.� Control Flow Report Page 1

 Time: 11:5�:36 Sorted by Referenced Function/Module (MAC)

Includes ALL Symbols (EXT and INT)

 Referenced Function/Module

 Ref Keys Calling Functions/Modules #

 max

 C FunctionA 1

 V MODA C 1

 printf

 C FunctionA 1

 FunctionA

 E MODA C 1

 ProcessA

 C L FunctionA 1

 D L MODA C 1

 ProcessB

 C FunctionA 1

 E MODA C 1

 ProcessC

 C FunctionA 1

 E MODA C 1

 C-Lang: I=Invalid C=Call D=Static Def K=Dcl L=Static V=#def E=Extrn Def

 Others: A=Attach C=Call D=Load K=Link L=Local V=VCON E=Extrn X=XCTL

Figure 37. Sample CF Report

Lines Of Code (LOC) Report
The Lines Of Code report provides a count, arranged by part and by component,
of:

� Number of source lines in the part.

� Number of comments in the part.

� Shipped source instructions (SSI), which are the number of instructions within
each part scanned, both executable and non-executable, that are not spaces or
comments.

� Changed source instructions (CSI), which are the number of unique SSI that
have been modified in each part categorized by added, changed, deleted,
moved, etc.

In addition, the LOC Report provides a summary report of CSI arranged by
programmer.

Note: CSI counts are provided only for changes that are marked using the
standard flags as described in “Changed Source Instruction (CSI) Measurements”
on page 140.

A sample LOC report is shown in Figure 38 on page 140. In this sample, the
Release 5.0 and Origin/Programmer flags were allowed to default to ALL.

 Chapter 5. Using the Cross-Reference Facility 139

 Understanding the Reports

 Date: �7/�9/2��4 ASMXREF V1.5.� Lines of Code Report Page 1

 Time: 11:55:�6 by Module

 Product = SAMPLE

 Release = ALL

 Programmer = ALL

 (ADD+CHG)

Module Language Records Comments SSI CSI ADDED CHANGED DELETED MOVED COPIED

1 XREFTST1 PLX PLX 54 26 24 23 21 2 5 1

2 XREFTST2 ASSEMBLE ASM 58 17 41 4� 35 5 5 1

3 XREFTST3 CXX CPP 84 43 4� 4� 34 6 14

 PRODUCT TOTALS: 196 86 1�5 1�3 9� 13 24 2

 REPORT TOTALS: 196 86 1�5 1�3 9� 13 24 2

 Date: �7/�9/2��4 ASMXREF V1.5.� Lines of Code Report Page 2

 Time: 11:55:�6 Programmer Summary Report

 Release = ALL

 Programmer = ALL

 (ADD+CHG)

Programmer CSI ADDED CHANGED DELETED MOVED COPIED

ANYCODER 3 1 2 1

 DEPT�1 33 33

DEPT28 3 1 2 1

 GER 1 1 19

RAS 4 1 3 5

 ROBINS 59 54 5

 PROGRAMMER TOTALS: 1�3 9� 13 24 2

Figure 38. Sample LOC Report

Changed Source Instruction (CSI) Measurements
This section describes the coding standards required to obtain CSI measurements.

Comments, Unit Descriptors, Change-Flag Descriptors, and Change Flags:
This section describes the volume measurement rules for:

 � Comments

 � Unit Descriptors

 � Change-Flag Descriptors

 � Change Flags.

These rules apply to all languages.

Comment Definition: Comments are categorized as block or remark.

 1. Full-line comments

A line that contains only commentary is a full-line comment. A full-line
comment that is not imbedded within an instruction is counted as a comment.
A block comment may span several lines.

For nested comments, the entire text of the comment is regarded as block or
remark based on whether the outermost comment starts as the first item on a
line or not. The comment delimiters for inner comments are disregarded.

 2. Remarks

140 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

A remark is any comment which is not a block comment. This is valid
regardless of whether the comment appears within an instruction or at
instruction boundary. A remark may also span several lines.

ASMXREF does not count remarks.

Note: Blank lines are counted as comments.

Unit Descriptor: A unit descriptor gives the name of the module, and the names of
the component and product containing the module. Unit descriptors are not
required in your code, but are recommended to provide Component and Product
classifications for the LOC report.

A unit descriptor has one of the following formats depending on whether the source
is a module, segment, or macro:

$MOD(unitname) COMP(component) PROD(product) : comment
$SEG(unitname) COMP(component) PROD(product) : comment
$MAC(unitname) COMP(component) PROD(product) : comment

If present, the unit descriptor must be the first item on any line of a block comment.
Furthermore, there should not be more than one unit descriptor in a source file. If
more than one is found, only the first one is used. A unit descriptor cannot be split
over several lines.

Unit, component, and product names are enclosed in parentheses and can consist
of any character other than the closing parenthesis. The maximum size of each of
these names is 8 characters.

The keywords may be separated by either a space or a comma.

The following example describes a unit descriptor for the unit ADDPROC, which is
a module. It belongs to the component SC123, which is part of the product XYZ:

$MOD(ADDPROC) COMP(SC123) PROD(XYZ): Add Procs to Test File

Figure 39. Sample Unit Descriptor

 Change-Flag Descriptor:

Change-flag descriptors are used to group all changes made for a particular reason
qualified by the release number, date, and origin associated with those changes.

Change-flag descriptors are also used to define implicit change flags which indicate
the number of SSIs that have not been changed.

The format of a standard change-flag descriptor is:

$pn= reason release# date origin : comments

where p is the process class and n is the index of the flag. The process class can
be used to determine a specific type of change activity.

The following table lists recommended conventions for process class codes:

Note: Process class codes are not limited to these, and each location or
development team may chose to create their own scheme for categorizing

 Chapter 5. Using the Cross-Reference Facility 141

 Understanding the Reports

changes. Many groups just start with any alphanumeric flag (for example
A1, AA, 11) and increment as needed, with the exception of an index of
zero, which is reserved for implicit flags.

The reason, release#, date, and origin fields may be separated by spaces or
commas.

The change-flag descriptor must be the first non-space item on any line of a block
comment. A block comment can contain more than one change-flag descriptor,
each appearing on a different line.

The following table describes each field of a change-flag descriptor:

The reason, release, date, and origin fields can consist of any sequence of
characters except a space, comma, or colon. If the length of a field exceeds the
permissible range, the field is truncated. However, if the length of a field is less
than the maximum, it is padded with spaces on the right.

Date and origin are optional fields, but if a particular field is specified, all the fields
to its left must also be present.

Note: ASMXREF searches for flag descriptors throughout the module. If the
ending delimiter “:” is missing, ASMXREF recognizes the descriptor but
issues an error message.

Table 20. Process class code conventions

Class code Class name

D,E,F,G DCR Design Change

H,I,J,K HDWE Hardware Support Change

L,M,N,O LINE Line Item

P,Q,R,S PTM Internal Problem Reports

0-9 APAR User Problem Reports

Table 21. Definition of the Change-Flag-Descriptor Fields

Field Length Usage

$ 1 A delimiter dollar character.

pn= 3 For the flag ID, where p is the process class and n is the index
for the specified process class.

reason 1 to 12 The reason for the change, for example, the number of a line
item, APAR number, or PTM/PTR number.

release# 1 to 8 A release number, for example, �41 for Release 4.1.

date 0 to 8 A date in any desired format. For example, 93�9�1 in
Gregorian format, or �9/�1/93 in US format.

origin 0 to 8 Information about the origin of the set of changes, for example,
the initials, name, or user ID of the requester.

: 1 A delimiter colon character.

comment 0 to 80 Any explanatory text.

142 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

Flag Descriptor for Implicit Flagging: If a standard change-flag descriptor defines a
process code with an index value of zero, the descriptor defines an implicit change
flag.

Implicit flagging refers to the automatic application of a change flag to all the SSIs
that are not changed (that is, to all unflagged instructions). For example, if the flag
descriptor defines the process code as h0 as in the following example, then
ASMXREF assumes that all unflagged instructions in that module are flagged with
the implicit flag H0.

A unit should contain only one change-flag descriptor that defines an implicit
change flag. If a unit contains more than one implicit definition, only the first one is
accepted and the rest are ignored.

The following figure gives some examples of valid change-flag descriptors:

 FLAG REASON RLSE DATE ORIGIN COMMENTS

 ---- -------- ---- -------- ------- --------------------

 $H�= DA24 ,�33 ,76�718, RM44 : CREATED

$�2= ZA34537 811, 77�416 DDR : CORRECT BALANCE

$P2= PTR�336 983 871211 : FIX BLOCK ESCAPE

$h1= SKI1223A 1�3 �9/�1/93 Sharon : Increase Date Field

Figure 40. Sample Change-Flag Descriptors

Change Flags: Change flags are used to mark all changes in a source file made
during development and maintenance.

Standard change flags have the following format:

 m@pnc

where

m is an optional multiplication factor

@ is the @ sign itself
p is the process class

n is an index

c is the change code

The process class, index, and change code may be alphanumeric.

The multiplication factor must be numeric and can be used only for delete flags.

Note: An exception to this rule is change flagging for languages that do not permit
remarks, like ISPF and COBOL. Consequently, summary flags may be
used to describe the number of instructions changed. For these programs,
a multiplication factor may be specified for any change code. The
multiplication factor, however describes the number of instructions changed
and not the number of source lines changed.

The change code can be any of the following:

A Add

C Change

P Copy

 Chapter 5. Using the Cross-Reference Facility 143

 Understanding the Reports

M Move

D Delete

Change flags for deleted instructions are usually coded within a block comment.
The multiplication factor specifies the number of instructions that have been
deleted. For example, “19@H1D” implies that nineteen instructions were deleted for
the change defined by the flag descriptor H1.

Note: The delete count does not contribute to CSI.

No imbedded spaces are allowed within any change flag.

Change flags are identified as a sequence of characters starting with @ and
followed by three characters.

As mentioned above, an optional multiplication factor may be specified with a
delete change flag only. If the multiplication factor is found on a non-delete flag in
a language that supports remarks, it is ignored.

A change flag can be coded in a block comment or in a remark. Several change
flags can be coded in a comment. The change flags must be the last non-space
sequence of characters within a comment regardless of whether the comment
spans several lines or not.

Rules for Counting Change Flags:

1. Only one change flag in a comment qualifies for the CSI count. For a comment
containing several change flags, only the last (rightmost) change flag is
counted.

2. A change flag of non-delete type is associated with the number of preceding
language instructions ending on the line on which the comment started. If the
number of instructions ending on that line is zero, the CSI count is zero. If
more than one instruction ends on the same line, the flag is associated with all
these instructions.

Note: The LOC report does not recognize non-standard change flags.

3. For a standard change flag of delete type (change code D), a multiplication
factor of one is assumed if not specified.

144 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

The following figure shows a sample XREF source header:

 /�--�/

 /� �/

/� XREF Information : �/

 /� �/

/� $MOD(XREF) COMP(XREF) PROD(XREF): Main Logic for Scan Phase �/

 /� �/

/� Flag Reason Rlse Date Origin Flag Description �/

/� ---- -------- ---- ------ ------ ------------------------------ �/

/� $L�= F����� �7� 77�1�1 PAS : Base Code �/

/� $D1= F���93 �93 851131 RLS : Release 9.3 �/

/� $D2= LX��11 �99 91�3�4 Robins: Release 9.9 �/

/� $H1= LX�222 1�3 93�63� Chip : Support OS/2 Platform Version �/

/� -- �/

 /� �/

/� Flag Format is @XNT Where: �/

 /� �/

/� Suggested Indicators for X, but not required: �/

 /� �/

/� X = D,E,F,G for DCR - Design Change �/

/� H,I,J,K for HDWE - Hardware Support Change �/

/� L,M,N,O for LINE - Line Item �/

/� P,Q,R,S for PTM - Internal Problem Reports �/

/� �-9 for APAR - User Problem Reports �/

 /� �/

/� N = any number or letter (ONLY use a '�' once per file, used �/

/� on all unflagged lines by XREF) �/

/� T = A - for Added code. �/

/� C - for Changed code. �/

/� D - for Deleted code (###@XNT) ### = number of lines deleted �/

/� M - for Moved code. �/

/� P - for Copied code. �/

 /� �/

 /�--�/

Figure 41. Sample XREF Header

The LOOC report
The Lines of OO Code (LOOC) report gives the following information about C++
classes and objects:

� Lines of Code (LOC) per Class

� Lines of Code (LOC) per Object

� Objects per Class

All three sections are contained in the LOOC report file. The information used to
build these three sections of the LOOC report is gathered from the LOOC and
SWUO intermediate files.

Note: If the SWUO intermediate file is empty or missing, only the LOC per Class
section is generated, and a message appears in the report to this effect. To
obtain complete LOOC detail, you must request the SWU report during the
Scan Phase, in addition to the LOOC report.

 Chapter 5. Using the Cross-Reference Facility 145

 Understanding the Reports

The LOC per Class section
The LOC per Class section contains the following information, arranged by class
name:

� Number of comment records in the class declaration

� Number of SSI executable statements in the class declaration

� Number of SSI non-executable statements in the class declaration

� Module name in which the class declaration resides

The counts for each class include LOC for the class declaration itself and LOC for
all member functions, whether or not the member function is declared within the
class declaration.

Note: When a member function of a class is declared in a different module from
the one in which the class is declared, the counts for the class and the member
function remain separated.

A sample LOC per Class section is shown in Figure 42.

 Date: �7/�9/2��4 ASMXREF V1.5.� LOC Per Class Report Page 1

 Time: 12:��:35

 Class

Comments SSI_X SSI_N Module

 aBase

� 4 � CADDADD CPP

� 4 � CADDADD2 CPP

 aClass

 � 14 � CADDADD CPP

 � 14 � CADDADD2 CPP

Figure 42. Sample LOC per Class section

The LOC per Object section
The LOC per Object section contains the following information, arranged by object
name:

� Number of comment records

� Number of executable SSI

� Number of non-executable SSI

� Module name in which the object is declared, defined, and/or referenced.

The counts for each object are obtained by multiplying the number of times the
object is referenced by the number of comments, SSI-executable, and
SSI-nonexecutable records in the declaration of the class of which the object is an
instance.

A sample LOC per Object section is shown in Figure 43 on page 147.

146 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

Date: �7/�9/2��4 ASMXREF V1.5.� LOC Per Object Report Page 2

 Time: 12:��:35

 Object

Comments SSI_X SSI_N Module

 Mine

� 4 � CADDADD CPP

� 4 � CADDADD2 CPP

 Mine2

� 4 � CADDADD2 CPP

 Yours

 � 14 � CADDADD CPP

 � 14 � CADDADD2 CPP

 Yours2

 � 14 � CADDADD2 CPP

Figure 43. Sample LOC per Object section

The Objects per Class section
The Objects per Class section lists, for each class name, all of the objects which
are instances of that class, and the modules in which the objects are referenced.

A sample LOC per Class section is shown in Figure 44.

 Date: �7/�9/2��4 ASMXREF V1.5.� Object/Class Report Page 3

 Time: 12:��:35

 Class

 Object Module

 aBase

 Mine CADDADD CPP

 Mine CADDADD2 CPP

 aClass

 Yours CADDADD CPP

 Yours CADDADD2 CPP

Figure 44. Sample Objects per Class section

Macro Where Used (MWU) Report
The Macro Where Used (MWU) report lists all macros invoked and all segments
copied and included.

On CMS ASMXREF creates the MWU in a file named filename OUTMWU A, where
filename is the name of the control file.

On MVS, the default name for the MWU, defined in the procedure supplied with
ASMXREF, is userid.XREFOUT.MWU.

On VSE the MWU is printed from SYSPRT.

The report includes the type and frequency of the invocation/reference.

 Chapter 5. Using the Cross-Reference Facility 147

 Understanding the Reports

 Date: �7/�9/2��4 ASMXREF V1.5.� Macro Where Used Report Page 1

 Time: 12:�7:�2 Macro to Part Mapping - All Macros

 Macro

 Module # Type

 FREEMAIN

 ASMTEST ASSEMBLE 1 ASM MACRO

 TOTAL 1

 GETMAIN

 ASMTEST ASSEMBLE 1 ASM MACRO

 TOTAL 1

 TIME

 ASMTEST ASSEMBLE 2 ASM MACRO

 TOTAL 2

 WTO

 ASMTEST ASSEMBLE 1 ASM MACRO

 TOTAL 1

Figure 45. Sample Macro Where Used (MWU) Report

Spreadsheet Oriented Report (SOR)
The Spreadsheet Oriented (SOR) report is a comma-delimited file that you can
import into a spreadsheet application, such as Lotus 1-2-3, to estimate effort and
impact assessment.

On CMS ASMXREF creates the SOR in a file named filename OUTSOR A, where
filename is the name of the control file.

On MVS, the default name for the SOR, defined in the procedure supplied with
ASMXREF, is userid.XREFOUT.SOR.

On VSE the SOR is printed from SYSPRT.

The Spreadsheet Oriented report shows occurrences of specified tokens in the
search library. Default tokens are specified in the XRFLANG file; tokens you have
specified are contained in your XRFTOKN token file. For details on the default
tokens see “ASMXREF XRFLANG Statements” on page 132. For details of the
TOKEN control statements see “ASMXREF Token Statement” on page 128. The
first record for each token set in the report is the “heading” record with the following
quoted strings:

 Member Name

Lines Of Code

 Total Matches

 token_1
 . . .

 token_n
 . . .

148 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

The remaining records are detail records containing the module name, the number
of lines of code, the total matches for the module, and the number of matches for
each token.

The report segments each header and detail record in 80 byte segments, with the
last segment having an EBCDIC CR (carriage return) and a LF (line feed)
character. The report pads each record with spaces to fill the 80 characters. The
report specifies the carriage return and line feed characters with a �.

Set title delimiters and cell separator characters with the report parameters. For
details on the report parameters see “ASMXREP Options” on page 135.

When you run the ASMXREF scan phase, for the SOR report, ASMXREF
generates the TSP (Tagged Source Program). The ASMXREF report phase uses
the Tagged Source Program to create the SOR report.

'Module ID','LOC','Total Matches','�DATE','�YR','=C'2�','=P'2�','CSECT','DAT�',

'DATE','DAY','DD/MM/YY','MM/DD/YY','MM/YY','MONTH','TIME','YEAR','YR','YY/MM/DD'

','YYDDD'

ASMTEST,��69,���7,���2,����,����,����,���1,���4,����,����,����,����,����,����,��

��,����,����,����,����

Figure 46. Sample Spreadsheet Oriented Report for MVS and CMS

'Module ID','LOC','Total Matches','�DATE','�YR','=C'2�','=P'2�','CSECT','DAT�','

'DATE','DAY','DD/MM/YY','MM/DD/YY','MM/YY','MONTH','TIME','YEAR','YR','YY/MM/DD

','YYDDD'

ASMTEST,��69,���7,���2,����,����,����,���1,���4,����,����,����,����,����,����,��

��,����,����,����,����

/+

/�

Figure 47. Sample Spreadsheet Oriented Report for VSE

Note: When you create the Spreadsheet Oriented report on VSE, it generates two
records at the end of the file:

/+

/�

Before importing the file into a spreadsheet, delete these records.

File Transfer to PC
To transfer the Spreadsheet Oriented report to a PC use the following settings in
your file transfer program:

File option ASCII Text

File option One to one character mapping

Record format Fixed

Logical record format 80

 Chapter 5. Using the Cross-Reference Facility 149

 Understanding the Reports

Note: Do not specify Carriage Return, Line Feed. ASMXREF specifies these in
the Spreadsheet Oriented data file.

Symbol Where Used (SWU) Report
The Symbol Where Used (SWU) report lists all symbols referenced within the
source and type of reference.

On CMS ASMXREF creates the SWU in a file named filename OUTSWU A, where
filename is the name of the control file.

On MVS, the default name for the SWU, defined in the procedure supplied with
ASMXREF, is userid.XREFOUT.SWU.

On VSE the SWU is printed from SYSPRT.

The symbols can be variables or macros identified with the following flags:

Comparison ASMXREF recognizes the symbol is a comparison.

Definition ASMXREF recognizes that the symbol is declared in that particular
module.

External Ref ASMXREF recognizes the symbol is an external reference.

Label ASMXREF recognizes the symbol as a label.

Macro ASMXREF recognizes the symbol as a macro call.

Parameter ASMXREF recognizes the symbol is a parameter.

Read ASMXREF recognizes that the symbol is used in expressions but
does not name locations.

Write ASMXREF recognizes that the symbol name is used as the target of
an operation.

Number.

150 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

 Date: �7/�9/2��4 ASMXREF V1.5.� Symbol Where Used Report Page 1

 Time: 12:�9:28 Symbol to Module Map - All Symbols (SYM)

 Symbol

 Module Access #

 &SYS

 ASMTEST ASSEMBLE ... D 1

 A

 ASMTEST ASSEMBLE ... P 1

 ANY

 ASMTEST ASSEMBLE ... R 1

 ASMHSAVE

 ASMTEST ASSEMBLE ... R D 2

 ASMTEST

 ASMTEST ASSEMBLE ... LR 6

 BEGIN

 ASMTEST ASSEMBLE ... L 2

 BIN

 ASMTEST ASSEMBLE ... P 1

 CHAIN

 ASMTEST ASSEMBLE ... L 1

 DATWORK

 ASMTEST ASSEMBLE ... R D 2

 DBLWORK

 ASMTEST ASSEMBLE ... RW D 4

 DD

ASMTEST ASSEMBLE ... L W 2

 E

 ASMTEST ASSEMBLE ... P 1

 EXIT

 ASMTEST ASSEMBLE ... L 1

 FREEMAIN

 ASMTEST ASSEMBLE ... R M 1

 GETMAIN

 ASMTEST ASSEMBLE ... R M 1

 L

 ASMTEST ASSEMBLE ... P 1

C = Comparison D = Definition E = External Ref K = Class L = Label

M = Macro/Func/Inc O = Object P = Parameter R = Read W = Write

Figure 48 (Part 1 of 2). Sample Symbol Where Used (SWU) Report

 Chapter 5. Using the Cross-Reference Facility 151

 Understanding the Reports

 Date: �7/�9/2��4 ASMXREF V1.5.� Symbol Where Used Report Page 2

 Time: 12:�9:28 Symbol to Module Map - All Symbols (SYM)

 Symbol

 Module Access #

 LENWORK

 ASMTEST ASSEMBLE ... LR 3

 LINKAGE

 ASMTEST ASSEMBLE ... P 2

 LV

 ASMTEST ASSEMBLE ... P 2

 MF

 ASMTEST ASSEMBLE ... P 2

 MM

 ASMTEST ASSEMBLE ... W D 2

 PARMS

 ASMTEST ASSEMBLE ... LR 2

 R

 ASMTEST ASSEMBLE ... P 2

 RETURN

 ASMTEST ASSEMBLE ... L 1

 R�

 ASMTEST ASSEMBLE ... W D 3

 R1

 ASMTEST ASSEMBLE ... RW D 4

 R1�

 ASMTEST ASSEMBLE ... D 1

 R11

 ASMTEST ASSEMBLE ... RW D 3

 R12

 ASMTEST ASSEMBLE ... RW D 5

 R13

 ASMTEST ASSEMBLE ... RW D 11

 R14

 ASMTEST ASSEMBLE ... LRW D 4

 R15

 ASMTEST ASSEMBLE ... RW D 5

C = Comparison D = Definition E = External Ref K = Class L = Label

M = Macro/Func/Inc O = Object P = Parameter R = Read W = Write

Figure 48 (Part 2 of 2). Sample Symbol Where Used (SWU) Report

152 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

| Date: �7/�9/2��4 ASMXREF V1.5.� Symbol Where Used Report Page 1

| Time: 12:19:34 Symbol to Module Map - All Symbols (SYMC)

| Symbol Module Access Module Access Module Access Module Access Module Access

| --

| &SYS ASMTEST D

| A ASMTEST P

| ANY ASMTEST R

| ASMHSAVE ASMTEST R D

| ASMTEST ASMTEST LR

| BEGIN ASMTEST L

| BIN ASMTEST P

| CHAIN ASMTEST L

| DATWORK ASMTEST R D

| DBLWORK ASMTEST RW D

| DD ASMTEST L W

| E ASMTEST P

| EXIT ASMTEST L

| FREEMAIN ASMTEST R M

| GETMAIN ASMTEST R M

| L ASMTEST P

| LENWORK ASMTEST LR

| LINKAGE ASMTEST P

| LV ASMTEST P

| MF ASMTEST P

| MM ASMTEST W D

| PARMS ASMTEST LR

| R ASMTEST P

| RETURN ASMTEST L

| R� ASMTEST W D

| R1 ASMTEST RW D

| R1� ASMTEST D

| R11 ASMTEST RW D

| R12 ASMTEST RW D

| R13 ASMTEST RW D

| R14 ASMTEST LRW D

| R15 ASMTEST RW D

| R2 ASMTEST D

| R3 ASMTEST RW D

| R4 ASMTEST D

| R5 ASMTEST D

| R6 ASMTEST D

| R7 ASMTEST D

| R8 ASMTEST D

| R9 ASMTEST D

| SYSTEM ASMTEST P

| TIME ASMTEST R M

| TIMEMFL ASMTEST LR

| TIMWORK ASMTEST RW D

| WORKAREA ASMTEST LR

| WTO ASMTEST LR M

| WTOMSG ASMTEST W D

| YY ASMTEST L W

| --

| Access Keys: C=Comparison D=Definition E=External K=Class L=Label M=Macro O=Object P=Parameter R=Read W=Write

| Figure 49. Sample SWU sorted via SYMC

 Chapter 5. Using the Cross-Reference Facility 153

 Understanding the Reports

Token Where Used (TWU) Report
The Token Where Used (TWU) report shows occurrences of tokens in the search
library.

On CMS ASMXREF creates the TWU in a file named filename OUTTWU A, where
filename is the name of the control file.

On MVS, the default name for the TWU, defined in the procedure supplied with
ASMXREF, is userid.XREFOUT.TWU.

On VSE the TWU is printed from SYSPRT.

You can specify tokens in the XRFTOKN file, use the default tokens specified in the
XRFLANG file, or use both. For details on the TOKEN control statements see
“ASMXREF XRFLANG Statements” on page 132 and “ASMXREF Token
Statement” on page 128.

When you run the ASMXREF scan phase for the TWU report, ASMXREF
generates the Tagged Source Program (TSP). The ASMXREF report phase uses
the Tagged Source Program to create the TWU report. For details of the TSP see
“Tagged Source Program (TSP)” on page 155.

The TWU report shows:

� The total number of matches (occurrences), of the specified token.

� The number of lines of code (LOC) scanned.

� The number of lines with matches.

ASMXREF V1.5.� TOKEN WHERE USED REPORT PAGE 1

 MODULE: ASMTEST Date: �7/�9/2��4 Time: 12:�6:41

 LANG : ASM

 MATCHES TOKEN

 ------- ---

 � '�C''19�'

 � '�DATE'

 � '�P''19�'

 � '�YR''

 2 'DAT�'

 � 'DATE'

 � 'DAY'

 � 'DD/MM/YY'

 1 'MM/DD/YY'

 � 'MM/YY'

 � 'MONTH'

 2 'TIME'

 � 'YEAR'

 � 'YR'

 � 'YY/MM/DD'

 � 'YYDDD'

 LOC: 9� TOKEN MATCHES: 5 NUMBER OF LINES WITH MATCHES: 5

Figure 50. Sample Token Where Used (TWU) Report

154 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

Tagged Source Program (TSP)
When you run the ASMXREF scan phase for the TWU and SOR reports,
ASMXREF generates the Tagged Source Program (TSP).

On CMS ASMXREF creates the TSP in a file named filename DATATWU A, where
filename is the name of the control file.

On MVS, the default name for the TSP, defined in the procedure supplied with
ASMXREF, is userid.TWU.TAGGED.FILE.

On VSE the default name for the TSP, defined in the sample JCL, is XRFTWU.

Note: ASMXREF creates the TSP in the same file for both the TWU and SOR
reports.

The ASMXREF report phase uses the TSP to create the TWU and SOR reports.
The TSP contains the original source code records interspersed with comment
records in the syntax of the language of the source file. The comment records
appear above the source line which identifies the token. The comments show the
token string encountered and a cumulative count of the number of times the scan
has found the token so far in the source file.

Unless you use the NOSEP statement to turn off the creation of the separators,
ASMXREF creates separators when it generates the TSP. For details on the
NOSEP statement see page 131. Producing separators allows the TSP to be split
into individual members that you can use to replace or create macro or copy
libraries. On MVS, the separators are in IEBUPDTE format:

 ./ ADD NAME=source_file_name

You can run the IEBUPDTE utility program with the TSP as input.

On CMS, the separators are in the format:

 ./ ADD NAME=source_file_name

You can run a REXX EXEC named ASMXSEP EXEC (supplied with ASMXREF)
that splits the TSP into its component files.

On VSE, the TSP contains Catalog statements that you can use as input to a LIBR
job, that splits the sequential file into members of a librarian sublibrary. The
separator is in Librarian format:

CATALOG NAME=source_file_name.source_type REPLACE=YES

 Chapter 5. Using the Cross-Reference Facility 155

 Understanding the Reports

./ ADD NAME=ASMTEST

�ASMZXREF MODULE = ASMTEST �7/�9/2��4 12:�6:41

�ASMZXREF LANG = ASM

�ASMZXREF MATCHES = 1

�ASMZXREF 'DAT�'

ASMTEST TITLE '- SAMPLE ASSEMBLY LANGUAGE PROGRAM WHICH USES DATES' ����1���

� �� � ����2���

� LICENSED MATERIALS - PROPERTY OF IBM � ����3���

� � ����4���

� 5696-234 � ����5���

� � ����6���

� (C) COPYRIGHT IBM CORP. 1975, 2��4. ALL RIGHTS RESERVED. � ����7���

� � ����8���

� US GOVERNMENT USERS RESTRICTED RIGHTS - USE, � ����9���

� DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP � ���1����

� SCHEDULE CONTRACT WITH IBM CORP. � ���11���

� � ���12���

� �� � ���13���

��� ���14���

� THE SAMPLE ASSEMBLER SOURCE IS INTENDED AS INPUT TO THE ASMXREF � ���15���

� PROGRAM. � ���16���

� NO CLAIMS ARE MADE AS TO THE FUNCTIONAL VALIDITY OF THE ASSEMBLER � ���17���

� CODE. � ���18���

��� ���19���

ASMTEST CSECT , REENTRANT HLASM ���2����

ASMTEST RMODE ANY LET THIS RUN ANYWHERE ���21���

ASMTEST AMODE 31 ���22���

 SPACE 2 ���23���

USING �,R15 ADDRESSABILITY TO ENTRY CODE ���24���

 B BEGIN ���25���

 DC C'ASMTEST.&SYSDATE..&SYSTIME' ���26���

BEGIN STM R14,R12,12(R13) SAVE CALLERS REGISTERS ���27���

LR R12,R15 SAVE PTR TO EXIT PARAMETER LIST ���28���

 DROP R15 ���29���

 USING ASMTEST,R12 ���3����

LR R11,R1 SAVE PTR TO EXIT PARAMETER LIST ���31���

 USING PARMS,R11 ���32���

LR R3,R13 GRAB PTR TO CALLERS SAVE AREA ���33���

LA R�,LENWORK LOAD LENGTH OF WORK AREA NEEDED ���34���

GETMAIN R,LV=(�) GET STORAGE, LENGTH IN R� ���35���

LR R13,R1 POINT R13 AT SAVE AREA ���36���

 USING WORKAREA,R13 ���37���

CHAIN ST R13,8(,R3) CHAIN THE CALLER TO THE EXIT ���38���

ST R3,4(,R13) CHAIN THE EXIT TO THE CALLER ���39���

 SPACE 2 ���4����

XC TIMWORK,TIMWORK CLEAR THE DECK. ���41���

 LA �,TIMWORK ���42���

 LA 2,TIMEMFL ���43���

�ASMZXREF MATCHES = 1

�ASMZXREF 'TIME'

TIME BIN,(�),LINKAGE=SYSTEM,MF=(E,(2)) ASK THE TIME. ���44���

UNPK DBLWORK(3),DATWORK+1(2) UNPACK THE IMPORTANT BIT ���45���

OC DBLWORK(2),=C'��' TURN INTO CHARACTERS ���46���

MVC WTOMSG,DBLWORK COPY THE DISPLAY FORMAT TO MSG ���47���

WTO WTO 'XX IS THE TWO DIGIT YEAR.' ���48���

WTOMSG EQU WTO+8,2 ���49���

 SPACE 1 ���5����

 MVI MM/DD/YY,'MM/DD/YY' ���51���

EXIT LR R1,R13 ADDRESS OF WORK AREA (FOR FREE) ���52���

L R13,4(,R13) UNCHAIN SAVE AREAS ���53���

LA R�,LENWORK LENGTH TO FREE ���54���

FREEMAIN R,LV=(�),A=(1) LENGTH IN R�, ADDR IN R1 ���55���

RETURN LM R14,R12,12(R13) RESTORE CALLERS REGISTERS ���56���

XR R15,R15 SET THE RC TO ZERO ���57���

BR R14 RETURN TO CALLER ���58���

 SPACE 1 ���59���

WORKAREA DSECT , ���6����

ASMHSAVE DS 9D ���61���

TIMWORK DS D ���62���

�ASMZXREF MATCHES = 2

�ASMZXREF 'DAT�'

DATWORK DS D ���63���

DBLWORK DS D ���64���

�ASMZXREF MATCHES = 2

�ASMZXREF 'TIME'

TIMEMFL TIME ,LINKAGE=SYSTEM,MF=L ���65���

Figure 51 (Part 1 of 2). Sample Tagged Source Program (TSP)

156 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Reports

LENWORK EQU �-ASMHSAVE ���66���

&SYS DS D ���67���

�ASMZXREF MATCHES = 1

�ASMZXREF 'MM/DD/YY'

MM/DD/YY DS F ���68���

 SPACE 1 ���69���

R� EQU � ���7����

R1 EQU 1 ���71���

R2 EQU 2 ���72���

R3 EQU 3 ���73���

R4 EQU 4 ���74���

R5 EQU 5 ���75���

R6 EQU 6 ���76���

R7 EQU 7 ���77���

R8 EQU 8 ���78���

R9 EQU 9 ���79���

R1� EQU 1� ���8����

R11 EQU 11 ���81���

R12 EQU 12 ���82���

R13 EQU 13 ���83���

R14 EQU 14 ���84���

R15 EQU 15 ���85���

 SPACE 1 ���86���

PARMS DSECT ���87���

 DS 2F ���88���

 SPACE 1 ���89���

�ASMZXREF SUMMARY TOTAL TOKENS = 16

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF '�C''19�'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF '�DATE'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF '�P''19�'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF '�YR''

�ASMZXREF SUMMARY TOTAL MATCHES = 2

�ASMZXREF 'DAT�'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'DATE'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'DAY'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'DD/MM/YY'

�ASMZXREF SUMMARY TOTAL MATCHES = 1

�ASMZXREF 'MM/DD/YY'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'MM/YY'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'MONTH'

�ASMZXREF SUMMARY TOTAL MATCHES = 2

�ASMZXREF 'TIME'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'YEAR'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'YR'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'YY/MM/DD'

�ASMZXREF SUMMARY TOTAL MATCHES = �

�ASMZXREF 'YYDDD'

�ASMZXREF SUMMARY TOTAL TOKEN MATCHES = 5

�ASMZXREF SUMMARY LOC = 9�

�ASMZXREF SUMMARY END

 END ASMTEST ���9����

Figure 51 (Part 2 of 2). Sample Tagged Source Program (TSP)

 Chapter 5. Using the Cross-Reference Facility 157

 ASMXREF Messages

 ASMXREF Messages
ASMXREF creates a message file containing information about its processing and
about any error conditions it detects. Unless otherwise overridden, the message
file uses the following file naming conventions:

� For CMS - filename LIST filemode

where filename is the name of the control file.

� For MVS - SYSPRINT

� For VSE - SYSLST

This section explains the ASMXREF message format and the messages you may
receive.

The message format is as follows:

 ASMZnnn msglevel message_text

ASMZnnn The error message number.

msglevel A letter indicating the severity level. The letter associated with a
numerical MSGLEVEL code or return code, as described in
Table 22

message_text The character string message_text denotes variable text with
specific information such as a filename, table_name or record
number.

ASMXREF issues all messages whose severity is equal to or greater than the
message level you specify with the MSGLEVEL parameter.

Table 22. Message Level

Message
Level

Return
Code

Description Details

I 0 Information ASMXREF informs you of actions taken. You
probably expect the action. These messages
keep you informed of the program's progress.

W 4 Warning An ASMXREF action was taken or a condition
encountered that may not produce the correct
results. The condition or action taken is given in
the message.

E 8 Error These errors are expected to result in incorrect
data. For example, an INCLUDE control
statement explicitly requests that a specific
module be processed, but the module is not
found in the library.

S 12 Severe error These messages indicate errors that can effect
the entire run, such as ASMXREF control
statement syntax errors. No processing is done
when this type of error is found.

T 16 Terminating
error
condition

ASMXREF terminates processing when this error
occurs.

158 HLASM V1R4 Toolkit Feature User’s Guide

 ASMZ003S � ASMZ016W

 Message List
ASMZ003S statement_type Overflow in module_name

processing record record_number

Explanation: This error message occurs when a table
in an ASMXREF system module overflows.

1. Typically this happens when a source statement is
longer than the default sizes (currently 50,000
characters) provided for the associated parameters.
The easiest way to fix the overflow is to use the
ITBSIZE and LOGSIZE parameters in the control
file to specify a larger size. See page 127 for
details on the PARM control statement. For
example, for the ITB or Logical Statement Table
overflows, specify a PARM control statement
following the LIBRARY control statement in the
control file as follows:

LIBRARY LIB=TEST1,TYPE=CMS,LANGUAGE=ASM

 PARM ITBSIZE=1�����

 PARM LOGSIZE=1�����

The size of the parameters is limited only by the
amount of memory available.

2. This message could also occur because of a
language mismatch. For example, if ASMXREF is
scanning an assembler language program using the
COBOL language processor, a table could overflow
when ASMXREF is searching for the ending
delimiter. In such cases, you must specify the
correct language using the LANGUAGE parameter
in the control file.

System Action: The ASMXREF run terminates

Programmer Response: Increase the table sizes by
specifying the ITBSIZE and LOGSIZE parameters as
detailed in step 1 above and re-run ASMXREF, or
correct the LANGUAGE statement.

ASMZ006T OPEN failed for XRFTOKN file.

Explanation: The file containing the TOKEN
information is not found when executing ASMXREF.

System Action: The ASMXREF run terminates.

Programmer Response: Check the file definition for
XRFTOKN in the job, and re-run ASMXREF. If the
problem persists, contact your IBM service
representative.

ASMZ007W module_name previously processed
from Library library_name

Explanation: (CMS only) The following Module was
previously processed - module_name

ASMXREF found the name of a member that has
already been processed. If you specified YES to
Process duplicate modules when you run the SCAN
phase, ASMXREF processes modules with duplicate
names; otherwise, ASMXREF bypasses them.

System Action: The ASMXREF run continues.

Programmer Response: Warning message only.

ASMZ008T The LIBRARY statement with TYPE=SEQ
must have one INCLUDE control
statement with the module name
specified.

Explanation: You can specify sequential files only
once with the Include control statement with module
name.

System Action: The ASMXREF run terminates.

Programmer Response: Specify include control
statements for each source file you need scanned and
re-run ASMXREF.

ASMZ012T Include, Exclude, & Option Control
Statements must be preceded by a
library control statement.

Explanation: A LIBRARY control statement has been
omitted or misplaced.

System Action: The ASMXREF run terminates.

Programmer Response: Edit the ASMXREF control
statements to correct the position of the LIBRARY
statement and re-run ASMXREF.

ASMZ013T Control statement READ error.

Explanation: ASMXREF was unable to read the file
containing the control statements.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system or job
log(s) to determine why the control statement file could
not be read. There may be system error messages
indicating an open or read error on this file. Consult
your Systems Programmer for assistance.

ASMZ016W Analysis error in record record_number
near column column_number. The
following line(s) were ignored:

Explanation: This error might be because of an
ASMXREF scan misinterpretation, or a syntax error.
ASMXREF displays the records that were skipped and
not included in the intermediate data files for report
inclusion and calculations.

System Action: The ASMXREF run continues.

Programmer Response: Check the LIBRARY control
statement to determine whether the language parameter
has been specified correctly. If the problem cannot be
determined please contact your IBM service
representative.

 Chapter 5. Using the Cross-Reference Facility 159

 ASMZ017T � ASMZ036T

ASMZ017T Unable to OPEN file filename

Explanation: ASMXREF could not open the file
filename.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system or job
log(s) to assist in resolving why the file could not be
read. There may be system error messages indicating
an open or read error on this file. Consult your Systems
Programmer for assistance.

ASMZ023T Modulename not found.

Explanation: The following Module was not found -
Modulename.

System Action: The ASMXREF scan terminates.

Programmer Response: The FSOPEN macro failed
for CMS when opening a library file. Consult your
systems programmer for problem resolution. If the
problem persists contact your IBM service
representative.

ASMZ028T OPEN failed for SYSPRINT.

Explanation: The report file defined by the
FILEDEF/DD/DLBL statement for SYSPRINT was not
found.

System Action: The ASMXREP run terminates with
user abend code 016.

Programmer Response: Check the file definition for
SYSPRINT in the job. If the problem persists, contact
your IBM service representative.

ASMZ029T OPEN failed for SYSINDS.

Explanation: The intermediate data file is not found
when executing ASMXREP.

System Action: The ASMXREP run terminates.

Programmer Response: Check the
FILEDEF/DD/DLBL statement for SYSINDS in the job
step.

ASMZ030T OPEN failed for SYSINOU file.

Explanation: The report file defined by the
FILEDEF/DD/DLBL statement for SYSINOU not found.

System Action: The ASMXREP run terminates.

Programmer Response: Check the
FILEDEF/DD/DLBL statement for SYSINOU in the job
step.

ASMZ031T Memory allocation failed in ASMZTWUS.

Explanation: Memory allocation failed in module
ASMZTWUS.

System Action: The ASMXREP run terminates with
user abend code 018.

Programmer Response: Check the region size if
running on MVS and partition size if running on VSE.
For VM, check the storage defined for the job. Increase
the storage size. If the problem persists, contact your
IBM service representative.

ASMZ032T PUT failed for record in SYSINOU.

Explanation: The PUT macro failed.

System Action: The ASMXREP run terminates with
user abend code 020.

Programmer Response: Examine the system job
log(s) for associated messages. Consult your systems
programmer to correct the problem. If the problem
persists, contact your IBM service representative.

ASMZ033T TOKEN statement does not contain any
parameters.

Explanation: A TOKEN statement has been detected
which does not contain a keyword.

System Action: The ASMXREF run terminates.

Programmer Response: Complete the TOKEN
statement in the XRFTOKN file and re-run ASMXREF.

ASMZ034T Error in user control statements.
Processing terminated.

Explanation: There are errors in the ASMXREF
control statements.

System Action: The ASMXREF run terminates.

Programmer Response: ASMXREF has detected
invalid control statements. Correct the control
statements and re-run ASMXREF.

ASMZ036T TOKEN statement contains an invalid
keyword.

Explanation: The TOKEN statement in the XRFTOKN
file allows only certain keywords. ASMXREF has
detected an invalid keyword.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the TOKEN
statement, in the XRFTOKN file, that contains an invalid
keyword and re-run ASMXREF.

160 HLASM V1R4 Toolkit Feature User’s Guide

 ASMZ037T � ASMZ048T

ASMZ037T Parsing error in TOKEN statement.

Explanation: A parsing error is detected when
processing the XRFTOKN file.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the erroneous
TOKEN statement in the XRFTOKN file, and re-run
ASMXREF.

ASMZ038T File XRFTOKN contains an invalid
statement.

Explanation: The XRFTOKN file can only contain the
following type of information: either a comment line
(starting with � in column one) or a TOKEN statement
(starting with the TOKEN keyword).

System Action: The ASMXREF run terminates.

Programmer Response: Correct the XRFTOKN file to
ensure that it contains only allowed data, and re-run
ASMXREF.

ASMZ039T No end-delimiter found in TOKEN
statement.

Explanation: A TOKEN statement must be specified
in matching, enclosing delimiters. ASMXREF has
detected a TOKEN statement which contains a
start-delimiter but does not contain an end-delimiter.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the XRFTOKN file to
ensure that all tokens have matching start and
end-delimiters and then re-run ASMXREF.

ASMZ042T An INC= statement must precede an
EXC= statement

Explanation: A TOKEN EXC= keyword has been
specified before an INC= control statement.

Programmer Response: The ASMXREF run
terminates.

System Action: Insert a TOKEN INC= control
statement before the TOKEN EXC= statement.

ASMZ043T Exclude statements are only applicable
to generically specified tokens.

Explanation: A TOKEN EXC= keyword has been
specified for an explicit TOKEN INC= token (a TOKEN
INC= statement without wildcards).

Programmer Response: The ASMXREF run
terminates.

System Action: Remove the exclude statement in
error, or make the TOKEN INC= statement generic (with
wildcards).

ASMZ044T The macro_name macro failed in
ASMXREF module module_name

Explanation: An ASMXREF internal operating system
macro failed.

Programmer Response: The ASMXREF run
terminates.

System Action: Examine the system and job log(s) for
associated error messages. Consult your system
programmer to determine whether the processing error
is the result of external errors. If the problem is
external rectify it and re-run ASMXREF; otherwise
contact your IBM service representative.

ASMZ045T An ABEND occurred in ASMXREF
processing and a diagnostic dump has
been requested.

Explanation: An abnormal termination occurred during
ASMXREF processing.

Programmer Response: The ASMXREF run
terminates.

System Action: Examine the system and job log(s) for
associated error messages. Consult with the system
programmer to determine whether the processing error
is the result of external errors. If the problem is
external rectify it and re-run ASMXREF; otherwise
contact your IBM service representative.

ASMZ046T End-delimiter is not the last character in
the TOKEN statement.

Explanation: A character has been detected past a
token's matching enclosing delimiters. No additional
data is allowed past the end-delimiter.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the XRFTOKN file to
ensure that the token is enclosed within delimiters and
no additional data follows the delimiter, and re-run
ASMXREF.

ASMZ048T At least one statement is required in file
XRFTOKN.

Explanation: The XRFTOKN file must contain at least
one record which can either be a comment line (starting
with � in column one) or a TOKEN statement (starting
with the TOKEN keyword).

System Action: The ASMXREF run terminates.

Programmer Response: Edit the XRFTOKN file to
provide the requested information, and re-run
ASMXREF.

 Chapter 5. Using the Cross-Reference Facility 161

 ASMZ052T � ASMZ073E

ASMZ052T Report name not specified.

Explanation: A valid Report name must be specified.

System Action: The ASMXREP run terminates.

Programmer Response: Specify the report name and
re-run ASMXREP.

ASMZ053T Incorrect Report name specified: report.

Explanation: Report name must be one of the
following: CF, LOC, MWU, SWU, TWU or SOR.

System Action: The ASMXREP run terminates.

Programmer Response: Correct the erroneous report
and re-run ASMXREP.

ASMZ054T Error Reading defaults_file_name
DEFAULTS file.

Explanation: An error occurred while reading the
DEFAULTS file.

System Action: The ASMXREP run terminates.

Programmer Response: Verify the integrity of the
DEFAULTS file and re-run ASMXREP.

ASMZ055T Cannot find defaults_file_name
DEFAULTS file on any accessed disk.

Explanation: The DEFAULTS file could not be found.

System Action: The ASMXREP run terminates.

Programmer Response: Ensure the DEFAULTS file
is accessible or that the DEFAULT file is specified and
re-run ASMXREP.

ASMZ056T No STAE Exit will be taken due to errors
encountered when 'STAE' was issued.

Explanation: The STAE macro issued to install abend
trapping and error recovery failed with a non-zero return
code.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system or job
log(s) to determine whether system error messages
were issued. Consult your systems programmer to
assist in problem resolution. If the problem persists
consult your IBM service representative.

ASMZ057T Unable to load module_name

Explanation: An ASMXREF internal component is
unable to be dynamically loaded.

System Action: The ASMXREF run terminates.

Programmer Response: Consult your systems
programmer to confirm the ASMXREF install is error
free. Examine the system and job log(s) for associated

error messages. If the problem persists please contact
your IBM service representative.

ASMZ058T Incorrect CMSTypeFlag used:
cmstype_flag.

Explanation: The only valid CMSTypeFlag are: HT or
RT.

System Action: The ASMXREP run terminates.

Programmer Response: Correct the erroneous
CMSTypeFlag and re-run ASMXREP.

ASMZ062T Page Length Greater than 20 is required.

Explanation: A Page Length greater than 20
encountered.

System Action: The ASMXREP run terminates.

Programmer Response: Change the Page Length to
be greater than 20 and re-run ASMXREP.

ASMZ066T First record implies language is
language_name

Explanation: The language in the LANGUAGE control
statement is unknown to ASMXREF.

System Action: The ASMXREF run terminates.

Programmer Response: ASMXREF is unable to
determine the source language scanned. Change the
control statement, LIBRARY
LANGUAGE=language_name, to specify a language
keyword defined in the XRFLANG file.

ASMZ067T Language Keyword keyword not
recognized. Use LANGUAGE Control
statement to respecify Language.

Explanation: An invalid LIBRARY LANGUAGE=
control statement has been specified.

System Action: The ASMXREF run terminates.

Programmer Response: The specified language is
not valid. Change the control statement to specify a
valid language type.

ASMZ073E SWU report not supported for language

Explanation: The SWU report is not available for the
language specified.

System Action: None, ASMXREF stops processing.

Programmer Response: Change the LIBRARY
LANGUAGE= control statement to specify a language
supported by the SWU report.

162 HLASM V1R4 Toolkit Feature User’s Guide

 ASMZ074T � ASMZ084W

ASMZ074T Invalid Library Type library_type

Explanation: ASMXREF detected an invalid library
type on the LIBRARY control statement.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the library control
statement and correct the TYPE keyword value and
re-run ASMXREF.

ASMZ075T Library Type library_type not supported
on this Operating System.

Explanation: A library type is specified that is not
appropriate for this operating system. For example: PDS

specified on CMS.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the LIBRARY TYPE
keyword value to specify the correct TYPE value and
re-run ASMXREF.

ASMZ076T Filetype not specified for file_name in
Library library_name

Explanation: On CMS, each record of the source
listing file must contain a valid filename and filetype.
ASMXREF has detected a filename in the source list file
that does not specify the filetype. If a filemode is not
specified, ASMXREF uses the first file found in the
standard CMS search sequence.

System Action: The ASMXREF run terminates.

Programmer Response: Ensure that the source list
file on CMS contains a list of files with valid filetypes
and re-run ASMXREF.

ASMZ078T No file names specified in Library
library_name

Explanation: (CMS only) None of the filenames
specified in the source list file can be found by
ASMXREF.

System Action: The ASMXREF run terminates.

Programmer Response: None of the specified files
were found in the search order. Ensure that the files
included in the source list file are accessible to your
CMS machine.

ASMZ079T filetype is a Reserved Filetype.

Explanation: (CMS only) filetype is a Reserved File
Extension.

A reserved filetype has been used.

System Action: The ASMXREF run terminates.

Programmer Response: On CMS, confirm that the
filetype of the files listed in the source list file are of a

valid filetype. Correct the filetype, then re-run
ASMXREF.

ASMZ080T Failure in allocating storage in Module
module_name

Explanation: A GETMAIN/GETVIS macro invocation
failed to allocate virtual storage.

System Action: The ASMXREF run terminates.

Programmer Response: Try increasing your
region/storage size and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

ASMZ081E Control statement syntax error near
column column_number

Explanation: ASMXREF met an error while parsing
the ASMXREF control statements. The message
indicates the column and line position that caused the
error.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the control
statements for error. Correct the syntax of the statement
in error and re-run ASMXREF.

ASMZ082T Failure to release storage in Module
module_name

Explanation: A FREEMAIN/FREEVIS macro failed to
release virtual storage.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system job
log(s) for associated error messages. Consult your
systems programmer for problem resolution. If the
problem persists contact your IBM service
representative.

ASMZ084W Parsing error. The following lines were
ignored:

Explanation: The lines following the error were
ignored.

System Action: The ASMXREF run continues.

Programmer Response: This warning message is
issued when the ASMXREF parser encounters source
code it cannot parse. The source lines in error are
skipped.

 Chapter 5. Using the Cross-Reference Facility 163

 ASMZ095T � ASMZ106T

ASMZ095T Input file filename DATA rep missing for
Report report.

Explanation: The required input file is missing for the
requested report.

System Action: The ASMXREP run terminates.

Programmer Response: Specify the Report in the
Input File and re-run ASMXREP.

ASMZ096T file_name DATA report does not match
report Required LRECL of valid_format.

Explanation: The file does not have a valid format.
The following formats are valid: for Report = 'MWU' the
LRECL-format must be "F 96" for Report = 'SWU' the
LRECL-format must be "F 93" for Report = 'TWU' the
LRECL-format must be "F 80" for Report = 'SOR' the
LRECL-format must be "F 80".

System Action: The ASMXREP run terminates.

Programmer Response: Correct the error(s) for the
DATA file and re-run ASMXREP.

ASMZ099W Unrecognized Character in record
record_number near column
column_number

Explanation: ASMXREF found an invalid character.

System Action: The ASMXREF run continues.

Programmer Response: This warning message
identifies the column position and record of the
character in error.

ASMZ100T Incorrect Sort Order used: sort_order.

Explanation: Sort Order must be one of the following:
MAC, MOD, PART or SYM.

System Action: The ASMXREP run terminates.

Programmer Response: Correct the erroneous Sort
Order and re-run ASMXREP.

ASMZ101T Incorrect Sort Order for SWU Report:
sort_order.

Explanation: Sort Order for SWU Report must be one
of the following: MOD or SYM.

System Action: The ASMXREP run terminates.

Programmer Response: Correct the erroneous Sort
Order for SWU report and re-run ASMXREP.

ASMZ102T Incorrect Sort Order for MWU Report:
sort_order.

Explanation: Sort Order for MWU Report must be one
of the following: MAC or PART.

System Action: The ASMXREP run terminates.

Programmer Response: Correct the erroneous Sort
Order for MWU report and re-run ASMXREP.

ASMZ103T No STAE work area passed from
supervisor. No retry possible.

Explanation: No retry possible.

System Action: The ASMXREF run terminates.

Programmer Response: ASMXREF is unable to
recover from an ABEND condition. The supervisor
should have allocated storage and passed this to the
ASMXREF recovery routine. The supervisor is unable to
allocate storage for this and the ASMXREF recovery
fails. Examine the system job log(s) for associated
messages and consult your systems programmer for
problem resolution. If the problem persists, consult your
IBM service representative.

ASMZ104T Symbol Where Used Table overflow.
Use SWUSIZE= PARM to rectify.

Explanation: The SWU table has insufficient space.

System Action: The ASMXREF run terminates.

Programmer Response: Specify a PARM
SWUSIZE=nnnnn parameter in the ASMXREF control
statements. If the parameter is already specified
increase the numeric value and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

ASMZ106T Macro Where Used Table overflow. Use
MWUSIZE= PARM to rectify.

Explanation: The MWU table has insufficient space.

System Action: The ASMXREF run terminates.

Programmer Response: Specify a PARM
MWUSIZE=nnnnn parameter in the ASMXREF control
statements. If the parameter is already specified
increase the numeric value and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

164 HLASM V1R4 Toolkit Feature User’s Guide

 ASMZ111T � ASMZ127I

ASMZ111T Work Disk workmode not a valid Disk
Accessed in WRITE Mode.

Explanation: The Work Disk is not a valid disk
accessed in WRITE Mode.

System Action: The ASMXREP run terminates.

Programmer Response: Ensure the Work Disk is a
valid Disk Accessed in WRITE Mode and re-run
ASMXREP.

ASMZ112T Work Disk workmode not accessed.

Explanation: The Work Disk cannot be accessed.

System Action: The ASMXREP run terminates.

Programmer Response: Ensure the Work Disk is
accessible. and re-run ASMXREP.

ASMZ113T Work Disk workmode not accessed in
WRITE Mode. Specify another Output
Disk.

Explanation: The Work Disk cannot be accessed in
WRITE Mode.

System Action: The ASMXREP run terminates.

Programmer Response: Specify another Output Disk
and re-run ASMXREP.

ASMZ116I ASMXRPT completed with Return Code =
exitrc.

Explanation: The ASMXREP program terminated with
a Return Code.

System Action: The ASMXREP run terminates.

Programmer Response: Check the value of the
Return Code.

ASMZ118T Sort Order not required for Report report.

Explanation: The ASMXREP program terminated with
a Return Code.

System Action: The ASMXREP run terminates.

Programmer Response: Check the Sort Order is
correct for the report specified.

ASMZ120I TSP File fn ft fm is being processed.'

Explanation: (CMS only) The TSP file fn ft fm is being
processed.

System Action: None.

Programmer Response: None.

ASMZ122T CNTLMode cntlmode is Incorrect.

Explanation: The disk mode specified for the CNTL
file is in correct.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the parm and re-run
ASMXREF.

ASMZ124I Default sort order SYM used for SWU
reports.

Explanation: No sort parameter passed to ASMVRPT.

System Action: The ASMXRPT run continues.

Programmer Response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the
default sort sequence as a parameter.

ASMZ125T This library cannot be processed
because of problems reading
SDDS(CLEAR) or directory (PDS).

Explanation: ASMXREF has encountered problems
with a PDS directory.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system job
log(s) for associated messages. Consult your systems
programmer for problem resolution. If the problem
persists contact your IBM service representative.

ASMZ126T Dynamic allocation failed for library
library_name

Explanation: ASMXREF is unable to find the library
library_name.

System Action: The ASMXREF run terminates.

Programmer Response: Ensure that the library
specified in the ASMXREF control statement is
accessible and specified correctly. If the library is
accessible and no other associated system or job log
messages are issued, consult your IBM service
representative.

ASMZ127I Default sort order MAC used for MWU
reports.

Explanation: No sort parameter passed to ASMVRPT.

System Action: The ASMXRPT run continues.

Programmer Response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the
default sort sequence as a parameter.

 Chapter 5. Using the Cross-Reference Facility 165

 ASMZ134T � ASMZ145T

ASMZ134T filename file_type file_mode must have
RECFM = F and LRECL = 80.

Explanation: The attribute of the above mentioned file
must have the following attributes: RECFM = F and
LRECL = 80.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the attributes for
RECFM/LRECL and re-run ASMXREF.

ASMZ135T filename CNTL � not found.

Explanation: The file referenced above could not be
found.

System Action: The ASMXREF run terminates.

Programmer Response: Ensure the CNTL file is
present and re-run ASMXREF.

ASMZ136T Work Disk work_mode is Incorrect.

Explanation: A problem with the Work Disk
encountered.

System Action: The ASMXREF run terminates.

Programmer Response: Check for the integrity of the
Work Disk and re-run ASMXREF.

ASMZ137T Work Disk work_mode is not Accessed in
Write Mode.

Explanation: The Work Disk cannot be accessed in
WRITE Mode.

System Action: The ASMXREF run terminates.

Programmer Response: Ensure the Work Disk is
accessible in Write Mode and re-run ASMXREF.

ASMZ138T ASMXSEP completed with Return Code =
rc.

Explanation: (CMS only) The TSP file has been
processed by ASMXSEP procedure.

System Action: Check the return code for any
processing errors.

Programmer Response: Re-run the process if
needed.

ASMZ140W module_name was not found in library.

Explanation: The file module_name is either empty or
not found.

An INCLUDE control statement named a module not in
the input source library.

System Action: ASMXREF continues.

Programmer Response: The included modules

(source files) were either empty or do not exist in the
source library. Ensure that the included names are
correct and re-run ASMXREF.

ASMZ141T Message Level must be a numeric value
between 0 and 16.

Explanation: The Message Level parameter contains
an erroneous value.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the erroneous
Message Level value and re-run ASMXREF.

ASMZ142T Incorrect Duplicates parm used:
duplicates.

Explanation: The Duplicate parameter specified is
incorrect.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the erroneous
Duplicate parm and rerun ASMXREF.

ASMZ143T Page Length Field must contain a
numeric value.

Explanation: An erroneous value for the Page Length
Field was coded.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the erroneous Page
Length Field and re-run ASMXREF.

ASMZ144T Page Length must be between 20 and
999.

Explanation: An erroneous Page Length was coded.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the Page Length
Field and re-run ASMXREF.

ASMZ145T module_name is empty or file not found.

Explanation: The following file is either empty or not
found - module_name

This module does not exist, or an I/O error occurred
during the search.

System Action: The ASMXREF run terminates.

Programmer Response: Examine the system job
log(s) for associated messages. Consult your systems
programmer and correct the problem. If the problem
persists contact your IBM service representative.

166 HLASM V1R4 Toolkit Feature User’s Guide

 ASMZ146W � ASMZ174T

| ASMZ146W Message limit exceeded. No more
| X-level messages will be printed

| Explanation: More than 60 messages of severity level
| “X” have been issued. All further messages of the
| same severity level are suppressed

System Action: The ASMXREF run continues.

Programmer Response: The default message limit is
60. For diagnosis specify a message level of 1 to allow
all messages to be printed re-run ASMXREF.

ASMZ149T Incorrect ReturnMsg parm used:
return msg.

Explanation: An erroneous ReturnMsg parm was
used.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the ReturnMsg parm
to be 'YES' or 'NO' and re-run ASMXREF.

ASMZ165T Syntax error in report_id report parm
field.

Explanation: No data for the indicated report is
produced.

System Action: The ASMXREF run terminates.

Programmer Response: Correct the erroneous PARM
field for the indicated report and re-run ASMXREF.

ASMZ167W Empty Library library_name

Explanation: This error occurs most often on MVS
when a PDS library is empty.

System Action: The ASMXREF run continues.

Programmer Response: Ensure that the LIBRARY
control statement has specified the correct PDS. The
user can use system utilities to verify the content of the
PDS. If the PDS has been specified correctly and has
valid members, contact your IBM service representative.

ASMZ169T Token exceeds system limit of nn
characters.

Explanation: The ASMXREF control statement parser
has detected a token greater then the limit of nn
characters.

System Action: The ASMXREF run terminates.

Programmer Response: Shorten the incorrect token
to less than the limit of nn characters, and re-run
ASMXREF.

ASMZ170T Exclude tokens may not be specified for
non-generic scan tokens.

Explanation: The ASMXREF control statement parser
has detected a TOKEN EXCLUDE statement specified
with a mask character (wildcard).

System Action: The ASMXREF run terminates.

Programmer Response: TOKEN EXCLUDE
statements must not contain a mask character.
Remove the mask character from the incorrect exclude
token statement, or remove the entire exclude token
statement, and re-run ASMXREF.

ASMZ171I The TOKEN NODEFLT option is in effect.
There will be no default token list
processing.

Explanation: The default token list processing has
been turned off with the TOKEN NODEFLT statement in
the XRFTOKN input file. Confirm that this option is
intended.

System Action: None, ASMXREF continues.

Programmer Response: None.

ASMZ172I No DEFAULT tokens were found in the
XRFLANG file.

Explanation: DEFAULT TOKEN header not found in
XRFLANG input file. Confirm that this option is
intended.

System Action: None, ASMXREF continues.

Programmer Response: None.

ASMZ173T No DEFAULT tokens were found in the
XRFLANG file and there are no TOKEN
statements specified in XRFTOKN.

Explanation: No TOKEN statements were found in
XRFTOKN file and no default tokens were specified in
XRFLANG file.

System Action: None, ASMXREF terminates.

Programmer Response: Either add TOKEN
statements into the XRFTOKN file, remove the TOKEN
NODEFLT statement, or add DEFAULT TOKENS in the
XRFLANG file, and re-run ASMXREF.

ASMZ174T The TOKEN delimiters were not matched
in the MASK token: token_in_error

Explanation: Tokens must be specified with matching
enclosing delimiters.

System Action: The ASMXREF run terminates.

Programmer Response: Enclose the TOKEN
statement in matching delimiters, and re-run ASMXREF.

 Chapter 5. Using the Cross-Reference Facility 167

 ASMZ175T � ASMZ185I

ASMZ175T The token MASK statement is in error:
token_mask

Explanation: The token MASK statement must be
specified in matching enclosing delimiters. The mask
delimiter character cannot be longer than one character.

System Action: The ASMXREF run terminates.

Programmer Response: Edit the incorrect token
mask, and re-run ASMXREF.

ASMZ176I No matching LANG= header found in the
XRFLANG file for this run.

Explanation: The XRFLANG file does not have a
language header for the one specified in the LIBRARY
LANGUAGE= statement specified for this run.
ASMXREF uses the default of ASM (assembler).

System Action: None, ASMXREF continues. Confirm
this is correct.

Programmer Response: None.

ASMZ177T TOKEN NODEFLT is specified without
any TOKEN INC/EXC in XRFTOKN file.

Explanation: The XRFTOKN file does not have any
tokens and processing of the default tokens has been
turned off with the TOKEN NODEFLT statement.

System Action: None, ASMXREF terminates.

Programmer Response: Enter token statements in
the XRFTOKN file or remove the TOKEN NODEFLT
statement from the XRFTOKN file.

ASMZ178T Unable to open XRFLANG file.

Explanation: The XRFLANG file is not available.

System Action: The ASMXREF run terminates.

Programmer Response: Ensure job control includes
the XRFLANG file definition.

ASMZ179T ASMZXREP encountered array index out
of bounds in ASMZTWUS.

Explanation: Array index is out of bounds.

System Action: The ASMXREP run terminates.

Programmer Response: Report this error condition to
your IBM service representative.

ASMZ180T ASMZXREP encountered an incorrect file
format in ASMZTWUS.

Explanation: The TWU file format is incorrect.

System Action: The ASMXREP run terminates.

Programmer Response: Report this error condition to
your IBM service representative.

ASMZ181T ASMZXREP encountered an incorrect file
format ASMZTWUS.

Explanation: The TWU file format is incorrect.

System Action: The ASMXREP run terminates.

Programmer Response: Report this error condition to
your IBM service representative.

ASMZ182I MEMTYPE control card not specified. The
default of A is used.

Explanation: For VSE users, MEMTYPE control card
is need for processing, if not included it defaults to 'A'.

System Action: The ASMXREF run continues.

Programmer Response: None.

ASMZ183I LANGUAGE control card not specified.
The default of ASM is used.

Explanation: The LIBRARY LANGUAGE control card
is not specified. ASMXREF defaults to LIBRARY
LANGUAGE=ASM

System Action: The ASMXREF run continues.

Programmer Response: None.

ASMZ184I Default sort order MOD used for LOC
reports.

Explanation: No sort parameter passed to ASMVRPT.

System Action: The ASMXRPT run continues.

Programmer Response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the
default sort sequence as a parameter.

ASMZ185I Default sort order MAC used for CFC
reports.

Explanation: No sort parameter passed to ASMVRPT.

System Action: The ASMXRPT run continues.

Programmer Response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the
default sort sequence as a parameter.g

168 HLASM V1R4 Toolkit Feature User’s Guide

 ASMXREF User Abends

ASMXREF User Abends

Table 23. ASMXREF Abend Codes

Code Message

003 ASMXREF is unable to open the SYSIN file

004 ASMXREF is unable to open the SYSPRINT file

005 A 005 abend can occur either from the ASMXREF message processing module
or XRFMSG when a virtual storage request failed

006 ASMXREF encountered an unrecognized symbol when it scanned an input
module

009 ASMXREF encountered a logical statement whose length is outside the
acceptable range

010 Buffer record length is less than the left source margin

Table 24. ASMXREP Abend Codes

Code Message

016 ASMZ028T OPEN failed for SYSPRINT

018 ASMZ031T Memory allocation failed in ASMTWURS

020 ASMZ032T PUT failed for record in SYSINOU

022 ASMZ030T OPEN failed for SYSINOU

 Chapter 5. Using the Cross-Reference Facility 169

 ASMXREF User Abends

170 HLASM V1R4 Toolkit Feature User’s Guide

Chapter 6. Using Enhanced SuperC

Introduction to Enhanced SuperC . 174
The SuperC Comparison . 174
The SuperC Search . 175

| SuperC Features for Date Comparisons . 176
General Applications . 176

| How SuperC and Search-For Filter Input File Lines 177
| How SuperC Corrects False Matches . 178
| How SuperC Partitions and Processes Large Files 179
| Comparing Load Modules . 179
| Comparing CSECTs . 179

Invoking the SuperC Comparison . 180
Invoking the Comparison on MVS . 180

MVS JCL Example . 180
Invoking the Comparison on CMS using Menu Input 183

COMMAND . 184
New File ID and Old File ID . 184
Member . 185
Selection List . 185
Compare Type . 186
Listing Type . 186
Listing File ID . 187
Process Options . 188
Process Statements ID . 189
Update File ID . 190
Display Output . 190
Auto Display Pgm . 191
Primary Comparison Menu PF Key Definitions 191
Printing the Wide Listing . 192

Invoking the Comparison on CMS using Command Line Input 192
Types of Options . 193
Command Line Priority and Overriding . 198
Compares From FILELIST . 198

Invoking the Comparison on VSE . 199
VSE JCL Example 1: Non-VSAM-managed Sequential Files 199
VSE JCL Example 2: VSAM-managed Sequential Files 202
VSE JCL Example 3: VSAM Files . 203
VSE JCL Example 4: Tape Files . 203
VSE JCL Example 5: Librarian Members 204

Invoking the SuperC Search . 205
Invoking the Search on MVS . 205

MVS JCL Example . 205
Invoking the Search on CMS using Menu Input 207
Invoking the Search on CMS using Command Line Input 215

Types of Options . 217
Command Line Priority and Overriding . 221
SRCH Process Statement Directive . 221

Invoking the Search on VSE . 221
VSE JCL Example 1: Non-VSAM-managed Sequential Files 222
VSE JCL Example 2: VSAM-managed Sequential Files 223
VSE JCL Example 3: VSAM Files . 224

 Copyright IBM Corp. 1992, 2004 171

VSE JCL Example 4: Tape File . 224
VSE JCL Example 5: Librarian Members 225

Process Options . 226
Process Statements . 236

Change Listing Value . 238
Change Text . 238
Comment Lines . 240
Compare Byte Offsets . 241
Compare (Search) Columns . 241
Compare Lines . 242
Compare Sections . 244

| DD-MVS Alternate DD Names . 245
DD-VSE DLBL/TLBL Definitions . 246
Define Column Headings . 249
Do Not Process Lines . 250
Exclude Data . 252
Focus on Data . 253
Line Count . 254
List Columns . 254
List Previous-Search-Following Value . 254
Revision Code Reference . 255
Search Strings in the Input File . 255
Select Files from a List of Files (CMS) . 257
Select Members or Files (CMS) . 258
Select Members (VSE) . 259
Select PDS Members (MVS) . 260
Statements File Listing Control . 261
Title Alternative Listing . 262

| Work Size . 262
Year Aging . 263
Date Definitions . 263
Global Date . 266

CMS Command Line Option Directives . 266
CMS Command Line Statement Option Directives 267
Understanding the Listings . 269

General Listing Format . 269
How to View the Listing Output . 269

The Comparison Listing . 270
Page Headings . 270
Listing Output Section . 271
Member Summary Section (CMS) . 273
Overall Summary Section . 275
Examples of Comparison Listings . 276

The Search Listing . 283
Page Heading . 283
Source Lines Section . 284
Summary Section . 287
Examples of Search Listings . 288

Update Files . 292
Revision File . 293
Revision File (2) . 294
Update CMS Sequenced 8 File . 295
Update Control Files . 296
Update Long Control . 299

172 HLASM V1R4 Toolkit Feature User’s Guide

Update MVS Sequenced 8 File . 300
Update Prefixed Delta Lines . 301
Update Sequenced 0 File . 301
Update Summary Only Files . 302

CMS File Selection List . 305
Getting to the Selection List Menus . 306

The Selection List Menu (Comparison) . 306
The Selection List Menu (Search) . 308

How SuperC Pairs CMS Files and Members . 311
CMS Files Used by SuperC . 312
Reasons for Differing Comparison Results . 313
Return Codes . 314
SuperC Messages . 316

 Chapter 6. Using Enhanced SuperC 173

 Introduction

Introduction to Enhanced SuperC
The comparison and search facility (named Enhanced SuperC and referred to in
the rest of this chapter as SuperC) is a versatile program that can be used to
compare two sets of data (using the SuperC Comparison) or to search a specific
set of data for a nominated search string (using the SuperC Search).

SuperC is designed to run on the following platforms:

 � MVS (batch)

� VM/ESA (CMS menu or CMS command line interface)

 � VSE/ESA (batch)

At a minimum, the SuperC Comparison requires only the names of the two items to
be compared. The SuperC Search requires only the name of the item to be
searched and the search string.

You can tailor the comparison or search using process options and process
statements. Process options are single keywords that you enter on the PARM
parameter (MVS and VSE), a menu (CMS), or the command line (CMS). Process
statements consist of a keyword and one or more operands; you pass these to
SuperC in an input file.

For example, you can use the process option ANYC (“Any Case”) so that SuperC
treats uppercase and lowercase characters as the same. (Thus, “d” and “D” are
considered to be the same.) You can use the process statement DPLINE (“Do not
Process Lines”) to ignore the lines (being compared or searched) that contain a
specified character string. For example, DPLINE '$' causes all lines that contain
the single-character string “$” to be ignored.

The SuperC Comparison
Using the SuperC Comparison, you can:

� Specify at what “level” the comparison is to be performed (file, line, word or
byte)

� Exclude certain data from the comparison

� Restrict the comparison to certain types of data

� Handle various date formats (for example, 2-digit and 4-digit year
representations)

� Control the type of listing output produced

� Specify an update file to be produced

SuperC operates independently of any synchronization data, such as column or
sequence numbers. It does not use the common “start at the top then look ahead
or look back” method to determine large sections of matching data. Neither does it
sort the data before comparing. SuperC is unique in that, except for files that are
identical, no match determination is made until both files have been completely
read.

SuperC recognizes matching and missing files, lines, words, or bytes (data units)
based on data content only. “Missing” data units are units that are out of sequence,
as opposed to units that have been deleted from a file. It finds all matches, locates

174 HLASM V1R4 Toolkit Feature User’s Guide

 Introduction

the largest set of matching data units, and recursively allows this comparison set to
divide the file into additional partitioned subsections. All new subsections are
processed for corresponding matches. The sub-process ends when no more
matches can be found within corresponding new and old file partitioned
subsections. Sections classified as “inserted” or “deleted” are corresponding areas
for which no matches were found.

Figure 52 demonstrates how SuperC compares two files which have records
(“lines”) represented by A, B, C, The SuperC algorithm attempts to find the
best match set from the input records. Notice how the match set requires
consideration of duplicate lines.

 New File Old File

 ┌─────┐ ┌─────┐

│ A │ ──── Matches ──── │ A │

 ├─────┤ ├─────┤

Inserted │ B │ │ I │ Deleted

 ├─────┤ ├─────┤

Inserted │ C │ ┌ │ D │ ┐

├─────┤ │ ├─────┤ │ Largest

│ D │ ┐ ┌─ Matches ───┤ │ E │ │ matching

├─────┤ │ │ │ ├─────┤ │ set

│ E │ ├─┘ └ │ F │ ┘

 ├─────┤ │ ├─────┤

│ F │ ┘ │ B │ Deleted

 ├─────┤ ├─────┤

Inserted │ A │ │ C │ Deleted

 ├─────┤ ├─────┤

│ H │ ┐ ┌ │ H │

├─────┤ ├─── Matches ───┤ ├─────┤

│ A │ ┘ └ │ A │

 └─────┘ ├─────┤

│ A │ Deleted

 └─────┘

Note: The inserted “A” on the lower left cannot connect with the deleted
“A” on the bottom right due to the “H” and “A” barrier.

Figure 52. Illustration of How SuperC Compares Files

Comparison Sequence New File Result Old File
Largest set D E F Matches set D E F
Top set A Matches A
Leftover top set B C Mismatches I
Largest bottom match H A Matches H A
Leftover bottom set A Mismatches B C A

The SuperC Search
Using the SuperC Search, you can specify:

� One or more search strings

� Whether multiple search strings are independent of each other or must be
present on the same line

� Whether a search string is a word, prefix, or suffix

� The range of columns to be searched

 Chapter 6. Using Enhanced SuperC 175

 Introduction

� The number of lines to appear in the output listing before and after each line
where a search string is found

| SuperC Features for Date Comparisons
Using SuperC features specifically designed to help you manage dates, you can:

� Specify a 100-year period (or “year window”) so that, for dates that have only a
2-digit year, the century can be determined. This can be based on either:

– A “fixed” year window (with a fixed starting year), or
| – A “sliding” year window (starting at a specified number of years prior to the

current year).

� Compare 2-digit year values in one file with 4-digit year values in another file.

� Compare compressed year values in one file with uncompressed year values in
another file.

� Filter cosmetic differences caused by adding century digits to 2-digit years, so
that you can more easily identify real differences in content.

 General Applications
SuperC provides many features for general applications and all types of users.

General users can:

� Compare two files that have been reformatted. Reformatted files contain such
differences as indentation level changes, or inserted or deleted spaces.

SuperC detects and classifies reformatted lines as special changes. You can
list these lines in the output, along with the normal insert/delete changes, or
eliminate them from the listing. Reducing the number of flagged lines may help
focus on real, rather than cosmetic, changes.

� Determine whether two groups of files have corresponding like-named
“components.”

Components absent from one group but present in the other are listed, as is all
change activity between like-named components. The comparison can show
changes caused by creating or deleting components of file groups.

Writers and editors can:

� Detect word changes within documents.

SuperC finds word differences even if the words have been moved to adjacent
lines.

� Verify that only designated areas are changed.

SuperC comparison results show all areas affected. Changes made to
restricted areas may be invalid. Unintended changes can therefore be detected
so that a complete document need not be checked for errors again.

� Use SuperC to automatically insert SCRIPT/VS or IBM BookMaster revision
codes.

The UPDREV process option can be used with either the WORD or LINE
compare type to put either SCRIPT/VS (.rc) or IBM BookMaster (:rev and :erev)
tags before and after the changed lines.

Programmers and systems administrators can:

176 HLASM V1R4 Toolkit Feature User’s Guide

 How SuperC and Search-For Filter Input File Lines

� Generate management reports that show the quantity and type of changes in
program source code.

SuperC can count the changed and unchanged lines of code in an application
program. Comparison results could be used, for example, to summarize the
changes between different versions of a program.

� Retain a record of change activity.

SuperC listing files can be collected and retained as a permanent record of the
changes made before a new program is released. Source code differences
can help detect regressions or validate the appropriateness of any code
modifications.

� Modify a listing output file, including additional headers or change delimiters.

Some SuperC listings may need to be rewritten before you accept the results.
For example, some installations may require security classifications. Others
may require a listing created using the WIDE process option to have box
delimiters surrounding changed sections.

� Compare files across unconnected systems.

SuperC can generate a 32-bit hashsum per file using the FILE compare type.
Files compared on an unconnected processor, using SuperC, should have the
same hashsums if they are identical. A FILE comparison on any file to
determine a hashsum can be done by specifying the same file as both new and
old.

� Develop additional uses for update files.

SuperC produces general results with generalized listings. However, your
installation may have unique requirements. There are many specialized update
files that you can use to produce listings that match these requirements.
Normal SuperC listings may not fit this type of application, but the update files
are more structured and should be easier to use as data input. See “Update
Files” on page 292 for explanations and examples of the update files.

| How SuperC and Search-For Filter Input File Lines
| The SuperC and Search-For utilities apply process options and process statements
| to the input file or files in a specific order. Figure 53 on page 178 shows
| schematically the effects, in the order that they occur, of the various “filtering”
| process options and process statements, on the compare and Search-For input
| lines. The options and statements nearer the top affect the input line before options
| or statements nearer the bottom.

 Chapter 6. Using Enhanced SuperC 177

 How SuperC Corrects False Matches

| Figure 53. Priority for Filtering Input Lines

| How SuperC Corrects False Matches
| Occasionally, SuperC reports that it has detected a false line or word match and
| has corrected the results in the listing and summary report. Any affected matched
| pair has been reclassified as an insert/delete pair. Any resulting error might be in
| the masking of potential matches that would be overlooked due to the early false
| match coupling. That is, an equivalent yet undiscovered match may be overlooked
| due to the premature false matching. The condition should be of minor importance
| since it happens so rarely and the masking effect has a low probability of affecting
| the final results.

| An equally important SuperC concern would be whether it finds the best match set
| and whether it finds all matches. Unfortunately, the match-finding algorithm is not
| perfect. Ignoring the false match masking problem, and the large number of
| duplicate source lines obscuring the match set possibilities, occasional matches can
| be overlooked. SuperC , however, does not fail to correctly classify mismatches
| and does not incorrectly classify a mismatch as a match.

| Comparison of large files, can sometimes lead to false matches. Increasing the
| WORKSIZE process statement value can sometimes alleviate the number of false
| matches reported.

178 HLASM V1R4 Toolkit Feature User’s Guide

 Comparing CSECTs

| How SuperC Partitions and Processes Large Files
| In SuperC, there is no limit on the size of files processed in terms of lines, words or
| bytes. Yet it has an internal methodology based upon a maximum field size for
| each work area storage structure. SuperC performs the overall comparison process
| by breaking very large files into smaller comparison partitions and combining the
| intermediate results into one overall result. The process attempts to ensure that the
| file partitioning does not appear to be determined after some arbitrary limit is
| reached. This can affect the results on either side of the break point.

| A partitioning size of 32000 lines/words/bytes is the default. This size can be
| adjusted by specifying the WORKSIZE process statement. The compare processes
| up to this limit and iteratively adjusts the intermediate ending break point of the
| pass by an adaptive method. Continuation from the adjusted end point is the basis
| for the next pass. That end point might even be adjusted to some previous records
| that have already been processed. The objective is to achieve the next best
| compare set for future unprocessed records.

| The overall process ends when both files reach the End-of-File during a pass. The
| results from the intermediate passes are combined into one user end result. Most
| large compares never appear to have been partitioned and recombined.

| Comparing Load Modules
| SuperC compare of load module data might show unexpected differences. This is
| because SuperC compares all the data in the load module as it is found on DASD,
| and does not attempt to decode which portions are executable, and which might
| contain uninitialized storage.

| The complex data format on DASD is dependent on the load module data set block
| size, and defined storage definitions which are controlled by the linkage editor. The
| size stored by the linkage editor in the PDS directory may differ from the DASD
| data byte count reported by SuperC and Browse depending on the characteristics
| of the load module.

| If load modules are exact copies of each other, SuperC should find no differences.
| If load modules have been link-edited from the same object but with different
| blocksizes, SuperC will probably report they are different.

| Because of the relative DASD addresses (TTRs) in load modules, the
| recommended procedure for comparing load modules which have not been
| reblocked is to use the AMBLIST utility with LISTLOAD OUTPUT=MODLIST
| against both load modules, then use SuperC to compare the two AMBLIST outputs.
| There is no easy way to compare load modules with different internal record sizes
| such as occurs when COPYMOD or LINKEDIT processes them.

| Comparing CSECTs
| SuperC compare of PDS Load Module CSECTs (using the LMCSFC Process
| Option) can return unexpected differences. SuperC looks at the length of the
| CSECT from the control record immediately preceding the CSECT data record in
| the load module. This physical data length can differ from the logical CSECT data

 Chapter 6. Using Enhanced SuperC 179

 Invoking the SuperC Comparison

| length in the load module header that the AMBLIST utility uses to report the length
| of the CSECT.

| SuperC always compares all of the physical data in each CSECT. You can use
| SuperC Byte compare to examine the CSECT data content in detail.

| Note: This option is only valid for PDS load modules.

Invoking the SuperC Comparison
The following sections describe how to invoke the SuperC Comparison on each
platform (MVS, CMS and VSE).

Invoking the Comparison on MVS
On MVS, you invoke the SuperC Comparison as a batch program. You can use
the SuperC Comparison on MVS to compare:

� Two sequential data sets
� Two complete partitioned data sets
� Two VSAM data sets
� Members of two partitioned data sets
� Concatenated data sets
� A VSAM data set with a sequential data set

MVS JCL Example
Figure 54 on page 181 shows simplified MVS JCL to run the SuperC Comparison.
This example is supplied with SuperC in the sample PDS (default is

| ASM.JMQ415A.SASMSAM2) as member ASMFMVC1.

Before running this example, edit the lines highlighted by numbers (such as �1�) as
described in the instructions following the example listing.

180 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

...

/�

/� Run the comparison with these options (see �1� and �6�)
/�

//RUN EXEC PGM=ASMFSUPC,REGION=4M,PARM='options' �1�
/�

//STEPLIB DD DSN=#hlq.SASMMOD2,DISP=SHR �2�
/� ─┐

/� Define "new" data set to be compared │

/� │

//NEWDD DD DSN=new_file,DISP=SHR ├─�3�
/� │

/� Define "old" data set to be compared │

/� │

//OLDDD DD DSN=old_file,DISP=SHR ─┘

/�

/� Direct listing data set to SYSOUT

/�

//OUTDD DD SYSOUT=� �4�
/�

/� Define update ("delta") data set

/�

//DELDD DD DSN=update_file �5�
//SYSIN DD �

process_statements �6�
...

/�

//

Figure 54. Sample MVS JCL to Run the SuperC Comparison

�1� Replace PARM='options' with a PARM parameter in the following format:

Format of ASMFSUPC PARM parameter for SuperC Comparison

 ┌ ┐─LINECMP───────── ┌ ┐─OVSUML────────
��──PARM──=──'─ ──┼ ┼───────────────── ──┼ ┼─────────────── ───────────────�

└ ┘──compare_typeCMP └ ┘──listing_typeL

�─ ──┬ ┬───────────────── ─'──��
 └ ┘─process_options─

Note: Each option may be separated by either a space or a comma.

compare_type
The type of comparison you want performed: FILE, LINE, WORD, or
BYTE. When specifying the compare type in the PARM parameter, add
the suffix “CMP” (for example, WORD becomes WORDCMP).

For a description of each compare type, see “Compare Type” on
page 186.

listing_type
The type of listing you want from the comparison: OVSUM, DELTA,
CHNG, LONG, or NOLIST. When specifying the listing type in the PARM
parameter, add the suffix “L” (for example, CHNG becomes CHNGL).

For a description of each listing type, see “Listing Type” on page 186.

process_options
Process options are keywords that direct SuperC how to perform the

| comparison or format the listing. Process options can be separated by
| spaces or commas.

 Chapter 6. Using Enhanced SuperC 181

 Invoking the SuperC Comparison

For a description of each process option, see “Process Options” on
page 226.

For example:

PARM='LINECMP DPCBCMT DELTAL NOSUMS'

instructs SuperC to:

� Perform a line-by-line comparison. (LINE compare type with “CMP” suffix.)

� Ignore COBOL comment lines. (Process option DPCBCMT ignores lines
with an “�” in column 7.)

� Produce a listing showing changes, without an overall summary section.
(Process option NOSUMS eliminates the group and final summary listing
from the output listing.)

�2� Replace #hlq with the high level qualifier where SuperC is installed (default
| load library is ASM.JMQ415A.SASMMOD2).

�3� Replace new_file and old_file with the items to be compared. These can be:

� Two sequential data sets
� Two complete partitioned data sets
� Two VSAM data sets
� Members of two partitioned data sets
� Concatenated data sets
� A VSAM data set with a sequential data set

Note: The terms “new” and “old” are used only for the sake of identifying the
files being compared, which might or might not be different versions of
the same file.

If you specify partitioned data set (PDS) names for new_file and old_file,
SuperC compares all members in the new PDS with any like-named members
in the old PDS. Members in either PDS not having like-named members in
the other data set are not compared, but are reported in the listing data set.

To restrict a comparison of partitioned data sets to selected members only,
use the SELECT process statement. For example, the following process
statement:

SELECT NEW1:OLD1,SAME

instructs SuperC to compare only:

� Member NEW1 in the new PDS with member OLD1 in the old PDS
� Member SAME in the new PDS with member SAME in the old PDS

For more information on the SELECT process statement, see “Select PDS
Members (MVS)” on page 260.

�4� The listing data set, listing the results of the comparison. For example
listings, see “Understanding the Listings” on page 269.

�5� (Required only if you specify a “UPD...” process option; see �1�.)

The update (or “delta”) data set. Most update data sets are intended to be
used as input to other tools, rather than being “human-readable” reports (such
as the listing data set; see �4�). For instance, if you specify the UPDMVS8
process option, SuperC creates an update data set that you can use with the
IEBUPDTE utility. You can use IEBUPDTE to apply to the old data set any
updates that SuperC found in the new data set.

182 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

The file attributes of the update data set depend on the “UPD...” process
option you specified.

For more information on producing an update data set, see the process
options whose keywords start with “UPD” on Table 25 on page 226. For a
selection of sample update data sets, see “Update Files” on page 292.

�6� Insert any process statements (one statement per line) that you want to use.

For example, the following process statements:

CMPCOLM 7:72

LSTCOLM 1:72

instruct SuperC to compare only columns 7 to 72 in the new and old data sets
(for example, if you want to compare COBOL source without comparing
sequence numbers), but to include in the listing data set columns 1 to 72 (that
is, the listing contains the sequence numbers).

For more information on process statements, see “Process Statements” on
page 236.

Invoking the Comparison on CMS using Menu Input
You can use the SuperC Comparison on CMS to compare:

 � Two files
� Selected files within file groups
� Two complete file groups
� Selected members within MACLIBs or TXTLIBs
� Complete MACLIBs or TXTLIBs

To invoke the SuperC Comparison on CMS, enter:

ASMFSUPC

on the CMS command line.

If you enter ASMFSUPC without any parameters, the Primary Comparison Menu
appears (see Figure 55 on page 184). This menu allows to specify the files to be
compared, and other SuperC options. However, if you enter ASMFSUPC with the file
IDs to be compared and any options you want to use, the comparison starts
immediately without displaying the menu.

This section describes how to use the Primary Comparison Menu. For information
on invoking the SuperC Comparison directly from the command line without using
the menu, see “Invoking the Comparison on CMS using Command Line Input” on
page 192).

 Chapter 6. Using Enhanced SuperC 183

 Invoking the SuperC Comparison

� �
HLASM Toolkit Feature SuperC Compare Program V1R5M� - Primary Menu

COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

New File ID ==> Member ==>

Old File ID ==> Member ==>

 Optional Section

Selection List ==> NO (NO / �)

Compare Type ==> LINE (FILE/ LINE /WORD/BYTE)

Listing Type ==> DELTA (OVSUM/ DELTA /CHNG/LONG/NOLIST

Listing File ID ==> SuperC LIST A (file-ID/ newfn SuperC A)

Process Options ==>

 ==>

Process Stmts ID ==> (file-ID)

Update File ID ==>

Display Output ==> YES (YES/NO/COND/UPD)

Auto Display Pgm ==> XEDIT (BROWSE/XEDIT/EPDF/etc.)

1=Help 3/4=Quit 5=Proc Stmts 6=SrchFor 8=Proc Opts 9=Print ENTER/1�=Exec

� �

Figure 55. SuperC Primary Comparison Menu

For a straightforward comparison of two files, just enter the names of the two files
that you want compared. One is called the new file, the other the old file. (They
are assumed to be different versions of the same file; the significance of “new” and
“old” is normally irrelevant.) Enter the IDs (fn ft fm) of the two files in the New File
ID and Old File ID fields respectively.

For example, if you want to compare the file NEW TEST1 A with the file OLD
TEST1 A, enter the two file names as follows:

New File ID ==> new test1 a
Old File ID ==> old test1 a

and press Enter.

Here is more information about the other input fields on the SuperC Primary
Comparison Menu. Default field values are underlined.

 COMMAND
Use this field to issue CP and CMS commands, such as FILELIST, ERASE, or
RDRLIST.

New File ID and Old File ID
The names of the two files to be compared. SuperC supports the CMS convention
of including wildcard characters (“�”) and equal signs (“=”) as part of the input file
ID.

This example compares NEW TEST1 A with OLD TEST1 A:

New File ID ==> new test1 a
Old File ID ==> old = =

Other examples of file name usage are:

184 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

Notes:

1. If a process statements file is specified (see “Process Statements ID” on
page 189) and it contains a SELECTF process statement, the New File ID and
Old File ID fields are ignored.

2. A MACLIB/TXTLIB with a filename containing an “�” (for example, ABC�

MACLIB A or � TXTLIB C) is not processed as individual MACLIB/TXTLIBs with
members. There is no method for specifying the “concatenation” of more than
one MACLIB/TXTLIB.

3. The percent wildcard character (“%”) is not supported by SuperC.

4. SuperC allows the same file ID to be entered in both the New File ID and Old
File ID fields. You can use SuperC in this way to obtain:

� Various file statistics (at either the FILE, LINE, WORD or BYTE level)

� A file hex dump listing (using a BYTE comparison with a LONG listing)

� A comparison of different columns or rows within the same file.

File ID Specified Meaning
new test1 a Single CMS file
new test� a File group (all with a filetype starting with “TEST”)
new maclib The entire macro library, NEW

 Member
The name of the member, within either a macro library (MACLIB) or text library
(TXTLIB), to be compared. (This field is only used when the file specified in New
File ID refers to a macro or text library.) If left blank, all members within the
specified library are selected for the comparison.

File ID Specified Member Meaning
new maclib c xyz XYZ member in NEW MACLIB C.
new maclib c � All members in NEW MACLIB C. (Selection List

must = NO)

 Selection List
Indicates if the Selection List facility is to be used. Valid values are:

NO Selection list facility not required.

* Selection list facility required.

Note: The Selection List facility is only applicable when an “�” (asterisk) is
contained within either the New File ID or the Old File ID. (In the case of a
macro or text library, an “�” must be contained within the specified Member
name.)

Enter an “�” in the Selection List field to see a list of files from which you can select
the ones that you want.

The following examples explain the files that are listed for selection according to the
file ID specified:

 Chapter 6. Using Enhanced SuperC 185

 Invoking the SuperC Comparison

For information on using the selection list, see “CMS File Selection List” on
page 305.

File ID Specified Member Files Listed for Selection
new test1 � All files with the filename “NEW” and the filetype

“TEST1”

old test� a All files with the filename “OLD” and a filetype
beginning with “TEST” and filemode “A”

new txtlib a � All members within the text library NEW TXTLIB A

new maclib a abc� All members within the macro library NEW
MACLIB A whose name begins with “ABC”

 Compare Type
The type of comparison to be performed. Valid values are:

FILE Compares source file for differences, but does not show what the
differences are. This is the simplest and fastest method, with the
least amount of processing overhead. For this compare type,
SuperC reports only summary information.

LINE Compares source files for line differences. It is the most
| commonly-used compare type (and the default). The output report
| lists inserted and deleted lines; changed lines are treated as a
| deletion and insertion. Line lengths may be of any size.

| Unequal record lengths are padded with spaces. There are no
| other padding options. A compare type of LINE informs you

whether the data content is the same or not. It is common to
compare lines from two files, ignoring the sequence columns in
73-80. However, this may yield results that differ from when a
compare type of FILE is used (see “Reasons for Differing
Comparison Results” on page 313).

WORD Breaks the files into lines and then into individual words. The
results are similar to those for the LINE compare type except
words on adjacent lines can be matched.

Word delimiters are normally spaces and end-of-line. The
XWDCMP process option lets you use the standard set of
non-alphanumeric characters in addition to spaces as delimiters.

BYTE Compares source files for byte differences. The output listing files
consists of a hexadecimal printout with character equivalents listed
on the right. The summary listing at the end details the number of
bytes processed in the comparison.

To obtain a complete hex dump of a file, compare the file against
itself, specifying a BYTE compare type with a LONG listing type.

 Listing Type
The type of listing output required.

(For a detailed explanation of the format and content of the various listings
produced by SuperC, see “Understanding the Listings” on page 269.)

Valid values are:

186 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

OVSUM Lists only an overall summary of the results of the comparison
without showing the differences themselves. A group comparison
generates an individual summary line for each file (or member) in
the group. For more information, see “Overall Summary Section”
on page 275.

DELTA Lists only the differences between the source files or members
being compared, followed by overall summary results. Differences
are flagged in the listing output section of the SuperC listing. For
more information, see “Listing Output Section” on page 271.

For example, a DELTA listing of a LINE comparison shows only the
individual lines in each file or member that are different.

CHNG Contains the same information as the DELTA listing, plus up to
1000 matching lines (default is 10) before and after the differences.
This listing shows differences within the context of the surrounding
matching data. To specify the number of lines shown before and
after each difference, use the CHNGV process statement. For more
information, see “Change Listing Value” on page 238.

LONG Lists the entire file, indicating where the differences exist, followed
by a summary section.

NOLIST Produces no listing output. One of these messages is displayed on
the menu:

Differences were found.

or
No differences were found.

Listing File ID
The name of the listing file generated as a result of the comparison. (A listing file
is always generated unless the NOLIST listing type is specified.)

You can:

� Leave this field blank (in which case SuperC allocates a default name for the
listing file)

� Specify a full file ID to be used for the listing file

� Use a combination of “�” and “=” symbols (which results in the listing file ID
being a combination of the fn ft fm specified in the New File ID and the details
you enter for the Listing File ID)

Here are some examples:

New file ID Listing file ID File ID Used
new test a new superc a

new test a myname mytype a myname mytype a

� test a $ superc a

new test a = listing a new listing a

new� test a � listing a new$ listing a

 Chapter 6. Using Enhanced SuperC 187

 Invoking the SuperC Comparison

 Process Options
You can specify the process options that you want (if any) by:

� Entering them directly using one (or both) of the process option lines on the
Primary Comparison Menu

or

� Selecting them from the Process Options Selection Menu (PF8)

For a full list and description of process options, see “Process Options” on
page 226.

Entering Process Options Directly: Type in each process option keyword on an
entry line (each keyword must be separated by a space). Each line holds up to 51
characters (including spaces).

� �
HLASM Toolkit Feature SuperC Compare Program V1R5M� - Primary Menu

COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

 . . .

Process Options ==> locs anyc

 ==>

...

1=Help 3/4=Quit 5=Proc Stmts 6=SrchFor 8=Proc Opts 9=Print ENTER/1

� �

Figure 56. SuperC Primary Comparison Menu with Process Options Entered Directly

Figure 56 shows two process options entered directly on the Process Options line:

LOCS (“List Only Changed Entries in Summary”)
ANYC (“Any Case”)

Selecting Process Options from a Menu: You can also specify process options
by selecting them from the Process Options Selection Menu. The menu shows the
process options that are valid for the specified comparison type. To display the
menu, press PF8.

For instance, if you are using a LINE compare type, pressing PF8 displays all of
the process options for a LINE comparison (see Figure 57 on page 189).

188 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

� �
 HLASM Toolkit Feature SuperC Compare Program - Line-Compare Options (1 of 4)

 COMMAND ==>

 Select option(s) from the following list or "blank" to remove.

 Sel General Process Options

SEQ - Ignore sequence columns 73-8� on F 8� input source files.

NOSEQ - Process columns 73-8� as data on F 8� input source files.

COBOL - Ignore sequence columns 1-6 on F 8� input source files.

S LOCS - List only changed and non-paired entries in group summary list.

REFMOVR - Reformat override. Don't flag reformatted lines in listing.

DLREFM - Don't list reformatted old file lines. Only new file reformats.

S ANYC - Process text lines as upper case.

Listing Process Options

WIDE - Up to 8� columns side-by-side. Line length = 2�2/2�3.

NARROW - Up to 55 columns side-by-side. Line length = 132/133.

LONGLN - Lists up to 176 columns. Line length = 2�2/2�3.

GWCBL - Generate Word/Line Change Bar Listing.

NOPRTCC - No print control and page separators.

ERASRC� - Erase listing on compare return code = �.

(cont'd)

PF1=Help PF3=Menu PF7=Prev Page PF8=Next Page

� �

Figure 57. Example of the SuperC Process Options Selection Menu (LINE Comparison)

To select a process option, enter an “S” next to it.

Process options which have been selected previously appear with an “S” alongside
them (as for LOCS and ANYC in Figure 57).

When you no longer need a process option, clear the “S” from the Process Option
Selection Menu or delete the option keyword from the Process Option field on the
Primary Compare Menu.

Process Statements ID
The name of the file (if any) containing process statements.

Process statements (which are similar to process options but require one or more
additional items of information to be specified) are always passed to SuperC in a
file.

For a full list and description of process statements, see “Process Statements” on
page 236.

You can either enter the name of an existing file that contains process statements,
or press PF5 to create a new file and specify the process statements.

Pressing PF5 displays the Process Statements Entry Menu (see Figure 58 on
page 190) showing examples of some of the process statements available and
allows you to enter (one at a time) the process statements that you want.

When you exit from the Process Statements Entry Menu, SuperC automatically
generates a file (called SUPERC SYSIN A) containing each of the process
statements you specified. (SUPERC SYSIN A is entered against Process Stmts ID on
the Primary Comparison Menu.)

 Chapter 6. Using Enhanced SuperC 189

 Invoking the SuperC Comparison

� �
HLASM Toolkit Feature SuperC Compare Program - Process Statements (1 of 1)

Process Statements ------ SuperC Compare Program ------------------

Enter Process Statements for Statements File:

 ==>

 Examples Explanation

 CMPCOLM 5:6� 75:9� Compare using two column compare ranges

 LSTCOLM 25:9� List columns 25:9� from input files

...

PF1=Help PF3=Menu PF5=Menu PF6=Cancel ENTER=Save Line

� �

Figure 58. Example of the SuperC Process Statements Entry Menu (Comparison)

Note: When you press PF5, SuperC erases any existing SUPERC SYSIN A file
before creating the new file.

Update File ID
The name of the update file generated (if applicable) as a result of the comparison.
SuperC generates an update file if you specify one of the “UPD...” process options.

You can:

� Leave this field blank (in which case SuperC allocates a default name for the
update file)

� Specify a full file ID to be used for the update file

� Use a combination of “*” and “=” symbols (which results in the update file ID
being a combination of the filename specified in the New File ID and the details
you enter for the Update File ID

Here are some examples:

Note: For further information, see “Update Files” on page 292.

New File ID Update File ID File ID Used
new test a new update a

new test a myname mytype a myname mytype a

� test a $ update a

new test a = updseq a new updseq a

new� test a � updseq a new$ updseq a

 Display Output
This field determines if the results of the comparison are to be displayed. Valid
entries are:

YES Display the output listing using the editor specified in the Auto Display
Pgm field.

NO Do not display any output.

COND Display the output listing using the editor specified in the Auto Display
Pgm field if the return code is not 0 (that is, differences were found.)

190 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

UPD Display the update listing using the editor specified in the Auto Display
Pgm field. UPD is only valid when an “UPD...” process option is
specified in the Process Options field.

(space) Do not display any input unless the Auto Display Pgm field (see
following description) is not space, in which case the Display Output
field defaults to YES.

Auto Display Pgm
This field is used in conjunction with the Display Output option. It allows you to use
the editor or browse program of your choice.

Specify the name of an editor or browse program to inspect the output listing:

program name The name of a valid editor or browse program to be invoked
to display the results of the comparison. (For example,
XEDIT, EPDF, BROWSE)

(space) Defaults to XEDIT if the Display Output option is YES, COND
or UPD.

Primary Comparison Menu PF Key Definitions
PF1 Help. Displays the Help Table of Contents menu.

PF3 Quit. Leaves the current SuperC environment. SuperC terminates.

PF4 Quit. Same as PF3 from this menu. SuperC terminates.

PF5 Proc Stmts (Process Statements). Displays the Process Statements
Entry Menu. This menu contains examples of the more widely-used
process statements. It also has a field that allows you to input one
process statement at a time into the SUPERC SYSIN A file.

Note: When you press PF5, SuperC erases any existing SUPERC
SYSIN A file before creating the new file.

PF6 Displays the Primary Search Menu.

PF8 Proc Opts (Process Options). Displays the Process Options Selection
Menu. The actual menu that is displayed depends on the contents of
the compare type field. For example, in Figure 55 on page 184,
pressing PF8 displays the first of three LINE process option menus.

PF9 Print. Builds a command to schedule the printing of the listing file. This
command is then displayed in the command line area.

Note: If SuperC finds differences in the comparison process and you
have used the WIDE process option (see page 235), the command
displayed in the command line area causes the Wide Print Menu to be
displayed (see Figure 59 on page 192) after you press Enter.

PF10 Execute and Quit. Verifies user-input fields, invokes SuperC, and quits.

ENTER Execute. Verifies user-input fields and invokes SuperC. Control returns
to the Primary Comparison Menu after the comparison has completed.

 Chapter 6. Using Enhanced SuperC 191

 Invoking the SuperC Comparison

Printing the Wide Listing
If you used the WIDE process option and SuperC finds differences in the
comparison, pressing the PF9 key from the Primary Comparison Menu, followed by
Enter, displays the Wide Print Menu (see Figure 59).

This menu displays the listing file ID and the printer information that you last
specified (or the printer information in SUPERC NAMES �) allowing you to change
these details if necessary.

Note: For a description of the SUPERC NAMES � file, see “CMS Files Used by
SuperC” on page 312.

For an example of a side-by-side WIDE listing, see Figure 84 on page 280.

� �
HLASM Toolkit Feature SuperC Compare Program - Wide Print Menu �6/11/2��4

COMMAND ==>

Wide Print Listing of file: MYTEST LISTING A1

Enter/Verify 38�� Printer Information (Defaults from SuperC Names file):

Printer Model ==> 38��

Spool ==> DIST 4��-9999 CL 5 GT 15 FORM 386� FCB FCB6

Tag ==> RALVMX SYSTEM 2�

For NOPRTCC Wide listings:

Lines per Page ==> � (�-99, default=� -- no page ejects)

New printer information is stored in LASTING GLOBALV if ENTER is pressed.

PF1=Help PF3/PF6=Primary Menu PF4=Quit ENTER=Exec

� �

Figure 59. Example of the SuperC Wide Print Menu

Invoking the Comparison on CMS using Command Line Input
You can use the SuperC Comparison on CMS to compare:

 � Two files
� Selected files within file groups
� Two complete file groups
� Selected members within MACLIBs or TXTLIBs
� Complete MACLIBs or TXTLIBs

This section describes how to invoke the SuperC Comparison directly from the
command line, without using the Primary Comparison Menu. For information on
using this menu, see “Invoking the Comparison on CMS using Menu Input” on
page 183.

To invoke the SuperC Comparison from the CMS command line, enter ASMFSUPC
with the file IDs to be compared and any options you want to use. The comparison
starts immediately without displaying the Primary Comparison Menu.

The general format is:

192 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

��──ASMFSUPC─ ─new_file_ID──old_file_ID─ ──┬ ┬─────────────── ─────────────────��
 │ │┌ ┐──────────
 └ ┘──(───

┴─option─

new_file_ID The name of the new file (or member)

old_file_ID The name of the old file (or member)

option Each type of option is described in the following pages.

For example, to compare file TEST1 NEW A with file TEST1 OLD A (without
specifying any options), enter:

ASMFSUPC TEST1 NEW A TEST1 OLD A

To compare file TEST1 NEW A with file TEST1 OLD A (with a listing type of
DELTA and a process option of WIDE), enter:

ASMFSUPC TEST1 NEW A TEST1 OLD A (DELTA WIDE

Types of Options
You can specify any of the following options in the CMS command line or in the
Options List file (see page 197):

Member Names
This option specifies the names of the members within a library.

��──NMEM─ ──(new_member_name) ─OMEM─ ──(old_member_name) ───────────��

For example:

ASMFSUPC MACLIB NEW A MACLIB OLD A (NMEM(ABC) OMEM(DEF)

compares the member ABC in MACLIB NEW A with the member DEF in
MACLIB OLD A.

Note: Member names can only be used as options when the
new_file_ID and old_file_ID specified refer to either macro or text
libraries.

Compare Type
This option specifies the type of comparison to be performed.

Can be one of the following keywords:

FILE File comparison
LINE Line comparison
WORD Word comparison
BYTE Byte comparison

For further descriptions of each compare type, see page 186.

Listing Type
This option specifies the type of listing output required.

Can be one of the following keywords:

OVSUM Overall summary
DELTA Differences only
CHNG Lines before/after differences

 Chapter 6. Using Enhanced SuperC 193

 Invoking the SuperC Comparison

LONG Entire file
NOLIST No listing output

For further descriptions of each listing type, see page 186.

Listing File
This option specifies the alternative name to be assigned to the listing
file generated as a result of the comparison process.

��──LISTING─ ──(listing_file_ID) ─────────────────────────────────��

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (LISTING(TSTLIST RESULTS A)

creates a listing file named TSTLIST RESULTS A.

Notes:

1. If you do not use the LISTING option, the listing file is generated
with a default ID consisting of:

fn Filename of the new file
ft SUPERC
fm A

2. A listing file is always generated unless the NOLIST listing type is
specified.

Display Output
This option specifies if the results of the comparison are to be displayed.

 ┌ ┐─(NO)───
��──DSPL─ ──┼ ┼──────── ───��
 ├ ┤─(YES)──
 ├ ┤─(COND)─
 └ ┘─(UPD)──

NO Do not display output

YES Display output

COND Display output if differences found

UPD Display differences if update option used

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (DSPL(YES)

causes the comparison results to be displayed.

Note: If you specify an editor or browse program (see following option),
the “Display Output” option defaults to YES.

For a further description of the Display Output option, see “Display
Output” on page 190.

Auto Display Program
This option is used in conjunction with the Display Output option. It
allows you to use the editor or browse program of your choice (provided

194 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

that it is supported in your processing environment). The default is
XEDIT.

Examples:

ASMFSUPC TEST1 NEW A TEST1 OLD A (EPDF

ASMFSUPC TEST1 NEW A TEST1 OLD A (XEDIT

ASMFSUPC TEST1 NEW A TEST1 OLD A (BROWSE

The above examples specify editors EPDF and XEDIT, and browse
program BROWSE, respectively.

For a further description of the Auto Display Program, see “Auto Display
Pgm” on page 191.

Update File ID
This option specifies the alternative name to be assigned to the update
file generated (if applicable) as a result of the comparison process.

��──UPD─ ──(update_file_ID) ──────────────────────────────────────��

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (UPD(TSTUPD DETAILS A)

creates an update file named TSTUPD DETAILS A.

Notes:

1. An update file is only generated if one of the “UPD...” process
options was specified. For further details, see “Process Options” on
page 226.

2. If you do not use the UPD option, the update file is generated with a
default ID consisting of:

fn Filename of the new file
ft UPDATE
fm A

Process Options
This option specifies the process options to be used in the comparison
process.

These can be one or more of the process option keywords which are
valid for the compare type used. For details of these, see “Process
Options” on page 226.

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (ANYC

specifies the process option ANYC with the result that the case of
characters in the two input files is ignored when performing the
comparison process.

Option Directives
You can use any of the following option directive keywords:

ERASRC0 Erase listing file if no differences
MENU Display Primary Comparison Menu

 Chapter 6. Using Enhanced SuperC 195

 Invoking the SuperC Comparison

NOIMSG No information messages
NONAMES No SUPERC NAMES � file
NOOLF No Options List file
PRINT Print results

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (NOOLF

specifies that any options contained in the Options List file are not to be
used in the comparison process.

For further descriptions of each Option Directive, see “CMS Command
Line Option Directives” on page 266.

Process Statement Directives
The following directives are transformed into process statements. They
can be one of the following keywords:

CC Compare columns
LC List columns
LT Line count
RR Revision code reference

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (LC(7:14)

selects columns 7 to 14 to be listed in the output.

For further descriptions of each Process Statement Directive, see “CMS
Command Line Statement Option Directives” on page 267.

Process Statement ID
This option specifies how process statements are to be supplied to the
SuperC Comparison.

One of two keywords can be used:

CNTL Use the CNTL keyword if you want to use an existing file that
contains the process statements you require.

��──CNTL─ ──(process_statement_file_ID) ──────────────────��

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (CNTL(TSTPRO OPTS A)

specifies that the process statements in file TSTPRO OPTS A
are to be used.

PROMPT
PROMPT indicates to SuperC that the file SUPERC SYSIN A is
to be used to supply the process statements and causes the
Process Statements Entry Menu to be displayed. This menu
contains examples of the more widely-used process statements.
It also has a field that allows you to input one process statement
at a time into the SUPERC SYSIN A file.

For example:

ASMFSUPC TEST1 NEW A TEST1 OLD A (PROMPT

196 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

causes the Process Statements Entry Menu to be displayed.

Note: If SUPERC SYSIN A already exists, its contents are
erased before creating the new file.

Options List File
You can use the Options List file to hold a set of default options (to save
you entering them each time on the CMS command line). Any of the
options described in this section can be placed in the Option List file.
They take effect unless overridden by options in the command line.

If you do not specify a name for the Options List file, SuperC looks for a
file with the default name SUPERC OLIST A and, if found, uses the
options contained in that file for the comparison process.

However, you can nominate an alternative Options List file by using the
keyword OLF. OLF allows you to specify either a fully-qualified file ID (fn
ft fm) or a partially-qualified file ID for the Options List file that you want
SuperC to use (see “Default Naming Convention for Options List File” on
page 197).

Note: SuperC uses options contained in an OLF-specified Options List
file before those in SUPERC OLIST A (see “Command Line
Priority and Overriding” on page 198).

��──OLF─ ──(options_list_file_ID) ────────────────────────────────��

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') OLF(MYOPTS FILE A)

specifies that the options in file MYOPTS FILE A are to be used.

Note: Not all options in the Options List file can be overridden since
there is no way to negate them. Take care when considering
which options to include in the file when using OLF.

To examine this further, let's look at an example of an Options
List file containing the following:

DELTA XEDIT CNTL(MYFILE STMTS A)

If the Options List file that you nominate in the CMS command
line (by using the OLF keyword) contains the above options, you
can:

� Override the DELTA option by specifying any of the other
listing types (for example, NOLIST) in the command line.

� Nullify the XEDIT Auto Display Program by including the
Display Output option DSPL(NO) in the command line.

but you cannot override the Process Statements ID keyword
CNTL (and therefore the process statements contained in the file
MYFILE STMTS A take effect).

Default Naming Convention for Options List File: The command line
uses the following defaults in the naming of the Options List file:

 Chapter 6. Using Enhanced SuperC 197

 Invoking the SuperC Comparison

Command Line OLF ID Used
ASMFSUPC...(... SUPERC OLIST A
ASMFSUPC...(NOOLF... (none)
ASMFSUPC...(OLF(TST1)... TST1 OLIST A
ASMFSUPC...(OLF(TST1 OPTS)... TST1 OPTS A
ASMFSUPC...(OLF(TST1 OPTS A)... TST1 OPTS A

Command Line Priority and Overriding
The following priority sequence is used unless either the NOOLF or NONAMES
option is specified:

1st priority Options from the command line

2nd priority Options from the user-specified Options List file

3rd priority Options from SUPERC OLIST A

4th priority Options from the LINE_DEF tag from the SUPERC NAMES file

Note: If you specify an option in the command line that conflicts with an option in
the Options List file, the option in the Options List file takes precedence.
(SuperC lists the conflicting option in the output listing.)

Compares From FILELIST
You can invoke SuperC from FILELIST. Specify the new and old files followed by a
“(” and the SuperC options.

The new file can be selected from the list of files by using a “/” in the prefix area)

The old file can be named in full (fn ft fm) or, if appropriate, an “=” can be used to
replicate that part of the new file identifier.

An example of SuperC being invoked from the FILELIST is shown in Figure 60. In
this case, the two files are compared with:

� A compare type of LINE (the default)
� XEDIT being invoked to display the results of the comparison.
� A listing type of OVSUM
� No options to be used from an Options List file

 .

� �
JLEVERI FILELIST A� V 1�8 Trunc=1�8 Size=657 Line=1 Col=1 Alt=9

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

NEW3 TESTCASE C1 F 8� 1� 1 �6/11/�4 17.48.�3

NEW53 TESTCASE C1 V 125 2958 3� �6/11/�4 17.48.�3

NEW6� TESTCASE C1 V 1�� 64 1 �6/11/�4 17.48.�3

NEW59 TESTCASE C1 V 74 75 1 �6/11/�4 17.48.�3

asmfsupc / old testcase c1 (xedit ovsum noolf 75 1 �6/11/�4 17.48.�3

NEW56 TESTCASE C1 V 71 22 1 �6/11/�4 17.48.�3

NEW13 TESTCASE C1 F 8� 15 1 �6/11/�4 17.48.�3

1= Help 2= Refresh 3= Quit 4=Sort(type) 5= Sort(date) 6= Sort(Size)

7= Backward 8= Forward 9= FL /n 1�= 11= XEDIT 12= Cursor

� �

Figure 60. Example of Invoking SuperC from FILELIST

198 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

Invoking the Comparison on VSE
On VSE, you invoke the SuperC Comparison as a batch program. You can use
the SuperC Comparison on VSE to compare:

� Two sequential files (VSAM-managed or non-VSAM-managed)
� Two tape files
� One sequential file (VSAM-managed or non-VSAM-managed) and one tape file
� Two complete Librarian sublibraries
� Members of two Librarian sublibraries

The following examples describe the job control statements needed for each of
these comparisons. Study the first example before looking at subsequent
examples. Only the first example describes each statement in detail; subsequent
examples describe only the statements specific to that comparison.

VSE JCL Example 1: Non-VSAM-managed Sequential Files
Figure 61 on page 200 shows simplified VSE JCL for comparing two
non-VSAM-managed sequential files. This example is supplied with SuperC in the
Librarian member ASMFVSC1.Z.

Before running this example, edit the lines highlighted by numbers (such as �1�) as
described in the instructions following the example listing.

 Chapter 6. Using Enhanced SuperC 199

 Invoking the SuperC Comparison

// JOB ASMFVSC1

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

/� ─┐

/� Define "new" file │

/� │

// DLBL new_file_name,'new_file_ID',�,SD │

// EXTENT extent_information │

// ASSGN assign_logical_unit_information ├─ �1�
/� │

/� Define "old" file │

/� │

// DLBL old_file_name,'old_file_ID',�,SD │

// EXTENT extent_information │

// ASSGN assign_logical_unit_information ─┘

/�

/� Define update file (if required)

/�

// DLBL update_file_name,'update_file_ID',�,SD ─┐

// EXTENT extent_information ├─ �2�
// ASSGN assign_logical_unit_information ─┘

/�

/� Note: The listing file is output to SYSLST

/� (If the WIDE process option is used, SYSLST must be

/� assigned to a printer capable of handling lines of

/� at least 2�2 characters.)

/�

/� Run the compare with these options...

/�

// EXEC ASMFSUPC,PARM='options' �3�
�

� ...and these process statements

�

NEWDD new_file_name,attributes ─┬─ �4�
OLDDD old_file_name,attributes ─┘

UPDDD update_file_name �5�
other_process_statements �6�

...

/�

/&

Figure 61. Sample VSE JCL for Comparing Non-VSAM-Managed Sequential Files

�1� Replace new_file_name and old_file_name with your choice of DLBL names
for the files to be compared; also insert these DLBL names in the NEWDD
and OLDDD process statements (see �4�). Replace new_file_ID and
old_file_ID with the names of the files to be compared. Insert appropriate
extent information and assign logical unit information.

Note: The terms “new” and “old” are used only for the sake of identifying the
files being compared, which might or might not be different versions of
the same file.

�2� (Only needed if you specify a “UPD...” process option; see �3�.)

Replace update_file_name with your choice of DLBL name for the update file;
also insert this DLBL name in the UPDDD process statement (see �5�).
Replace update_file_ID with the name of the update file that you want SuperC
to create. Insert appropriate extent information and assign logical unit
information.

Most update files are intended to be used as input to other tools, rather than
being “human-readable” reports (such as the listing file; see �3�). For
instance, if you specify the UPDMVS8 process option, SuperC creates an

200 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

update file that you can use with VSE Librarian. You can use VSE Librarian
to apply to the old file any updates that SuperC found in the new file.

SuperC creates the update file as a non-VSAM-managed sequential file. The
file format, record size and block size depend on the “UPD...” process option
you specified.

For more information on producing an update file, see the process options
whose keywords start with “UPD” on Table 25 on page 226. For a selection
of sample update files, see “Update Files” on page 292.

�3� Replace PARM='options' with a PARM parameter in the following format:

Format of ASMFSUPC PARM parameter for SuperC Comparison

 ┌ ┐─LINECMP───────── ┌ ┐─OVSUML────────
��──PARM──=──'─ ──┼ ┼───────────────── ──┼ ┼─────────────── ───────────────�

└ ┘──compare_typeCMP └ ┘──listing_typeL

�─ ──┬ ┬───────────────── ─'──��
 └ ┘─process_options─

Note: Each option may be separated by either a space or a comma.

compare_type
The type of comparison you want performed: FILE, LINE, WORD, or
BYTE. When specifying the compare type in the PARM parameter, add
the suffix “CMP” (for example, WORD becomes WORDCMP).

For a description of each compare type, see “Compare Type” on
page 186.

listing_type
The type of listing you want from the comparison: OVSUM, DELTA,
CHNG, LONG, or NOLIST. When specifying the listing type in the PARM
parameter, add the suffix “L” (for example, CHNG becomes CHNGL).

For a description of each listing type, see “Listing Type” on page 186.

process_options
Process options are keywords that direct SuperC how to perform the

| comparison or format the listing. Process options can be separated by
| spaces or commas.

For a description of each process option, see “Process Options” on
page 226.

For example:

PARM='LINECMP DPCBCMT DELTAL NOSUMS'

instructs SuperC to:

� Perform a line-by-line comparison. (LINE compare type with “CMP” suffix.)

� Ignore COBOL comment lines. (Process option DPCBCMT ignores lines
with an “�” in column 7.)

� Produce a listing showing changes, without an overall summary section.
(Process option NOSUMS eliminates the group and final summary listing
from the output listing.)

SuperC outputs the listing file to SYSLST. For a selection of sample listing
files, see “Understanding the Listings” on page 269.

 Chapter 6. Using Enhanced SuperC 201

 Invoking the SuperC Comparison

�4� NEWDD and OLDDD are process statements that allow you to:

� Use your own choice of DLBL name for the new file and old file. If you
do not specify NEWDD and OLDDD process statements, you must use
the DLBL names NEWDD and OLDDD.

� Specify file attributes for the new and old files. If you do not specify
NEWDD and OLDDD process statements with file attributes, SuperC
assumes that the (non-VSAM) new and old files contain fixed-length
unblocked records with a record size and block size of 80.

For more information on the NEWDD and OLDDD process statements, see
“DD-VSE DLBL/TLBL Definitions” on page 246.

�5� The UPDDD process statement allows you to use your own choice of DLBL
name for the update file. If you do not specify an UPDDD process statement,
you must use the DLBL name UPDDD for the update file.

�6� Insert any other process statements (one per line) that you want to use.

For example, the following process statements:

CMPCOLM 7:72

LSTCOLM 1:72

instruct SuperC to compare only columns 7 to 72 in the new and old files
(say, for comparing COBOL source without comparing sequence numbers),
but to include in the listing file columns 1 to 72 (that is, the listing contains the
sequence numbers).

For more information on process statements, see “Process Statements” on
page 236.

VSE JCL Example 2: VSAM-managed Sequential Files
Figure 62 shows simplified VSE JCL for comparing two VSAM-managed
sequential files. This example is supplied with SuperC in the Librarian member
ASMFVSC2.Z.

// JOB ASMFVSC2

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// DLBL NEWDD,'new_file_ID',�,VSAM,DISP=(OLD,KEEP)
// DLBL OLDDD,'old_file_ID',�,VSAM,DISP=(OLD,KEEP)
// DLBL UPDDD,'update_file_ID',�,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM='options'
process_statements

...

/�

/&

Figure 62. Sample VSE JCL for Comparing VSAM-Managed Sequential Files

The update file, which is created by SuperC only if you specify an “UPD...” process
option, is a non-VSAM-managed sequential file.

If you want to use DLBL names other than NEWDD, OLDDD, and UPDDD, then
you must specify NEWDD, OLDDD, and UPDDD process statements (as shown in
Figure 61 on page 200).

202 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Comparison

If you specify file attributes with the NEWDD and OLDDD process statements, then
those file attributes override the VSAM catalog entries for the new and old files.

VSE JCL Example 3: VSAM Files
Figure 63 shows simplified VSE JCL for comparing two VSAM files. This example
is supplied with SuperC in the Librarian member ASMFVSC3.Z.

// JOB ASMFVSC3

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// DLBL NEWDD,'new_file_ID',,VSAM,CAT=IJSYSUC
// DLBL OLDDD,'old_file_ID',,VSAM,CAT=IJSYSUC
// DLBL UPDDD,'update_file_ID',�,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM='options'
process_statements

...

/�

/&

Figure 63. Sample VSE JCL for Comparing VSAM Files

The update file, which is created by SuperC only if you specify an “UPD...” process
option, is a non-VSAM-managed sequential file.

If you want to use DLBL names other than NEWDD, OLDDD, and UPDDD, then
you must specify NEWDD, OLDDD, and UPDDD process statements (as shown in
Figure 61 on page 200). In native VSAM, the file's attributes are taken from the
VSAM catalog.

VSE JCL Example 4: Tape Files
Figure 64 shows simplified VSE JCL for comparing two labeled tape files. This
example is supplied with SuperC in the Librarian member ASMFVSC4.Z.

Note: For unlabeled tape input, no // TLBL statement is used for the file
concerned.

// JOB ASMFVSC4

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// TLBL new_file_name,'new_file_ID' �1�
// ASSGN SYS��1,physical_unit_information �2�
// TLBL old_file_name,'old_file_ID' �3�
// ASSGN SYS��2,physical_unit_information �4�
// DLBL update_file_name,'update_file_ID',�,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM='options'
NEWDD new_file_name,attributes ─┬─ �5�
OLDDD old_file_name,attributes ─┘

UPDDD update_file_name
other_process_statements

...

/�

/&

Figure 64. Sample VSE JCL for Comparing Labeled Tape Files

 Chapter 6. Using Enhanced SuperC 203

 Invoking the SuperC Comparison

�1� Replace new_file_name with your choice of TLBL name for the new file to be
compared; also insert this TLBL name in the NEWDD process statement (see
�5�). Replace new_file_ID with the name of the new file to be compared.

�2� Insert appropriate physical unit information for the tape unit holding the new
tape file.

�3� Replace old_file_name with your choice of TLBL name for the old file to be
compared; also insert this TLBL name in the OLDDD process statement (see
�5�). Replace old_file_ID with the name of the old file to be compared.

�4� Insert appropriate physical unit information for the tape unit holding the old
tape file.

�5� NEWDD and OLDDD are process statements that, for tape input, allow you
to:

� Use your own choice of TLBL name for the new file and old file. If you do
not specify NEWDD and OLDDD process statements, you must use the
TLBL names NEWDD and OLDDD.

� Specify file attributes for the new and old files. If you do not specify
NEWDD and OLDDD process statements with file attributes, SuperC
assumes that the new and old files are fixed unblocked with a record size
and block size of 80.

For more information on the NEWDD and OLDDD process statements, see
“DD-VSE DLBL/TLBL Definitions” on page 246.

VSE JCL Example 5: Librarian Members
Figure 65 shows simplified VSE JCL for comparing all like-named members in two
Librarian sublibraries. This example is supplied with SuperC in the Librarian
member ASMFVSC5.Z.

// JOB ASMFVSC5

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// DLBL UPDDD,'update_file_ID',�,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM='options'
NEWDD newlib.sublib
OLDDD oldlib.sublib
other_process_statements

...

/�

/&

Figure 65. Sample VSE JCL for Comparing All Like-Named Members in Two Sublibraries

Members in either sublibrary not having like-named members in the other sublibrary
are not compared, but are reported in the listing file.

The update file, which is created by SuperC only if you specify an “UPD...” process
option, is a non-VSAM-managed sequential file. If you want to use a DLBL name
other than UPDDD for the update file, specify an UPDDD process statement (as
shown in Figure 61 on page 200).

204 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

To restrict a comparison of sublibraries to selected members only, use the SELECT
process statement. For example, the following process statement:

SELECT NEW1.SOURCE:OLD1.SOURCE,SAME.C

instructs SuperC to compare only:

� Member NEW1.SOURCE in the new sublibrary with member OLD1.SOURCE in
the old sublibrary

� Member SAME.C in the new sublibrary with member SAME.C in the old
sublibrary

For more information on the SELECT process statement, see “Select Members
(VSE)” on page 259.

To compare two Librarian members only, you can either:

� Use the SELECT process statement
or
� In the the NEWDD and OLDDD process statements, specify members rather

than entire sublibraries. For example:

NEWDD LIB.NEWSUB.SAME.C

OLDDD LIB.OLDSUB.SAME.C

To compare groups of members, specify asterisk (�) wildcard character in the
member name or type in the NEWDD and OLDDD process statements. For
example:

NEWDD LIB.NEWSUB.NEW�.�

OLDDD LIB.OLDSUB.OLD�.�

Invoking the SuperC Search
The SuperC Search runs on MVS, CMS, and VSE. The following sections describe
how to invoke the SuperC Search on each of these platforms.

Invoking the Search on MVS
On MVS, you invoke the SuperC Search as a batch program. You can use the
SuperC Search on MVS to search:

� A sequential data set
� One, several, or all the members of a partitioned data set
� A VSAM data set
� A concatenated data set

MVS JCL Example
Figure 66 on page 206 shows simplified MVS JCL to run the SuperC Search. This
example is supplied with SuperC in the sample PDS (default is

| ASM.JMQ415A.SASMSAM2) as member ASMFMVS1.

Before running this example, edit the lines highlighted by numbers (such as �1�) as
described in the instructions following the example listing.

 Chapter 6. Using Enhanced SuperC 205

 Invoking the SuperC Search

...

/�

/� Run the search with these options (see �1� and �6�)
/�

//RUN EXEC PGM=ASMFSUPC,REGION=4M,PARM='SRCHCMP process_options' �1�
/�

//STEPLIB DD DSN=#hlq.SASMMOD2,DISP=SHR �2�
/�

/� Define data set to be searched

/�

//NEWDD DD DSN=search_file,DISP=SHR �3�
/�

/� Direct listing data set to SYSOUT

/�

//OUTDD DD SYSOUT=� �4�
//SYSIN DD �

| SRCHFOR 'search_string' �5�
...

| other_process_statements �6�
...

| /�

//

Figure 66. Sample MVS JCL to Run the SuperC Search

�1� Replace process_options with any process options you want to use to
customize how SuperC performs the search or formats the listing.

For a description of each process option, see “Process Options” on page 226.

For example:

PARM='SRCHCMP DPCBCMT COBOL'

instructs SuperC to perform a search:

� Ignoring COBOL comment lines. (Process option DPCBCMT ignores lines
with an “�” in column 7.)

� Ignoring columns 1 to 6. (Process option COBOL ignores columns 1 to 6
which are assumed to be sequence numbers.)

�2� Replace #hlq with the high level qualifier where SuperC is installed (default
| load library is ASM.JMQ415A.SASMMOD2).

�3� Replace search_file with the item to be searched. This can be:

� A sequential data set
� A partitioned data set
� A member of a partitioned data set
� A VSAM data set
� A concatenated data set

If you specify a partitioned data set (PDS) name for search file, SuperC
searches all members in the PDS.

To restrict the search of a PDS to selected members only, use the SELECT
process statement. For example, the following process statement:

SELECT TEST1,TEST2

instructs SuperC to search only members TEST1 and TEST2 of the PDS
specified by search file.

206 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

For more information on the SELECT process statement, see “Select PDS
Members (MVS)” on page 260.

�4� The listing data set, listing the results of the comparison. For example
listings, see “Understanding the Listings” on page 269.

�5� Replace search_string with a string that you want to search for. For
information on specifying search strings, see “Search Strings in the Input File”
on page 255.

�6� Insert any other process statements (one per line) that you want to use.

For example, the following process statement:

DPLINE 'ignore this line'

instructs SuperC to exclude from the search any lines containing the specified
string (“ignore this line”).

For more information on process statements, see “Process Statements” on
page 236.

Invoking the Search on CMS using Menu Input
You can use the SuperC Search on CMS to search:

 � A file
� A file group
� A member within a MACLIB or TXTLIB
� Complete MACLIBs or TXTLIBs

This section describes how to use the Primary Search Menu. This menu allows
you to specify the file to be searched, and other SuperC options. For information
on invoking the SuperC Search directly from the command line without using the
menu, see “Invoking the Search on CMS using Command Line Input” on page 215.

To display the Primary Search Menu (see Figure 67 on page 208):

 � Enter

ASMFSUPC SRCH

on the CMS command line

or

� Press the PF6 key from the Primary Comparison Menu (see “Invoking the
Comparison on CMS using Menu Input” on page 183).

 Chapter 6. Using Enhanced SuperC 207

 Invoking the SuperC Search

� �
HLASM Toolkit Feature SuperC Compare Program - Search Menu

COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

Search File ID ==> Member ==>

Enter Search Strings and Optional operands (WORD/PREFIX/SUFFIX and/or C)

where C denotes Continuation/Additional Match String Requirement

 CAPS ==>

 CAPS ==>

 CAPS ==>

 ASIS ==>

 ASIS ==>

 ASIS ==>

 Optional Section

Selection List ==> (NO / �)

Process Options ==>

Listing File ID ==> (srchfn SRCHFOR A /file-id)

Process Stmts ID ==> (file-ID)

Auto Display Pgm ==> (BROWSE/XEDIT/EPDF etc.)

1=Help 3/6=Primary Menu 4=Quit 5=Proc Stmts 8=Proc Opts ENTER/1�=Exec

� �

Figure 67. SuperC Primary Search Menu

Suppose you want to search for the uppercase string “ABCD” in the file NEW
TEST1 A:

1. Enter the name of the file to be searched in the Search File ID field:

Search File ID ==> new test1 a

2. Enter the string to be searched for in one of the (three) CAPS fields:

 CAPS ==> ABCD

 3. Press Enter

The result of the search is then displayed.

Here are descriptions of each input field on the SuperC Primary Search Menu.
Default values are underlined.

COMMAND
This field allows you to issue CP and CMS commands, such as
FILELIST, ERASE, or RDRLIST.

Search File ID
This field specifies the name of the file to be searched. In almost all
cases, this is a required field.1

SuperC allows the CMS convention of including wildcard characters (“�”)
and equal signs (“=”) as part of the file ID. (However, only the “�”
wildcard character applies for the Search File ID.)

The following examples show the effect of various entries in the Search
File ID field:

1 If a Process Statements file is specified and it contains any SELECTF process statements, the Search File ID name is ignored.

208 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

Note: A macro or text library with a filename containing an “�” (for
example, ABC� MACLIB A or � TXTLIB C) is not processed as
individual MACLIB/TXTLIBs with members. There is no method
for specifying the “concatenation” of more than one
MACLIB/TXTLIB.

Member This field specifies the name of the member, within either a macro
library (MACLIB) or text library (TXTLIB), to be searched. (This field is
only used when the file specified in Search File ID refers to a macro or
text library.) If left blank, all members within the specified library are
selected for the search.

Search String Fields (CAPS, ASIS)
You can specify up to 6 different strings to be searched for in a single
search. Strings can be entered in any of the three CAPS entry fields and
in any of the three ASIS entry fields. (The differences between the
CAPS and ASIS entry fields are explained later in this section; see
“Using the CAPS Entry Field” on page 210.)

You can specify strings as all uppercase characters, all lowercase
characters, or a mixture of both. The case that you use depends on the
entry field used (CAPS or ASIS).

A string may be further qualified as a word, prefix, or suffix, and where it
appears on a line:

Qualifier Meaning

WORD (or W) String must appear as a separate word, that is, be
delimited by spaces or special characters.

PREFIX (or P) String must appear as the first part of some other
text.

SUFFIX (or S) String must appear as the last part of some other
text.

C Indicates continuation. The string must appear on
the same line of input as the string defined in the
previous entry line. (The two strings may appear in
the input line in any order.) Strings without the “C”
qualification are independent of previously specified
lines.

“C” may have further qualifiers:

File ID Specified Meaning
new test1 a Single CMS file

new test� a File group (all with filename “NEW” and a
filetype starting with “TEST” and filemode “A”)

new maclib The entire macro library, NEW

File ID Specified Member Meaning
new maclib c xyz XYZ member in NEW MACLIB C.

new maclib c � All members in NEW MACLIB C.

Note: The Selection List field (see page
211) must = NO.

 Chapter 6. Using Enhanced SuperC 209

 Invoking the SuperC Search

+ The string in the “C” entry line must appear
after the string specified in the previous entry
line.

+n The string in the “C” entry line must start in the
nth position after the string specified in the
previous entry line.

column_range The string must start within this range of columns on
a line.

| Format is: start_column:last_start_column

Strings may be entered as a contiguous character string. If spaces are
included in the string to be searched for, the entire search string must
be enclosed within single quotes. If the string to be searched for

| contains single quotes, each embedded single quote must be
represented by two single quotes in the search string.

| When a string is qualified, the qualifier starts at the first non-space
| character after the (possibly quoted) string.

Hexadecimal strings must be specified using an “X” prefix followed by
the hexadecimal string enclosed in single quotes. Such strings must
contain an even number of valid hexadecimal characters (0 to 9, A to Z).

Using the CAPS Entry Field: Entering a string in one of the CAPS
fields makes SuperC search for occurrences of the specified string in
uppercase only. For example, if you enter the character string “abcd” in
one of the CAPS fields, each occurrence of the string “ABCD” is
searched for, but strings such as “aBcD” or “abcd” or “ABCd” are not
sought.

The contents of each CAPS field is raised to uppercase after it is
entered on the menu line.

Each of the following examples causes a search for all occurrences of
the prefix “WXYZ”:

 CAPS ==> WXYZ prefix
 CAPS ==> wxyz prefix
 CAPS ==> wXyZ prefix

Note: If you use the Process Option ANYC (Any Case) in conjunction
with the CAPS entry, then the string specified is searched for
regardless of case.

Using the ASIS Entry Field: Entering a string in one of the ASIS fields
makes SuperC search for occurrences of the specified string exactly as
specified.

For example, if you enter the character string “abcd” in one of the ASIS
fields, each occurrence of the string “abcd” is searched for, but strings
such as “aBcD” or “ABCD” or “ABCd” are not sought.

The following example causes a search for all occurrences of the prefix
“wXyZ”:

 ASIS ==> wXyZ prefix

Examples of Search Strings:

210 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

Note: You can also specify search strings using any number of
SRCHFOR and SRCHFORC process statements in a process
statement file (see “Process Statements ID” on page 214).
These search strings are used in addition to any search strings
you specify in the menu.

Selection List
This field indicates if the Selection List facility is to be used. Valid
values are:

NO Selection list facility not required.

* Selection list facility required.

Note: The Selection List facility is only applicable when an “�”
(asterisk) is contained within the Search File ID. (In the case of
a macro or text file, an “�” must be contained within the specified
Member name.)

Enter an “�” in the Selection List field to see a list of files from which to
select the ones that you want.

The following examples illustrate the files that are listed for selection
according to the file ID specified:

For details about using the selection list, see “CMS File Selection List”
on page 305 for using the selection list.

Search String Specified Searches For
CAPS ==> ABC

CAPS ==> efg

Lines containing the string “ABC” or
the string “EFG”

CAPS ==> ABC WORD

CAPS ==> EFG C

Strings “ABC” and “EFG”on the same line;
“ABC” must be a complete word

ASIS ==> AbcD PREFIX

All occurrences of the prefix “AbcD”

CAPS ==> 'AB C''D'

The string “AB C'D”

CAPS ==> X'��4CFF'

The hexadecimal string X'004CFF'

CAPS ==> ABC W 5:6�

CAPS ==> EFG W C +

CAPS ==> HIJ C +5

The string “ABC” starting within columns 5 to
60 with the string “EFG” following
somewhere in the same line and the string
“HIJ” starting in the 5th position after “EFG”

File ID Specified Member Files Listed for Selection
new test1 � All files with the filename “NEW” and

the filetype “TEST1”

old test� a All files with the filename “OLD” and a
filetype beginning with “TEST” and
filemode “A”

new txtlib a � All members within the text library
NEW TXTLIB A

new maclib a abc� All members within the macro library
NEW MACLIB A whose name begins
with “ABC”

 Chapter 6. Using Enhanced SuperC 211

 Invoking the SuperC Search

Process Options
You can specify the process options that you want (if any) by:

� Entering them directly in the process option line on the Primary
Search Menu

or

� Selecting them from the Process Options Selection Menu (PF8)

For a full list and description of process options, see “Process Options”
on page 226.

Entering Process Options Directly: If you choose to enter the process
options directly, simply type in each process option keyword on the entry
line (each keyword must be separated by a space). Up to 51 characters
(including spaces) can be entered.

� �
HLASM Toolkit Feature SuperC Compare Program - Search Menu

COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

 . . .

Process Options ==> anyc nosums

...

1=Help 3/6=Primary Menu 4=Quit 5=Proc Stmts 8=Proc Opts ENTER/1

� �

Figure 68. SuperC Primary Search Menu with Process Options Entered Directly

Figure 68 shows two process options entered directly on the Process
Options line:

ANYC (“Any Case”)
NOSUMS (“No Summary Section”)

Selecting Process Options from the Menu: The second way to
specify process options is to select them from the Process Options
Selection Menu. This menu shows the process options that are valid for
a search. To display this menu, press PF8 (see Figure 69 on
page 213).

212 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

� �
 HLASM Toolkit Feature SuperC Compare Program - Search Options 1 of 1)

 Search Options -------- SuperC Compare Program ------------------ (1 of 1)

 COMMAND ==>

 Select option(s) from the following list or "blank" to remove.

/�GE Select option(s) from the following list or “blank” to remove.

 Sel Search Process Options

SEQ - Ignore sequence columns 73-8� on F 8� input source files, or

NOSEQ - Process columns 73-8� as data on F 8� input source files, or

COBOL - Ignore sequence columns 1-6 on F 8� input source files.

S ANYC - Process text lines as upper case.

IDPFX - List filename/member as prefix to each search line found.

XREF - Cross references lines found for each search string.

LPSF - List search and up to six preceding and following lines, or

LMTO - List group totals only, or

LNFMTO - List members/files where no lines were found, or

LTO - List total summary only.

LONGLN - Lists up to 176 columns. Maximum line length = 2�2/2�3.

NOPRTCC - No print control column and page separators.

APNDLST - Append listing report to listing data set.

S NOSUMS - Generate no summary section in the report listing.

| Others:DPACMT,DPADCMT,DPBLKCL,DPCBCMT,DPFTCMT,DPPDCMT,DPPLCMT,DPPSCMT,DPMACMT

(Enter these keywords directly on the main menu options selection lines)

 PF1=Help PF3=Menu PF8=Menu

� �

Figure 69. Example of the SuperC Process Options Selection Menu (Search)

To select a process option, enter an “S” next to it.

Process options which have been selected previously appear with an “S”
alongside them (as for ANYC and NOSUMS in Figure 69).

When you no longer require a process option, you can either clear the
“S” from the Process Options Selection Menu or delete the option
keyword from the Process Option field on the Primary Search Menu.

Listing File ID
This field specifies the name of the listing file generated as a result of
the search. (The SuperC Search always generates a listing file.)

You can:

� Leave this field blank (in which case SuperC allocates a default
name for the listing file)

� Specify a full file ID to be used for the listing file

� Use “�” and “=” symbols (which results in the listing file ID being a
combination of the fn ft fm specified in the Search File ID and the
details you enter for the Listing File ID)

This is best illustrated by some examples:

Search File ID Listing File ID File ID Used
new test a new srchfor a

new test a myname mytype a myname mytype a

� test a $ srchfor a

new test a = listing a new listing a

new� test a � listing a new$ listing a

 Chapter 6. Using Enhanced SuperC 213

 Invoking the SuperC Search

Process Statements ID
This field specifies the name of the file (if any) containing the process
statements to be used in the search.

Process statements (which are similar to process options but require
one or more additional items of information to be specified) are always
passed to SuperC in a file.

For a full list and description of process statements, see “Process
Statements” on page 236.

You can either enter the name of an existing file that contains process
statements, or press PF5 to create a new file and specify the process
statements.

Pressing PF5 displays the Process Statements Entry Menu (see
Figure 70) showing examples of some of the process statements
available and allows you to enter the process statements that you want.

When you exit from the Primary Search Menu, SuperC automatically
generates a file (called SRCHFOR SYSIN A) containing each of the
process statements you have specified. (SRCHFOR SYSIN A is entered
against “Process Stmts ID” on the Primary Search Menu.)

� �
 HLASM Toolkit Feature SuperC Compare Program - Search Statements (1 of 1)

 Enter Process Statements for Statements File:

 ==>

 Examples Explanation

| SRCHFOR 'ABCD' W Search for the word "ABCD"

SRCHFORC 'DEFG' "DEFG" must be on same line as word "ABCD"

CMPCOLM 1:6� 75:9� Search columns 1:6� and 75:9� for string(s).

...

PF1=Help PF3=Menu PF5=Menu PF6=Cancel ENTER=Save Line

� �

Figure 70. Example of the SuperC Process Statements Entry Menu (Search)

Note: When you press PF5, SuperC erases any existing SRCHFOR
SYSIN A file before creating the new file.

Auto Display Pgm
This field specifies the name of an editor or browse program to inspect
the search results:

program name The name of a valid editor or browse program to be
invoked to display the results of the search. (For
example, XEDIT, EPDF, BROWSE)

(space) Results of search not displayed. Editor defaults to
XEDIT.

Note: If no strings are found in the search:

1. The search results are not displayed.
2. The output listing file is still generated.

214 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

Primary Search Menu PF Key Definitions

PF1 Help. Displays the first search help menu.

PF3 SuperC exits from the search process and goes (or returns)
to the Primary Comparison Menu.

PF4 Quit. Terminates the search. Returns to the environment
before SuperC.

PF5 Proc Stmts (Process Statements). Displays the Process
Statements Entry Menu. This menu contains some examples
of the more widely-used process statements. It also has a
field to allow you to input one process statement at a time
into the SRCHFOR SYSIN A file.

Note: When you press PF5, SuperC erases any existing
SRCHFOR SYSIN A file before creating the new file.

PF8 Proc Opts (Process Options). Displays the Process Options
Selection Menu.

PF10 Execute and Quit. Verifies user-input fields, invokes SuperC,
and returns to the environment before SuperC.

ENTER Execute. Verifies user-input fields and invokes SuperC.
After the search has completed, control returns to the
environment before the SuperC Search was invoked.

Invoking the Search on CMS using Command Line Input
You can use the SuperC Search on CMS to search:

 � A file
� Selected files within a file group
� A file group
� A member within a MACLIB or TXTLIB
� Complete MACLIBs or TXTLIBs

This section describes how to invoke the SuperC Search directly from the
command line, without using the Primary Search Menu. For information on using
this menu, see “Invoking the Search on CMS using Menu Input” on page 207.

To invoke the SuperC Search from the CMS command line, use the following
format:

 Chapter 6. Using Enhanced SuperC 215

 Invoking the SuperC Search

��──ASMFSUPC──search_file_ID─ ──(SRCH ──�

�─ ──┬ ┬──('search_string') ────────────────────────────────── ─────────────────�
 ├ ┤──('search_string') ──CNTL(process_statements_file_ID)
 ├ ┤──('search_string') ─PROMPT───────────────────────────

├ ┤──CNTL(process_statements_file_ID──(1)) ─────────────────
 └ ┘─PROMPT───(1) ───

�─ ──┬ ┬────────────────────────── ──┬ ┬──────────── ───────────────────────────��
└ ┘──OLF(option_list_file_ID) │ │┌ ┐──────────

 └ ┘ ───

┴─option─

Note:
1 When no search string is entered on the ASMFSUPC command line, it

must be specified by a SRCHFOR process statement–either contained in
a process statements file specified by the keyword CNTL, or entered via
the Process Statements Entry Menu (displayed using the keyword
PROMPT).

search_file_ID The name of the file (or library) to be searched.

SRCH If followed by a search string (within parentheses and single
quotes), specifies the string to be used in the search.

Note: When the search string is entered directly in the command
line in this way, it is searched for in uppercase only. (If you
want the string searched for regardless of case, use the
ANYC process option.)

If not followed by a search string, one of the following must be
used:

1. The keyword CNTL to specify the process statements file
containing one or more SRCHFOR process statements, each
specifying a search string.

2. The keyword PROMPT to display the Process Statements Entry
Menu from which you can enter one or more SRCHFOR
process statements (each specifying a search string). SuperC
automatically enters these statements in the process statements
file SRCHFOR SYSIN A.

Notes:

1. It is possible to specify a search string in the command line and
one or more additional search_strings (using SRCHFOR
process statements) in the process statements file:

� Whose ID follows the keyword CNTL, or

� SRCHFOR SYSIN A (using the keyword PROMPT to
display the Process Statements Entry Menu).

2. The keywords CNTL and PROMPT cannot be used together.
For further details, see “Process Statement ID” on page 219.

OLF This is the keyword for the Options List File (when used). For
further details, refer to “Options List File” on page 220.

option Each type of option is described in detail following “Types of
Options” on page 217.

Also, see “CMS Command Line Option Directives” on page 266

216 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

and “CMS Command Line Statement Option Directives” on
page 267.

Examples of Invoking the SuperC Search on the CMS Command Line:

To search for the string “ABC” in file TEST1 NEW A, enter:

ASMFSUPC TEST1 NEW A (SRCH('ABC')

To search for the string “ABC” in file TEST1 NEW A, using a SRCHFOR process
statement in your own-named process statements file MYPROC FILE A:

� Specify the process statement SRCHFOR 'ABC' in the file MYPROC FILE A

 � Enter:

ASMFSUPC TEST1 NEW A (SRCH CNTL(MYPROC FILE A)

To search for the string “ABC” in file TEST1 NEW A, using a SRCHFOR process
statement entered via the Process Statements Entry Menu:

 � Enter:

ASMFSUPC TEST1 NEW A (SRCH PROMPT

� When the Process Statements Entry Menu is displayed, enter SRCHFOR 'ABC'

Types of Options
You can specify any of the following options in the CMS command line or in the
Options List file (see page 220):

Member Names
This option specifies the name of a member within a library.

��──NMEM─ ──(search_member_name) ─────────────────────────────────��

For example:

ASMFSUPC MACLIB NEW A (SRCH('DEF') NMEM(MEMB1)

searches for the string “DEF” in member MEMB1 in the macro library
NEW.

Note: Member names can only be used as options when the
search_file_ID specified refers to either a macro or text library.

Listing File
This option specifies the alternative name to be assigned to the listing
file generated as a result of the search process.

��──LISTING─ ──(listing_file_ID) ─────────────────────────────────��

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') LISTING(CMPLIST RESULTS A)

creates a listing file named CMPLIST RESULTS A.

Note: If you do not use the LISTING option, the listing file is generated
with a default ID consisting of:

 Chapter 6. Using Enhanced SuperC 217

 Invoking the SuperC Search

fn Filename of the search file
ft SRCHFOR
fm A

Display Output
This option determines if the results of the search are to be displayed.

 ┌ ┐─(NO)──
��──DSPL─ ──┼ ┼─────── ──��
 └ ┘─(YES)─

NO
Do not display output

YES
Display output

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') DSPL(YES)

causes the search results to be displayed.

Note: If you specify an editor or browse program (see following option),
the “Display Output” option defaults to YES.

For a further description of the Display Output option, see “Display
Output” on page 190.

Auto Display Program
This option is used in conjunction with the Display Output option. It
allows you to use the editor or browse program of your choice (provided
that it is supported in your processing environment). The default is
XEDIT.

Examples:

ASMFSUPC TEST1 NEW A (SRCH('ABC') EPDF

ASMFSUPC TEST1 NEW A (SRCH('ABC') XEDIT

ASMFSUPC TEST1 NEW A (SRCH('ABC') BROWSE

The above examples specify editors EPDF and XEDIT, and browse
program BROWSE, respectively.

For a further description of the Auto Display Program, see page 214.

Process Options
This option specifies the process options to be used in the search
process.

These can be one or more of the process option keywords which are
valid for the SuperC Search. For details of these, see “Process Options”
on page 226.

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') ANYC

218 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

specifies the process option ANYC so that the string “ABC” is searched
for regardless of case. Matches are found, for example, with “abc” and
“AbC” and “ABc” in file TEST1 NEW A.

Option Directives
You can use any of the following option directive keywords:

ERASRC0 Erase listing file if no differences
NOIMSG No information messages
NOOLF No Options List file
PRINT Print results

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') NOOLF

specifies that any options contained in the Options List file are not to be
used in the search.

For further descriptions of each Option Directive, see “CMS Command
Line Option Directives” on page 266.

Process Statement Directives
The following directives are transformed into process statements. They
can be one of the following keywords:

CC Compare columns
LC List columns
LT Line count

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') LC(7:14)

selects columns 7 to 14 to be listed in the output.

For further descriptions of each process statement directive, see “CMS
Command Line Statement Option Directives” on page 267.

Process Statement ID
This option specifies how process statements are to be supplied to the
SuperC Search.

One of two keywords can be used:

CNTL Use the CNTL keyword if you want to use an existing file that
contains the process statements you require.

��──CNTL─ ──(process_statement_file_ID) ──────────────────��

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') CNTL(TSTPRO OPTS A)

specifies that the process statements in file TSTPRO OPTS A
are to be used.

PROMPT
PROMPT indicates to SuperC that the file SRCHFOR SYSIN A
is to be used to supply the process statements and causes the
Process Statements Entry Menu to be displayed. This menu
contains examples of the more widely-used process statements.

 Chapter 6. Using Enhanced SuperC 219

 Invoking the SuperC Search

It also has a field that allows you to input one process statement
at a time into the SRCHFOR SYSIN A file.

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') PROMPT

causes the Process Statements Entry Menu to be displayed.

Note: If SRCHFOR SYSIN A already exists, its contents are
erased before creating the new file.

Options List File
You can use the Options List file to hold a set of default options (to save
you entering them each time on the CMS command line). Any of the
options described in this section can be placed in the Option List file and
take effect unless overridden by options in the command line.

If you do not specify a name for the Options List file, SuperC looks for a
file with the default name SRCHFOR OLIST A and, if found, uses the
options contained in that file for the search process.

However, you can nominate an alternative Options List file by using the
keyword OLF. OLF allows you to specify either a fully-qualified file ID (fn
ft fm) or a partially-qualified file ID for the Options List file that you want
SuperC to use (see “Default Naming Convention for Options List file” on
page 220).

Note: SuperC uses options contained in an OLF-specified Options List
file before those in SRCHFOR OLIST A (see “Command Line
Priority and Overriding” on page 221).

��──OLF─ ──(options_list_file_ID) ────────────────────────────────��

For example:

ASMFSUPC TEST1 NEW A (SRCH('ABC') OLF(MYOPTS FILE A)

specifies that the options in file MYOPTS FILE A are to be used.

Note: Not all options in the Options List file can be overridden since
there is no way to negate them. Take care when considering
which options to include in the file when using OLF.

To examine this further, let's look at an example of an Options
List file containing the following:

XEDIT CNTL(SRCHFOR STMTS A)

If the Options List file that you nominate in the CMS command
line (by using the OLF keyword) contains the above options, you
cannot override the Process Statements ID keyword CNTL (and
therefore the process statements contained in the file SRCHFOR
STMTS A take effect).

Default Naming Convention for Options List file: The command line
uses the following defaults in the naming of the Options List file:

220 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

Command Line OLF ID Used
ASMFSUPC...(... SRCHFOR OLIST A
ASMFSUPC...(NOOLF... (none)
ASMFSUPC...(OLF(TST1)... TST1 OLIST A
ASMFSUPC...(OLF(TST1 OPTS)... TST1 OPTS A
ASMFSUPC...(OLF(TST1 OPTS A)... TST1 OPTS A

Command Line Priority and Overriding
The following priority sequence is used unless the NOOLF option is specified:

1st priority Options from the command line

2nd priority Options from the user-specified Options List file

3rd priority Options from SRCHFOR OLIST A

Note: If you specify an option in the command line that conflicts with an option in
the Options List file, the option in the Options List file takes precedence.
(SuperC lists the conflicting option in the output listing.)

SRCH Process Statement Directive
SRCH is is the command line directive for the SRCHFOR process statement and is
used only for the SuperC Search.

SRCH specifies:

� The string that is to be searched for

� An optional string qualifier:

W Word. String must appear as a separate word. That is, be delimited by one
or more spaces or special characters.

P Prefix. String must appear as the first part of some other text.

S Suffix. String must appear as the last part of some other text.

� A relational operator (where there is more than one string specified):

& And. Both of the strings (either side of the “&”) must appear on the same
line.

| Or. At least one of the strings (either side of the “|”) must appear on the
line.

| Up to 6 relational operators may be used in one SRCH. When more than
| one relational operator is used, they are processed from left to right.
| Parentheses are not permitted.

Example Description

ASMFSUPC...(SRCH('ABC' | 'DEF') Find a line with string “ABC” or string “DEF”

ASMFSUPC...(SRCH('AB C' & 'DEF' W) Find a line with string “AB C” and word
“DEF”

Invoking the Search on VSE
On VSE, you invoke the SuperC Search as a batch program. You can use the
SuperC Search on VSE to search:

� A sequential file (VSAM-managed or non-VSAM-managed)
� A tape file
� One, several, or all of the members of a Librarian sublibrary

 Chapter 6. Using Enhanced SuperC 221

 Invoking the SuperC Search

The following examples describe the job control statements required for each of
these searches. Study the first example before looking at subsequent examples.
Only the first example describes each required statement in detail; subsequent
examples describe only the statements specific to that search.

VSE JCL Example 1: Non-VSAM-managed Sequential Files
Figure 71 shows simplified VSE JCL for searching a non-VSAM-managed
sequential file. This example is supplied with SuperC in the Librarian member
ASMFVSS1.Z.

Before running this example, edit the lines highlighted by numbers (such as �1�) as
described in the instructions following the example listing.

// JOB ASMFVSS1

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

/�

/� Define file to be searched

/�

// DLBL search_file_name,'search_file_ID',�,SD ┐

// EXTENT extent_information ├─ �1�
// ASSGN assign_logical_unit_information ┘

/�

/� Note: The listing file is output to SYSLST.

/� (If the WIDE process option is used, SYSLST must be

/� assigned to a printer capable of handling lines of

/� at least 2�2 characters.)

/�

/� Run the search with these options...

/�

// EXEC ASMFSUPC,PARM='SRCHCMP process_options' �2�
�

� ...and these process statements

�

NEWDD search_file_name,attributes �3�
SRCHFOR 'search_string' �4�

...

other_process_statements �5�
...

/�

/&

Figure 71. Sample VSE JCL for Searching a Non-VSAM-Managed Sequential File

�1� Replace search_file_name with your choice of DLBL name for the file to be
searched; also insert this DLBL name in the NEWDD process statement (see
�3�). Replace search_file_ID with the name of the file to be searched. Insert
appropriate extent information and assign logical unit information.

�2� Replace process_options with any process options you want to use to
customize how SuperC performs the search or formats the listing.

For a description of each process option, see “Process Options” on page 226.

For example:

PARM='SRCHCMP DPCBCMT COBOL'

instructs SuperC to perform a search:

� Ignoring COBOL comment lines. (Process option DPCBCMT ignores lines
with an “�” in column 7.)

222 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

� Ignoring columns 1 to 6. (Process option COBOL ignores columns 1 to 6
which are assumed to be sequence numbers.)

SuperC outputs the listing file to SYSLST. For a selection of sample listing
files, see “Understanding the Listings” on page 269.

�3� NEWDD is a process statement that allows you to:

� Use your own choice of DLBL name for the file to be searched. If you do
not specify a NEWDD process statement, you must use the DLBL name
NEWDD.

� Specify file attributes for the file to be searched. If you do not specify a
NEWDD process statement with file attributes, SuperC assumes that the
(non-VSAM) file to be searched contains fixed-length unblocked records
with a record size and block size of 80.

For more information on the NEWDD process statement, see “DD-VSE
DLBL/TLBL Definitions” on page 246.

�4� Replace search_string with a string that you want to search for. For
information on specifying search strings, see “Search Strings in the Input File”
on page 255.

�5� Insert any other process statements (one per line) that you want to use.

For example, the following process statement:

DPLINE 'ignore this line'

instructs SuperC to exclude from the search any lines containing the specified
string (“ignore this line”).

For more information on process statements, see “Process Statements” on
page 236.

VSE JCL Example 2: VSAM-managed Sequential Files
Figure 72 shows simplified VSE JCL for searching a VSAM-managed sequential
file. This example is supplied with SuperC in the Librarian member ASMFVSS2.Z.

// JOB ASMFVSS2

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// DLBL NEWDD,'search_file_ID',�,VSAM,CAT=IJSYSUC,DISP=(OLD,KEEP)
// EXEC ASMFSUPC,PARM='SRCHCMP process_options'
SRCHFOR 'search_string'

...

other_process_statements
...

/�

/&

Figure 72. Sample VSE JCL for Searching a VSAM-Managed Sequential File

If you want to use a DLBL name other than NEWDD, then you must specify a
NEWDD process statement (as shown in Figure 71 on page 222).

If you specify file attributes with the NEWDD process statement, then those file
attributes override the VSAM catalog entries for the file to be searched.

 Chapter 6. Using Enhanced SuperC 223

 Invoking the SuperC Search

VSE JCL Example 3: VSAM Files
Figure 73 shows simplified VSE JCL for searching a VSAM file. This example is
supplied with SuperC in the Librarian member ASMFVSS3.Z.

// JOB ASMFVSS3

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// DLBL NEWDD,'search_file_ID',,VSAM,CAT=IJSYSUC
// EXEC ASMFSUPC,PARM='SRCHCMP process_options'
SRCHFOR 'search_string'

...

other_process_statements
...

/�

/&

Figure 73. Sample VSE JCL for Searching a VSAM File

If you want to use a DLBL name other than NEWDD, then you must specify a
NEWDD process statement (as shown in Figure 71 on page 222). In native
VSAM, the file's attributes are taken from the VSAM catalog.

VSE JCL Example 4: Tape File
Figure 74 shows simplified VSE JCL for searching a labeled tape file. This
example is supplied with SuperC in the Librarian member ASMFVSS4.Z.

Note: For unlabeled tape input, no // TLBL statement is used.

// JOB ASMFVSS4

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// TLBL search_file_name,'search_file_ID' �1�
// ASSGN SYS��1,physical_unit_information �2�
// EXEC ASMFSUPC,PARM='SRCHCMP process_options'
NEWDD search_file_name,attributes �3�
SRCHFOR 'search_string'

...

other_process_statements
...

/�

/&

Figure 74. Sample VSE JCL for Searching a Labeled Tape File

�1� Replace search_file_name with your choice of TLBL name for the file to be
searched; also insert this TLBL name in the NEWDD process statement (see
�3�). Replace search_file_ID with the name of the file to be searched.

�2� Insert appropriate physical unit information for the tape unit holding the tape
file to be searched.

�3� NEWDD is a process statements that, for tape input, allows you to:

� Use your own choice of TLBL name for the search file. If you do not
specify a NEWDD process statement, you must use the TLBL name
NEWDD.

224 HLASM V1R4 Toolkit Feature User’s Guide

 Invoking the SuperC Search

� Specify file attributes for the search file. If you do not specify a NEWDD
process statement with file attributes, SuperC assumes that the search file
is fixed unblocked with a record size and block size of 80.

For more information on the NEWDD process statement, see “DD-VSE
DLBL/TLBL Definitions” on page 246.

VSE JCL Example 5: Librarian Members
Figure 75 shows simplified VSE JCL for searching all members in a Librarian
sublibrary. This example is supplied with SuperC in the Librarian member
ASMFVSS5.Z.

// JOB ASMFVSS5

// LIBDEF �,SEARCH=(PRD2.PROD)

// OPTION NODUMP

// EXEC ASMFSUPC,PARM='SRCHCMP process_options'
NEWDD srchlib.sublib
SRCHFOR 'search_string'

...

other_process_statements
...

/�

/&

Figure 75. Sample VSE JCL for Searching All Members in a Sublibrary

To restrict the search to selected members only, use the SELECT process
statement. For example, the following process statement:

SELECT TEST1.C,TEST2.C

instructs SuperC to search only members TEST1.C and TEST2.C in the sublibrary
srchlib.sublib.

For more information on the SELECT process statement, see “Select Members
(VSE)” on page 259.

To search only one Librarian member, you can either:

� Use the SELECT process statement
or
� In the NEWDD process statement, specify a member rather than a sublibrary.

For example:

NEWDD LIB.SRCHLIB.TEST1.C

To search a group of members in a sublibrary, specify asterisk (*) wildcard
characters in the member name or type in the NEWDD process statement. For
example:

NEWDD LIB.SRCHLIB.TEST�.�

 Chapter 6. Using Enhanced SuperC 225

 Process Options

 Process Options
You can tailor the comparison or search using process options and process
statements. Process options are single keywords, whereas process statements
consist of a keyword and one or more operands. For details on process
statements, see “Process Statements” on page 236.

On MVS, you specify process options in a JCL PARM parameter:

� For comparison processing, refer to “Invoking the Comparison on MVS” on
page 180.

� For search processing, refer to “Invoking the Search on MVS” on page 205.

On CMS, you specify process options:

� On a menu
– For comparison processing, refer to “Process Options” on page 188.
– For search processing, refer to page 212.

� On the CMS command line
– For comparison processing, refer to page 195.
– For search processing, refer to page 218.

� By means of the Options List file
– For comparison processing, refer to “Options List File” on page 197.
– For search processing, refer to “Options List File” on page 220.

On VSE, you specify process options in a JCL PARM parameter:

� For comparison processing, refer to “Invoking the Comparison on VSE” on
page 199.

� For search processing, refer to “Invoking the Search on VSE” on page 221.

Table 25 lists each of the process option keywords and shows the compare type
for which each process option can be used. The table also shows if the process
option is valid for the SuperC Search.

Following Table 25 are descriptions for each type of process option.

Table 25 (Page 1 of 3). Summary of Process Options

Process Option
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

ALLMEMS All members √ √ √ √ √

ANYC Any case √ √ √

APNDLST1 Append listing output √ √ √ √ √

APNDUPD1 Append update √ √ √ √

CKPACKL1 Check for packed format √ √

CNPML2 Count non-paired member/file lines √

COBOL3 For COBOL source files √ √ √

COVSUM Conditional summary √ √ √ √

DLMDUP Do not list matching duplicate lines √

DLREFM Do not list reformatted lines √

DPACMT Do not process asterisk (*) comment lines √ √ √

226 HLASM V1R4 Toolkit Feature User’s Guide

 Process Options

Table 25 (Page 2 of 3). Summary of Process Options

Process Option
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

DPADCMT Do not process ADA-type comments √ √ √

DPBLKCL Do not process blank comparison lines √ √ √

DPCBCMT Do not process COBOL-type comment lines √ √ √

DPCPCMT Do not process C++ -type comment lines √ √ √

DPFTCMT Do not process FORTRAN-type comment lines √ √ √

DPMACMT Do not process PC Assembly-type comment lines √ √ √

DPPLCMT Do not process PL/I-type comments √ √ √

DPPSCMT Do not process Pascal-type comments √ √ √

FMSTOP Stop immediately a difference found √

FMVLNS Flag moved lines √

GWCBL Generate WORD/LINE comparison change bar listing √ √

IDPFX Identifier-prefixed listing lines √

| LMCSFC 4,9 Load module CSECT file compare √

LMTO5 List group member totals √

LNFMTO5 List not-found member totals only √

LOCS List only changed entries in summary √ √ √ √

LONGLN6 Long lines √ √

LPSF5 List previous-search-following lines √

LTO5 List totals only √

MIXED Mixed input (single/double byte) text √ √

NARROW6 Narrow (side-by-side) listing √

NOPRTCC No printer control columns √ √ √ √ √

NOSEQ3 No sequence numbers √ √ √

NOSUMS No summary section √ √ √ √

REFMOVR Reformat override √

SDUPM9 Search duplicate members √

SEQ3 Ignore standard sequence number columns √ √ √

| SYSIN9| Provide alternative DD name for process statements.| √| √| √| √| √

UPDCMS87 Update CMS8 format √

UPDCNTL7 Update control √ √ √

UPDLDEL7 Update long control √

UPDMVS87 Update MVS8 format √

UPDPDEL7 Update prefixed delta lines √

UPDREV7 Update revision √ √

UPDREV27 Update revision (2) √ √

UPDSEQ07 Update sequence 0 √

UPDSUMO7 Update summary only √ √ √

WIDE6 Wide (side-by-side) listing √

XREF Cross reference strings √

XWDCMP Extended word comparison √

 Chapter 6. Using Enhanced SuperC 227

 Process Options

Table 25 (Page 3 of 3). Summary of Process Options

Process Option
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

Y2DTONLY8 Compare Dates Only √

Note:

1. Not supported on VSE

2. Valid for group LINE comparisons only.

3. COBOL, SEQ, and NOSEQ are mutually exclusive.

4. Not supported for PDSE.

5. LMTO, LNFMTO, LPSF, and LTO are mutually exclusive.

6. LONGLN, NARROW, and WIDE are mutually exclusive.

7. All update (UPD) process options are mutually exclusive. Also, they cannot be used with the process option Y2DTONLY.

8. Y2DTONLY is not supported for change bar listing (process option GWCBL).

9. Supported on MVS only.

The following sections describe each process option in detail:

ALLMEMS Process all members in a PDS including ALIAS members. Without
this process option, when performing a PDS compare, SuperC does
not include members with the ALIAS attribute unless explicitly
specified by a SELECT process statement. The ALLMEMS process
option indicates that all directory entries including those with the
ALIAS attribute are to be processed.

ANYC Any case. Lowercase alphabetic characters (a to z) in source files are
translated to uppercase (A to Z) before comparison processing. (The
actual input files are not modified.)

Use this option to cause strings such as “ABC,” “Abc,” “ABc,” to
compare equally.

Valid for LINE and WORD compare types and Search.

APNDLST The APNDLST process option appends the listing output to the
specified or default listing file. If the file does not exist, it is created.

APNDLST allows you to collect updates from multiple comparisons
into one listing file.

Valid for FILE, LINE, WORD, and BYTE compare types and Search.

Notes:

1. You can also do this by using the SELECT process statement
(and, on CMS, SELECTF) that identifies different files/members
and produces a single listing.

2. APNDLST is not supported on VSE.

APNDUPD The APNDUPD process option appends the update output to the
specified or default update file. If the file does not exist, it is created.

APNDUPD allows you to collect updates from multiple comparisons
into one update file.

Valid for LINE, WORD, and BYTE compare types and Search.

228 HLASM V1R4 Toolkit Feature User’s Guide

 Process Options

Notes:

1. You can also do this by using the SELECT process statement
(and, on CMS, SELECTF) that identifies different files/members
and produces a single listing.

2. APNDUPD is not supported on VSE.

CKPACKL Check for packed format. This option determines if the member or
sequential data set has the standard ISPF/PDF packed header format.
If required, SuperC unpacks the input data set or member during the
comparison.

Valid for LINE and WORD compare types.

Note: CKPACKL is not supported on VSE.

CNPML Count non-paired member/file lines for the group summary list. Use
this option to inventory the total number of processed and
not-processed lines. Otherwise, only the paired entries are listed with
line counts.

Valid for LINE compare type.

Note: CNPML is only used when comparing a group of files.

COBOL Ignore columns 1 to 6 in both COBOL source files. Data in columns 1
to 6 is assumed to be sequence numbers.

Valid for LINE and WORD compare types and Search.

COVSUM Conditional summary section. List the final summary section and/or
the update file for the option UPDSUMO only if there are differences.
This is useful when used in combination with APNDLST or
APNDUPD.

Valid for FILE, LINE, WORD, and BYTE compare types.

DLMDUP Do not list matching duplicate lines. Old file source lines that match
new file source lines are omitted from the side-by-side output listing.

Valid for LINE compare type.

DLREFM Do not list reformatted lines. Old file source lines that have the same
data content (that is, all data is the same except the position and
number of space characters) as the new file lines are omitted from the
listing. Only the new file reformatted lines are included in the output.

Valid for LINE compare type.

DPACMT Do not process asterisk (�) comment lines. Lines with an “�” in
column 1 are excluded from the comparison set. Other forms of
assembler comments are unaffected.

Valid for LINE and WORD compare types and Search.

DPADCMT Do not process ADA type comments. ADA comments are whole or
partial lines that appear after the special “--” sequence. Blank lines
are also considered part of the comment set. This option produces a
comparison listing with comments removed and part comments
blanked.

Valid for LINE and WORD compare types and Search.

 Chapter 6. Using Enhanced SuperC 229

 Process Options

DPBLKCL Do not process blank comparison lines. Source lines in which all of
the comparison columns are blank are excluded from the comparison
set.

Note: It is redundant to use this option with DPADCMT, DPPLCMT,
or DPPSCMT as these process options also bypass blank
comparison lines.

Valid for LINE and WORD compare types and Search.

DPCBCMT Do not process COBOL-type comment lines. COBOL source lines with
an “�” in column 7 are excluded from the comparison set

Valid for LINE and WORD compare types and Search.

DPCPCMT Do not process C++ end-of-line type compiler comments. These are
“//” delimited comments. DPPLCMT may also be used with
DPCPCMT when the source file contains “/� ... �/” comments
delimiters.

Valid for LINE and WORD compare types and Search.

DPFTCMT Do not process FORTRAN-type comment lines. FORTRAN source
lines with a “C” in column 1 are excluded from the comparison set.

Valid for LINE and WORD compare types and Search.

| DPMACMT Do not process PC Assembly-type comments. This uses the IBM PC
| definition for assembler comments: comments begin with either the
| COMMENT assembler directive or a semi-colon (;).

Valid for LINE and WORD compare types and Search.

DPPLCMT Do not process PL/I-type comments. PL/I, C++, C, REXX comments
(/� ... �/) and blank lines are excluded from the comparison set. This
option produces a listing with all comments removed and blanked.

Valid for LINE and WORD compare types and Search.

DPPSCMT Do not process Pascal-type comments. Comments of the type (� ... �)
and blank lines are excluded from the comparison. DPPSCMT and
DPPLCMT may be required for some Pascal compiler comments.
This option produces a comparison listing with comments removed
and part comments blanked.

Valid for LINE and WORD compare types and Search.

FMSTOP Immediately a difference is found between files, stops the compare
with a return code of 1. This option provides a quicker way of telling if
two files are different.

Valid for FILE compare type.

FMVLNS Flag moved lines. Identify inserted lines from the new file that match
deleted lines from the old file. Inserted-moved lines are noted with
“IM” and deleted-moved lines are noted with “DM” in the listing.

Valid for LINE compare type.

Notes:

1. Maximum length for lines is 256 characters.

2. Maximum length for a contiguous block of moved lines is 32K.

230 HLASM V1R4 Toolkit Feature User’s Guide

 Process Options

GWCBL Generates WORD/LINE comparison change bar listings. SuperC lists
new file lines with change bars (“|”) in column 1 for lines that differ
between the new and old files. Deleted lines are indicated by flagging
the lines following the deletion.

Valid for LINE and WORD compare types.

Notes:

1. LINE comparison and WORD comparison may give slightly
different results due to their sensitivity to word and line
boundaries. For further details, see “Reasons for Differing
Comparison Results” on page 313.

2. GWCBL cannot be used with the process option Y2DTONLY.

IDPFX Identifier prefixed. File ID or member name is prefixed to the search
string lines of the listing. See Figure 96 on page 289 for an example
of a IDPFX listing.

Valid for Search.

LMCSFC Load module CSECT file compare list. Lists the name, number of
bytes, and hash sum for each load module CSECT. Unchanged
paired CSECTs are omitted when you specify the LOCS process
option.

Notes:

1. LMCSFC is not supported for PDSE.

2. LMCSFC is supported on MVS only.

Valid for FILE compare type.

LMTO List group member totals. Lists the member summary totals and the
overall summary totals for the entire file/group. See Figure 98 on
page 290 for an example of an LMTO listing.

Valid for Search.

LNFMTO List “not found” member totals only. Lists the members that have no
strings found for the entire file/group.

Valid for Search.

LOCS List only changed entries in summary. Normally, for groups of
files/members being compared, SuperC lists all paired entries in the
Member Summary Listing section of the listing file. Preceding the
names of these pairs is a CHNG field to indicate whether the
comparison found any differences or not. Figure 85 on page 281
shows a FILE comparison without LOCS. Figure 86 on page 282
shows a FILE comparison with LOCS.

When LOCS is specified, only those pairs which have changes are
listed in the summary section.

Valid for group FILE, LINE, WORD, and BYTE compare types.

LONGLN Long lines. LONGLN causes SuperC to create a listing with 203
columns, reflecting up to 176 columns from the source files. This file
may exceed the maximum number of columns handled by many
printers.

Valid for LINE compare type and Search.

 Chapter 6. Using Enhanced SuperC 231

 Process Options

LPSF List previous-search-following lines. Lists the matched string line and
up to 6 preceding and 6 following lines for context. The preceding
and following count may be changed by using the LPSFV process
statement. This allows a count range of 1 to 50 lines. A value of 0 is
invalid, since this produces a normal search without any options.

Valid for Search.

LTO List totals only. List the overall summary totals for the entire
file/member group. See Figure 100 on page 291 for an example of
an LTO listing.

Valid for Search.

MIXED Mixed input. Indicates that the input text may be a mixture of both
single-byte and double-byte (DBCS) text. Double-byte strings are
recognized and handled differently than if MIXED were not specified.
For instance, single byte characters are not valid within double-byte
strings. Special terminal devices (for example, 5520) allow entry of
DBCS characters.

Valid for LINE and WORD compare types.

NARROW Narrow side-by-side listing. Creates a 132/133 variable listing file with
only 55 columns from each source file. Insertions and deletions are
flagged and appear side-by-side in the listing output. Refer to
Figure 82 on page 278 and Figure 83 on page 279 for examples of
NARROW listings.

Valid for LINE comparison.

NOPRTCC No printer control columns. SuperC generates “normal” or NARROW
listing files with record lengths of 133 columns, or WIDE or LONGLN
listing with 203 columns. These listings contain printer control columns
and page separators. NOPRTCC eliminates both the page separators
and page header line. With NOPRTCC, “normal” and NARROW
listings are 132 columns, and WIDE and LONGLN listings are 202.
Section separators and title lines are still generated. This file may be
preferred for on-line “browsing.”

Valid for FILE, LINE, WORD, and BYTE compare types and Search.

NOSEQ No Sequence numbers. Process fixed-length 80-byte record standard
sequence number columns (73 to 80) as data. This option is
extraneous for any record size other than 80.

Valid for LINE and WORD compare types and Search.

NOSUMS No Summary Section. Eliminates the group and final summary section
from the output listing. This allows the user to generate a better
“clean” copy for program inspection. Conversely, it eliminates the
all-problem information in case of errors and option identification.

Valid for LINE, WORD, and BYTE compare types and Search.

REFMOVR Reformat override. Reformatted lines are not flagged in the output
listing. They are, however, counted for the overall summary statistics
and influence the return code since they are a special case of an
insert/delete pair.

Valid for LINE compare type.

232 HLASM V1R4 Toolkit Feature User’s Guide

 Process Options

SDUPM Search duplicate members. Searches all members found in
concatenated PDS data sets, even if more than one member is found
to have the same name. Searches duplicate names even if the search
is for a single member or if members are specified using the SELECT
process statement.

Valid for Search.

Note: SDUPM is supported on MVS only.

SEQ Sequence numbers. Ignore fixed-length 80-byte record standard
sequence number columns. Sequence numbers are assumed in
columns 73 to 80 for such records. This option is invalid for any
record size other than 80.

Valid for LINE and WORD compare types and Search.

| SYSIN Provide alternate DD name for process statements. Syntax is
| SYSIN(DDNAME). The default ddname is SYSIN. If this option is used,
| SuperC only accesses process statements via the supplied ddname. It
| does not attempt to access additional process statements via the
| SYSIN2 DD card.

| Valid for FILE, LINE, WORD, and BYTE compare types and Search.

| Note: SYSIN is supported on MVS only.

UPDCMS8 Update CMS 8 format. UPDCMS8 produces an update file that
contains both control records and source lines from the new input file.
UPDCMS8 requires that the old file has fixed-length 80-byte records
with sequence numbers. The new file may have a variable or fixed
length format with an LRECL ≤ 80.

SuperC may change the status of match lines to insert/delete pairs,
enlarging the sequence number gaps of the old file. The update file
(when properly named) can be used as input to CMS XEDIT. For
information and an example of this update file, see “Update CMS
Sequenced 8 File” on page 295.

Valid for LINE compare type.

UPDCNTL Update Control. Produces a control file which relates matches,
insertions, deletions and reformattings using relative line numbers (for
LINE compare type), relative word positions (for WORD compare
type), or relative byte offsets (for BYTE compare type) within the new
and old file. No source or data from either input file is included in the
output file. “Do not” process options/statements are compatible
selections for the LINE compare type. For information and an
example of this update file, see “Update Control Files” on page 296.

Valid for LINE, WORD, and BYTE compare types.

UPDLDEL Update Long Control with all matches and delta changes. This
reflects the comparison's matches, inserts, and deletes. You can edit
this update file accepting, rejecting, or modifying the changes.

There are control records preceding each change and matching
section. After the changes have been audited, optionally modified,
and the control records removed, you should be able to reuse this
control file as a composite new file.

Valid for LINE compare type.

 Chapter 6. Using Enhanced SuperC 233

 Process Options

UPDMVS8 Update MVS8 format. Produces a file that contains both control and
new file source lines. Sequence numbers from columns 73 to 80 of
the new file are used (when possible) as insert references, while
deletes use sequence numbers from columns 73 to 80 of the old file.
Both files must have fixed-length 80-byte records. The format of the
generated data may be suitable as MVS IEBUPDTE input. For
information and an example of this update file, see “Update MVS
Sequenced 8 File” on page 300.

Valid for LINE compare type.

UPDPDEL Update prefixed delta lines. Produces a control data set containing
header records and complete (up to 32K line length limit) delta lines
from the input source files. Each output record is prefixed with
identification and information. The update data set is a variable-length
data set reflecting the input source files' characteristics.

Valid for LINE compare type.

UPDREV Update Revision. UPDREV produces a copy of the new file with
SCRIPT/VS .rc on/off or IBM BookMaster :rev/:erev revision codes
delimiting most script lines that contain changes.

You may wish to contrast the source lines delimited by the UPDREV
option and a similar flagging of the lines with changes from the output
listing file as produced by the GWCBL process.

Note: The revision character used is controlled by using the
REVREF process statement. For details, see “Revision Code
Reference” on page 255.

A REVREF process statement (for example, REVREF REFID=ABC or
REVREF RCVAL=1) defines the revision level (SCRIPT/VS tags) or
reference ID (IBM BookMaster tags). Alternatively, SCRIPT/VS .rc
delimiters may be controlled by the first record in the new file. (For
example, .rc 2 | as the first record causes level 2 to be used).

Note: IBM BookMaster requires the REFID value to be defined with
a :revision tag and “RUN=YES” attribute to have the change
character inserted in the processed document.

For information and an example of this update file, see “Revision File”
on page 293.

Valid for LINE and WORD compare types.

UPDREV2 Update Revision (2). UPDREV2 is identical to UPDREV with the
exception that data between the following IBM BookMaster tags are
not deleted in the update file:
:cgraphic.

:ecgraphic.

:fig.

:efig.

:lblbox.

:elblbox.

:nt.

:ent.

234 HLASM V1R4 Toolkit Feature User’s Guide

 Process Options

:screen.

:escreen.

:table.

:etable.

:xmp.

:exmp.

Valid for LINE and WORD compare types.

UPDSEQ0 Update Sequence 0 (zero). UPDSEQ0 produces a control file that
relates insertions and deletions to the relative line numbers of the old
file. Both control records and new file source lines are included in the
output file. This option is similar to UPDCMS8 except that it uses
relative line numbers (starting with zero) instead of the sequence
numbers from columns 73 to 80. The control field after a “$”
designates the number of new source lines that follow in the update
file.

Both fixed and variable record length lines are allowed. Fixed-length
records shorter than 80 bytes are padded with spaces to 80. Insertion
lines are full fixed or variable length copies of the new input data set
lines. For information and an example of this update file, see “Update
Sequenced 0 File” on page 301.

Valid for LINE compare type.

UPDSUMO Update Summary only. UPDSUMO produces an update file of 4 lines
(new file ID, old file ID, totals header, single summary line). The
summary line is tagged with a “T” in column 1 and the summary
statistics are located at fixed offsets in the output line. The file has a
record length of 132. For information and an example of this update
file, see “Update Summary Only Files” on page 302.

Valid for LINE, WORD, and BYTE compare types.

WIDE Wide side-by-side listing. Creates a 202/203 variable-length listing file
with 80 columns from each source file. Inserts and deletes are
flagged and appear side-by-side in the listing output. For an example
of a WIDE side-by-side listing, see Figure 84 on page 280.

Valid for LINE compare type.

XREF Cross reference strings. Creates a cross reference listing by search
string. Can be used with IDPFX, LMTO LNFMTO, and LTO. Not
implemented for LPSF.

The XREF option can be useful when more than one search string (or
search condition) is specified. The XREF listing is implemented using
a multiple pass operation for listing the “lines found” for each
individual string. Be aware that XREF adds some additional
processing overhead to the normal search process. For an example
of a search XREF listing, see Figure 92 on page 286.

Valid for Search.

 Chapter 6. Using Enhanced SuperC 235

 Process Statements

XWDCMP Extended WORD comparison. The word delimiter set is extended to
include non-alphanumeric characters (including spaces). For
example, “ABCD(EFGH) JKL” is 2 words using normal WORD
compare type, but 5 (3 words and 2 pseudo-words) with the
XWDCMP process option.

Valid for WORD compare type.

Y2DTONLY Compare Dates Only. Indicates that the comparison process is to be
performed only on the dates defined by the Date Definition process
statements. That is, all data in the input files is ignored in the
comparison process apart from that defined by NY2C, NY2Z, NY2D,
NY2P, OY2C, OY2Z, OY2D, and OY2P process statements. For
further details on these process statements, see “Date Definitions” on
page 263.

Notes:

1. Y2DTONLY causes a “record-for-record” comparison to be
performed between the two input files, whereby dates are simply
checked for being equal or unequal. (The “high/low” comparison
logic that SuperC normally uses is not applied in the case of
Y2DTONLY and, as such, the relative values of the dates have no
bearing on the result of the comparison.)

2. Y2DTONLY is not supported for the process option GWCBL
(change bar listing).

Valid for LINE compare type.

 Process Statements
You can use process statements to tailor your comparison or search according to
your requirements. Process statements provide a powerful and flexible way of
ensuring that only relevant data is compared (or searched) and that meaningful
results are produced.

Broadly speaking, the two major functions that process statements perform are:

� To select the data that is to be compared (or searched) and,

� To handle various date formats.

All process statements require a keyword followed by one or more operands. They
are supplied to SuperC in the Process Statements File.

Table 26 on page 237 lists each of the process statement keywords and shows for
which compare type each keyword can be used. The table also shows whether the
keyword is valid for the SuperC Search.

Note: The sequence in which each of the process statements is listed (in
Table 26 on page 237 and the pages following) is primarily alphabetic
according to the process statement keyword.

However, in the interest of keeping associated “pairs” and “sets” of process
statements together, the prefixes “N” and “O” (indicating the process
statement applies to the new or old file respectively) have been ignored
when sequencing the process statements alphabetically.

236 HLASM V1R4 Toolkit Feature User’s Guide

 Process Statements

Similarly, the three process statements NEWDD, OLDDD, and UPDDD
have been kept together and sequenced according to the “DD” portion of
the keyword.

Table 26 (Page 1 of 2). Summary of Process Statements

Process Statement
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

NCHGT Change text: new or search file √ √ √

OCHGT Change text: old file √ √

CHNGV Change listing value √ √ √

CMPBOFS Compare byte offsets √

CMPCOLM Compare (search) columns: new, old, search files √ √ √

CMPCOLMN Compare columns: new file √ √

CMPCOLMO Compare columns: old file √ √

CMPLINE Compare lines √ √ √

CMPSECT1 Compare sections √ √

COLHEAD2 Define column headings √

NEWDD3| VSE DLBL/TLBL Definition: new file, or MVS alternate
| DDNAME

√ √ √ √ √

OLDDD3| VSE DLBL/TLBL Definition: old file, or MVS alternate
| DDNAME

√ √ √ √

UPDDD3| VSE DLBL/TLBL Definition: update file, or MVS alternate
| DDNAME

√ √ √ √

DPLINE Do not process lines (containing a string) √ √ √

DPLINEC Do not process lines continuation √ √ √

NEXCLUDE4 Exclude data: new file √ √

OEXCLUDE4 Exclude data: old file √ √

NFOCUS4 Focus on data: new file √ √

OFOCUS4 Focus on data: old file √ √

LNCT Line count √ √ √ √ √

LPSFV List previous-search-following value √

LSTCOLM List columns √ √

REVREF Revision code reference √ √

SELECT Select PDS members (MVS) √ √ √ √ √

SELECT Select members/files (CMS) √ √ √ √ √

SELECT Select members (VSE) √ √ √ √ √

SELECTF5 Select files from a list √ √ √ √ √

SLIST Statements listing option √ √ √ √ √

SRCHFOR Search for a string √

SRCHFORC Search for a string continuation √

NTITLE Alternative listing title: new file √ √ √ √ √

OTITLE Alternative listing title: old file √ √ √ √

NY2AGE Aging option: new file √

OY2AGE Aging option: old file √

NY2C Date definition: new file, character format √

NY2Z Date definition: new file, zoned decimal format √

 Chapter 6. Using Enhanced SuperC 237

 Change Text

Table 26 (Page 2 of 2). Summary of Process Statements

Process Statement
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

NY2D Date definition: new file, unsigned packed decimal format √

NY2P Date definition: new file, packed decimal format √

OY2C Date definition: old file, character format √

OY2Z Date definition: old file, zoned decimal format √

OY2D Date definition: old file, unsigned packed decimal format √

OY2P Date definition: old file, packed decimal format √

| WORKSIZE| Maximum number of units for comparison| √| √| √

Y2PAST Global date option √

� Process Statement comment to be printed √ √ √ √ √

.� Process Statement comment not to be printed √ √ √ √ √

Note:

1. Not supported on CMS.

2. Valid only for listing types DELTA and LONG.

3. Supported only on VSE.

4. FILE compare type is valid only with ROWS option of NEXCLUDE, OEXCLUDE, NFOCUS and OFOCUS.

5. Supported only on CMS.

The following sections describe each process statement in detail.

Change Listing Value
The CHGNV process statement specifies the number of match lines listed before
and after a line with a change: insert, delete, or reformat.

Compare Types: LINE, WORD, and BYTE

��──CHNGV──number──��

number A decimal number between 1 and 1000.

Example Description
CHNGV 3 Lists up to 3 lines before and after change.

 Change Text
There are two Change Text process statements:

NCHGT Change new (or search) input text string

OCHGT Change old input text string

These process statements change the input source image before performing the
comparison.

The relative input file (“new” or “old”) is scanned for text that matches a
search_string. If matching text is found, it is replaced by a corresponding

238 HLASM V1R4 Toolkit Feature User’s Guide

 Change Text

output_string before the comparison process is performed. Question marks (“?”)
may be used as “wildcard” characters in the search_string or output_string.

The search_string and output_string need not be the same length. The
output_string may even be a null string.

Compare Types: LINE, WORD, and Search
OCHGT cannot be used for Search.

��─ ──┬ ┬─NCHGT─ ──'search_string' ─,─ ──'output_string' ─────────────────────────�
 └ ┘─OCHGT─

�─ ──┬ ┬─────────────────────────────────────── ──────────────────────────────��
 └ ┘──,start_column ──┬ ┬────────────────────

└ ┘──:last_start_column

search_string A character or hexadecimal string to be replaced in the input
file. For imbedded single quotes, use two consecutive single
quotes ('').

output_string The replacement string to be used in the comparison. For
imbedded single quotes, use two consecutive single quotes
('').

start_column The column in or after which the search_string must start.
| Must be greater than zero.

| last_start_column The last column in which the search_string may start. Must
| be separated from the start_column by a colon, and must be
| equal to or greater than the start_column value. If not
| supplied, is the equivalent of setting the value to
| start_column. To search from the start_column to the end of
| a variable length row, set the last_start_column to a value
| larger than the length of the longest row.

 Chapter 6. Using Enhanced SuperC 239

 Comment Lines

Example Description
NCHGT 'ABCD','XXXX' Changes all strings “ABCD” in the new file to

“XXXX” before performing the comparison.

OCHGT 'ABCD','XXXX',1:5� Changes all strings “ABCD” in the old file, that start
within columns 1 to 50, to “XXXX” before
performing the comparison.

OCHGT 'ABCD','',1:5� Changes all strings “ABCD” in the old file, that start
within columns 1 to 50, to a null string before
performing the comparison. (In the comparison
process, this effectively ignores any “ABCD” strings
found in those positions in the old file.)

NCHGT 'ABCD','AB' Changes all strings “ABCD” in the new file to “AB”
before performing the comparison.

NCHGT X'7B�1',':1',6 Changes all hexadecimal strings X'7B01' in the
| new file, that start in column 6, to the character

string “:1” before performing the comparison.

NCHGT 'PREF???','NPREF' Changes all 7-character strings with the prefix
“PREF” in the new file, to the 5-character string
“NPREF” before performing the comparison.

NCHGT 'PREF???','NPREF??' Changes the first 5 characters of all 7-character
strings with the prefix “PREF” in the new file, to
“NPREF” before performing the comparison.

 Comment Lines
There are two tags that if found at the start of a line turn it into a comment line:

� An asterisk as the first character on a process statement line begins a
printable comment line.

.� A period-asterisk as the first two characters on a process statement line
begins a comment that is not printed in the SuperC listing.

Compare Types: FILE, LINE, WORD, BYTE, and Search

��─ ──┬ ┬─�── ─comment──��
 └ ┘──.�

* Must be in column 1.
.* Must be in columns 1 and 2.

Example Description
� This comment prints in the SuperC listing.

.� This comment does not print in the SuperC listing.

240 HLASM V1R4 Toolkit Feature User’s Guide

 Compare (Search) Columns

Compare Byte Offsets
The CMPBOFS process statement compares a file between byte limits. The start
and stop reference values must be hex values. The statement may be specified on
one complete line or may have separate CMPBOFS statements for each of the six
keyword operands: TOP, BTM, NTOP, NBTM, OTOP, and OBTM.

Compare Type: BYTE

 ┌ ┐────────────────────────
��──CMPBOFS─ ───

┴──┬ ┬─TOP── ─hex_offset─ ─────────────────────────────────────��

 ├ ┤─BTM──
 ├ ┤─NTOP─
 ├ ┤─OTOP─
 ├ ┤─NBTM─
 └ ┘─OBTM─

keyword The keyword may be one of the following:

TOP Top. Defines the first byte offset position in the new and
old byte compare file. Means both NTOP and OTOP.
The lowest byte position is at offset zero.

NTOP New Top. Defines the first byte offset position in the
new file for the byte compare.

OTOP Old Top. Defines the first byte offset position in the old
file for the byte compare.

BTM Bottom. Defines the last byte position in the new and
old byte compare file. Means both NBTM and OBTM.

NBTM New Bottom. Defines the ending point in the new file for
the compare.

OBTM Old Bottom. Defines the ending point in the old file for
the compare.

| hex_offset A hexadecimal value. Do not put in quotes, or 'bracket' it within “X'...'.”

Example Description
CMPBOFS NTOP 1��� OTOP 5E�� Compare the new file from hex offset X'1000' (to

the end of file) with the old file from hex offset
X'5E00' (to the end of file).

CMPBOFS NTOP 1���

CMPBOFS OTOP 5E��

These two separate process statements have the
same effect as the “combined” statement above.

Compare (Search) Columns
There are three Compare Columns process options:

CMPCOLM Applies to both the new and old files, or search file

CMPCOLMN Applies to the new file

CMPCOLMO Applies to the old file

These options compare (or search) the data between column limits of the input files
(or search file). Up to 15 compare ranges or individual columns are allowed and

 Chapter 6. Using Enhanced SuperC 241

 Compare Lines

may be entered on additional CMPCOLM, CMPCOLMN, or CMPCOLMO
statements. All specified ranges of columns must be in ascending order.

Compare Types: LINE and WORD
CMPCOLM is also valid for Search.

Notes:

1. Some process options (SEQ, NOSEQ, and COBOL) also specify columns. The
CMPCOLM, CMPCOLMN, CMPCOLMO process statements override all of
these process options.

2. CMPCOLM, CMPCOLMN, CMPCOLMO cannot be used for WORD compare
type or Search if the input contains a mixture of DBCS and non-DBCS data.

 ┌ ┐─,─────────────────────────────
��─ ──┬ ┬─CMPCOLM── ───

┴─start_column─ ──┬ ┬───────────── ───────────────────────��

├ ┤─CMPCOLMN─ └ ┘──:end_column
 └ ┘─CMPCOLMO─

start_column The starting column number to be compared or searched.
end_column The ending column number of the range of columns to be

compared or searched. (Must be separated from the
start_column by a colon.)

Example Description
CMPCOLM 25:75 Compare columns 25 through 75 in both files (or

search columns 25 through 75 in the search file).

CMPCOLM 3�:6�,75 Compare columns 30 through 60 and column 75 in
both files (or search columns 30 through 60 and
column 75 in the search file).

| CMPCOLMN 48:54 Compare columns 48 through 54 in the new file.

| CMPCOLMO 87 Compare column 87 in the old file.

CMPCOLMN 17:22

| CMPCOLMO 15:2�

Compare columns 17 through 22 in the new file
with columns 15 through 20 in the old file.

 Compare Lines
The CMPLINE process statement compares two files (or search) between line
limits. The statement may be specified on one complete line or may have separate
CMPLINE statements for each of the six keyword operands: TOP, BTM, NTOP,
NBTM, OTOP, and OBTM. The reference values may be line numbers or data
strings.

Compare Types: LINE, WORD, and Search

Note: Keyword operands OTOP and OBTM are invalid for Search.

242 HLASM V1R4 Toolkit Feature User’s Guide

 Compare Lines

 ┌ ┐─────────────────────────────────────
��──CMPLINE─ ───

┴──┬ ┬─TOP── ──┬ ┬─line number───────── ────────────────────────��

├ ┤─NTOP─ └ ┘─┤ String operands ├─
 ├ ┤──OTOP
 ├ ┤─BTM──
 ├ ┤─NBTM─
 └ ┘──OBTM

String operands:
├─ ──,'search_string' ──┬ ┬─────────────────────────────────────── ─────────────┤

└ ┘──,start_column ──┬ ┬────────────────────
└ ┘──:last_start_column

keyword The keyword may be one of the following:

TOP Top. Defines the beginning line in the new (or search)
file and old compare file. Means both NTOP and
OTOP.

NTOP New Top. Defines the beginning line in the new (or
search) file.

OTOP Old Top. Defines the beginning line in the old file.

BTM Bottom. Defines the ending line in the new (or search)
file and old compare file. Means both NBTM and
OBTM.

NBTM New Bottom. Defines the ending line in the new (or
search) file.

OBTM Old Bottom. Defines the ending line in the old
compare file.

line number The relative number of the record in the file.

search_string A character or hexadecimal string enclosed within single quotes.
For imbedded single quotes, use two consecutive quotes ('').

start_column The column in or after which the search_string must start.

last_start_column The last column in which the search_string may start. Must be
separated from the start_column by a colon.

Example Description
CMPLINE TOP 55 BTM 99 Compare from line 55 to line 99 in both files.

CMPLINE NTOP 55 NBTM 99 Compare from line 55 to line 99 in the new file.

CMPLINE NTOP 'ABCD',5:66| Compare from where “ABCD” starts within columns
| 5 to 66 in new file (that is, is found within columns
| 5 to 69).

CMPLINE OTOP 'ABCD' Compare from where “ABCD” first found in old file.

| CMPLINE TOP X'4�E2',1:1| Compare from where “ S” is found for both files.

 Chapter 6. Using Enhanced SuperC 243

 Compare Sections

 Compare Sections
The CMPSECT process statement compares multiple sections from one sequential
data set or PDS member to another sequential data set or PDS member. It is not
valid for a PDS group comparison of more than one member. It is functionally
similar to CMPLINE but allows you to divide the input into one or more sections for
subsequent comparison or searching. A section ID name is needed to associate all
keyword operands to a particular section. Thus, multiple sections of the input can
be compared (or searched) in a single execution of SuperC.

Compare Types: LINE, WORD, and Search

Notes:

1. CMPSECT is not supported for CMS.

2. Keywords OTOP and OBTM are invalid for Search.

 ┌ ┐───────────────────────────────────────
��──CMPSECT──section_ID─ ───

┴──┬ ┬─TOP──── ──┬ ┬─line_number───────── ──────────��

├ ┤─NTOP─── └ ┘─┤ String operands ├─
├ ┤──OTOP──(1)

 ├ ┤─BTM────
 ├ ┤─NBTM───

└ ┘──OBTM──(1)

String operands:
├─ ──,'search_string' ──┬ ┬─────────────────────────────────────── ─────────────┤

└ ┘──,start_column ──┬ ┬────────────────────
└ ┘──:last_start_column

Note:
1 Invalid for Search-For.

section_ID A character string identifier (up to 8 alphanumeric characters, no
| imbedded spaces, can start with a numeric) relating to a section

(group of lines). It allows multiple keywords to be associated with
the same section.

keyword The keyword may be one of the following:

TOP Top. Defines the beginning line in the new (or search)
file and old compare section. Means the same as
NTOP and OTOP.

NTOP New Top. Defines the beginning line in the new (or
search) section.

OTOP Old Top. Defines the beginning line in the old section.

BTM Bottom. Defines the ending line in the new (or search)
file and old compare section. Means both NBTM and
OBTM.

NBTM New Bottom. Defines the ending line in the new (or
search) section.

OBTM Old Bottom. Defines the ending line in the old
compare section.

line_number The line number associated with the keyword.

244 HLASM V1R4 Toolkit Feature User’s Guide

 DD-MVS Alternate DD Names

string A character or hexadecimal string enclosed within single quotes.
For imbedded single quotes, use two consecutive quotes ('').

| start_column The column in or after which the search_string must start.

| last_start_column The last column in which the search_string may start. Must be
| separated from the start_column by a colon.

Note: If a “top” condition is not found (for example, a pattern is incorrect), the
compare continues but usually reports zero lines processed for this data set.

Note: All of the previous statements could be combined to compare multiple
sections of the new and old data sets.

Example Description
CMPSECT SECT�1 TOP 25 BTM 5� Compares lines 25 through 50 in both data

sets or members.

CMPSECT SECT�2 NTOP 6� NBTM 7�

CMPSECT SECT�2 OTOP 65 OBTM 75

Compares lines 60 through 70 in the new
data set to lines 65 through 75 in the old
data set.

CMPSECT SECTX TOP 'PART1:',2:1�

CMPSECT SECTX BTM 'END PART1:',2:1�

Starts the comparison of both data sets
when SuperC detects the string “PART1:”

| starting in columns 2 through 10 and ends
the comparison when SuperC detects the

| string “END PART1:” starting in columns 2
through 10.

CMPSECT SECTY NTOP 'PART2:',2:1�

CMPSECT SECTY OTOP 'PART2:',6:2�

CMPSECT SECTY BTM 'END PART2:',2:1�

Compares a section in the new data set to
a section in the old data set. The section in
the new data set begins with the string
“PART2:” in columns 2 through 10 and ends
with the string “END PART2:” in columns 2
through 10. The section in the old data set
begins with the string “PART2:” in columns
6 through 20 and ends with the string “END
PART2:” in columns 2 through 10.

| DD-MVS Alternate DD Names
| There are three DD-MVS Alternate DD Names process statements:

| NEWDD Name applies to the new (or search) file

| OLDDD Name applies to the old file

| UPDDD Name applies to the update file

| These process statements allow you to specify alternative names for the new and
| old input files, and for the output update file. (The default names are NEWDD,
| OLDDD, and UPDDD respectively.)

| Compare Types: FILE, LINE, WORD, and BYTE.
| NEWDD is also valid for Search.

|

| ��─ ──┬ ┬─NEWDD─ ─DDname──��
| ├ ┤─OLDDD─
| └ ┘─UPDDD─

 Chapter 6. Using Enhanced SuperC 245

 DD-VSE DLBL/TLBL Definitions

| DDname The name of the DD card to be processed.

| Example| Description
| UPDDD FILE3| Update file is referecenced via DD card with the name FILE3.

| NEWDD FILE4| Name of new file DD is FILE4.

DD-VSE DLBL/TLBL Definitions
There are three DD-VSE DLBL/TLBL Definitions process statements:

NEWDD Name applies to the new (or search) file

OLDDD Name applies to the old file

UPDDD Name applies to the update file

For VSE sequential files, these process statements allow you to specify:

� Alternative names for the new and old input files, and for the output update file.
(The default names are NEWDD, OLDDD, and UPDDD respectively.)

� The file attributes for the new and old input files. (The default attributes are:
non-VSAM, fixed, unblocked, record size 80).

For VSE Librarian members, these process statements allow you to select
members from the new and old sublibraries.

Notes:

| 1. NEWDD, OLDDD, and UPDDD process statements as discussed in this section
| apply to VSE only. See also “DD-MVS Alternate DD Names” on page 245.

2. When NEWDD is used in the SuperC Search, references to the “new” file in the
following pages indicate the search file.

3. For more information on the Job Control Language (JCL) required for the new
(or search), old, and update files, see “Invoking the Comparison on VSE” on
page 199 and “Invoking the Search on VSE” on page 221.

VSE (Disk) Files: If the input is a SAM file not managed by VSAM, the BLKSIZE,
RECSIZE, and RECFORM values are required (otherwise the default file attributes
apply).

In the case of a VSAM-managed SAM file, the file attributes are normally checked
for in the VSAM catalog. However, if the attributes are supplied via this statement,
the VSAM catalog definitions are ignored.

For native VSAM files (KSDS, ESDS, RRDS, VRDS), the catalog attributes are
always used.

For fixed files, the block size, record size, and record format are used for
deblocking and memory allocation.

For variable files, the blocksize allocates enough memory to hold a full block, and
the record size is not required.

The file attributes for the output update file are determined by the type of update
process option that is used (see “Process Options” on page 226).

246 HLASM V1R4 Toolkit Feature User’s Guide

 DD-VSE DLBL/TLBL Definitions

VSE (Tape) Files: If the input is a tape file, it can have standard labels or it can
be unlabeled. If the file attributes are not supplied via the NEWDD or OLDDD
statement, they are assumed to be: fixed length, unblocked, record size 80.

VSE Librarian Members: When using the NEWDD or OLDDD process statement
for VSE libraries, the library and sublibrary must be defined.

The NEWDD and OLDDD process statements can be used to:

� Specify just the Librarian library and sublibrary, then:

– Select individual members by using SELECT process statements (for
further details, see “Select Members (VSE)” on page 259).

– Select the whole sublibrary (by not using SELECT process statements).

� Select an individual member by specifying the Librarian library, sublibrary,
member name, and member type.

� Select a group of members by using the wildcard character “�” (asterisk) in
either the member name or the member type (or both). See the following for a
more detailed description of the way in which groups of members can be
selected.

Using the Wildcard Character to Select Groups of Members: You can use a
“�” as a generic indicator as part of the member name or member type (or both) to
select a group of members for subsequent input to either the SuperC Comparison
or the SuperC Search. The “�” may only be used at the beginning (prefix) or the
end (suffix) of the member name or member type.

Examples:

Note: When using the NEWDD and OLDDD process statements with wildcard
(“�”) characters to select a new group of members for comparison with an
old group of members, be aware of the way in which individual members
(within each group) are “paired” by SuperC for subsequent comparison.

SuperC “pairs” members from each (sorted) group:

� According to the portion of the member name or member type which
was represented by the “�” wildcard character (when SuperC initially
selected the members for inclusion in the group), and

� Ignoring the remainder of the member name or member type

Member
Name

Member
Type

Members Selected (Member Name and Type shown
only)

MEM1 TYPA MEM1.TYPA (Selection of a single member)

MEM� TYPA All members with a name starting with “MEM” and a type of
“TYPA”

MEM� � All members with a name starting with “MEM” regardless of
type

�MEM TYP� All members with a name ending with “MEM” and a type
starting with “TYP”

MEM �TYP� Invalid use of wildcard character; can only be used as a
prefix or a suffix to the same item

� � All members (in the sublibrary of the Librarian library)

 Chapter 6. Using Enhanced SuperC 247

 DD-VSE DLBL/TLBL Definitions

For example, if you specified a member name of ABC1� in the NEWDD
process statement (to select all new members with names starting with
“ABC1”), and a member name of XYZ� in the OLDDD process statement (to
select all old members with names starting with “XYZ”), it could result in:

 library.sublibrary.ABC11.type

being compared with

 library.sublibrary.XYZ1.type

which may not be what you wanted.

If you find that members are not being “paired” as you want, use SELECT
process statements to specify each individual pair of members that you
want compared.

Compare Types: FILE, LINE, WORD, and BYTE.
NEWDD is also valid for Search.

��─ ──┬ ┬─NEWDD─ ──┬ ┬──┬ ┬─DLBL_name─ ─┤ Attributes ├────────────────── ─────────��
 └ ┘─OLDDD─ │ │└ ┘─TLBL_name─

└ ┘──lib.sublib ──┬ ┬────────────────────────────────
│ │┌ ┐──.SOURCE ─────
└ ┘──.member_name ──┼ ┼──────────────

└ ┘──.member_type

Attributes:
┌ ┐──,BLKSIZE=8�,RECSIZE=8�,RECFORM=FU ─────────────────────────

├─ ──┼ ┼── ──────────┤
 └ ┘──,BLKSIZE=block_size, ──RECSIZE=record_size,RECFORM= ──┬ ┬─VU─
 ├ ┤─VB─
 ├ ┤─FU─
 └ ┘─FB─

��──UPDDD──DLBL_name───��

DLBL_name Your own choice of DLBL name for the new, old, or update
file.

TLBL_name Your own choice of TLBL name for the new or old file.

lib.sublib Library and sublibrary names. (Librarian members only.)

member_name Name of the member in the sublibrary.

member_type Member type of the member in the sublibrary.

block_size The block size of the new or old file.

record_size The record size of the new or old file.

Note: For variable-length records, this must be the
maximum record length.

RECFORM= The record format of the new or old file:

VU Variable, unblocked
VB Variable, blocked
FU Fixed, unblocked
FB Fixed, blocked

248 HLASM V1R4 Toolkit Feature User’s Guide

 Define Column Headings

Example Description
NEWDD FILE1,BLKSIZE=16�,RECSIZE=8�,RECFORM=FB Name of new file is FILE1 with a block size of 160,

and fixed blocked records of length 80.

OLDDD FILE2,BLKSIZE=12�,RECSIZE=12�,RECFORM=FU Name of old file is FILE2 with fixed unblocked
records of length 120.

UPDDD FILE3 Name of update file is FILE3.

NEWDD FILE4 Name of new file is FILE4 with (default file
attributes) fixed unblocked records of length 80.

NEWDD MAINLIB.LIBA.MEMB1.C Selects new member MEMB1 (with a member type
of C) in sublibrary LIBA, in library MAINLIB.

OLDDD MAINLIB.LIBA.MEMB�.C Selects all old members with a member name
starting with “MEMB” (and with a member type of
C) in sublibrary LIBA, in library MAINLIB.

NEWDD MAINLIB.LIBA.�.C Selects all new members with a member type of C
in sublibrary LIBA, in library MAINLIB.

Define Column Headings
The COLHEAD process statement defines column headings and specifies the
location and format of the corresponding data to be displayed. For an example of a
listing with column headings, see Figure 81 on page 277.

Note: COLHEAD is not available for side-by-side listings. (See “NARROW”
process option on page 232).

Compare Type: LINE

��──COLHEAD─ ──'heading1' ─,─ ──┬ ┬──────────── ─,───────────────────────────────�
└ ┘──'heading2'

�─ ──start_print_column:end_print_column ─,─ ──N ──(1) ────────────────────────────�

 ┌ ┐─C─
�─ ──start_column:last_start_column ── ──(2) ──┼ ┼─── ──────────────────────────────�
 ├ ┤─B─
 ├ ┤─D─
 ├ ┤─P─
 └ ┘─Z─

�─ ──┬ ┬─── ────────────────��
 │ │┌ ┐─C─
 └ ┘─,─ ──O ──(1) ──start_column:last_start_column ── ──(2) ──┼ ┼───
 ├ ┤─B─
 ├ ┤─D─
 ├ ┤─P─
 └ ┘─Z─

Notes:
1 N and O must be followed by a space.
2 C, B, D, P, or Z must be preceded by a space.

heading1 The heading to appear on the first line for the print
column.

heading2 The heading to appear on the second line for the print
column.

start_print_column The starting print column for the heading specified.

 Chapter 6. Using Enhanced SuperC 249

 Do Not Process Lines

end_print_column The ending print column for the heading specified.
(Must be separated from the start_print_column by a
colon.)

Note: If the print-column range is shorter than the
heading specified, the heading is truncated.

N Indicates the operands following relate to the new file.

start_column The starting position in the new file of the data to be
displayed.

last_start_column The ending position in the new file of the data to be
displayed. (Must be separated from the start_column
by a colon.)

Data Format Indicator The format of the data in the new file to be displayed:

C Character
B Binary
D Unsigned packed decimal
P Packed decimal
Z Zoned decimal

O Indicates the operands following relate to the old file.

start_column The starting position in the old file of the data to be
displayed.

last_start_column The ending position in the old file of the data to be
displayed. (Must be separated from the start_column
by a colon.)

Data Format Indicator The format of the data in the old file to be displayed (as
for the new file).

Example Description
COLHEAD 'START','DATE',1:7,N 1:6 P,O 11:16 Defines a print column with a heading of “START” in the

first line and “DATE” in the second heading line, headings
to start in print column 1. The data to be displayed from
the new file is in positions 1 through 6 and is in packed
format. The data to be displayed from the old file is in
positions 11 through 16 and is in (the default) character
format.

Do Not Process Lines
There are two Do Not Process Lines process statements:

DPLINE Do not Process Lines

DPLINEC Do not Process Lines Continuation

These options remove from the compare (or search) set all lines that can be
recognized by either a unique character string or combination of related strings all
appearing on the same input line. DPLINEC is the continuation of the immediately
preceding DPLINE or DPLINEC process statement. All the strings in a
DPLINE/DPLINEC group must be found on the same input line.

A start_column or start-range can also be used to restrict the columns. Relative
start_columns and start-ranges are valid only on DPLINEC statements.

250 HLASM V1R4 Toolkit Feature User’s Guide

 Do Not Process Lines

Compare Types: LINE, WORD, and Search

��──DPLINE─ ──'string' ──┬ ┬─────────────────────────────────────── ───────────��
 └ ┘──,start_column ──┬ ┬────────────────────

└ ┘──:last_start_column

��──DPLINEC─ ──'string' ──┬ ┬── ─────────��
├ ┤──,start_column ──┬ ┬──────────────────── ─
│ │└ ┘──:last_start_column
├ ┤──,+start_column ──┬ ┬────────────────────
│ │└ ┘──:last_start_column
└ ┘──,+ ───────────────────────────────────

string A character or hexadecimal string enclosed within single quotes.
For imbedded single quotes, use two consecutive quotes ('').

start_column The column in, or after which, the string must start.

last_start_column The last column in which the string may start. (Must be
separated from the start_column by a colon.)

+start_column The relative column, following the location of the previous string
(as specified in the previous DPLINE or DPLINEC statement), in,
or after which, this string must start.

last_start_column The relative last column, following the location of the previous
string (as specified in the previous DPLINE or DPLINEC
statement), in which this string may start.

+ The specified string may appear anywhere following the location
of the previous string (as specified in the previous DPLINE or
DPLINEC statement).

 Chapter 6. Using Enhanced SuperC 251

 Exclude Data

Example Description
DPLINE 'ABCDE' Scans all columns for string “ABCDE”

DPLINE 'AbCde',2 Scans only column 2 for start of string “AbCde”

DPLINE 'AbCde',2:2

| DPLINEC 'BDEF'

Same as above example.
String “BDEF” must be on the same line as the
string “AbCde”

DPLINE 'ABCDE',2:5� Scans only columns 2 through 50 for start of string
“ABCDE”

DPLINE 'AB''CD',2:5� Scans only columns 2 to 50 for start of string
“AB'CD”

DPLINE X'C1C27BF1',2:5� Scans only columns 2 to 50 for start of
hexadecimal string X'C1C27BF1'

DPLINE 'ABC'

DPLINEC 'BDEF',+

Scans for string “ABC”;
if found, then scans for string “BDEF” in the same
line (following “ABC”)

DPLINE 'ABC'

DPLINEC 'BDEF',+5

Scans for string “ABC”;
if found, then scans for string “BDEF” starting in the
5th column after the starting column of “ABC”

DPLINE 'ABC'

DPLINEC 'BDEF',+5:12

Scans for string “ABC”;
if found, then scans for string “BDEF” starting
anywhere in the 5th to 12th columns after the
starting column of “ABC”

 Exclude Data
There are two Exclude Data process statements:

| NEXCLUDE Exclude applies to the new file

| OEXCLUDE Exclude applies to the old file

These statements exclude rows or columns of data from the comparison. Up to 254
“exclude” statements can be entered for each file.

Notes:

1. NEXCLUDE and OEXCLUDE statements are mutually exclusive to NFOCUS
and OFOCUS statements respectively if using the same operand keyword
(ROWS or COLS).

2. Do not use the NEXCLUDE or OEXCLUDE process statement if the
Y2DTONLY process statement has been specified.

Compare Types: FILE (ROWS option only) and LINE

��─ ──┬ ┬─NEXCLUDE─ ──┬ ┬─ROWS─ ──start_position:end_position ───────────────────��
 └ ┘─OEXCLUDE─ └ ┘─COLS─

start_position If ROWS operand used, the first row (record) to be excluded
from the comparison.
If COLS operand used, the first column to be excluded from
the comparison.

252 HLASM V1R4 Toolkit Feature User’s Guide

 Focus on Data

end_position If ROWS operand used, the last row (record) to be excluded
from the comparison.
If COLS operand used, the last column to be excluded from
the comparison.
(Must be separated from the start_position by a colon.)

Example Description
NEXCLUDE ROWS 5:9�� Excludes rows (records) 5 through 900 on the new

file.

OEXCLUDE ROWS 1:9�� Excludes rows (records) 1 through 900 on the old
file.

OEXCLUDE COLS 1��:199 Excludes columns 100 through 199 on the old file.

Focus on Data
There are two Focus on Data process statements:

NFOCUS Focus applies to the new file

OFOCUS Focus applies to the old file

These two statements select (or “focus on”) rows or columns of data to be
compared. In other words, only these rows or columns are considered when
performing the comparison (or search) process and all other rows or columns are
ignored. Up to 254 “focus” statements can be entered for each file.

Notes:

1. NFOCUS and OFOCUS statements are mutually exclusive to NEXCLUDE and
OEXCLUDE statements respectively if using the same operand keyword
(ROWS or COLS).

2. Do not use the NFOCUS or OFOCUS process statement if the Y2DTONLY
process statement has been specified.

Compare Types: FILE (ROWS option only) and LINE

��─ ──┬ ┬─NFOCUS─ ──┬ ┬─ROWS─ ──start_position:end_position ─────────────────────��
 └ ┘─OFOCUS─ └ ┘─COLS─

start_position If ROWS operand used, the first row (record) to be selected
for the comparison.
If COLS operand used, the first column to be selected for the
comparison.

end_position If ROWS operand used, the last row (record) to be selected
for the comparison.
If COLS operand used, the last column to be selected for the
comparison.
(Must be separated from the start_position by a colon.)

 Chapter 6. Using Enhanced SuperC 253

 List Previous-Search-Following Value

Example Description
NFOCUS ROWS 28:9� Selects rows (records) 28 through 90 on the new

file.

OFOCUS ROWS 15�:165 Selects rows (records) 150 through 165 on the old
file.

OFOCUS COLS 1�:18 Selects columns 10 through 18 on the old file.

 Line Count
The LNCT process statement specifies the number of lines per page in the listing
file.

Compare Types: FILE, LINE, WORD, BYTE, and Search

��──LNCT──number───��

number A decimal number between 15 and 999999.

Example Description
LNCT 55 Lists up to 55 lines per page.

 List Columns
The LSTCOLM process statement selects a range of columns to be listed in the
output. This statement overrides the defaults that SuperC generates. Column
selections must be contiguous and can be no wider than the output listing line
allocated (55/80/106/176).

Compare Types: LINE and Search

��──LSTCOLM─ ──start_column:last_start_column ───────────────────────────────��

start_column The starting column to be listed.

last_start_column The ending column to be listed. (Must be separated from the
start_column by a colon.)

Example Description
LSTCOLM 275:355 Lists columns 275 through 355 in the output.

List Previous-Search-Following Value
The LPSFV process statement specifies the number of lines preceding and
following the search line found to be listed. The default value is 6.

Compare Type: Search

��──LPSFV──number──��

number A decimal number between 1 and 50.

254 HLASM V1R4 Toolkit Feature User’s Guide

 Search Strings in the Input File

Example Description
LPSFV 2 Lists up to 2 lines before and after the line found.

Revision Code Reference
The REVREF process statement identifies the revision type (IBM BookMaster or
SCRIPT/VS) and level-ID for delimiting UPDREV and UPDREV2 output changes.
The revision delimiter may, alternatively, be specified or indicated by using a
SCRIPT/VS .rc definition statement as the first line of the new input file.

If either the UPDREV or UPDREV2 process option is specified and no REVREF
process statement is in the statements file, or the first new file source line is not a
.rc script definition statement, SuperC defaults the revision definition to a
SCRIPT/VS specification of .rc 1 |.

Note: IBM BookMaster requires the REFID value to be defined with a :revision

tag. Do not forget the “RUN=YES” attribute if you want your document to
have the change-bar inserted in the processed document.

Compare Types: LINE and WORD

��──REVREF─ ──┬ ┬──REFID═name ── ──��
└ ┘──RCVAL═number

REFID=name Name of the revision identifier for the IBM BookMaster
:rev/:erev. tags.

RCVAL=number Numeric revision code for SCRIPT/VS revision tags.

Example Description
REVREF REFID=ABC IBM BookMaster example

:rev refid=ABC. and :erev refid=ABC. tags.

REVREF RCVAL=5 SCRIPT/VS example
.rc 5 on/off delimiters.

Search Strings in the Input File
There are two process options to search for strings in the input file:

SRCHFOR Search a text string in the input file

SRCHFORC Search a text string continuation

These statements search for a specified string in the input Search file. The string
may be further qualified as a word, prefix, or suffix, and where it must be positioned
on the line.

SRCHFORC is the continuation of the immediately preceding SRCHFOR or
SRCHFORC process statement. In the case of a SRCHFOR/SRCHFORC group,
all of the specified strings must occur on the same line for the search to be
successful.

Compare Type: Search

 Chapter 6. Using Enhanced SuperC 255

 Search Strings in the Input File

��──SRCHFOR─ ──'string' ──┬ ┬──── ──┬ ┬─────────────────────────────────────── ──��
├ ┤──,W └ ┘──,start_column ──┬ ┬────────────────────
├ ┤──,P └ ┘──:last_start_column
└ ┘──,S

��──SRCHFORC─ ──'string' ──┬ ┬──── ───�
├ ┤──,W
├ ┤──,P
└ ┘──,S

�─ ──┬ ┬── ─────────────────────────────��
├ ┤──,start_column ──┬ ┬──────────────────── ─
│ │└ ┘──:last_start_column
├ ┤──,+start_column ──┬ ┬────────────────────
│ │└ ┘──:last_start_column
└ ┘──,+ ───────────────────────────────────

string The character or hexadecimal string to be searched for (enclosed
by single quotes). Use two consecutive single quotes ('') for
quotes within the search string.

W Word. String must appear as a separate word. That is, be
delimited by one or more spaces or special characters.

P Prefix. String must appear as the first part of some other text.

S Suffix. String must appear as the last part of some other text.

start_column The column in which the string must start for the search to be
successful. (If an last_start_column is also specified, see
description for that operand.)

last_start_column The “latest” column in which the string can start for the search
to be successful. (Must be separated from the start_column by a
colon.)

+start_column The relative column (starting from the column where the string for
the previous SRCHFOR/SRCHFORC was found) in which the
string must start for the search to be successful. (A
corresponding last_start_column operand can be specified in a
similar way to that for the start_column.)

+ The string specified can occur anywhere after the position of the
previously found string for the search to be successful.

256 HLASM V1R4 Toolkit Feature User’s Guide

 Select Files from a List of Files (CMS)

Example Description
SRCHFOR 'ABC' Searches for string “ABC”

SRCHFOR 'ABC',W Searches for the word “ABC”

SRCHFOR X'4��4' Searches for the hexadecimal string X'4004'

SRCHFOR 'A''bc' Searches for string “A'bc”

SRCHFOR 'ABC',5:1� Searches for string “ABC” starting in positions 5 to
10

SRCHFOR 'ABC',W,5 Searches for the word “ABC” starting in position 5

SRCHFOR 'ABC'

SRCHFORC 'DEF'

| Searches for strings “ABC” and “DEF” in any order
in the same line.

SRCHFOR 'ABC'

SRCHFORC 'DEF',+

Searches for the string “DEF” following the string
“ABC”

SRCHFOR 'ABC'

SRCHFORC 'DEF',W,+

Searches for the word “DEF” following the string
“ABC”

SRCHFOR 'ABC'

SRCHFORC 'DEF',+5

Searches for the string “DEF” in the 5th position
after the string “ABC”

SRCHFOR 'ABC'

SRCHFORC 'DEF',+5

SRCHFORC 'GKL'

Searches for the string “DEF” in the 5th position
after the string “ABC” with the string “GKL” also

| anywhere in the same line

Select Files from a List of Files (CMS)
The SELECTF process statement (for CMS) selects file pairs to be compared or a
single file to be searched. The SELECTF process statement overrides the source
file names from the Primary Compare Menu or the names specified on the CMS
command line.

A single SELECTF process statement may contain a “wildcard” character (“�”)
anywhere in the filename or filetype. (For new and old files, the “�” must be used
in exactly the same way.) Multiple SELECTF process statements may have an “�”
only as the filemode (fm) part of the file ID.

Compare Types: FILE, LINE, WORD, BYTE, and Search

��──SELECTF─ ──┬ ┬ ─new_file_ID──old_file_ID─ ─────────────────────────────────��
 └ ┘─search_file_ID───────────

new_file_ID Fully qualified new file ID: fn ft fm.

old_file_ID Fully qualified old file ID: fn ft fm.

search_file_ID Fully qualified search file ID: fn ft fm.

 Chapter 6. Using Enhanced SuperC 257

 Select Members or Files (CMS)

Example Description
SELECTF NEW1 TEST A OLD1 TEST A Selects files NEW1 TEST A and OLD1

TEST A for comparison with each other.

SELECTF NEW1 TEST � OLD1 TEST � Selects the group of files NEW1 TEST (all
file modes) for comparison with the group of
files OLD1 TEST (all file modes). Files
compared according CMS order.

SELECTF NEW� TEST A OLD� TEST A Selects the group of files with file names
beginning with “NEW” (and file type TEST
and file mode A) for comparison with the
group of files with file names beginning with
“OLD” (and file type TEST and file mode A).
(Valid for single SELECTF statement only.)

SELECTF NEW� TEST A OLD TEST� A Invalid use of “wildcard” character. (“�”
must be used in exactly the same way for
both files.)

SELECTF NEW1 TEST� A (Example of SELECTF being used for
search.) Selects the group of files with file
name NEW1, file type beginning with
“TEST” and file mode of A.

Select Members or Files (CMS)
The SELECT process statement (for CMS) selects members from a macro library
(MACLIB) or a text library (TXTLIB), or selects files in conjunction with a file ID
specified as “� ft fm” for comparison or for being searched. You can specify as
many member/file names as fit on one line. If you need to select additional
members/files, enter a new SELECT statement.

For comparisons, the new members/files are normally compared with old
members/files that have the same names. Use the colon character (:) to compare
members/files that are not named alike.

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

 ┌ ┐─,─────────────────────
��──SELECT─ ───

┴──┬ ┬──new_name:old_name ─────────────────────────────────────��

 ├ ┤─new_name──────────
 └ ┘─search_name───────

new_name The name of a new member/file that is to be compared to an
old member/file.

old_name The name of an old member/file that does not have a
like-named member/file in the new MACLIB/TXTLIB or file
group. This member/file name, if entered, must be separated
from the new_name name by a colon (:).

If the old_name name is not used, SuperC attempts to
compare the new_name to a like-named member/file of the
old MACLIB/TXTLIB or file group.

search_name The name of the member/file that is to be searched.

258 HLASM V1R4 Toolkit Feature User’s Guide

 Select Members (VSE)

Example Description
SELECT NEW1,NEW2 For a MACLIB/TXTLIB:

For a comparison, compares member NEW1 from
the new MACLIB/TXTLIB with the member NEW1
from the old MACLIB/TXTLIB and compares
member NEW2 from the new MACLIB/TXTLIB with
the member NEW2 from the old MACLIB/TXTLIB.

For a search, selects members NEW1 and NEW2
from the MACLIB/TXTLIB to be searched.

For a “� ft fm” file group:

For a comparison, compares filename NEW1 from
the new file group with the filename NEW1 from the
old file group and compares filename NEW2 from
the new file group with the filename NEW2 from the
old file group.

For a search, selects filenames NEW1 and NEW2
from the file group to be searched.

Select Members (VSE)
The SELECT process statement (for VSE) selects members from a sublibrary of a
Librarian library for comparison or for being searched. You can specify as many
member names as fit on one line. If you need to select additional members, enter
a new SELECT statement.

Note: The names of the Librarian library and sublibrary (from which the members
are to be selected) must be specified using NEWDD and OLDDD process
statements (see “DD-VSE DLBL/TLBL Definitions” on page 246).

For comparisons, the new members are normally compared with old members that
have the same names. Use the colon character (:) to compare members that are
not named alike.

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

 ┌ ┐─,───
��──SELECT─ ───

┴──┬ ┬──new_member.member_type:old_member.member_type ─────────��

├ ┤──new_member.member_type ───────────────────────
└ ┘──search_member.member_type ────────────────────

new_member.member_type
The name of a member and its member type in the
sublibrary of the Librarian library in the new file that is
to be compared to a member in the old file.

old_member.member_type
The name of a member and its member type in the
sublibrary of the Librarian library in the old file that does
not have a like-named member in the new file. This
member name and member type, if entered, must be
separated from the new_member name and member
type by a colon (:).

 Chapter 6. Using Enhanced SuperC 259

 Select PDS Members (MVS)

If the old_member name is not used, SuperC attempts
to compare the new_member to a like-named member
in the sublibrary of the Librarian library in the new file.

search_member.member_type
The name of a member and its member type in the
sublibrary of the Librarian library that is to be searched.

Example Description
SELECT NEW1.C,NEW2.C,NEW3.C For a comparison, compares member NEW1.C

from the sublibrary of the Librarian library of the
new file with the member NEW1.C from the
sublibrary of the Librarian library of the old file,
compares member NEW2.C from the sublibrary of
the Librarian library of the new file with the member
NEW2.C from the sublibrary of the Librarian library
of the old file and compares member NEW3.C from
the sublibrary of the Librarian library of the new file
with the member NEW3.C from the sublibrary of the
Librarian library of the old file.

For a search, selects members NEW1.C, NEW2.C,
and NEW3.C from the sublibrary of the Librarian
library to be searched.

SELECT NEW1.C:OLD1.C,MEMBER2.C Compares member NEW1.C from the sublibrary of
the Librarian library of the new file with the member
OLD1.C from the sublibrary of the Librarian library
of the old file and compares member MEMBER2.C
from the sublibrary of the Librarian library of the
new file with the member MEMBER2.C from the
sublibrary of the Librarian library of the old file.

Select PDS Members (MVS)
The SELECT process statement (for MVS) selects members from a PDS for
comparison or for being searched. You can specify as many member names as fit
on one line. If you need to select additional members, enter a new SELECT
statement.

For comparisons, the new members are normally compared with old members that
have the same names. Use the colon character (:) to compare members that are
not named alike.

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

 ┌ ┐─,─────────────────────────
��──SELECT─ ───

┴──┬ ┬──new_member:old_member ─────────────────────────────────��

 ├ ┤─new_member────────────
 └ ┘─search_member─────────

new_member The name of a new PDS member that is to be compared to
an old PDS member.

260 HLASM V1R4 Toolkit Feature User’s Guide

 Statements File Listing Control

old_member The name of an old PDS member that does not have a
like-named member in the new PDS. This member name, if
entered, must be separated from the new_member name by
a colon (:).

If the old_member name is not used, SuperC attempts to
compare the new_member to a like-named member of the
old PDS.

search_member The name of the PDS member that is to be searched.

Example Description
SELECT NEW1,NEW2 For a comparison, compares member NEW1 from

the new PDS with the member NEW1 from the old
PDS and compares member NEW2 from the new
PDS with the member NEW2 from the old PDS.

For a search, selects members NEW1 and NEW2
from the PDS to be searched.

SELECT NEW1:OLD1,MEMBER2 Compares member NEW1 from the new PDS with
the member OLD1 from the old PDS and compares
member MEMBER2 from the new PDS with the
member MEMBER2 from the old PDS.

Statements File Listing Control
The SLIST process statement turns the printing of process statements in the output
listing on and off.

The initial setting of this control is ON.

Compare Types: FILE, LINE, WORD, BYTE, and Search

��──SLIST─ ──┬ ┬─ON── ──��
 └ ┘─OFF─

ON Causes the lines in the process statements file following the SLIST
statement to be listed in the output listing.

OFF Causes the lines in the process statements file following the SLIST
statement to be suppressed in the output listing.

Example Description
SLIST OFF Do not list following process statements.

SLIST ON List following process statements.

 Chapter 6. Using Enhanced SuperC 261

 Work Size

Title Alternative Listing
There are two process statements that let you provide an alternative title:

NTITLE New (or search) listing file title identification

OTITLE Old listing file title identification

These statements allow an alternative file identification to be used in the output
listing (instead of the default identifiers “New File ID” and “Old File ID”).

Compare Types: FILE, LINE, WORD, BYTE, and Search (NTITLE only)

��─ ──┬ ┬─NTITLE─ ──'title_name' ──��
 └ ┘─OTITLE─

title_name The alternative title to be used on the output listing to identify
either the “new” file (NTITLE) or the “old” file (OTITLE). The
title name must be in single quotes and may be up to 54
characters in length. Use two consecutive quotes for quotes
within the title name.

Example Description
NTITLE 'New Title' Change title heading for new (or search) file to

“NEW TITLE”

OTITLE 'Old Title' Change title heading for old file to “OLD TITLE”

| Work Size
| The WORKSIZE process statement allows the maximum size of the comparison set
| to be adjusted for comparing large files.

| If WORKSIZE exceeds 99999, then the SuperC LINE comparison DELTA listing
| type may result in wider columns for LEN N-LN# and O-LN#. Typically, these
| columns contain 5-digit values. However, when WORKSIZE exceeds 5 digits, and
| providing the standard record length of the listing is not affected, the columns are
| extended to contain 7-digit values. If the length of the input source lines in the
| listing are such that 7-digit values cannot fit, the report outputs 5-digit values by
| default, and only reports 7-digit values when significant characters would otherwise
| be lost.

| Compare Type: FILE, LINE, WORD, BYTE. It is ignored if specified on a
| SEARCH.

|

| ┌ ┐─32���────
| ��──WORKSIZE─ ──┼ ┼────────── ──��
| └ ┘─max_size─

| max_size The maximum number of units for comparison. Maximum value is
| 9999999.

262 HLASM V1R4 Toolkit Feature User’s Guide

 Date Definitions

 Year Aging
There are two process statements for year aging:

NY2AGE Aging applies to the new file

OY2AGE Aging applies to the old file

These statements age all of the defined dates in either the new or old file. That is,
the number of years specified is added to the “year” portion of each defined date in
the file concerned.

Note: Dates are defined by the Date Definition process statements NY2C, NY2Z,
NY2D, NY2P, OY2C, OY2Z, OY2D and OY2P; see “Date Definitions.”

Compare Type: LINE

��─ ──┬ ┬─NY2AGE─ ─years──��
 └ ┘─OY2AGE─

years A number (0 to 999) indicating the number of years by which all defined
dates in the file are to be aged.

Example Description
OY2AGE 28 Ages all defined dates in the “old” file by 28 years

before being compared. The listing shows the
original date. For example, a defined date in the
“old” file with a value equating to March 1, 1997, is
aged to March 1, 2025 before being compared to
its equivalent in the “new” file.

 Date Definitions
There are eight process statements that set date definitions:

NY2C New file, date in character format
NY2Z New file, date in zoned decimal format
NY2D New file, date in unsigned packed decimal format
NY2P New file, date in packed decimal format
OY2C Old file, date in character format
OY2Z Old file, date in zoned decimal format
OY2D Old file, date in unsigned packed decimal format
OY2P Old file, date in packed decimal format

Notes:

1. If any Date Definition process statements are used, a Y2PAST process
statement should also be used so that the “century” portion of the date can be
determined where necessary. (If a Y2PAST process statement is not present,
a default fixed window based on the current year is used.)

2. For a description of each date format (character, zone, decimal and packed),
see “Date Formats (Keyword suffixes: C, Z, D, P)” on page 265.

3. If any Date Definition process statements are used, an information line is
generated on the listing output (see Figure 80 on page 276).

4. Do not use any Date Definition process statements if using the COLHEAD
process statement.

 Chapter 6. Using Enhanced SuperC 263

 Date Definitions

Defines the location and format of a date field on the input file. Up to 254 date
definition statements can be entered for each file. The matching of the new to the
old dates is performed according to the sequence that the statements are entered.
That is, the first defined old date is matched to the first defined new date.

| If the number of date definition statements for one file differ from the number of
date definition statements for the other file, the location and format details for the
“missing” date definition statements are assumed to be the same as their
counterpart date definition statements for the other file.

Compare Type: LINE

��─ ──┬ ┬─NY2C─ ───�
 ├ ┤─NY2Z─
 ├ ┤─NY2D─
 ├ ┤─NY2P─
 ├ ┤─OY2C─
 ├ ┤─OY2Z─
 ├ ┤─OY2D─
 └ ┘─OY2P─

 ┌ ┐───
�─ ───

┴──start_column:last_start_column ─date_format─ ──┬ ┬──────────── ────────��

 └ ┘ ─ ───(1) ─EMPTY─

Note:
1 The EMPTY keyword, when used, must be preceded by a space

start_column The first position of the date in the input file.

last_start_column The last position of the date in the input file. (Must be
separated from the start_column by a colon.)

date_format A mask representing the format of the date.

For a Julian date, the mask must be either YYDDD or
YYYYDDD.

For date formats other than Julian, the mask must contain 2
“D”s (representing the day part of the date field), 2 “M”s
(representing the month), and either 2 or 4 “Y”s (representing
the year) or, if the date contains a year only, it must contain
either 2 or 4 “Y”s.

If the date is character, there may also be a separator
between the different parts. In this case, you can represent
the position of the separators by one of the following:

| S (indicates that this position within the date is not used
| in comparison)
| . (period, used in comparison)
| / (forward slash, used in comparison)
| : (colon, used in comparison)

Note: The length of the date_format mask must correspond
to the length of the date in the input file as indicated
by the values of start_column and last_start_column.

EMPTY This keyword is optional. If it is entered, the defined date field
is checked for containing zeros, spaces, low-values, or
high-values before commencing the comparison process. If

264 HLASM V1R4 Toolkit Feature User’s Guide

 Date Definitions

any of these values are found, the date is not converted
according to the Y2PAST criteria but instead is converted to
an extended format with the initial value. For example, a
date defined by the process statement OY2C YYMMDD which
contains all zeros is compared as “YYYYMMDD” with a value
of zeros.

Example Description
NY2C 1:8 MMDDYYYY 9:16 MMDDYYYY 21:28 YYYYMMDD The new file has dates in character format in

columns 1 to 8, 9 to 16 and 21 to 28.

OY2P 5:8 YYMMDD 9:12 YYMMDD The old file has dates in packed decimal format in
columns 5 to 8 and 9 to 12.

OY2P 1�1:1�4 MMDDYY The old file has a date in packed decimal format in
columns 101 to 104,

NY2Z 1�1:1�8 YYYYMMDD The new file has a date in zoned decimal format in
columns 101 to 108.

NY2C 1�1:11� YYYY.MM.DD The new file has a date in character format (with
separators) in columns 101 to 110.

OY2C 93:98 DDMMYY EMPTY The old file has a date in character format in
columns 93 to 98. If the date field contains zeros,
spaces, low-values, or high-values, the date in the
old file is converted before being compared to an
extended format (DDMMYYYY) with a value of all
zeros, spaces, low-values, or high-values
respectively.

Date Formats (Keyword suffixes: C, Z, D, P)

C Character date data.

Examples:

'96' is represented as hexadecimal X'F9F6'

If using a MMDDYY format, March 21, 1996 is represented as
hexadecimal X'F0F3F2F1F9F6'

Z Zoned decimal date data. The date can be represented as follows:

X'xyxy' to X'xyxyxyxyxyxyxyxy'

y is hexadecimal 0 to 9 and represents a date digit.
x is hexadecimal 0 to F and is ignored.

Examples:

'96' is represented as hexadecimal X'F9C6' or X'0906'

'03211996' is represented as hexadecimal
X'F0F3F2F1F1F9F9C6' or X'0003020101090906'

P Packed decimal date data. The date can be represented as follows:

X'zyyx' to X'zyyyyyyyyx'

y is hexadecimal 0 to 9 and represents a date digit.
x is hexadecimal A to F and is ignored.
The z part is normally zero but is not ignored.

Examples:

 Chapter 6. Using Enhanced SuperC 265

 CMS Command Line Option Directives

'96' is represented as hexadecimal X'z96F' or X'z96C'

'1996' is represented as hexadecimal X'z1996C'

'03211996' is represented as hexadecimal X'z03211996x' (the x
part is ignored).

'96203' (a Julian date) is represented as hexadecimal X'96203C'

D Unsigned packed decimal date data. The date can be represented as
follows:

'yy' to 'yyyyyyyy'

y is hexadecimal 0 to 9 and represents a date digit.

Examples:

'96' is represented as hexadecimal X'96'

'03211996' is represented as hexadecimal X'03211996'

 Global Date
The Y2PAST process statement specifies a 100-year period (used for determining
the century-part of a date when only a 2-digit year has been specified). The
Y2PAST process statement uses either a fixed or sliding window.

Note: The Y2PAST process statement should always be used if any of the Date
Definition process statements (NY2C, NY2Z, NY2D, NY2P, OY2C, OY2Z,
OY2D, OY2P) have also been used.

Compare Type: LINE

��──Y2PAST─ ──┬ ┬─fixed─── ───��
 └ ┘─sliding─

fixed A 4-digit number indicating a fixed window.
sliding A 1-digit or 2-digit number indicating a sliding window.

Example Description
Y2PAST 1986 A fixed window specifying a 100-year period from

1986 to 2085.

Y2PAST 7� A sliding window specifying (based on the current
year being 2001) a 100-year period from 1931 (70
years in the past) to 2030.

Y2PAST 5 A sliding window specifying (based on the current
year being 2001) a 100-year period from 1996 (5
years in the past) to 2095.

CMS Command Line Option Directives
Command option directives are options that the SuperC EXEC intercepts and
interprets. They are not passed to the SuperC program as parameters like process
options.

266 HLASM V1R4 Toolkit Feature User’s Guide

 CMS Command Line Statement Option Directives

ERASRC0 Erase the listing file if the return code from the SuperC program is
zero (that is: for a compare, the files were the same; for a search, no
matches were found).

Note: If you do not specify the ERASRC0 command line option
directive, a listing file is generated (unless you have used the NOLIST
listing type) even when the return code is zero.

MENU Display the Primary Comparison Menu after accepting the input
parameter list. The options on the CMS command line are verified
and put into the proper fields of the Primary Comparison Menu. This
allows you to use SuperC menu mode from FILELIST and also uses
the Options List file.

Notes:

1. If you do not specify the MENU command line option directive,
SuperC performs the comparison immediately you press Enter.

2. The MENU line command option directive does not apply to the
SuperC Search.

NOIMSG No information messages. Do not generate information messages.
Warning and error messages should still be displayed.

NONAMES The SUPERC NAMES � file is not to be used in determining the
options to be sent to the SuperC Comparison.

Notes:

1. The NONAMES line command option directive does not apply to
the SuperC Search.

2. Refer to “Command Line Priority and Overriding” on page 198.

NOOLF The default-named Options List file is not to be used in determining
the options to be sent to SuperC.

Notes:

1. For comparisons, the default name for the Options List file is
SUPERC OLIST A

2. For searches, the default name for the Options List file is
SRCHFOR OLIST A

3. NOOLF only suppresses the use of the default-named Options
List file. If you have entered the OLF keyword on the CMS
command line (to specify your own-named Options List file) and
you have also entered NOOLF, any options contained in your
own-named Options List file are still used.

PRINT Print the comparison results.

CMS Command Line Statement Option Directives
Command line statement option directives are options that are interpreted and
transformed into SuperC process statements. (The newly-created process
statements are passed to SuperC in the temporary control file, SUPERC $SYSIN$
A.)

 Chapter 6. Using Enhanced SuperC 267

 CMS Command Line Statement Option Directives

For a full description of each process statement, see “Process Statements” on
page 236.

CC Compare Columns. This is the command line directive for the Compare
Columns (CMPCOLM) process statement. It allows you to select specified
columns of data (by entering either single column numbers or ranges of
column numbers) to be compared from each file or to be searched from
the search file. Up to 15 separate single column numbers and column
ranges can be specified.

 ┌ ┐─,──────────────────────────────────
��─ ──CC(───

┴──┬ ┬─column_number──────────────────) ─────────────────��

└ ┘──start_column:last_start_column

Note:
1 Separator can be a comma or a space.

column_number The single-column to be compared or searched.

start_column The starting column to be compared or searched.

last_start_column The ending column to be compared or searched.
(Must be separated from the start_column by a colon.)

Example Description

ASMFSUPC...(CC(2:75)... Compare columns 2 to 75 in both
files (or search those columns in the
search file).

ASMFSUPC...(CC(1:1�,25:45,75)... Compare columns 1 to 10, 25 to 45,
and column 75 in both files (or
search those columns in the search
file).

ASMFSUPC...(CC(1:1� 25:45 75)... Same as previous example.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

LC List Columns. This is the command line directive for the List Columns
(LSTCOLM) process statement. It allows you to selectively list a range of
columns to be listed in the listing output file. Only one column range may
be specified (enclosed within parentheses). The column range is denoted
by the first column number, a colon (:), and the last column number (with
no spaces on either side of the colon).

Example Description

ASMFSUPC...(LC(1:45)... List columns 1 to 45.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

LT Line Count. This is the command line directive for the LNCT process
statement. LT indicates how many lines of output should appear on each
page. The line count value (enclosed within parentheses) must range
between 15 and 999999.

Example Description

ASMFSUPC...(LT(55)... List 55 lines per page.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

268 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

RR Revision Code Reference. This is the command line directive for the
REVREF process statement and is used in conjunction with the UPDREV
process option. Use REFID to indicate :rev. and :erev. tags for IBM
BookMaster documents and .rc for other SCRIPT/VS documents. In either
case, the details are enclosed within parentheses following the RR
command line statement option directive.

Example Description

ASMFSUPC...(UPDREV RR(REFID=LVl2) IBM BookMaster revision reference
identifier.

ASMFSUPC...(UPDREV RR(RCVAL=1) SCRIPT/VS (not IBM BookMaster)
revision code.

Valid for LINE and WORD compare types. (Not Search.)

Understanding the Listings
SuperC allows you to produce a range of listings (reports) which provide detailed
information on the results of your comparison or search.

General Listing Format
The format and content of each type of listing depends on:

� Whether you are using the SuperC Comparison or the SuperC Search

� The listing type used (see “Listing Type” on page 186)

Note: The NOLIST listing type suppresses the generation of any listing output
or listing file.

� Whether you are comparing (or searching) a single file or a file group

� The compare type used (in the case of the SuperC Comparison)

� The process options used

� The process statements used

| Note: Dates in the heading lines on the sample listing output in this document
| appear in the format MM/DD/YYYY. This is the date format for VSE and CMS
| listings. The dates in the heading lines for MVS outputs appear in the format
| YYYY/MM/DD.

How to View the Listing Output
The listing output is always written to a listing file (unless the NOLIST listing type is
used), from which you can subsequently print the listings.

For details on the naming of the listing file:

� On MVS, see “Invoking the Comparison on MVS” on page 180.

� On CMS, see “Listing File ID” on page 187.

� On VSE, see “Invoking the Comparison on VSE” on page 199.

On CMS, the listing output is also normally displayed on the screen immediately
after the comparison or search process has finished.

The following pages contain:

 Chapter 6. Using Enhanced SuperC 269

 Understanding the Listings

� A description of the general format of the comparison listing (page 270),
followed by examples of various listings produced by the SuperC Comparison.

� A description of the general format of the search listing (page 283), followed by
examples of various listings produced by the SuperC Search.

Notes:

1. Some of the sample listings have been edited to fit on a page. An “|...|” shows
text has been removed.

2. The sample listings shown are for CMS. Most cases show, “CMS” in the page
heading and CMS-style file IDs (fn ft fm).

However, the format and content of the listing output is almost identical,
regardless of which platform you are using to run SuperC. The only significant
differences are:

On MVS � “MVS” is shown in the page heading

� PDS member names are shown

� In the case of file groups, PDS names are shown

On VSE � “VSE” is shown in the page heading

� Librarian library, sublibrary, member names, and member types are
shown

� In the case of file groups, Librarian library, and sublibrary names
are shown

The Comparison Listing
SuperC comparison listings consist of 4 basic parts (although not all parts are
present for all types of listing output produced):

� Page Headings (see below)
� Listing Output Section (see page 271)
� Member Summary Listing (CMS) (see page 273)
� Overall Summary Section (see page 275)

 Page Headings
SuperC generates a page heading at the top of each page. The heading consists of
two lines of information.

| 1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 12.31 PAGE 1

| NEW: NEW TEST1 A OLD: OLD TEST1 A

| Figure 76. Example of Page Heading Lines for the Comparison Listing

Figure 76 shows typical page heading lines. The first line contains:

� Printer control page eject character (“1” in column one. Not present when the
NOPRTCC process option is specified)

� “Platform-identifier” This is one of “CMS,” “MVS,” or “VSE.”

� Program identification title including version and the version date: V1R5M0
(06/11/2004)

� The date and time of the compare

270 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

� The page number

Note: The program version and program date are important when reporting
suspected SuperC problems.

The second heading line identifies the new and old files. Normally this line shows
the file IDs of the new and old files. However, if the NTITLE and OTITLE process
statements have been specified then the corresponding alternative file titles are
shown instead of the file IDs.

Listing Output Section
The listing output section shows where and what the changes are. Figure 77 is an
example of a Listing Output Section for a LINE comparison with a listing type of
DELTA.

�1� LISTING OUTPUT SECTION (LINE COMPARE)

�2� ID SOURCE LINES |...| TYPE LEN N-LN# O-LN#

�3� ----+----1----+----2----+-|...|-+----8

�4� I - 97�521 ����� |...| RPL= 1 ����1 ����1

�5� INFO Date cols 11:15 packed 2|...|

�6� D - 97�522 ����

�5� INFO Date cols 11:14 packed 1|...|

Figure 77. Example of the Listing Output Section of the Comparison Listing

�1� Section title line. It tells you that this is a LINE comparison. Possible
compare types are BYTE, FILE, LINE, and WORD.

�2� Column header line.

ID A two-column prefix code that identifies the status of
the line. See “Listing Prefix Codes” on page 272.

SOURCE LINES The actual text or data from the source files. Under
this heading, the actual data from the files is listed.

TYPE Further breakdown of the ID field. See “Type of
Difference Codes” on page 273 for information on
TYPE codes.

LEN The “length” or number of consecutive lines of the
selected type.

N-LN# Indicates the relative record (line) number of this line
(or where it is to be inserted) in the new source file.
Numbers are in decimal.

O-LN# Indicates the relative record (line) number of this line
(or where it was deleted from) in the old source file.
Numbers are in decimal.

�3� The scale of the column positions of the input source lines.

�4� An inserted (I) line. The RPL in TYPE indicates that it is a replacement
line. This replacement involves the line 00001 in both files.

Note: Occasionally, you may see some “unusual” characters on the
inserted (I) and deleted (D) lines. These characters simply
represent data that is in a non-character (and therefore not

 Chapter 6. Using Enhanced SuperC 271

 Understanding the Listings

directly printable) format in the input record and should be
ignored.

�5� An information line that is generated on a comparison listing when a
Date Definition process statement is used (see “Date Definitions” on
page 263) and when the preceding inserted (I) line or deleted (D) line
contains a date. The information line shows you the content of the date
field as it exists on the input file and the date as used in the
comparison. For a full example, see Figure 80 on page 276.

�6� A deleted (D) line.

Listing Prefix Codes: SuperC output lines are flagged with the following prefix
codes listed under the ID column:

(space) Match No prefix code means the data is the same in both files.

I Insert Data that is in the new file, but is missing2 from the sequence in
the old file.

D Delete Data that is in the old file, but is missing2 from the sequence in
the new file.

DR Delete Replace For BYTE compare type only. The bytes in the old file
that were replaced by the bytes shown in the preceding insert (I) line.

RN Reformat New For LINE compare type only. A reformatted line in the
new file. This line contains the same data as the old file line, but with
different spacing.

RO Reformat Old For LINE compare type only. A line in the old file that is
reformatted in the new file. This line is not shown if the DLREFM
process option is used.

MC Match Compose For WORD compare type only. A line containing
words that match. The line may also contain spaces to show the
relationship between the matching words and any inserted or deleted
words. Inserted and deleted words are shown in following insert
compose (IC) and delete compose (DC) lines. See Figure 87 on
page 283 for an example using a WORD compare type.

IC Insert Compose For WORD compare type only. A line containing
words from the new file that are not in the old file. This line usually
follows a match compose (MC) line.

DC Delete Compose For WORD compare type only. A line containing
words from the old file that are not in the new file. This line usually
follows a match compose (MC) or insert compose (IC) line.

IM Insert Moved For comparison listings created using the FMVLNS (flag
moved lines) process option. A line in the new file that also appears in
the old file, but has been moved. If the line was reformatted, this is
indicated by a flag to the right of the listing.

DM Delete Moved For comparison listings created using the FMVLNS (flag
moved lines) process option. A line in the old file that also appears in
the new file, but has been moved. If the line was reformatted, this is
indicated by a flag to the right of the listing.

2 “Missing” data is data that is missing from the data sequence but may exist in some other part of the file.

272 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

| Change Bar For comparison listings created using the GWCBL
(generate WORD/LINE comparison change bar listing) process option.
A change bar showing that words/lines were either inserted or deleted.

Type of Difference Codes: At the far right of some listings are headings that
provide additional information about the numbers and types of differences SuperC
has found. Headings you may see are:

MAT= Number of matched lines.

RFM= Number of reformatted lines.

RPL= Number of replaced lines.

INS= Number of lines that are in the new file, but missing in the old file.

DEL= Number of lines that are in the old file, but missing in the new file.

IMR= Number of lines in the new file that have been moved from where they
were in the old file and reformatted. Listing should show a matching
“DMR=” flag for a line in the old file.

DMR= Number of lines in the old file that have been moved and reformatted in
the new file. Listing should show a matching “IMR=” flag for a line in
the new file.

IMV= Number of lines in the new file that have been moved from where they
were in the old file. Listing should show a matching “DMV=” flag for a
line in the old file.

DMV= Number of lines in the old file that have been moved in the new file.
Listing should show a matching “IMV=” flag for a line in the new file.

Member Summary Section (CMS)
SuperC generates the member summary section when you specify either a file
group comparison or use a macro library (MACLIB) or text library (TXTLIB) as
input. The member summary section is really two sections with a page separator
between them.

Figure 78 on page 274 shows an example of the two member summary sections
for a FILE compare type.

The first section indicates which files were compared and whether they were found
to be different or the same. In Figure 78 on page 274, NEW TEST1 A was
compared to OLD TEST1 A and NEW TEST2 A was compared to OLD TEST2 A.
Both comparisons found differences. Following the member statistics are the group
statistics. As this was a FILE comparison, the statistics are in terms of files and the
number of bytes in each file.

Note: Different compare types produce slightly different results in the first section.

The second part of the member summary section shows all of the members from
both the new and old file groups which were not paired (and hence not compared).
In Figure 78 on page 274, only OLD TEST3 A from the old file group was not
compared to any file from the new group.

 Chapter 6. Using Enhanced SuperC 273

 Understanding the Listings

�1� MEMBER SUMMARY LISTING (FILE COMPARE)

�2� DIFF SAME FILE NAMES N-BYTES O-BYTES

�3� �� NEW TEST1 A5 OLD TEST1 A5 24� 24�

�� NEW TEST2 A5 OLD TEST2 A5 24� 24�

 ---------------------- ------- -------

�4� GROUP TOTALS 48� 48�

�5� 2 TOTAL FILES PROCESSED AS A GROUP

�6� 2 TOTAL FILES PROCESSED HAD CHANGES

�7� � TOTAL FILES PROCESSED HAD NO CHANGES

�8� � TOTAL NEW FILES NOT PAIRED

�9� 1 TOTAL OLD FILES NOT PAIRED

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 NEW: NEW TEST� A OLD:

MEMBER SUMMARY LISTING (FILE COMPARE)

NON-PAIRED NEW GROUP FILES | NON-PAIRED OLD GR

| �1�� OLD TEST3 A5

Figure 78. Example of the Member Summary Section of the Comparison Listing

�1� Section Header. In this context, “member” can refer to either members
of a MACLIB or TXTLIB, or members of a file group.

�2� Header line. Consists of several column headers.

DIFF Contains “��” when the new and old files differ.

SAME Contains “��” when the new and old are the same.

FILE NAMES The file names or paired members of the file group or
MACLIB/TXTLIB compared.

N-BYTES Number of bytes processed in the new member.

O-BYTES Number of bytes processed in the old member.

N-LINES (Not shown) Number of lines processed in the new
member.

O-LINES (Not shown) Number of lines processed in the old
member.

N-HASH-SUM (Not shown) SuperC generated a hash value for the
new member.

O-HASH-SUM (Not shown) SuperC generated a hash value for the
old member.

Note: The hashsums of files can be used to compare two files that are
not physically on the same system. If the hashsum of a file on system
A is different from the hashsum of a file on system B, then the files can
be said to be different. If the hashsum of the files are identical, there is
a high probability that the files are the same. You should also compare

274 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

the number of lines and number of bytes as secondary confirmation that
the files are the same.

�3� Group (file) file statistics.

�4� Group totals header line.

�5� Total number of files that were processed as a group.

�6� Total number of files compared that had differences.

�7� Total number of files compared that had no differences.

�8� Total number of new files that were not paired (and therefore were not
compared).

�9� Total number of old files that were not paired (and therefore were not
compared).

�1�� OLD TEST3 A5 was present in the old file group. It could not be paired
with a similarly named file in the new file group and was not processed.

Overall Summary Section
The overall summary section gives the overall statistics of the comparison process.
Figure 79 is a representative example of an overall summary section.

�1� LINE COMPARE SUMMARY AND STATISTICS

�2� 2 NUMBER OF LINE MATCHES �8� 1 TOTAL CHANGES (PAIRED+NONPAIR

�3� � REFORMATTED LINES �9� 1 PAIRED CHANGES (REFM+PAIRED

�4� 1 NEW FILE LINE INSERTIONS�1�� � NON-PAIRED INSERTS

�5� 1 OLD FILE LINE DELETIONS �11� � NON-PAIRED DELETES

�6� 3 NEW FILE LINES PROCESSED
�7� 3 OLD FILE LINES PROCESSED

�12� LISTING-TYPE = OVSUM �13� COMPARE-COLUMNS = 1:72

�14� LONGEST-LINE = 8�
�15� PROCESS OPTIONS USED: NONE

Figure 79. Example of the Overall Summary Section of the Comparison Listing

Figure 79 shows the following information about the comparison:

�1� The first word of the title tells you the type of comparison. The overall
summary is provided for BYTE, FILE, LINE, and WORD compare types.

�2� Of the 3 lines in each file, 2 from the new file matched 2 corresponding lines
of the old file. These are called matching lines.

�3� There are no reformatted lines.

�4� There is 1 inserted line in the new file.

�5� The old file contains 1 line that is missing from the new source file.

�6� 3 lines from the new file were processed.

�7� The old file also has a total of 3 lines.

�8� The total number of changes is a summation of items �9�, �1��, and �11�.
It is a convenient number that best represents the change activity of the two
compared files.

 Chapter 6. Using Enhanced SuperC 275

 Understanding the Listings

�9� The total number of reformats and paired changes. This represents a sum
of items that may be considered to be a single change. That is, some
changes are made in pairs and need only be counted as a single instance of
a change.

�1�� There were no non-paired inserts. Non-paired inserts are changes to the
new file that have no relationship to the old file (that is, no deletes from the
old file occurred in the same area).

�11� There were no non-paired deletes. Non-paired deletes are changes to the
old file that have no relationship to the new file (that is, no inserts to the new
file occurred in the same area).

�12� The listing type is OVSUM. This is the listing type option selected for the
comparison. Other options are: DELTA, CHNG, and LONG.

�13� SuperC compared columns 1 through 72. This value provides a convenient
reference for confirming if all of the columns in the line have been compared
or only some portion of the line.

�14� The longest line length of any line in either file is 80 characters.

�15� No process options were used.

Examples of Comparison Listings
The following represent some of the output types available from SuperC.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 12.31 PAGE 1

 NEW: D1 A A OLD: D2 A A

LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#

 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

 MAT= 1

I - 97�522 Õ†—¢ RPL= 1 ����2 ����2

INFO Date cols 11:15 packed 2�97�522 comp=(2�97 �5 22)

D - 97�522 Õ†—¢

INFO Date cols 11:14 packed 97�522 comp=(1997 �5 22)

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 12.31 PAGE 1

 NEW: D1 A A OLD: D2 A A

LINE COMPARE SUMMARY AND STATISTICS

1 NUMBER OF LINE MATCHES 1 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

� REFORMATTED LINES 1 PAIRED CHANGES (REFM+PAIRED INS/DEL)

1 NEW FILE LINE INSERTIONS � NON-PAIRED INSERTS

1 OLD FILE LINE DELETIONS � NON-PAIRED DELETES

2 NEW FILE LINES PROCESSED

2 OLD FILE LINES PROCESSED

LISTING-TYPE = DELTA COMPARE-COLUMNS = 1:72 LONGEST-LINE = 8�

PROCESS OPTIONS USED: SEQ(DEFAULT)

THE FOLLOWING PROCESS STATEMENTS (USING COLUMNS 1:72) WERE PROCESSED:

 Y2PAST 1987

NY2P 11:15 YYYYMMDD

OY2P 11:14 YYMMDD

NFOCUS COLS 1:2�

OFOCUS COLS 1:2�

Figure 80. Example of Comparison Listing with Dates Being Compared

In Figure 80, the two date definition process statements have each caused an
information (“INFO”) line to be generated. The information line shows:

276 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

� The position of the defined date in the record.

� The contents of the defined date field.

� The date as it was actually compared. In the second information line, you can
see the defined date has a 2-digit year portion (“97”) but has actually been
compared using a 4-digit year portion (“1997”).

For further details, see “Date Definitions” on page 263.

Note: Occasionally, you may see some “unusual” characters on the inserted (I)
and deleted (D) lines. These characters simply represent data that is in a
non-character (and therefore not directly printable) format in the input record
and should be ignored.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 14.38 PAGE 1

 NEW: D1 A A OLD: D2 A A

LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#

 Account Birth Surname

 Number Date MAT= 1

I - 111222 1997�1�1 Jones RPL= 1 ����2 ����2

D - 111222 97�1�2 Jones

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 14.38 PAGE 1

 NEW: D1 A A OLD: D2 A A

LINE COMPARE SUMMARY AND STATISTICS

1 NUMBER OF LINE MATCHES 1 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

� REFORMATTED LINES 1 PAIRED CHANGES (REFM+PAIRED INS/DEL)

1 NEW FILE LINE INSERTIONS � NON-PAIRED INSERTS

1 OLD FILE LINE DELETIONS � NON-PAIRED DELETES

2 NEW FILE LINES PROCESSED

2 OLD FILE LINES PROCESSED

LISTING-TYPE = DELTA COMPARE-COLUMNS = 1:72 LONGEST-LINE = 8�

PROCESS OPTIONS USED: SEQ(DEFAULT)

THE FOLLOWING PROCESS STATEMENTS (USING COLUMNS 1:72) WERE PROCESSED:

COLHEAD 'Account','Number',1:8,N 1:6 C,O 1:6 C

COLHEAD 'Birth','Date',1�:2�,N 7:11 P,O 7:1� P

COLHEAD 'Surname',,22:61,N 12:51 C,O 11:5� C

Figure 81. Example of Comparison Listing with Column Headings (Using COLHEAD)

In Figure 81, COLHEAD process statements have been used to generate column
headings (“Account Number,” “Birth Date,” and “Surname”) for the corresponding
input data. For further details, see “Define Column Headings” on page 249.

 Chapter 6. Using Enhanced SuperC 277

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 15.1�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID NEW FILE LINES ID OLD FILE LINES N-LN# O-LN#

 ----+----1----+----2|...|5----+ ----+----1----+----2|...|5---

RN-This line is reforma|...|" file | RO-This line is reforma|...|"new ����1 ����1

This line is the sam|...| | This line is the sam|...| ����2 ����2

I -This line differs fr|...|. | D -This line differs fr|...|. ����3 ����3

This line is the sam|...| | This line is the sam|...| ����4 ����4

I -This line is in the |...|ld". | |...| ����5

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 15.1�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)

2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS

1 OLD FILE LINE DELETIONS � NON-PAIRED DELETES

5 NEW FILE LINES PROCESSED

4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 8�

PROCESS OPTIONS USED: SEQ(DEFAULT) NARROW NOPRTCC

��ASMFSUPC INFORM�4��, LISTING LINES MAY BE TRUNCATED DUE TO LIMITING OUTPUT LINE

WIDTH.

Figure 82. Example of a NARROW Side-by-Side Listing

In Figure 82, the new and old files are shown side-by-side. The NARROW listing
type allows SuperC to output 55 columns from each file. Notice how the inserts
and deletes are horizontally aligned with each other.

278 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID NEW FILE LINES ID OLD FILE LINES N-LN# O-LN#

 ----+----1----+----2|...|5----+ ----+----1----+----2|...|5---

RN-This line is reforma|...|" file | RO-This line is reforma|...|"new ����1 ����1

This line is the sam|...| | |...| ����2 ����2

I -This line differs fr|...|. | D -This line differs fr|...|. ����3 ����3

This line is the sam|...| | |...| ����4 ����4

I -This line is in the |...|ld". | |...| ����5

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)

2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS

1 OLD FILE LINE DELETIONS � NON-PAIRED DELETES

5 NEW FILE LINES PROCESSED

4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 8�

PROCESS OPTIONS USED: SEQ(DEFAULT) NARROW DLMDUP NOPRTCC

��ASMFSUPC INFORM�4��, LISTING LINES MAY BE TRUNCATED DUE TO LIMITING OUTPUT LINE

WIDTH.

Figure 83. Example of a NARROW Side-by-Side Listing (with DLMDUP)

Figure 83, is similar to the previous example (Figure 82 on page 278) except that
the process option DLMDUP has been used to suppress the matched lines from
the old file section. This simplifies the combined listing output, allowing the
changes to stand out more clearly.

 Chapter 6. Using Enhanced SuperC 279

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID N|...| ID O|...| TYPE LEN TYPE LEN N-LN# O-LN#

 ----+----1|...|+----8 ----+----1|...|+----8

RN-This line |...|���1�� | RO-This line |...|���1�� RFM= 1 ����1 ����1

This line |...|���2�� | |...| MAT= 1 ����2 ����2

I -This line |...|���3�� | D -This line |...|���3�� INS= 1 DEL= 1 ����3 ����3

This line |...|���4�� | |...| MAT= 1 ����4 ����4

I -This line |...|���5�� | |...| INS= 1 ����5

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)

2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS

1 OLD FILE LINE DELETIONS � NON-PAIRED DELETES

5 NEW FILE LINES PROCESSED

4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 8�

PROCESS OPTIONS USED: SEQ(DEFAULT) WIDE DLMDUP NOPRTCC

Figure 84. Example of a WIDE Side-by-Side Listing

In Figure 84, the new and old files are shown side-by-side in a WIDE listing.
SuperC lists 80 columns from each file. Notice how the inserts and deletes are
horizontally aligned with each other.

Note: The output file has a LRECL of 202/203 and may require special processing
and printer capability to obtain a hard copy. Refer to the previous NARROW option
examples if the large LRECL requirement cannot be satisfied and a side-by-side
listing is still required.

280 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�6/11/2��4) �6/11/2��4 16.46

 NEW: PACKAGE ANNOUNCE A1 + SELECTF FILE LIST OLD: PACKAGE

MEMBER SUMMARY LISTING (FILE COMPARE)

 DIFF SAME FILE NAMES N-BYTES O-BYTES N-LINES

�� PACKAGE ANNOUNCE A1:PACKAGE ANNOUNCE E1 1121� 51148 241

 �� PACKAGE EXEC A5:PACKAGE EXEC E5 151749 151646 4311

�� PACKAGE HELP A5:PACKAGE HELP E5 7�683 7�683 1631

 �� PACKAGE HELPCMS A5:PACKAGE HELPCMS E1 58 65 4

�� PACKAGE MENU A5:PACKAGE MENU E5 168�3 168�3 426

�� PACKAGE MODULE A1:PACKAGE MODULE E1 1276�4 126�76 4

 �� PACKAGE PACKAGE A5:PACKAGE PACKAGE E5 24�8 24�8 42

---------------------- ------- ------- -------

 GROUP TOTALS 38�515 418829 6659

Column 78 -------------------------------------->O-LINES N-HASH-SUM O-HASH-SUM

Column 8� --->1147 C18E675F F5CE6�31

(Continuation of previous data lines) 431� 2D2DF797 E�F1D82�

 1631 8A�5CE27 8A�5CE27

 6 B1879676 F�11E226

 426 BAC�D5A9 BABFD5A9

 4 4DF43D5A 3E82�FA9

 42 B29FA936 B29FA936

 7566

7 TOTAL FILES PROCESSED AS A GROUP

5 TOTAL FILES PROCESSED HAD CHANGES

2 TOTAL FILES PROCESSED HAD NO CHANGES

� TOTAL NEW FILES NOT PAIRED

� TOTAL OLD FILES NOT PAIRED

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

SELECTF PACKAGE ANNOUNCE A1 PACKAGE ANNOUNCE E1

SELECTF PACKAGE EXEC A5 PACKAGE EXEC E5

SELECTF PACKAGE HELP A5 PACKAGE HELP E5

SELECTF PACKAGE HELPCMS A5 PACKAGE HELPCMS E1

SELECTF PACKAGE MENU A5 PACKAGE MENU E5

SELECTF PACKAGE MODULE A1 PACKAGE MODULE E1

SELECTF PACKAGE PACKAGE A5 PACKAGE PACKAGE E5

Figure 85. Example of a FILE Comparison of a File Group

Figure 85 shows a collection of files and statistics for the specified SELECTF
designated file group. Some files are the same and some files differ.

 Chapter 6. Using Enhanced SuperC 281

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 NEW: PACKAGE ANNOUNCE A1 + SELECTF FILE LIST OLD: PACKAGE

MEMBER SUMMARY LISTING (FILE COMPARE)

 DIFF SAME FILE NAMES N-BYTES O-BYTES N-LINES

�� PACKAGE ANNOUNCE A1:PACKAGE ANNOUNCE E1 1121� 51148 241

 �� PACKAGE EXEC A5:PACKAGE EXEC E5 151749 151646 4311

 �� PACKAGE HELPCMS A5:PACKAGE HELPCMS E1 58 65 4

�� PACKAGE MENU A5:PACKAGE MENU E5 168�3 168�3 426

�� PACKAGE MODULE A1:PACKAGE MODULE E1 1276�4 126�76 4

---------------------- ------- ------- -------

 GROUP TOTALS 38�515 418829 6659

Column 78 -------------------------------------->O-LINES N-HASH-SUM O-HASH-SUM

Column 8� --->1147 C18E675F F5CE6�31

(Continuation of previous data lines) 431� 2D2DF797 E�F1D82�

 6 B1879676 F�11E226

 426 BAC�D5A9 BABFD5A9

 4 4DF43D5A 3E82�FA9

 7566

7 TOTAL FILES PROCESSED AS A GROUP

5 TOTAL FILES PROCESSED HAD CHANGES

2 TOTAL FILES PROCESSED HAD NO CHANGES

� TOTAL NEW FILES NOT PAIRED

� TOTAL OLD FILES NOT PAIRED

 PROCESS OPTIONS USED: LOCS

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

SELECTF PACKAGE ANNOUNCE A1 PACKAGE ANNOUNCE E1

SELECTF PACKAGE EXEC A5 PACKAGE EXEC E5

SELECTF PACKAGE HELP A5 PACKAGE HELP E5

SELECTF PACKAGE HELPCMS A5 PACKAGE HELPCMS E1

SELECTF PACKAGE MENU A5 PACKAGE MENU E5

SELECTF PACKAGE MODULE A1 PACKAGE MODULE E1

SELECTF PACKAGE PACKAGE A5 PACKAGE PACKAGE E5

Figure 86. Example of a FILE Comparison of a File Group (with LOCS)

Figure 86 is similar to the previous example (Figure 85 on page 281) except that
the LOCS process option has been used to limit the output to files from the file
group which were found to be different. This option can greatly reduce the volume
of output when the total number of files is secondary to the change activity in the
group.

282 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1 A

LISTING OUTPUT SECTION (WORD COMPARE)

ID SOURCE LINES (COMPARED COLUMNS) N-LN# O-LN#

This line is reformatted; the spacing in the "new" file differs ����1 ����1

This line is the same in both files. ����2 ����2

MC-This line differs from the text in the file. ����3 ����3

IC- "old" ����3 ����3

DC- "new" ����3 ����3

This line is the same in both files. ����4 ����4

I -This line is in the "new" file, but not in the "old". ����5 ����4

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1 A

WORD COMPARE SUMMARY AND STATISTICS

 4� NUMBER OF WORD MATCHES 14 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)

 14 NEW FILE WORD INSERTIONS 2 NEW FILE LINES CHANGED/INSERTED

1 OLD FILE WORD DELETIONS 1 OLD FILE LINES CHANGED/DELETED

 54 NEW FILE WORDS PROCESSED 5 NEW FILE LINES PROCESSED

 41 OLD FILE WORDS PROCESSED 4 OLD FILE LINES PROCESSED

LISTING-TYPE = LONG COMPARE-COLUMNS = 1:8� LONGEST-LINE = 8�

PROCESS OPTIONS USED: NONE

Figure 87. Example of a WORD Comparison

Figure 87 is an output listing from a comparison using the WORD compare type
and shows how the output lines differ when the comparison is made at the WORD
level. The deleted words are normally listed under the replacement (inserted)
words. Separate (both inserted and deleted) lines are listed when completely
changed lines are detected.

The Search Listing
The typical search listing is composed of three parts:

 � Page Heading
� Source Lines Section

 � Summary Section

 Page Heading
SuperC generates a page heading at the top of each page.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M� (�4/2�/2��4) �6/11/2��4 12.32 PAGE 1

Figure 88. Example of the Page Heading Line for the Search Listing

Figure 88 shows a typical page heading line. It contains:

� Printer control page eject character (“1” in column one. not present when the
NOPRTCC process option is specified).

� “Platform-identifier” One of “CMS,” “MVS,” or “VSE.”

� Program identification title including version and the version date: V1R5M0
(06/11/2004).

 Chapter 6. Using Enhanced SuperC 283

 Understanding the Listings

� The date and time of the search

� The page number.

Note: The program version and program date are important when reporting
suspected SuperC problems.

Source Lines Section
The source lines section provides detailed information on the results of the Search.

�1� LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

�2� 1 This NEW file is FIXED 8� with Sequence Numbers

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT.

4 ! � NEW: Use DPPDCMT for this comment.

5 � � NEW: Use DPACMT to remove this assembler type comment

6 -- �NEW: Use DPADCMT to remove this line.

7 � � NEW: COBOL comment. Remove with DPCBCMT.

8 C � NEW: FORTRAN comment. Remove with DPFTCMT.

9 &&& This NEW line comes out with a DPLINE '&&&'

Figure 89. Example of the Source Lines Section of a Search Listing

Figure 89 is an example showing the source line section. Only one character
string (“NEW”) was specified for the search.

�1� Column Header Line.

LINE-# Relative line number of the line where the string was
found.

SOURCE LINES Up to 106 characters of the source line where the
string was found.

SRCH FN: Identifies the file which was searched. In this
example, it is NEW1 TESTCASE C.

�2� Text Lines. Relative line numbers and text lines from the search file
where the string “NEW” was found.

The format of the source lines section changes when certain process options are
used:

IDPFX (“Identifier Prefixed”)
The file ID is prefixed to each line of source text. See page 285.

LMTO (“List Group Member Totals”)
Only the totals of lines found and processed are listed. See page 285.

XREF (“Cross-reference Strings”)
Creates a cross-reference listing by search string. See page 286.

Note: the XREF process option also generates additional totals for
each search string in the summary section.

284 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

Source Lines Section (IDPFX): The source line section generated when the
IDPFX process option is used is similar to the normal source line section but with
the search file ID preceding each line of source text. See Figure 90.

�1� FNAME FTYPE FM LINE-# SOURCE-LNS SRCH FN: NEW1 TESTCASE C

�2� NEW1 TESTCASE C1 1 This NEW file is FIXED 8� with Seque

NEW1 TESTCASE C1 2 /�� NEW: To get rid of this PLI/REXX type comm

NEW1 TESTCASE C1 3 (�� NEW: To get rid of this PASCAL type commen

NEW1 TESTCASE C1 4 ! � NEW: Use DPPDCMT for this comment.

NEW1 TESTCASE C1 5 � � NEW: Use DPACMT to remove this assembler t

NEW1 TESTCASE C1 6 -- �NEW: Use DPADCMT to remove this line.

NEW1 TESTCASE C1 7 � � NEW: COBOL comment. Remove with DPCBC

NEW1 TESTCASE C1 8 C � NEW: FORTRAN comment. Remove with DPFTCMT

NEW1 TESTCASE C1 9 &&& This NEW line comes out with a DPLINE '&&&

Figure 90. Example of the IDPFX Source Lines Section of a Search Listing

�1� Column Header Line.

FNAME Filename (fn) of the file where in the string was found.

FTYPE Filetype (ft) of the file where in the string was found.

FM Filemode (fm) of the file where in the string was found.

LINE-# Relative line number of the line where the string was
found.

SOURCE-LNS Up to 106 characters of the source line where the string
was found.

SRCH FN: In this example, the search file ID is NEW1 TESTCASE
C.

�2� The search file ID, relative line number, and text line from the search file
where the string was found.

Source Lines Section (LMTO): The LMTO process option generates a listing
showing the the total number of lines found and processed for each file. (The
individual lines found are not listed.) See Figure 91.

�1� FILES-SEARCHED LINES-FOUND LINES-PROC

�2� NEW1 TESTCASE C1 9 9

 NEW13 TESTCASE C1 1� 15

Figure 91. Example of the LMTO Source Lines Section of a Search Listing

�1� Column Header Line.

FILES-SEARCHED
Identifies the files which were searched.

LINES-FOUND Number of the lines found containing one or more of
the search strings. The line is only counted once no
matter how many search strings were found in the
line.

LINES-PROC Number of lines in the file that were searched.
Does not include “Do not Process” lines.

 Chapter 6. Using Enhanced SuperC 285

 Understanding the Listings

�2� Individual file totals.

Source Lines Section (XREF): The XREF process option creates a
cross-reference listing where the source lines are listed by search strings.

In Figure 92, lines which contain the string “NEW” in NEW1 TESTCASE C1 are
listed first, then lines which contain the string “NEW” in NEW13 TESTCASE C1,
then lines which contain the string “USE” in NEW1 TESTCASE C1, and finally
those lines which contain the string “USE” in NEW13 TESTCASE C1.

�1� ----- STRING="NEW" IN NEW1 TESTCASE C1 -----

�2� 1 This NEW file is FIXED 8� with Sequence Numbers

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

...

. . .

�3� ----- IN NEW13 TESTCASE C1 -----

�4� 1 This NEW file is FIXED 8� with Sequence Numbers

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

...

. . .

�5� ----- STRING="USE" IN NEW1 TESTCASE C1 -----

�6� 2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLC

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

4 ! � NEW: Use DPPDCMT for this comment.

...

. . .

�7� ----- IN NEW13 TESTCASE C1 -----

�8� 2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLC

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

4 ! � NEW: Use DPPDCMT for this comment.

...

. . .

Figure 92. Example of the XREF Source Lines Section (with ANYC)

�1� Sub-section line showing string “NEW” and file NEW1 TESTCASE C1.
�2� Line number and text of line where string was found.
�3� Sub-section line showing file NEW13 TESTCASE C1 (string is still

“NEW”).
�4� Line number and text of line where string was found.
�5� Sub-section line showing string “USE” and file NEW1 TESTCASE C1.
�6� Line number and text of line where string was found.
�7� Sub-section line showing file NEW13 TESTCASE C1 (string is still

“USE”).
�8� Line number and text of line where string was found.

286 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

 Summary Section
The summary section (see Figure 93) provides various totals resulting from the
search and shows any process statements which were used.

�1� LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

�2� LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS

�3� 9 1 1 9 1: 8�

�4� THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
 SRCHFOR 'NEW'

Figure 93. Example of the Summary Section of a Search Listing

The summary section consists of:

�1� A section heading line.

�2� A column heading line.

�3� One line of totals.

�4� A multi-line section (two lines in Figure 93) showing the process
statements which were used.

XREF Summary Section: When the XREF process option (“Cross-reference
Strings”) is used, additional lines are included in the summary section. In
Figure 94, these are lines �2�, �3�, and �4�. The totals are listed according to
each search string.

Note: The XREF summary section may be produced without the XREF source line
section by using the LMTO process option.

�1� SUMMARY SECTION SRCH FN: NEW1� TESTCASE C

�2� STRING-FOUND LINES-FOUND FILES-W/LNS STRING-NOT-FOUND

�3� "NEW" 19 2

�4� "USE" 1� 2

�5� LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS

�6� 29 2 5 64 1: 8�

Figure 94. Example of the XREF Summary Section of a Search Listing

�1� Section header line. Identifies the file which was searched. In this
example, it is NEW1� TESTCASE C.

�2� Column header line.

STRING-FOUND
Column indicating the search string.

LINES-FOUND Lines which contained one or more occurrences of the
search string.

FILES-W/LNS Total number of files in the group in which the string
was found.

 Chapter 6. Using Enhanced SuperC 287

 Understanding the Listings

STRING-NOT-FOUND
Indication that the string was not found in any of the
files in the file group.

�3� Totals for string “NEW”

�4� Totals for string “USE”

�5� Column header line.

LINES-FOUND The summation of lines found for the individual search
strings.

FILE-W/LNS Number of files where lines were found to contain one
or more of the search strings.

FILE-PROC Number of files that were searched.

LINES-PROC Number of lines that were part of the search set.

COMPARE-COLS The column range that was searched.

�6� Totals statistics arranged under the columns specified in �5�.

Examples of Search Listings
Search of One File: Figure 95 shows the 3 parts of a search listing: page
heading, source lines section, and summary section.

1 ASMFSUPC - CMS LINE/WORD/BYTE COMPARE UTILITY - V1R5M� (�6/11/2��4)

 LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

5 � � NEW: Use DPACMT to remove this assembler type comment.

6 -- �NEW: Use DPADCMT to remove this line.

1 ASMFSUPC - CMS LINE/WORD/BYTE COMPARE UTILITY - V1R5M� (�6/11/2��4) �6/11/2��4

 SUMMARY SECTION SRCH FN: NEW1 TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LINE

 4 1 1 9 1: 8� 8�

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

Figure 95. Example of the Search Listing (Single File)

288 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

IDPFX Search of File Group: The file group NEW1* TESTCASE C composed of
5 files was searched and 8 lines within 2 files had “remove” and “rid” as the search
arguments.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

FNAME FTYPE FM LINE-# SOURCE-LNS SRCH FN: NEW1� TESTCASE C

 NEW1 TESTCASE C1 2 /�� NEW: To get rid of this PLI/REXX type comment

 NEW1 TESTCASE C1 3 (�� NEW: To get rid of this PASCAL type comment,

 NEW1 TESTCASE C1 5 � � NEW: Use DPACMT to remove this assembler type

 NEW1 TESTCASE C1 6 -- �NEW: Use DPADCMT to remove this line.

 NEW13 TESTCASE C1 2 /�� NEW: To get rid of this PLI/REXX type comment

 NEW13 TESTCASE C1 3 (�� NEW: To get rid of this PASCAL type comment,

 NEW13 TESTCASE C1 5 � � NEW: Use DPACMT to remove this assembler type

 NEW13 TESTCASE C1 6 -- �NEW: Use DPADCMT to remove this line.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 SUMMARY SECTION SRCH FN: NEW1� TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN

 8 2 5 64 1: 8� 8�

 PROCESS OPTIONS USED: IDPFX

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

Figure 96. Example of IDPFX Search on File Group

 Chapter 6. Using Enhanced SuperC 289

 Understanding the Listings

XREF Search of File Group for Two Strings: XREF sorts the search string
occurrences before producing a listing. In the example shown below both strings
were found in the file group.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 LINE-# SOURCE LINES SRCH FN: NEW1� TESTCASE C

 ----- STRING="remove" IN NEW1 TESTCASE C1 -----

5 � � NEW: Use DPACMT to remove this assembler type comment.

6 -- �NEW: Use DPADCMT to remove this line.

 ----- IN NEW13 TESTCASE C1 -----

5 � � NEW: Use DPACMT to remove this assembler type comment.

6 -- �NEW: Use DPADCMT to remove this line.

 ----- STRING="rid" IN NEW1 TESTCASE C1 -----

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

 ----- IN NEW13 TESTCASE C1 -----

...

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

Figure 97. Example of XREF Search on File Group for Two Strings

LMTO Search of File Group: LMTO produces only the summary section for the
search operation.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

FILE TOTALS SECTION SRCH FN: NEW1� TESTCASE C

 FILES-SEARCHED LINES-FOUND LINES-PROC

NEW1 TESTCASE C1 4 9

 NEW13 TESTCASE C1 4 15

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 SUMMARY SECTION SRCH FN: NEW1� TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN

 8 2 5 64 1: 8� 8�

 PROCESS OPTIONS USED: LMTO

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

Figure 98. Example of LMTO Search on File Group

290 HLASM V1R4 Toolkit Feature User’s Guide

 Understanding the Listings

LMTO Search of File Group Using the XREF Process Option: This is another
example of a summary only output. Contrasting with the previous example, the
string totals are sorted before being listed.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

XREF TOTALS SECTION SRCH FN: NEW1� TESTCASE C

 STRING-USED FILES-SEARCHED LINES-FOUND LINES-PROC

 "remove" NEW1 TESTCASE C1 2 1�

 NEW13 TESTCASE C1 2 16

 "rid" NEW1 TESTCASE C1 2 1�

 NEW13 TESTCASE C1 2 16

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 SUMMARY SECTION SRCH FN: NEW1� TESTCASE C

 STRING-FOUND LINES-FOUND FILES-W/LNS STRING-NOT-FOUND

 "remove" 4 2

 "rid" 4 2

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN

 8 2 5 64 1: 8� 8�

 PROCESS OPTIONS USED: LMTO XREF

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

 .

Figure 99. Example of XREF/LMTO Search of File Group

LTO Search of File Group: LTO produces the overall totals section of the search
results.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 SUMMARY SECTION SRCH FN: NEW1� TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN

 8 2 5 64 1: 8� 8�

 PROCESS OPTIONS USED: LTO

 THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:

 SRCHFOR 'remove'

 SRCHFOR 'rid'

Figure 100. Example of LTO Search on File Group

 Chapter 6. Using Enhanced SuperC 291

 Update Files

LPSF Search of File Group: The process option LPSF (“List
Previous-Search-Following Lines”) lists lines before and after the search text
detected line. The “�” in the line number column indicate they were part of the
extra lines listed.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R5M�

 LINE-# SOURCE LINES SRCH FN: NEW1� TESTCASE C

 NEW1 TESTCASE C1 -------------- STRING(S) FOUND --------

� This line is reformatted; the spacing in the "new" member differs.

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

� ! � NEW: Use DPPDCMT for this comment.

5 � � NEW: Use DPACMT to remove this assembler type comment.

6 -- �NEW: Use DPADCMT to remove this line.

� � � NEW: COBOL comment. Remove with DPCBCMT.

� C � NEW: FORTRAN comment. Remove with DPFTCMT.

� &&& This NEW line comes out with a DPLINE '&&&'

 NEW13 TESTCASE C1 -------------- STRING(S) FOUND --------

� This NEW file is FIXED 8� with Sequence Numbers

2 /�� NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. �/

3 (�� NEW: To get rid of this PASCAL type comment, use DPPSCMT. �)

Figure 101. Example of LPSF Search on File Group

 Update Files
An update file contains information relating to the result of a comparison and is
generated when one of the update process options is specified:

UPDCMS8 (“Update CMS Sequenced 8 File” on page 295)
UPDCNTL (“Update Control Files” on page 296)
UPDLDEL (“Update Long Control” on page 299)
UPDMVS8 (“Update MVS Sequenced 8 File” on page 300)
UPDPDEL (“Update Prefixed Delta Lines” on page 301)
UPDREV (“Revision File” on page 293)
UPDREV2 (“Revision File (2)” on page 294)
UPDSEQ0 (“Update Sequenced 0 File” on page 301)
UPDSUMO (“Update Summary Only Files” on page 302)

Notes:

1. UPDCMS8, UPDMVS8, UPDPDEL, UPDREV, UPDREV2, and UPDSEQ0 do
not generate an update file after a comparison of matching files (Return Code =
0).

2. For details on the naming of the update file:

� On MVS, see “Invoking the Comparison on MVS” on page 180.

� On CMS, see “Update File ID” on page 190.

� On VSE, see “Invoking the Comparison on VSE” on page 199.

292 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

� Dates, where applicable, in the heading lines of update files are in the
format MM/DD/YYYY.

3. All “do not process” options, and DPLINE or CMPLINE process statements are
invalid when used with the process options UPDCMS8, UPDMVS8, UPDSEQ0,
UPDLDEL and UPDPDEL. The “do not process” options are cancelled with
error notification ASMF014.

Update files are normally used as input to post-processing programs and can be
specified besides the normal listing output file.

On the following pages, descriptions and examples are given of the contents of the
update file produced for each of the update (UPD...) process options.

In most of the examples shown, the same two input files are used. The contents of
the old file are shown in Figure 102. The contents of the new file are shown in
Figure 103.

This line is reformatted; the spacing in the "new" file differs. �����1��

This line is the same in both files. �����2��

This line differs from the text in the "new" file. �����3��

This line is the same in both files. �����4��

Figure 102. The “Old” Input File Used in Most of the Update Examples

This line is reformatted; the spacing in the "new" file differs. �����1��

This line is the same in both files. �����2��

This line differs from the text in the "old" file. �����3��

This line is the same in both files. �����4��

This line is in the "new" file, but not in the "old". �����5��

Figure 103. The “New” Input File Used in Most of the Update Examples

 Revision File
The process option UPDREV produces an update file containing a copy of the new
source text with revision tags delimiting the changed text lines.

The UPDREV process option is available for LINE and WORD compare types.

UPDREV supports two different types of revision tags, one for SCRIPT/VS files and
one for IBM BookMaster files. (Use the REVREF process statement (“Revision
Code Reference” on page 255) to specify which type of revision tag you want.)

Figure 104 on page 294 shows a SuperC UPDREV file with SCRIPT/VS revision
tags (.rc on/off).

 Chapter 6. Using Enhanced SuperC 293

 Update Files

.rc 1 |

.rc 1 on

This line is reformatted; the spacing in the "new" file differs.

.rc 1 off

This line is the same in both files.

.rc 1 on

This line differs from the text in the "old" file.

.rc 1 off

This line is the same in both files.

.rc 1 on

This line is in the "new" file, but not in the "old".

.rc 1 off

Figure 104. Example of a UPDREV Update File for SCRIPT/VS Documents

When the UPDREV update file in Figure 104 is subsequently processed by
SCRIPT/VS, the final scripted output has “|” revision characters in the left margin of
the output document identifying the changed lines (those between the SCRIPT/VS
revision tags .rc 1 on and .rc 1 off).

Note: The revision character (“|” in the example in Figure 104) can be specified
either by using a REVREF process statement (see “Revision Code Reference” on
page 255) or by having a SCRIPT/VS .rc. revision tag as the first record in the
new file. Subsequent changes to the source can therefore be separately identified
by using different revision characters.

Figure 105 shows a SuperC UPDREV file with IBM BookMaster revision tags
(:rev/:erev).

This line is reformatted; the spacing in the "new" file differs.

This line is the same in both files.

This line differs from the text in the "old" file.

This line is the same in both files.

This line is in the "new" file, but not in the "old".

Figure 105. Example of a UPDREV Update File for IBM BookMaster Documents

When the UPDREV update file in Figure 105 is subsequently processed by IBM
BookMaster, the final formatted output has the revision character associated with
the revision ID abc (as specified by a :revision. IBM BookMaster tag in the new
input file) in the left margin of the output document identifying the changed lines
(those between the IBM BookMaster revision tags :rev and :erev).

Note: The revision ID (abc in the example in Figure 105) is controlled by the
REVREF process statement (see “Revision Code Reference” on page 255).
Subsequent changes to the source can therefore be separately identified by using
different revision IDs (which are associated with unique revision characters).

Revision File (2)
The process option UPDREV2 is identical to UPDREV with the exception that data
between the following IBM BookMaster tags are not deleted in the update file:
:cgraphic.

:ecgraphic.

:fig.

:efig.

294 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

:lblbox.

:elblbox.

:nt.

:ent.

:screen.

:escreen.

:table.

:etable.

:xmp.

:exmp.

Update CMS Sequenced 8 File
The process option UPDCMS8 produces update files that are generally created for
input to the CMS UPDATE command. The CMS UPDATE command is described
in the CMS Command Reference manual.

The UPDCMS8 process option is available for the LINE compare type only.

The old input file must have fixed-length 80-byte records with valid sequence
numbers in columns 73 through 80. The new file must be fixed but may have a
length less than or equal to 80.

The UPDCMS8 update file is fixed-length 80.

If the sequence numbers do not allow adequate room to insert changes from the
new file, SuperC changes the status of adjacent matched lines to find the room.

UPDCMS8 update files contain both CMS UPDATE control statements and source
lines from the “new” file. All UPDCMS8 control statements are identified by the
characters “./” in columns 1 and 2 of the 80-byte record, followed by one or more
spaces and a one-character control line identifier. The control line identifiers are
sequence (S), insert (I), delete (D), replace (R), and comment (�). Figure 106
shows an example of a UPDCMS8 update file.

�1� ./ � NEW: JLEVERIN TEST2 A �6/11/2��4 11.35

�2� ./ � OLD: JLEVERIN TEST1 A

�3� ./ R �����1�� �����1�� $ �����14� ������4�
�4� This line is reformatted; the spacing in the "new" file differs. �����1��

�5� ./ R �����3�� �����3�� $ �����34� ������4�
�6� This line differs from the text in the "old" file. �����3��

�7� ./ I �����4�� $ ����14�� ����1���

�8� This line is in the "new" file, but not in the "old". �����5��

Figure 106. Example of a UPDCMS8 Update File

The example in Figure 106, has the following lines:

�1� Comment line. Lists the new file name and the date and time of the
comparison.

 Chapter 6. Using Enhanced SuperC 295

 Update Files

�2� Comment line. Lists the old file name.

�3� Replacement control line. The first 8-digit numeric field is the sequence
number (of the old file) of the first input number to be replaced. The second
8-digit numeric field is the sequence number of the old file that is the last
record to be replaced. The dollar sign is an option separator field. The third
and fourth 8-digit fields represent the first decimal number to be used for
sequencing the substitute records and the decimal increment to be used in
the sequencing, respectively.

In this example, the first line of the old file is being replaced with one line from
the new file.

�4� The new record which has replaced the old record at sequence number
00000100.

�5� Another replacement control line.

�6� The new record which has replaced the old record at sequence number
00000300.

�7� Insert control line. After old line 4, there is a line inserted in the new file.

�8� The text of the inserted line.

Update Control Files
The process option UPDCNTL produces a control file that relates matches,
insertions, deletions, and reformats to:

� The relative line numbers of the old and new files (LINE compare type); see
Figure 107.

� The relative word position of the old file (WORD compare type); see Figure 108
on page 297.

� The relative byte offset (BYTE compare type); see Figure 109 on page 298.

Note: No source or data from either input file is included in the update file
produced by UPDCNTL.

Update Control File (LINE Compare Type)

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4 12.45

�2� � OLD: JLEVERIN TEST1 A

�3� � N-LINE-# O-LINE-# MAT-LEN INS-LEN DEL-LEN REFM-LEN

�4� �������1 �������1 �������1

�5� �������2 �������2 �������1

�6� �������3 �������3 �������1 �������1

�7� �������4 �������4 �������1

�8� �������5 �������5 �������1

�9� � END

Figure 107. Example of a UPDCNTL Update File Using LINE Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Header Comment line. For information on the columns, see Table 27 on
page 297.

296 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

�4� Shows that line 1 of the new file is a reformatted line of line 1 of the old file.

�5� Line 2 from both files match.

�6� Line 3 of the new file replaces line 3 of the old file.

�7� Line 4 from both lines match.

�8� At line 5 of the new file is an inserted line.

�9� Comment line. This is the end of the update file.

The following table shows the column numbers used for the UPDCNTL file:

Update Control File (WORD Compare Type)

Table 27. UPDCNTL Update File Format Using LINE Compare Type

Column # Identifier Data Item

4-11 N-LINE-# New line number

13-20 O-LINE-# Old line number

22-29 MAT-LEN Match length

31-38 INS-LEN Insert length

40-47 DEL-LEN Delete length

49-56 REFM-LEN Reformat length

58-65 N-DP-LEN (Not shown) New “Do not Process” length

67-74 O-DP-LEN (Not shown) Old “Do not Process” length

76-80 N-MVL (Not shown) New “moved” line length.

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4 12.17

�2� � OLD: JLEVERIN TEST1 A

�3� � N-LINE-# N-LN-LEN N-COL WD-MAT-# N-WD-INS O-WD-DEL O-LINE-# O-LN-LEN O-COL

�4� �������1 �������3 ����1 ������27 �������1 �������3 ����1

�5� �������3 �������1 ���4� �������1 �������1 �������3 �������1 ���4�

�6� �������3 �������2 ���46 �������9 �������3 �������2 ���46

�7� �������5 �������1 ����1 ������13

�8� � END

Figure 108. Example of a UPDCNTL Update File Using WORD Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line. For information on the columns, see Table 28 on
page 298.

�4� Beginning with line one column 1, of both files, the first twenty-seven words
match. This takes us to line 3.

�5� There is 1 word replaced in line 3. It begins in column forty of each file.

�6� Beginning from the change in �5�, there are 9 more words that match.

�7� A line of thirteen words was inserted at line 5.

�8� Comment line. Ends the update file.

 Chapter 6. Using Enhanced SuperC 297

 Update Files

The following table shows the column numbers used for the UPDCNTL file:

Update Control File (BYTE Compare Type)

Table 28. UPDCNTL Update File Format Using WORD Compare Type

Column # Identifier Data Item

4-11 N-LINE-# Beginning new line number

13-20 N-LN-LEN Number of lines

22-26 N-COL New column number (beginning of word)

28-35 WD-MAT-# Number of matching words

37-44 N-WD-INS Number of new inserted words

46-53 O-WD-DEL Number of old deleted words

55-62 O-LINE-# Beginning old line number

64-71 O-LN-LEN Number of old lines

73-77 O-COL Old column number

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4 12.23

�2� � OLD: JLEVERIN TEST1 A

�3� � N-BYTE-O O-BYTE-O MAT-LEN INS-LEN DEL-LEN

�4� �������� �������� ������1E

�5� ������1E ������1E �������1

������1E ������1F �������8

 ������26 ������27 �������1

������26 ������28 �������2

 ������28 ������2A �������1

������28 ������2B �������4

 ������2C ������2F �������1

������2C ������3� �������7

 ������33 ������37 �������1

������33 ������38 �������4

 ������37 ������3C �������1

������37 ������3D �������9

 ������4� ������46 �������6

������46 ������46 ������82

�6� ������C8 ������C8 �������3 �������3

������CB ������CB ������75

�7� �����14� �����14� ������5�

�8� � END

Figure 109. Example of a UPDCNTL Update File Using BYTE Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line. For more information on the columns, see Table 29
on page 299.

�4� First thirty-one (1E hex) bytes match.

�5� 1 byte is deleted.

�6� (Skipping several lines). 3 bytes of the new file replace 3 bytes of the old file.

�7� Fifty bytes inserted.

298 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

�8� Comment line. Ends the update file.

The following table shows the column numbers used for the UPDCNTL file:

Table 29. UPDCNTL Update File Format Using BYTE Compare Type

Column # Identifier Data Item

4-11 N-BYTE-O New byte offset

13-20 O-BYTE-O Old byte offset

22-29 MAT-LEN Number of matching bytes

31-38 INS-LEN Number of inserted bytes

40-47 DEL-LEN Number of deleted bytes

Update Long Control
The process option UPDLDEL produces an update file that contains control
records, matching new file source records, inserted new file source records, and
deleted old file source records.

The UPDLDEL process option is available for the LINE compare type only.

Figure 110 on page 300 shows an example of a UPDLDEL update file.

The control records are titled as follows:

*HDR1, *HDR2, *HDR3
Header titles and data

*M- Matched line sequence header

*I- Inserted line sequence header

*I-RP Inserted line sequence header for replacement lines

*I-RF Inserted line sequence header for reformatted lines

*D- Deleted line sequence header

*D-RP Deleted line sequence header for replacement lines

*D-RF Deleted line sequence header for reformatted lines

Header control records are full length records that delimit the copied file records.
This allows you to quickly find changed areas. The records appear similar to the
information on a LONG listing. The two input files must both have the same fixed
record length or each have a variable record length.

 Chapter 6. Using Enhanced SuperC 299

 Update Files

�HDR1 JLEVERIN TEST2 A �6/11/2��4 14.58

�HDR2 JLEVERIN TEST1 A TYPE = UPDLDEL

�I-RF INS#= 1 N-REF#=�����1 O-REF#=�����1 �����ASMFSUPC CHANGE HEADER�����

This line is reformatted; the spacing in the "new" file differs. �����1��

�D-RF DEL#= 1 N-REF#=�����1 O-REF#=�����1 �����ASMFSUPC CHANGE HEADER�����

This line is reformatted; the spacing in the "new" file differs. �����1��

�M- MAT#= 1 N-REF#=�����2 O-REF#=�����2 �����ASMFSUPC CHANGE HEADER�����

This line is the same in both files. �����2��

�I-RP INS#= 1 N-REF#=�����3 O-REF#=�����3 �����ASMFSUPC CHANGE HEADER�����

This line differs from the text in the "old" file. �����3��

�D-RP DEL#= 1 N-REF#=�����3 O-REF#=�����3 �����ASMFSUPC CHANGE HEADER�����

This line differs from the text in the "new" file. �����3��

�M- MAT#= 1 N-REF#=�����4 O-REF#=�����4 �����ASMFSUPC CHANGE HEADER�����

This line is the same in both files. �����4��

�I- INS#= 1 N-REF#=�����5 O-REF#=�����4 �����ASMFSUPC CHANGE HEADER�����

This line is in the "new" file, but not in the "old". �����5��

Figure 110. Example of a UPDLDEL Update File

Update MVS Sequenced 8 File
The process option UPDMVS8 produces a file that contains both control records
and new file source lines using sequence numbers from old file columns 73 to 80.

The UPDMVS8 process option is available for the LINE Compare Type only.

The format of the generated data may be suitable as input to the IEBUPDTE utility.
See OS/VS2 MVS Utilities for information about the contents of this file. Figure 111
shows an example of a UPDMVS8 update file created on CMS.

�1� ./ CHANGE LIST=ALL OLD:JLEVERIN TEST1 A

�2� ./ DELETE SEQ1=�����1��,SEQ2=�����1��

�3� This line is reformatted; the spacing in the "new" file differs. �����1��

�4� ./ DELETE SEQ1=�����3��,SEQ2=�����3��

�5� This line differs from the text in the "old" file. �����3��

�6� This line is in the "new" file, but not in the "old". �����5��

Figure 111. Example of a UPDMVS8 Update File

�1� Control record. Lists old file name.

�2� Control record. Shows record deleted at sequence number 100 on the old file.

�3� Inserted line from the new file.

�4� Control record. Shows record deleted at sequence number 300 on the old file.

�5� Inserted line from the new file.

�6� Inserted line from the new file.

The files to be compared must have fixed-length 80-byte records. They must also
contain sequence numbers.

300 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

Update Prefixed Delta Lines
The process option UPDPDEL produces a variable-length update file that contains
header records and complete delta lines from the input files, up to a maximum of
32K bytes in each output line.

The UPDPDEL process option is available for the LINE compare type only.

Figure 112 shows an example of a UPDPDEL update file.

Prefix codes (I for insert and D for delete) together with the line number precede
lines from the input files. Sub-totals are shown before each group of flagged
records:

� INS#= for the number of consecutive inserted records,

� DEL#= for the number of consecutive deleted records,

� RPL#= for the number of consecutive pairs of replaced records, and

� MAT#= for the number of intervening matched records.

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4 12.�8

�2� � OLD: JLEVERIN TEST1 A

�3� �ID- LINE# SOURCE LINE

�4� � RPL#= �������1

�5� I - �������1 This line is reformatted; the spacing in the "new" file differs. �����1��

�6� D - �������1 This line is reformatted; the spacing in the "new" file differs. �����1��

�4� � RPL#= �������1 MAT#= �������1

�5� I - �������3 This line differs from the text in the "old" file �����3��

�6� D - �������3 This line differs from the text in the "new" file. �����3��

�7� � INS#= �������1 MAT#= �������1

�8� I - �������5 This line is in the "new" file, but not in the old.

�9� � END �����5��

Figure 112. Example of a UPDPDEL Update File

The example in Figure 112 has the following lines:

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line.

�4� Sub-total line showing that 1 replaced pair of records follow.

�5� The line that has replaced the line in the old file.

�6� The line in the old file that has been replaced.

�7� Sub-total line showing that 1 inserted record follows.

�8� The line that has been inserted in the new file.

�9� Comment line. Ends the update file.

Update Sequenced 0 File
The process option UPDSEQ0 produces a control file that relates insertions and
deletions to the relative line numbers of the old file. UPDSEQ0 is similar to
UPDCMS8, but uses relative line numbers instead of sequence numbers from the
old file.

 Chapter 6. Using Enhanced SuperC 301

 Update Files

The UPDSEQ0 process option is available for the LINE compare type only.

This update file is characterized by control statements followed by source lines from
the new file. All UPDSEQ0 control statements are identified by the characters “./”
in columns 1 and 2 of the 80-byte record, followed by one or more spaces and
additional space-delimited fields. The control statements are insert (I), delete (D),
replace (R), and comment (�). Control statement data does not extend beyond
column 50. Figure 113 shows an example of a UPDSEQ0 update file.

�1� ./ � NEW: JLEVERIN TEST2 A �6/11/2��4 13.34

�2� ./ � OLD: JLEVERIN TEST1 A

�3� ./ R �������1 �������1 $ �������1
�4� This line is reformatted; the spacing in the "new" file differs. �����1��

�5� ./ R �������3 �������3 $ �������1
�6� This line differs from the text in the "old" file. �����3��

�7� ./ I �������4 $ �������1

�8� This line is in the "new" file, but not in the "old". �����5��

Figure 113. Example of a UPDSEQ0 Update File

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Replacement control record. Beginning at the first record of the old file,
replace 1 record. The numeric value after the dollar sign specifies the
number of new file source lines that follow the control record.

�4� Text of new file line to replace line 1.

�5� Replace the third record with 1 record.

�6� Text of new file line to replace line 3.

�7� Insert control line. Insert 1 line after record 4 of old file.

�8� Text of inserted line.

Update Summary Only Files
The process option UPDSUMO produces an update file of 4 lines: new file name,
old file name, column headers, and a summary totals line.

The UPDSUMO process option is available for the LINE, WORD, and BYTE
compare types.

The summary totals line has a “T” in column 1. The summary statistics are located
at fixed offsets in the output line. The file has a line length of 132 bytes.

302 HLASM V1R4 Toolkit Feature User’s Guide

 Update Files

Update Summary Only File (LINE Compare Type)

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4

�2� � OLD: JLEVERIN TEST1 A

�3� � NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG TOT-RFM FI-PROC FI-DIFF

�4� T �������5 �������4 �������2 �������1 �������3 �������1 �������1 �������1

. . (Continuation of previous data lines)

�1� 13.39
�2�
�3� N-NOT-PD O-NOT-PD N-DP-LNS O-DP-LNS
�4� �������� �������� �������� ��������

Figure 114. Example of a UPDSUMO File Using LINE Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 30.

�4� Totals line.

In Figure 114, the update summary file is shown in split screen mode. The bottom
half of the screen shows the result of scrolling right to see the remainder of the
member.

The following table shows the column numbers used to display the update
information:

Table 30. UPDSUMO Format Using LINE Compare Type

Column # Identifier Data Item

NEW-PROC Number of new lines processed

OLD-PROC Number of old lines processed

NEW-INS Number of new line insertions

OLD-DEL Number of old line deletions

TOT-CHG Total number of line changes

TOT-RFM Total number of reformats

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

N-DP-LNS Total number of new “do not process” lines

O-DP-LNS Total number of old “do not process” lines

 Chapter 6. Using Enhanced SuperC 303

 Update Files

Update Summary Only File (WORD Compare Type)

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4

�2� � OLD: JLEVERIN TEST1 A

�3� � NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG FI-PROC FI-DIFF

�4� T ������49 ������37 ������13 �������1 ������13 �������1 �������1

. . (Continuation of previous data lines)

�1� 13.48

�2�
�3� N-NOT-PD O-NOT-PD

�4� �������� ��������

Figure 115. Example of a UPDSUMO File Using WORD Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 31.

�4� Totals line.

In Figure 115, the UPDSUMO file is shown in split screen mode. The bottom half
of the screen is scrolled right to show the remainder of the member.

The following table shows the column numbers used to display the update
information:

Table 31. UPDSUMO Format Using WORD Compare Type

Column # Identifier Data Item

NEW-PROC Number of new words processed

OLD-PROC Number of old words processed

NEW-INS Number of new word insertions

OLD-DEL Number of old word deletions

TOT-CHG Total number of word changes

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

304 HLASM V1R4 Toolkit Feature User’s Guide

 CMS File Selection List

Update Summary Only File (BYTE Compare Type)

�1� � NEW: JLEVERIN TEST2 A �6/11/2��4

�2� � OLD: JLEVERIN TEST1 A

�3� � NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG FI-PROC FI-DIFF

�4� T �����4�� �����32� ������89 �������9 ������95 �������1 �������1

. . (Continuation of previous data lines)

 COMMAND ===> _ SCROLL ===> PAGE

�1� 13.51

�2�
�3� N-NOT-PD O-NOT-PD

�4� �������� ��������

Figure 116. Example of a UPDSUMO File Using BYTE Compare Type

�1� Comment line. Lists the new file name and the date and time of the
comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 32.

�4� Totals line.

In Figure 116, the UPDSUMO file is shown in split screen mode. The bottom half
of the screen shows the result of scrolling right to see the remainder of the
member.

The following table shows the column numbers used to display the update
information:

Table 32. UPDSUMO Format Using BYTE Compare Type

Column # Identifier Data Item

NEW-PROC Number of new bytes processed

OLD-PROC Number of old bytes processed

NEW-INS Number of new byte insertions

OLD-DEL Number of old byte deletions

TOT-CHG Total number of byte changes

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

CMS File Selection List
When you are dealing with a group of CMS files (or library members), some or all
of which you want to use as input to a comparison or search, you need to use the
CMS file selection list.

 Chapter 6. Using Enhanced SuperC 305

 CMS File Selection List

In the case of a comparison, the CMS file selection list enables you to specify
which files (or members) in the new group are to be compared with which files (or
members) in the old group.

In the case of a search, the CMS file selection list enables you to specify which
files (or members) in the group are to be searched.

To view the CMS file selection list for the files (or members) that you want to
compare or search, you use the Selection List Menu.

Getting to the Selection List Menus
There are two formats of the Selection List Menu. One format is for comparisons
and the other format is for searches. (Each format varies slightly depending on
whether you are dealing with a group of files or a group of library members.)

The appropriate format of the Selection List Menu is displayed after you have
entered the relevant group details in either the Primary Comparison Menu or the
Primary Search Menu:

� The Selection List field must contain an “�” (asterisk)

� For a comparison of a group of files, the New File ID or the Old File ID must
contain an “�”

� For a comparison of a MACLIB or TXTLIB, the Member Name must contain an
“�”

� For a search of a group of files, the Search File ID must contain an “�”

� For a search of a MACLIB or TXTLIB, the Member Name must contain an “�”

After you have entered the above details in the Primary Comparison Menu or the
Primary Search Menu, press Enter to display the corresponding Selection List
Menu.

In the case of a comparison, SuperC creates two lists: one list of the files (or
members) in the new group and one list of the files (or members) in the old group.
In the case of a search, SuperC creates a list of the files (or members) in the
search group.

COMMAND field: At the top of the Selection List Menu is a COMMAND entry
field. This field allows you to enter any of the selection menu commands: ADD,
CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT �, or UP.

For details, see “Selection Menu Commands” on page 309.

Note: You cannot enter CP or CMS commands in the COMMAND field.

The Selection List Menu (Comparison)
Figure 117 on page 307 shows an example of a Selection List Menu for a
comparison of two file groups. The New File ID was entered as TEMP � A and the
Old File ID was entered as � TEMP A.

306 HLASM V1R4 Toolkit Feature User’s Guide

 CMS File Selection List

.

� �
 - (1 of 6) ---------- SuperC Selection List --------- (1 of 4) -

 COMMAND ==>

Use select codes: S (Select), X (Exclude), or I (Information).

Commands: ADD, CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT �, and UP.

LEFT SCROLL WINDOW <===== ACTIVE WINDOW RIGHT SCROLL WINDOW

 Sel New-File-List Old-File-Name Sel Old-File-List

 TEMP LIST382� A1 ERROR TEMP A1

TEMP NOTE A� INDEX TEMP A1

 TEMP SCRIPT A1 MSG TEMP A1

TEMP SRCHFOR A1 TEMP TEMP A1

 TEMP SUPERC A1

TEMP TEMP A1 TEMP TEMP A1

...

1-Help 3-End 7-Up 8-Down 1�-Top 11-Bottom 12-Change Window

� �

Figure 117. Example of a CMS Selection List Menu (File Group Comparison)

Comparison Scrollable Windows:

The LEFT SCROLL WINDOW consists of the following columns:

Sel A single-character selection code field. Allows you to enter one
of the Selection Codes: S, X, I, or space (to unselect). For
details, see page 309.

New-File-List Alphabetical list of files generated by SuperC as a result of the
New File ID (containing an “�”) entered on the Primary
Comparison Menu.

New-Member (Not shown.) Alphabetical list of members generated by
SuperC as a result of the Member Name (containing an “�”)
entered on the Primary Comparison Menu.

Old-File-Name This field must be filled with a valid ID from the old candidate
list (right scroll window) to indicate with which old file the new
file is to be compared.

You can manually pair new and old files by entering an “S” in
the SEL column in the left scroll window and an “S” in the SEL
column in the right scroll window. Then press Enter and the
old file ID is entered alongside the new file ID.

Alternatively, you can enter the old file ID directly in the
Old-File-Name field.

Note: Initially, SuperC automatically lists any items from the
Old-File-List whose mask matches the mask from the
New-File-List (see “How SuperC Pairs CMS Files and
Members” on page 311).

Old-Member (Not shown.) This field is comparable to the Old-File-Name, but
for MACLIB or TXTLIB members.

The RIGHT SCROLL WINDOW consists of the following columns:

 Chapter 6. Using Enhanced SuperC 307

 CMS File Selection List

Sel A single-character selection code field. Allows you to enter one
of the Selection Codes: S, X, I, or space (to unselect). For
details, see page 309.

Old-File-List Alphabetical list of files generated by SuperC as a result of the
Old File ID (containing an “�”) entered on the Primary
Comparison Menu.

Old-Member-List (Not shown.) Alphabetical list of members generated by
SuperC as a result of the Member Name (containing an “�”)
entered on the Primary Comparison Menu.

The arrow (<=====) on line 7 of the menu, indicates which “window” is active. (Use
PF12 to toggle the active window between left and right.)

The Selection List Menu (Search)
Figure 118 shows an example of a Selection List Menu for a search of a file group.
The New File ID was entered as TEMP � A.

� �
- (1 of 6) ---------- SuperC Selection List --------------------------

 COMMAND ==>

Use S (Select) or X (Exclude) select codes.

Commands: ADD, CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT �, and UP.

 Sel Filename Filetype Fm Format Lrecl Recs Blocks Date Time

TEMP LIST382� A1 V 3728 47 3 9/11/�3 13:31:52

TEMP NOTE A� V 79 121 2 7/31/�3 1�:52:3�

 TEMP SCRIPT A1 V 72 117 2 9/11/�3 13:42:��

 TEMP SRCHFOR A1 V 111 14 1 9/15/�3 14:55:44

TEMP SUPERC A1 V 111 212 5 9/15/�3 17:48:33

TEMP TEMP A1 V 16 3 1 9/15/�3 14:4�:29

...

1-Help 3-End 7-Up 8-Down 1�-Top 11-Bottom

� �

Figure 118. Example of a CMS Selection List Menu (File Group Search)

Search Scrollable Window: The Selection List Menu for the SuperC Search has
only one window.

When you are searching a group of files, the search scrollable window shows an
alphabetical list of the files generated by SuperC as a result of the New File ID
(containing an “�”) entered on the Primary Comparison Menu.

When you are searching a MACLIB or TXTLIB, the search scrollable window shows
an alphabetical list of the members generated by SuperC as a result of the Member
Name (containing an “�”) entered on the Primary Comparison Menu.

The search scrollable window consists of the following columns:

Sel A single-character selection code field. Allows you to enter one of
the Selection Codes: S, X, I, or space (to unselect). For details,
see page 309.

When searching files:

308 HLASM V1R4 Toolkit Feature User’s Guide

 CMS File Selection List

Filename Filetype Fm The search file ID.

Format F for Fixed; V for Variable.

Lrecl Record length.

Recs Number of records.

Blocks Number of blocks.

Date Date file was last modified.

Time Time file was last modified.

When searching MACLIB or TXTLIB libraries (not shown):

New-Member The member from the MACLIB or TXTLIB to be
searched.

Selection Codes
The following selection codes can be entered in the selection (“SEL”)
field on the Selection List Menu:

S Select the item.

X Exclude the item from the list.

I Display information for this item. (“I” is not supported for
search file selection as this information is already shown).

(space) “Unselect” the item.

Selection Menu Commands
The following commands may be entered on the Command line.

ADD Add additional files/members to the group in the active window.
Previously matched files/members are unaltered. The add-mask may be
a file/member name or may contain wildcard characters.

Format ADD add_mask

The abbreviation “A” is also acceptable.

Example ADD AB� � A

This adds all those files on the A mini-disk whose file name
starts with “AB”

BOTTOM Scrolls the active window to the last element in the list.

The abbreviations “BOT” and “B” are also acceptable.

CANCEL Cancel all selections. Return to the Primary Comparison Menu or the
Primary Search Menu.

DOWN Scrolls the active window down one page (no operands) or the number
of entries as indicated by the operand value. “DOWN” may also be
indicated by using the PF8 key and a value operand as the command.

Format DOWN value

The abbreviation “D” is also acceptable.

LOCATE The LOCATE command scrolls to file (or member) you specify. If the
specified name is not in the list, the data is scrolled to the file (or
member) that precedes the specified name (in alphabetic sequence).
LOCATE applies to the active window.

 Chapter 6. Using Enhanced SuperC 309

 CMS File Selection List

Format LOCATE name

Name is a fully-qualified CMS file ID for file list and a
member name for member list.

The abbreviations “LOC” and “L” are also acceptable.

RESET The RESET command may be used to restore the selection list to its
original status.

SELECT The SELECT command can be used to select a file (or member) that is
contained within the selection list of the active window. If the specified
name is not found, the list is scrolled to the file (or member) that
precedes the specified name (in alphabetic sequence).

Format SELECT name

Name is a fully qualified CMS file ID for file list and a
member name for member list.

The abbreviations “SEL” and “S” are also acceptable.

SELECT *
Selects all new entries (left window) that are paired to old entries (right
window).

Format SELECT �

The abbreviations “SEL �” and “S �” are also acceptable.

TOP Scrolls the active window to the first element in the list.

UP Scrolls the active window up one page (no operands) or the number of
entries as indicated by the operand value. “UP” may also be indicated
by using the PF7 key and a value operand as the command.

Format UP value

File/Member Selection List PF Key Definitions
The PF keys which can be used while displaying the selection list are
shown at the bottom of the screen. The following PF keys are defined
on the Selection List Menu:

PF1 Help. PF1 displays detailed help information about the file
selection list menu and commands.

PF3 Menu. PF3 exits this menu and executes the comparison (or
search) if selections were made.

PF7 Up. PF 7 scrolls the list in the active window up one page or
until the top of the list is reached. If a number is entered in
the command field, PF7 7 scrolls up that number of lines
(unless the top of the list is reached first).

PF8 Down. PF8 scrolls the list in the active window down one
page or until the bottom of the list is reached. If a number is
entered in the command field, PF8 scrolls down that many
line (unless the bottom of the list is reached first).

PF10 Top. PF10 scrolls the active window to the top of the list.

PF11 Bottom. PF11 scrolls the active window to the bottom of the
list.

310 HLASM V1R4 Toolkit Feature User’s Guide

 How SuperC Pairs CMS Files and Members

PF12 Change-Window. PF12 toggles the active window from right
to left or from left to right. PF12 is not applicable to the
SuperC Search which has only one window.

How SuperC Pairs CMS Files and Members
It is important to understand how SuperC pairs files and members. Careless (or
too frequent) use of the wildcard character (“�”) can result in the wrong items being
paired.

Pairing Files: SuperC pairs files in two stages. First, SuperC uses the LISTFILE
command to collect the group of file names. Second, from this collection, SuperC
pairs the new with the old based upon the asterisk-mask.

The asterisk-mask can be up to 16 characters long, 8 from the fn and 8 from the ft.
Intervening spaces are discarded. The effects of this can be seen with the following
example.

The matching of pairs involves only the asterisk-masks. If the asterisk-masks are
equal, the files are paired.

For example, if you had the following files on your A minidisk:

and specified �SUP PLI A on the New File ID field and �BKSUP PLI A on the Old
File ID field, then SuperC generates the following collections using LISTFILE:

For the new file BKBKSUP PLI A, SuperC substitutes “BKBK” for the asterisk-mask.
Similarly, for new files BKSUP PLI A and SUP PLI A, SuperC substitutes “BK” and
the null string respectively for the asterisk mask. For the old files BKBKSUP PLI A
and BKSUP PLI A, SuperC substitutes “BK” and the null string respectively.

SuperC pairs the files when the asterisk-mask of the new file is the same as the
asterisk-mask of the old file. Continuing with our example, SuperC pairs the
following files:

File Group ID File ID Asterisk-mask
� � A XYZ ABC A XYZABC

� ABC A XYZ ABC A XYZ

XYZ � A XYZ ABC A ABC

�YZ �BC A XYZ ABC A XA

SUP PLI A

BKSUP PLI A

BKBKSUP PLI A

For New File Asterisk-mask For Old File Asterisk-mask
BKBKSUP PLI A “BKBK” BKBKSUP PLI A “BK”

BKSUP PLI A “BK” BKSUP PLI A “”

SUP PLI A “”

 Chapter 6. Using Enhanced SuperC 311

 CMS Files Used by SuperC

The first 2 files are paired together because the character string “BK” replaces the
asterisk-mask of both files. The second 2 files are paired together because the null
string is substituted for the asterisk-mask of both files.

Pairing Members: In a similar way to pairing files, pairing members from
MACLIBs or TXTLIBs firstly involves the members being selected.

To be selected for the new list, the member must be a member of the new MACLIB
or TXTLIB and have the same prefix as the prefix on the new Member field. To be
selected for the old list, the member must be a member of the old MACLIB or
TXTLIB and have the same prefix as the prefix on the old Member field.

For example:

New File ID ==> new maclib a Member ==> abc�

Old File ID ==> old maclib a Member ==> �

The new list consists of all members of NEW MACLIB A with a name having a
prefix of “ABC” and the old list consists of all members of OLD MACLIB A.

Members are paired if the member name appears in both lists. For example, if the
member name “ABCD” appears in both lists, the Member Selection List pairs the
name.

New File Old File
BKSUP PLI A paired to BKBKSUP PLI A

SUP PLI A paired to BKSUP PLI A

CMS Files Used by SuperC
In addition to the files that you specify to be compared or searched, SuperC uses a
number of CMS work files.

These work files are listed here:

SUPERC OLIST A
The default file ID for the Options List file when invoking the SuperC
Comparison on the CMS command line. (The Options List file holds a
set of default options.)

Note: The OLF keyword allows you to specify an alternative file ID for
the Options List file.

SRCHFOR OLIST A
The default file ID for the Options List file when invoking the SuperC
Search on the CMS command line. (The Options List file holds a set of
default options.)

Note: The OLF keyword allows you to specify an alternative file ID for
the Options List file.

SUPERC NAMES �
Contains optional CMS command line information for the SuperC
Comparison. (In most cases, the Options List file holds command line
requirements.)

312 HLASM V1R4 Toolkit Feature User’s Guide

 Reasons for Differing Comparison Results

� If no equivalent options are specified in the CMS command line or
the Options List file (user-specified or default), then options from the
LINE_DEF tag of the SUPERC NAMES � file are used.

� Printer information for “WIDE” printing, if required, can be held in the
SUPERC NAMES � file.

SUPERC SYSIN A
The default file ID for the process statements file when using the
SuperC Comparison. A new SUPERC SYSIN A file (erasing the
contents of an existing SUPERC SYSIN A file) is created when
(comparison) process statements are selected using the Process
Statements Entry Menu.

SRCHFOR SYSIN A
The default file ID for the process statements file when using the
SuperC Search. A new SRCHFOR SYSIN A file (erasing the contents
of an existing SRCHFOR SYSIN A file) is created when (search)
process statements are selected using the Process Statements Entry
Menu.

SUPERC $SYSIN$ A
A temporary control file used for passing CMS control line statement
directives to SuperC.

Reasons for Differing Comparison Results
When comparing two sets of input date, it is possible that different compare types
(FILE, LINE, WORD, and BYTE) gives slightly different results.

In order for SuperC to detect only the types of differences that are of interest to
you, make sure that you are using the most appropriate compare type and, if
necessary, the appropriate process options and process statements to select only
the data that you actually want compared.

Here are some of the reasons why different compare types can produce different
results:

� FILE and BYTE comparisons inspect the complete file (every byte) for
differences. LINE and WORD comparisons use designated columns that are
either specified by you or are within the default range of columns assigned by
SuperC.

For example, a FILE comparison of a file with fixed-length records of eighty
bytes compares all columns (that is, all bytes), whereas a LINE comparison of
the same file compares columns 1 to 72 (the default). Since the sequence
number columns in the file are ignored in the LINE compare, the final results
can be different. In this case, for consistent results, you should specify the
LINE compare type and the NOSEQ process option.

� LINE comparisons “pad” the shorter records with spaces when comparing files
with different record lengths. However, BYTE comparisons only “recognize”
spaces when they are already present in the input file.

� For files with input line lengths <= 256, a LINE comparison is performed after
padding the lines to the longest line length. Consequently two lines, originally
of unequal length, compare equally only if the spaces at the end of the longer
line coincide with the shorter line's space padding.

 Chapter 6. Using Enhanced SuperC 313

 Return Codes

� For files with input line lengths > 256, a LINE comparison is performed on the
lines without space padding. As a result, lines of unequal length are always a
mismatch.

� Different compare types have different sensitivity to being resynchronized.
Synchronization for a LINE comparison begins at the beginning of a line and
ends at the end of a line. Synchronization for a WORD comparison begins
anywhere on a line on any word boundary and ends at the end of a word.
Synchronization for a BYTE comparison extends only one byte anywhere on a
line.

� LINE comparisons detect lines that have been reformatted. However,
reformatted lines have no effect on WORD comparisons as spaces and blank
lines are ignored.

� Results may differ depending on which input file is specified as the “new” file
and which is specified as the “old” file. The matching algorithm is sensitive to
the largest matched set it finds between files. There may be occasions where
more than one set of matched data meets this criteria. The rules for deciding
which set to choose among the equals depends upon the contents of each file
and which file was nominated as the “new” file.

 Return Codes
SuperC displays the completion message at the top of the Primary Comparison
Menu or at the top of the Primary Search Menu. The message is an interpretation
of the following return codes.

Table 33 (Page 1 of 2). SuperC Return Codes

Code Meaning

0 Normal completion.

Comparison The input files are the same. No differences found.

Search No matches found in the input file.

1 Normal completion.

Comparison Differences were found in the input files.

Search Matches found in the input file.

4 WARNING. Erroneous input was detected. Files were compared but results
may not be as expected. Check listing for more information.

6 WARNING. Old file did not contain proper sequence numbers, or the sequence
number intervals were not sufficiently large to contain insert activity (UPDCMS8
and UPDMVS8).

8 ERROR. Error on old input file. Files were NOT compared. Check listing for
more details.

16 ERROR. Error on new or search source file. The operation was NOT performed.
Check listing for more details.

20 ERROR. I/O error writing to update file, FILEDEF missing, or APNDUPD
process option cancelled because of inconsistent file attributes.

24 ERROR. I/O error writing to the output listing file.

25 ERROR. The old output file attributes are not consistent with the new listing
requirements. The APNDLST process option can not be accepted and the
operation is immediately terminated.

26 ERROR. The output file caused a “disk full”condition. The output listing is
incomplete.

314 HLASM V1R4 Toolkit Feature User’s Guide

 Return Codes

Table 33 (Page 2 of 2). SuperC Return Codes

Code Meaning

27 ERROR. The output file is a “read-only” disk. All I/O operations to the disk is
suppressed.

28 ERROR. No data was compared because of invalid file names, no commonly
named members of both input file groups, or one or both input files were empty.

32 ERROR. Insufficient storage was available for SuperC to execute. Refer to
output listing for more details.

36 ERROR. VSE file would not open.

40 ERROR. VSE label information not available.

48 ERROR. VSE Librarian member not found.

52 ERROR. VSE VSAM Showcat failed.

56 ERROR. VSE device type not supported.

60 ERROR. Wrong length record read on tape input.

 Chapter 6. Using Enhanced SuperC 315

 SuperC Messages

 SuperC Messages
There are three levels of SuperC messages:

� Informational messages do not affect the return code and SuperC completes
normally.

� Warning messages return a code of 4 to 7, processing is completed, but some
user option/operation may not be completely performed.

� Error messages are accompanied with a return code of 8 or greater and the
processing is prematurely terminated.

This section explains the SuperC message format and the messages you may
receive.

Each of the messages issued by SuperC is of the form:

 Message Format

ASMFnnns

where:

ASMF is the program identifier for SuperC

nnn represents a particular message number

s is the message severity level:

I Informational message

W Warning message

E Error message

316 HLASM V1R4 Toolkit Feature User’s Guide

 ASMF001I � ASMF010W

ASMF001I EMPTY COMPARE SET, INVALID
NAMES, NO COMMON NAMED EMPTY
FILES/DATA SETS, OR ZERO
COMPARE AFTER FILTERED.

Explanation: No data has been found to be
compared.

System Action: The SuperC run continues.

Programmer Response: Check that the file/member
name(s) have been entered correctly. Also, check that
the parameters for any select, focus/exclude options are
correct.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF002I NO UPDATE FILE/DATA SET
GENERATED FOR UPDCMS8 OR
UPDMVS8 OPTIONS WHEN NO INPUT
DIFFERENCES ARE FOUND.

Explanation: No differences in the input have been
found. The update process option specified does not
create an output update file in this situation.

System Action: The SuperC run continues.

Programmer Response: None.

ASMF003I THE COMPARISON OPERATION WAS
EXECUTED UNDER STORAGE
CONSTRAINTS THAT MAY AFFECT
RESULTS/THROUGHPUT.

Explanation: Insufficient storage available for normal
processing. Results are unpredictable. Output may be
formatted incorrectly.

System Action: The SuperC run continues.

Programmer Response: Specify a larger region
parameter on the JCL and resubmit the job.

ASMF004I LISTING LINES MAY BE TRUNCATED
DUE TO LIMITING OUTPUT LINE
WIDTH.

Explanation: The length of the data being printed is
less than the length of one of the records. This is
normal for a NARROW listing of 80 character records.

System Action: The SuperC run continues.

Programmer Response: The maximum listing length
is 80 characters. If the data has records greater than
80, the part after the 80th character is not displayed. If
the length of the data is between 56 and 80 characters,
the WIDE option gives a side-by-side listing of 80
characters from each file.

See “Process Options” on page 226.

ASMF005I NO DATA SEARCHED INVALID
NAME(S), EMPTY MEMBERS
PROCESSED OR ZERO SEARCH SET
AFTER INPUT FILTERING.

Explanation: No data has been found to be searched.

System Action: The SuperC run continues.

Programmer Response: Check that the file/member
name(s) have been entered correctly. Also, check that
the parameters for any SELECT, FOCUS/EXCLUDE
process options are correct.

See “Process Options” on page 226.

ASMF006I UPDATE PROCESSING DETECTED
SEQUENCE NUMBERING ERRORS.

Explanation: The sequence numbers on one or both
input files have found to be incorrect.

System Action: The SuperC run continues.

Programmer Response: Check sequence numbering
on input.

ASMF007I MOVED LINE FLAGGING ONLY VALID
FOR FIRST 32K LINES PORTION OF
COMPARE OPERATION PER DATA
SET (OR FILE).

Explanation: Process option FMVLNS (Flag Moved
Lines) restricted to a maximum of 32K “blocks” of
moved lines.

System Action: The SuperC run continues.

Programmer Response: None.

ASMF009W GWCBL OPTION AND Y2DTONLY
MUTUALLY EXCLUSIVE. GWCBL IS
IGNORED.

Explanation: GWCBL and Y2DTONLY process
options cannot be used together.

System Action: The SuperC run continues (without
GWCBL process option).

Programmer Response: None.

ASMF010W process-option PROCESS OPTION
PARAMETER IS NOT A VALID
PROCESS OPTION. IT IS IGNORED.

Explanation: process-option is not a valid process
option keyword and has been ignored.

System Action: The SuperC run continues.

Programmer Response: Check that the process
option(s) have been entered correctly.

See “Process Options” on page 226.

 Chapter 6. Using Enhanced SuperC 317

 ASMF011W � ASMF019W

ASMF011W start-value SPECIFIED START VALUE
GREATER THAN STOP VALUE. STOP
VALUE CHANGED TO MAXIMUM
VALUE.

Explanation: When nominating a range, the start
value for the range has been specified with value
greater than the stop value for the range. SuperC has
attempted to accommodate the range by extending the
stop value to the maximum value for the line or file
concerned.

System Action: The SuperC run continues.

Programmer Response: Check start and stop values
for range(s).

ASMF012W SRCHFOR STATEMENT(S) MISSING
FOR SEARCH-FOR COMPARE TYPE
REQUEST. ZERO LINES WILL BE
INSPECTED.

Explanation: SuperC expected 1 or more SRCHFOR
process statements to be present (specifying the
“string(s)” to be searched for) but none were found. No
records searched.

System Action: The SuperC run continues.

Programmer Response: Check that “search string” is
being supplied to SuperC correctly.

See (MVS) “Invoking the Search on MVS” on page 205,
(CMS) “Invoking the Search on CMS using Menu Input”
on page 207.and “Invoking the Search on CMS using
Command Line Input” on page 215, (VSE) “Invoking the
Search on VSE” on page 221.

ASMF013W CERTAIN “DO NOT PROCESS”
OPTIONS ARE REJECTED DUE TO
LINE LENGTHS > 256. OPTIONS
RESERVED FOR PROGRAM SOURCE
DATA.

Explanation: “Do not process” options are not allowed
if line > 256 characters. These options are primarily for
source text. The DPLINE process statement is allowed
in these cases.

System Action: The SuperC run continues.

Programmer Response: Either use the DPLINE
statement or modify the data before comparing.

ASMF014W UPDATE OPTION CONFLICTS WITH
“DO NOT PROCESS” OPTION
SELECTION. “DO NOT PROCESS”
OPTIONS IGNORED.

Explanation: The update process option specified is
incompatible with the “Do not process” (DP...) process
option(s) specified.

System Action: The SuperC run continues.

Programmer Response: Check process options used.

See “Process Options” on page 226.

ASMF015W UPDMVS8 AND UPDCMS8 PROCESS
OPTIONS ARE ONLY ALLOWED WITH
FIXED 80 RECORDS.

System Action: The SuperC run continues. No update
file is created.

Programmer Response: Check that the appropriate
update process option is being used for the input file.

See “Process Options” on page 226.

ASMF016W MOVE LINE DETECTION RESTRICTED
TO LINES <= 256 LRECL. OPTION IS
IGNORED.

Explanation: Process option FMVLNS is restricted to
lines <= 256 characters.

System Action: The SuperC run continues.

Programmer Response: None.

ASMF017W file-name - SELECT MEMBER WAS
NOT FOUND.

Explanation: The member or file in the SELECT
process statement could not be found.

System Action: The SuperC run continues.

Programmer Response: Check that the member/file
name in the SELECT process statement is correct.
Also, check that the “group” from which the member/file
is to be selected has been specified correctly.

See “Process Statements” on page 236.

ASMF018W file-name1:file-name2 SELECT
MEMBER-PAIR WAS NOT FOUND.

Explanation: One or both of the members or files in
the SELECT process statement could not be found.

System Action: The SuperC run continues.

Programmer Response: Check that both member/file
names have been specified correctly.

See “Process Statements” on page 236.

ASMF019W AGING PARAMETER IS INVALID

Explanation: Aging parameter in NY2AGE/OY2AGE is
not numeric. It should be a value between 1 and 999.

System Action: The SuperC run continues.

Programmer Response: Change NY2AGE/OY2AGE
aging parameter to a valid value.

318 HLASM V1R4 Toolkit Feature User’s Guide

 ASMF020W � ASMF029W

ASMF020W Y2DTONLY OPTION IGNORED AS
THERE ARE NO VALID DATE
DEFINITIONS.

Explanation: A Compare Dates Only (Y2DTONLY)
process option has been specified but no dates have
been defined by Date Definition (NY2C, NY2Z, NY2D,
NY2P, OY2C, OY2Z, OY2D, OY2P) process
statements.

System Action: The SuperC run continues.

Programmer Response: Use appropriate Date
Definition process statements to define the date(s) to be
compared.

See “Process Options” on page 226.

| ASMF021W SYSIN ALTERNATE DDNAME
| PARAMETER INVALID.

| Explanation: The name supplied is not a valid DD
| name or was not correctly supplied within parentheses.

| System Action: The SuperC run continues without
| SYSIN process option.

| Programmer Response: Ensure the rules for valid DD
| names are followed.

| See “Process Options” on page 226.

ASMF022W compare-type COMPARE TYPE AND
THIS PROCESS STATEMENT ARE
INCOMPATIBLE. STATEMENT
IGNORED.

Explanation: The compare type specified (FILE, LINE,
WORD, or BYTE) is not valid for the process statement
that has been specified.

System Action: The SuperC run continues.

Programmer Response: Change compare type to
one that is valid for the process statement involved.

See “Process Statements” on page 236.

ASMF023W UNRECOGNIZED OR INVALID
PROCESS STATEMENT KEYWORD.

Explanation: Keyword not valid for the process
statement specified

System Action: The SuperC run continues.

Programmer Response: Check if the process
statement involved requires a keyword. If so, ensure a
valid keyword is used.

See “Process Statements” on page 236.

ASMF024W EXTRA DATA DETECTED AFTER
NORMAL STATEMENT END.
STATEMENT ACCEPTED WITH
WARNING NOTIFICATION.

Explanation: Extraneous data or incorrect syntax.

System Action: The SuperC run continues.

Programmer Response: Check format of statement.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF025W INVALID PROCESS STATEMENT
DATA-VALUE/OPERAND, EXTRA
DATA OR EXCEEDS COLUMN 72.
STMT/OPERAND IGNORED.

Explanation: Incorrect syntax for process statement.

System Action: The SuperC run continues.

Programmer Response: Check required syntax for
process statement.

See “Process Statements” on page 236.

ASMF026W THE CMPBOFS STATEMENT AND
UPDCNTL CONFLICT. STATEMENT
IGNORED.

Explanation: Cannot use a CMPBOFS process
statement with UPDCNTL process option.

System Action: The SuperC run continues.
CMPBOFS process statement ignored.

Programmer Response: Change process option(s) or
process statement(s) as necessary.

ASMF028W statement-type STATEMENT
CONFLICTS WITH SPECIFIED
UPDATE OPTIONS. STATEMENT
IGNORED.

Explanation: The type of statement specified is not
compatible with one or more of the update process
options specified.

System Action: The SuperC run continues.

Programmer Response: See “Process Options” on
page 226 and “Process Statements” on page 236.

ASMF029W A SELECT PROCESS STATEMENT IS
INVALID WITH SEQUENTIAL
FILES/DATA SETS. STATEMENT
IGNORED.

Explanation: SELECT process statements can only
be used to select members/files from a “group.”

System Action: The SuperC run continues.

Programmer Response: See “Process Statements”
on page 236.

 Chapter 6. Using Enhanced SuperC 319

 ASMF030W � ASMF037W

ASMF030W THE SELECT STATEMENT HAS AN
INVALID MEMBER NAME OR
IMPROPER OPERAND FORMAT.
STMT/MEMBER IGNORED.

Explanation: Incorrect content or syntax.

System Action: The SuperC run continues.

Programmer Response: Check that the member/file
name(s) have been entered correctly in the SELECT
process statement.

See “Process Statements” on page 236.

ASMF031W AN INVALID START COLUMN VALUE
WAS SPECIFIED.

Explanation: Missing, non-numeric, or otherwise
invalid “start column” parameter specified.

System Action: The SuperC run continues.

Programmer Response: Check that details have
been entered correctly and in accordance with the
required syntax.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF032W COLUMN VALUES MUST BE IN
ASCENDING SEQUENCE.
STATEMENT IGNORED.

Explanation: Column values not in ascending
sequence or, possibly, statements out of sequence.

System Action: The SuperC run continues.

Programmer Response: Check that SuperC receives
column numbers/ranges in ascending sequence such
that a record can be scanned sequentially from “left to
right.”

ASMF033W CMPCOLM RANGE STARTS WITH A
VALUE EXCEEDING THE MAXIMUM
PROCESSING LENGTH. STATEMENT
TERMINATED.

Explanation: The “start_column” specified in the
CMPCOLM process statement is greater than the
logical record length of the file.

System Action: The SuperC run continues.

Programmer Response: Correct the column/range
specified in the CMPCOLM process statement.

ASMF034W CMPCOLM STMT(S) HAS TOO MANY
RANGES. ONLY FIRST 15 RANGES
WILL BE USED.

Explanation: More than the permitted maximum of 15
ranges/individual columns specified for the CMPCOLM
process statement. Extraneous information ignored.

System Action: The SuperC run continues.

Programmer Response: Limit ranges/individual
columns to a maximum of 15 for each run of SuperC.
Additional ranges/individual columns can be specified in
a separate run.

ASMF035W INVALID CHANGE TEXT
COMBINATION OF NEW TEXT > OLD
TEXT AND LINE LENGTHS > 256
ATTRIBUTE.

Explanation: The length of the search text in a
NCHGT or OCHGT process statement can not be
greater than the length of the change text when a
record is greater than 256 characters.

System Action: The SuperC run continues.

Programmer Response: Correct process statement.

ASMF036W SELECT STATEMENTS VALID ONLY
WITH /PDS/MACLIBS/TXTLIBS OR “�”
FILE NAMES. STATEMENT IGNORED.

Explanation: SELECT process statements can only
be used to select members/files from a “group.”

System Action: The SuperC run continues.

Programmer Response:

See “Process Statements” on page 236.

ASMF037W DPLINEC MUST BE PRECEDED BY A
VALID DPLINE/D PLINEC
STATEMENT. STATEMENT
REJECTED.

Explanation: The DPLINEC process statement is a
continuation of the preceding DPLINE (or DPLINEC)
statement and therefore must always be preceded by
one of those statements.

System Action: The SuperC run continues.

Programmer Response: Ensure the first “Do not
process” statement is a DPLINE followed, if necessary,
by a DPLINEC statement containing “continuation”
information.

See “Process Statements” on page 236.

320 HLASM V1R4 Toolkit Feature User’s Guide

 ASMF038W � ASMF046W

ASMF038W SRCHFORC MUST BE PRECEDED BY
A VALID SRCHFOR /SRCHFORC
STATEMENT. STATEMENT
REJECTED.

Explanation: The SRCHFORC process statement is a
continuation of the preceding SRCHFOR (or
SRCHFORC) statement and therefore must always be
preceded by one of those statements.

System Action: The SuperC run continues.

Programmer Response: Ensure the first “search”
statement is a SRCHFOR followed, if necessary, by a
SRCHFORC statement containing “continuation”
information.

See “Process Statements” on page 236.

ASMF039W ONLY ONE GROUP OF FILES OR
MEMBERS MAY BE PROCESSED
USING SELECTF STATEMENTS.
STATEMENT REJECTED.

Explanation: SelectF does not allow multiple wildcard
selection (except when used for filemode).

System Action: The SuperC run continues.

Programmer Response: Correct process statement.

See “Process Statements” on page 236.

ASMF040W SOME LINES OVERFLOW WITH
CHANGE TEXT SUBSTITUTION.
RESULTS MAY BE AFFECTED.

Explanation: Change text (NCHGT/OCHGT process
statement) has a different length than search text. The
result could run past the end of the record.

System Action: The SuperC run continues.

Programmer Response:

See “Process Statements” on page 236.

ASMF041W UPDLDEL OPTION INVALID DUE TO
INCONSISTENT LRECL OR RECFM
ATTRIBUTES.

Explanation: If input is fixed, then both files must be
the same record length. The UPDLDEL option is
ignored.

System Action: The SuperC run continues (without
UPDLDEL process option).

Programmer Response: See “Process Options” on
page 226.

ASMF042W NCHGT AND OCHGT MIXED DBCS
PATTERNS MUST BE THE SAME
LENGTH. STATEMENT REJECTED.

Explanation: The lengths of the search text and
change text must be equal length in DBCS.

System Action: The SuperC run continues.

Programmer Response: Correct NCHGT or OCHGT
process statement.

ASMF043W CMPCOLM NOT VALID FOR MIXED
DATA AND SRCHCMP OR WORDCMP
OPERATIONS. STATEMENT
REJECTED.

Explanation: CMPCOLM process statement cannot be
used with search or WORD compare type when the
input contains a mixture of DBCS and non-DBCS data.

System Action: The SuperC run continues.

Programmer Response: Correct process statement or
change to a line compare.

ASMF044W MIXING CMPLINE, CMPSECT, AND
CMPBOFS STMTS IS NOT ALLOWED.
STATEMENT REJECTED.

Explanation: Invalid combination of process
statements.

System Action: The SuperC run continues.

Programmer Response: Use only one of these type
of process statements at a time.

ASMF045W statement-type STATEMENT(S) ONLY
ALLOWED WITH SINGLE MEMBERS
OR SEQUENTIAL FILES/DATA SETS.
STATEMENT REJECTED.

Explanation: An NTITLE, OTITLE or CMPSECT
process statement has been used for a “group” of files
or members. These statements are only valid for single
members or files.

System Action: The SuperC run continues.

Programmer Response: Specify a single member/file.

ASMF046W VSE NEWDD/OLDDD PARAMETER IS
INVALID.

Explanation: One of the NEWDD/OLDDD parameters
is invalid.

System Action: The SuperC run continues.

Programmer Response: Check format of
NEWDD/OLDDD statement.

See “Process Statements” on page 236.

 Chapter 6. Using Enhanced SuperC 321

 ASMF047W � ASMF056E

ASMF047W VSE PARAMETER NAME LONGER
THAN 8 CHARACTERS.

Explanation: One of the parameters on a
NEWDD/OLDDD statement is too long.

System Action: The SuperC run continues.

Programmer Response: Correct NEWDD or OLDDD
process statement.

See “Process Statements” on page 236.

ASMF048W VSE RECFORM VALUE MORE THAN 2
CHARACTERS.

Explanation: RECFORM in a NEWDD or OLDDD
process statement can only be FU, FB, VU or VB.

System Action: The SuperC run continues.

Programmer Response: Correct NEWDD or OLDDD
process statement.

See “Process Statements” on page 236.

ASMF049W VSE: MIXED MATCHING OF
LIBRARIAN FILES AND SAM FILES
NOT ALLOWED. NEWDD/OLDDD SET
TO DEFAULT.

Explanation: Input files must be the same type. The
statement which defined the Librarian is ignored and
default attributes are assigned to the file concerned.
Default file attributes used: fixed, unblocked, record and
blocksize of 80.

System Action: The SuperC run continues.

Programmer Response: See “Process Statements”
on page 236.

ASMF050W AGING ONLY ALLOWED ON ONE
FILE. WILL ASSUME ONLY OLDDD IS
TO BE AGED.

Explanation: NY2AGE and OY2AGE process
statements are mutually exclusive. NY2AGE statement
ignored.

System Action: The SuperC run continues.

Programmer Response: Check which file you want to
“age” and use either the NY2AGE or OY2AGE
accordingly.

See “Process Statements” on page 236.

ASMF051W CONFLICTING FOCUS/EXCLUDE
STATEMENTS DEFINED.

Explanation: NEXCLUDE/OEXCLUDE process
statements are mutually exclusive to
NFOCUS/OFOCUS respectively if using the same
operand keyword (ROWS or COLS).

System Action: The SuperC run continues.

Programmer Response: Check that the
NEXCLUDE/OEXCLUDE and NFOCUS/OFOCUS
process statements “exclude” and “focus” on the data
you want without conflicting with each other.

See “Process Statements” on page 236.

ASMF052W WRONG DATE FORMAT IN NEW FILE

Explanation: Date definition format in
NY2C/NY2Z/NY2D/NY2P statement is invalid. Date is
ignored.

System Action: The SuperC run continues.

Programmer Response: Correct process statement.

See “Process Statements” on page 236.

ASMF053W WRONG DATE FORMAT IN OLD FILE

Explanation: Date definition format in
OY2C/OY2Z/OY2D/OY2P statement is invalid. Date is
ignored.

System Action: The SuperC run continues.

Programmer Response: Correct process statement.

See “Process Statements” on page 236.

ASMF054E “NEW” FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED DURING
OPEN. OPERATION TERMINATED.

Explanation: “New” input file could not be found or a
problem was encountered during the open process.

System Action: The SuperC run terminates.

Programmer Response: Check that the “new” file
name has been specified correctly

ASMF055E “OLD” FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED DURING
OPEN. OPERATION TERMINATED.

Explanation: “Old” input file could not be found or a
problem was encountered during the open process.

System Action: The SuperC run terminates.

Programmer Response: Check that the “old” file
name has been specified correctly

ASMF056E “SRH” FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED DURING
OPEN. OPERATION TERMINATED.

Explanation: New file could not be opened

System Action: The SuperC run terminates.

Programmer Response: Check that the dataset/file
has been assigned correctly.

322 HLASM V1R4 Toolkit Feature User’s Guide

 ASMF057E � ASMF068E

ASMF057E THE INPUT FILES/DATA SETS COULD
NOT BE PROCESSED. BOTH MUST
BE SEQUENTIAL OR A WHOLE
PDS/MACLIB.

Explanation: Cannot compare a
PDS/MACLIB/TXTLIB/Librarian with a sequential
file/dataset.

System Action: The SuperC run terminates.

Programmer Response: Ensure input files are
comparable.

ASMF058E MEMORY AVAILABLE WAS
INSUFFICIENT. OPERATION
TERMINATED.

Explanation: There was insufficient memory available
for SuperC to run.

System Action: The SuperC run terminates.

Programmer Response: Increase amount of memory
available.

ASMF059E A SYNAD ERROR INTERCEPT ON THE
NEW-FILE/DATA SET IS AN I/O
ERROR, CONCATENATION
ORDERING OR ATTRIBUTE
CONFLICT.

Explanation: New file/dataset I/O error.

System Action: The SuperC run terminates.

Programmer Response: Refer to your systems
programmer.

ASMF060E A SYNAD ERROR INTERCEPT ON THE
OLD-FILE/DATA SET IS AN I/O
ERROR, CONCATENATION
ORDERING OR ATTRIBUTE
CONFLICT.

Explanation: Old file/dataset I/O error.

System Action: The SuperC run terminates.

Programmer Response: Refer to your systems
programmer.

ASMF061E A SYNAD ERROR INTERCEPT ON THE
UPD-FILE/DATA SET WAS DETECTED.
THE OUTPUT MAY BE INCOMPLETE.

Explanation: Update file/dataset I/O error.

System Action: The SuperC run terminates.

Programmer Response: Refer to your systems
programmer.

ASMF062E UPDATE FILE/DATA SET, DELDD,
MISSING OR INCOMPATIBLE
ATTRIBUTES/LRECL FOR
PDS/MACLIB. UPDATE OPTIONS
CANCELLED.

Explanation: Update/delta file requested but there is
no assignment for it.

System Action: The SuperC run terminates.

Programmer Response: Refer to your systems
programmer.

ASMF063E member_name - SYNAD ERROR
INTERCEPT OCCURRED
PROCESSING NAMED MEMBER.

Explanation: I/O error on processing member.

System Action: The SuperC run terminates.

Programmer Response: Refer to your systems
programmer.

ASMF064E data-set-name COULD NOT BE
OPENED

Explanation: Problem encountered when trying to
open data set.

System Action: The SuperC run terminates.

Programmer Response: Correct either the
data-set-name process statement or the dataset-name
JCL statement.

ASMF065E LABEL INFORMATION NOT
AVAILABLE FOR data-set-name.

Explanation: Label details for data set missing.

System Action: The SuperC run terminates.

Programmer Response: Correct either the
data-set-name process statement or the data-set-name
JCL statement.

ASMF067E data-set-name SHOWCAT FAILURE.

Explanation: Error in accessing VSAM catalogue.

System Action: The SuperC run terminates.

Programmer Response: Make sure the
data-set-name is assigned correctly.

ASMF068E data-set-name DEVICE TYPE NOT
SUPPORTED.

Explanation: data-set-name is supported for disk and
tape only.

System Action: The SuperC run terminates.

Programmer Response: Correct the data-set-name to
ensure it is assigned to disk or tape.

 Chapter 6. Using Enhanced SuperC 323

 ASMF069W � ASMF076I

ASMF069W LIBRARY MEMBER IN data-set-name
NOT FOUND.

Explanation: Member could not be found in library.

System Action: The SuperC run continues (without
this member).

Programmer Response: Inspect output listing for
further details.

ASMF070W REQUEST FOR WIDE OPTION NOT
SUPPORTED BY SYSLST. NARROW
OPTION WILL BE SUBSTITUTED.

Explanation: The WIDE process option requires a
printing device capable of printing lines up to 202
characters long. The 55-character side-by-side
NARROW option has been used instead.

System Action: The SuperC run continues.

Programmer Response: Refer to your systems
programmer.

ASMF071W SIDE BY SIDE LISTINGS NOT
ALLOWED WHEN USING COLHEAD
PROCESS STATEMENT.

Explanation: The NARROW process option cannot be
used with the COLHEAD process statement.

System Action: The COLHEAD statements are
accepted and the NARROW (side-by-side) process
option is ignored. The SuperC run continues.

Programmer Response: Check that you are using the
correct process options and statements.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF072W UPDATE PROCESS OPTIONS
INCOMPATIBLE WITH Y2DTONLY
PROCESS OPTION.

Explanation: Update process options cannot be used
with the “Compare Dates Only” process option.

System Action: The UPD... process option is ignored.
The SuperC run continues.

Programmer Response: Check that you are using the
correct process options and statements.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF073W Y2PAST PROCESS STATEMENT
SPECIFIED WITHOUT ANY DATE
DEFINITION PROCESS STATEMENTS.

Explanation: A Y2PAST process statement has been
used but there are no accompanying Date Definition
process statements.

System Action: The Y2PAST process option is
ignored. The SuperC run continues.

Programmer Response: Check that you are using the
process statements correctly. Either the Y2PAST
process statement should be removed, or one or more
date definition process statements should be included.

See “Process Statements” on page 236.

ASMF074W FOCUS/EXCLUDE PROCESS
STATEMENTS ARE IGNORED WHEN
USING THE Y2DTONLY PROCESS
OPTION.

Explanation: NFOCUS, OFOCUS, NEXCLUDE, and
OEXCLUDE process statements have no effect when
the Y2DTONLY process option is used.

System Action: The FOCUS/EXCLUDE process
statements are ignored. The SuperC run continues.

Programmer Response: Check that you are using the
correct process options and statements.

See “Process Options” on page 226 and “Process
Statements” on page 236.

ASMF075I DATE DEFINITION PROCESS
STATEMENTS ARE IGNORED WHEN
USING THE COLHEAD PROCESS
STATEMENT.

Explanation: Date Definition process statements
cannot be used with the COLHEAD process statement.
(The Date Definition statements generate their own
information line for which column headings are not
appropriate.)

System Action: The Date Definition process
statements are ignored. The SuperC run continues.

Programmer Response: Check that you are using the
correct process statements.

See “Process Statements” on page 236.

ASMF076I FOCUS/EXCLUDE OF ROWS USED
FOR ONLY ONE FILE. ALL ROWS
PROCESSED IN THE OTHER FILE.

Explanation: A “focus” (NFOCUS or OFOCUS) or an
“exclude” (NEXCLUDE or OEXCLUDE) process
statement has been specified for one file but not for the
other file.

324 HLASM V1R4 Toolkit Feature User’s Guide

 ASMF077E � ASMF079W

System Action: All rows (records) of the file for which
no “focus” or “exclude” statement exists are included in
the comparison process.

Programmer Response: Check that you are using the
“focus” or “exclude” process statements correctly.

See “Process Statements” on page 236.

ASMF077E WRONG LENGTH RECORD IN
defined-input-file. RUN ABORTED.

Explanation: The input tape file defined by the
process statement defined-input-file (NEWDD or
OLDDD) contains a record of the wrong length.

System Action: The SuperC run terminates.

Programmer Response: Check that the record

format, block size, and maximum record size have been
specified correctly on the NEWDD/OLDDD process
statement.

See “Process Statements” on page 236.

ASMF079W FMSTOP OPTION ONLY VALID WITH
FILE COMPARE OR SEARCH.

Explanation: The FMSTOP option is set for a
compare that is not a FILE compare.

System Action: The FMSTOP option is ignored.

Programmer Response: Remove the FMSTOP
option, or change the compare to a FILE compare.

 Chapter 6. Using Enhanced SuperC 325

326 HLASM V1R4 Toolkit Feature User’s Guide

 Notices

 Notices

This information was developed for products and
services offered in the U.S.A.

IBM may not offer the products, services, or features
discussed in this document in other countries. Consult
your local IBM representative for information on the
products and services currently available in your area.
Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM
product, program, or service may be used. Any
functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this document.
The furnishing of this document does not give you any
license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

 IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United
Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM
may make improvements and/or changes in the
product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites
are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the
materials for this IBM product and use of those Web
sites is at your own risk.

If you are viewing this information softcopy, the
photographs and color illustrations may not appear.

Other company, product, and service names may be
trademarks or service marks of others.

CICS
BookMaster
DFSMS/MVS
IBM
IMS
MVS/DFP
MVS/ESA
OpenEdition
OS/390

OS/2
RETAIN
QMF
SP
System/370
VM/ESA
VSE/ESA
3090

 Copyright IBM Corp. 1992, 2004 327

 Notices

328 HLASM V1R4 Toolkit Feature User’s Guide

 Glossary

 Glossary

This glossary defines terms and abbreviations that are
used in this book. If you do not find the term you are
looking for refer to the index, to the glossary of the
appropriate high-level language (HLL) manual, or to the
IBM Dictionary of Computing, New York: McGraw-Hill,
1994.

A
abend. Abnormal end of application.

accept. An SMP/E process that moves distributed
code and programs to the distribution libraries.

activate. To make a program available for use.

addressing mode (AMODE). An attribute that refers
to the address length that a routine is prepared to
handle upon entry. Addresses may be 24 or 31 bits
long.

address space. Domain of addresses that are
accessible by an application.

AMODE. Addressing mode.

APAR. Authorized program analysis report.

authorized program analysis report (APAR). A
request for correction of a problem caused by a defect
in a current unaltered release of a program.

authorized program facility (APF). The authorized
program facility (APF) is a facility that an installation
manager uses to protect the system. In MVS, certain
system functions, such as all or part of some SVCs, are
sensitive; their use must be restricted to users who are
authorized. An authorized program is one that executes
in supervisor state, or with APF authorization.

auxiliary file. In CMS, a file that contains a list of file
types of update files to be applied to a particular source
file.

B
base. The core product, upon which features may be
separately ordered and installed.

batch. Pertaining to activity involving little or no user
action. Contrast with interactive.

byte. The basic unit of storage addressability, usually
with a length of 8 bits.

C
cataloged procedure. A set of control statements
placed in a library and retrievable by name.

CBIPO. Custom-Built Installation Process Offering.

CBPDO. Custom-Built Product Delivery Offering.

CE. IBM customer engineer.

CLIST. TSO command list.

CMS. Conversational monitor system.

compiler options. Keywords that can be specified to
control certain aspects of compilation. Compiler options
can control the nature of the load module generated by
the compiler, the types of printed output to be produced,
the efficient use of the compiler, and the destination of
error messages.

component. (1) Software that is part of a functional
unit. (2) A set of modules that performs a major
function within a system.

condition code. A code that reflects the result of a
previous input/output, arithmetic, or logical operation.

control block. A storage area used by a computer
program to hold control information.

control file. In CMS, a file that contains records that
identify the updates to be applied and the
macrolibraries, if any, needed to assemble a particular
source program.

control program (CP). A computer program designed
to schedule and to supervise the execution of programs
of a computer system.

control section (CSECT). The part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

control statement. (1) In programming languages, a
statement that alters the continuous sequential
execution of statements; a control statement can be a
conditional statement, such as IF, or an imperative
statement, such as STOP. (2) In JCL, a statement in a
job that identifies the job or describes its requirements
to the operating system.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program

 Copyright IBM Corp. 1992, 2004 329

 Glossary

development capabilities, and operates only under the
control of the VM/370 control program.

corrective maintenance. Maintenance performed
specifically to overcome existing problems.

CP command. In VM, a command by which a terminal
user controls his or her virtual machine. The VM/370
control program commands are called CP commands.

CPPL. Command processor parameter list.

CP privilege class. In VM, one or more classes
assigned to a virtual machine user in the user's VM
directory entry; each privilege class allows access to a
logical subset of the CP commands.

CSI. Consolidated software inventory data set.See
SMPCSI.

CSECT. Control section.

cumulative service tape. A tape sent with a new
function order, containing all current PTFs for that
function.

Custom-Built Installation Process Offering (CBIPO).
A CBIPO is a tape that has been specially prepared
with the products (at the appropriate release levels)
requested by the customer. A CBIPO simplifies
installing various products together.

Custom-Built Product Delivery Offering (CBPDO). A
CBPDO is a tape that has been specially prepared for
installing a particular product and the related service
requested by the customer. A CBPDO simplifies
installing a product and the service for it.

D
data definition name (DDNAME). The logical name of
a file within an application. The DDNAME provides the
means for the logical file to be connected to the
physical file.

data set. Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name. Equivalent to a CMS file.

data set name (dsname). The data set name on the
DD statement in the JCL or the dsname operand of the
TSO ALLOC command.

DBCS. Double-byte character set.

DDDEF. Dynamic data definition.

DDNAME. Data definition name.

default. A value that is used when no alternative is
specified.

DD statement. In MVS, connects the logical name of
a file and the physical name of the file.

DELTA disk. In VM, the virtual disk that contains
program temporary fixes (PTFs) that have been
installed but not merged.

| disassembler. A program that accepts object code as
| input, and produces assembler language source
| statements and a pseudo-listing as output.

| disassembly. The process of converting object code
| into assembler language source statements and a
| pseudo-listing.

distribution libraries. IBM-supplied partitioned data
sets on tape containing one or more components that
the user restores to disk for subsequent inclusion in a
new system.

distribution medium. The medium on which software
is distributed to the user; for example, 9-track magnetic
tape, tape cartridge.

distribution zone. In SMP/E, a group of VSAM
records that describe the SYSMODs and elements in
the distribution libraries.

DLBL. VSE only. Disk Label information; JCL
statement.

double-byte character set (DBCS). A collection of
characters represented by a 2-byte code.

driving system. The system used to install the
program. Contrast with target system.

dsname. Data set name.

dynamic data definition (DDDEF). The process of
defining a data set and allocating auxiliary storage
space for it while, rather than before, a job step
executes.

dynamic storage. Storage acquired as needed at run
time. Contrast with static storage.

E
ECMODE. Extended control mode.

executable program. (1) A program that has been
link-edited and therefore can run in a processor.
(2) The set of machine language instructions that
constitute the output of the compilation of a source
program.

330 HLASM V1R4 Toolkit Feature User’s Guide

 Glossary

Extended control mode (ECMODE). A mode in which
all features of a System/370 computing system,
including dynamic address translation, are operational.

Extended Service Option (ESO). A service option
that gives a customer all the new fixes for problems in
IBM licensed programs that operate under that
customer's operating system.

F
feature. A part of an IBM product that may be ordered
separately by a customer.

feature number. A four-digit code used by IBM to
process hardware and software orders.

file. A named collection of related data records that is
stored and retrieved by an assigned name. Equivalent
to an MVS data set.

FILEDEF. File definition statement.

file definition statement (FILEDEF). In CMS,
connects the logical name of a file and the physical
name of a file.

fix. A correction of an error in a program, usually a
temporary correction or bypass of defective code.

FMID. Function modification identifier.

function. A routine that is invoked by coding its name
in an expression. The routine passes a result back to
the invoker through the routine name.

function modification identifier (FMID). The value
used to distinguish separate parts of a product. A
product tape or cartridge has at least one FMID.

H
HLASM. The High Level Assembler.

I
IBM customer engineer (CE). An IBM service
representative who performs maintenance services for
IBM hardware.

IBM program support representative (PSR). An IBM
service representative who performs maintenance
services for IBM software at a centralized IBM location.

IBM service representative. An individual in IBM who
performs maintenance services for IBM products or
systems.

IBM Software Distribution (ISD). The IBM
department responsible for software distribution.

IBM Support Center. The IBM department responsible
for software service.

IBM systems engineer (SE). An IBM service
representative who performs maintenance services for
IBM software in the field.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage, as at the
beginning of a work day or after a system malfunction
or as a means to access updated parts of the system.
(3) The process of loading system programs and
preparing a system to run jobs.

inline. Sequential execution of instructions, without
branching to routines, subroutines, or other programs.

IPL. Initial program load.

interactive. Pertaining to a program or system that
alternately accepts input and responds. In an
interactive system, a constant dialog exists between
user and system. Contrast with batch.

ISD. IBM Software Distribution.

J
JCL. Job control language.

JCLIN data. The JCL statements associated with the
++JCLIN statement or saved in the SMPJCLIN data set.
They are used by SMP/E to update the target zone
when the SYSMOD is applied. Optionally, SMP/E can
use the JCLIN data to update the distribution zone
when the SYSMOD is accepted.

JES. Job Entry Subsystem

Job Entry Subsystem. A system facility for spooling,
job queueing, and managing the scheduler work area.

job control language (JCL). A sequence of
commands used to identify a job to an operating system
and to describe a job’s requirements.

job step. You enter a program into the operating
system as a job step. A job step consists of the job
control statements that request and control execution of
a program and request the resources needed to run the
program. A job step is identified by an EXEC
statement. The job step can also contain data needed
by the program. The operating system distinguishes job
control statements from data by the contents of the
record.

 Glossary 331

 Glossary

L
library. A collection of functions, subroutines, or other
data.

link pack area (LPA). In MVS, an area of main
storage containing reenterable routines from system
libraries. Their presence in main storage saves loading
time when a reenterable routine is needed.

linkage editor. A program that resolves
cross-references between separately assembled object
modules and then assigns final addresses to create a
single relocatable load module. The linkage editor then
stores the load module in a program library in main
storage.

link-edit. To create a loadable computer program by
means of a linkage editor.

load module. An application or routine in a form
suitable for execution. The application or routine has
been compiled and link-edited; that is, address
constants have been resolved.

logical saved segment. A portion of a physical saved
segment that CMS can manipulate. Each logical saved
segment can contain different types of program objects,
such as modules, text files, execs, callable services
libraries, language repositories, user-defined objects, or
a single minidisk directory. A system segment
identification file (SYSTEM SEGID) associates a logical
saved segment to the physical saved segment in which
it resides. See physical saved segment and saved
segment.

LPA. Link pack area.

M
MCS. Modification control statement

minidisk. In VM, all, or a logical subdivision of, a
physical disk storage device that has its own address,
consecutive storage space for data, and an index or
description of stored data so that the data can be
accessed. Synonymous with virtual disk.

module. A language construct that consists of
procedures or data declarations and can interact with
other such constructs.

MSHP. Maintain system history program.

MVS. Multiple Virtual Storage operating system.

N
Named Saved System. A copy of an operating
system that a user has named and saved in a file. The
user can load the operating system by its name, which
is more efficient than loading it by device number.

national language support (NLS). Translation
requirements affecting parts of licensed programs; for
example, translation of message text and conversion of
symbols specific to countries.

NLS. National language support.

nonexecutable components. Components of a
product that cannot be run.

non reentrant. A program that cannot be shared by
multiple users.

nonreenterable. See non reentrant.

NSS. named saved system

O
object code. Output from a compiler or assembler
which is itself executable machine code or is suitable
for processing to produce executable machine code.

object deck. Synonymous with object module, text
deck.

object module. A portion of an object program
suitable as input to a linkage editor. Synonymous with
text deck, object deck.

online. (1) Pertaining to a user's ability to interact with
a computer. (2) Pertaining to a user's access to a
computer via a terminal.

operating system. Software that controls the running
of programs; in addition, an operating system may
provide services such as resource allocation,
scheduling, input/output control, and data management.

P
parameter. Data items that are received by a routine.

phase. VSE only. A link edited program.

partition. A fixed-size division of storage.

physical saved segment. One or more pages of
storage that have been named and retained on a
CP-owned volume (DASD). When created, it can be
loaded within a virtual machine's address space or
outside a virtual machine's address space. Multiple

332 HLASM V1R4 Toolkit Feature User’s Guide

 Glossary

users can load the same copy. A physical saved
segment can contain one or more logical saved
segments. A system segment identification file
(SYSTEM SEGID) associates a physical saved segment
to its logical saved segments. See logical saved
segment and saved segment.

preventive maintenance. Maintenance performed
specifically to prevent problems from occurring.

preventive service planning (PSP). The online
repository of program temporary fixes (PTFs) and other
service information. This information could affect
installation.

procedure. A named block of code that can be
invoked, usually via a call.

procedure library (PROCLIB). A program library in
direct access storage with job definitions. The
reader/interpreter can be directed to read and interpret
a particular job definition by an execute statement in the
input stream.

PROCLIB. Procedure library.

program level. The modification, release, version, and
fix level of a product.

program number. The seven-digit code (in the format
xxxx-xxx) used by IBM to identify each program
product.

program temporary fix (PTF). A temporary solution or
bypass of a problem diagnosed by IBM as resulting
from a defect in a current unaltered release of the
program.

PSP. Preventive service planning.

PSR. IBM program support representative.

PTF. Program temporary fix.

Q
qualifier. A modifier that makes a name unique.

R
reentrant. The attribute of a routine or application that
allows more than one user to share a single copy of a
load module.

reenterable. See reentrant

relative file tape (RELFILE tape). A standard label
tape made up of two or more files. It contains a file of
the MCSs for one or more function SYSMODs and one

or more relative files containing unloaded source data
sets and unloaded, link-edited object data sets at the
distribution library level. A relative file tape is one way
of packaging SYSMODs, and is typically used for
function SYSMODs.

relative files (RELFILEs). Files containing
modification text and JCL input data associated with a
SYSMOD.

RELFILEs. Relative files

RELFILE tape. Relative file tape

relocatable load module. Under CMS, a combination
of object modules having cross references resolved and
prepared for loading into storage for execution.

residence mode (RMODE). The attribute of a load
module that specifies whether the module, when
loaded, must reside below the 16MB virtual storage line
or may reside anywhere in virtual storage.

resident modules. A module that remains in a
particular area of storage.

return code. A code produced by a routine to indicate
its success. It can be used to influence the execution
of succeeding instructions.

RIM. Related installation materials

RMODE. Residence mode.

run. To cause a program, utility, or other machine
function to be performed.

S
save area. Area of main storage in which contents of
registers are saved.

SBCS. Single-byte character set.

service level. The modification level, release, version,
and fix level of a program. The service level
incorporates PTFs if there are any.

saved segment. A segment of storage that has been
saved and assigned a name. Saved segments can be
physical saved segments that CP recognizes or logical
saved segments that CMS recognizes. The segments
can be loaded and shared among virtual machines,
which helps use real storage more efficiently, or a
private, nonshared copy can be loaded into a virtual
machine. See logical saved segment and physical
saved segment.

shared segment. In VM, a feature of a saved system
that allows one or more segments of reenterable code

 Glossary 333

 Glossary

in real storage to be shared among many virtual
machines.

shared storage. An area of storage that is the same
for each virtual address space. Because it is the same
space for all users, information stored there can be
shared and does not have to be loaded in the user
region.

severity code. A part of run-time messages that
indicates the severity of the error condition (1, 2, 3, or
4).

single-byte character set (SBCS). A collection of
characters represented by a 1-byte code.

SMPCSI. The SMP/E data set that contains
information about the structure of a user's system as
well as information needed to install the operating
system on a user's system. The SMPCSI DD statement
refers specifically to the CSI that contains the global
zone. This is also called the master CSI.

softcopy. One or more files that can be electronically
distributed, manipulated, and printed by a user.

software inventory disk. In VM, the disk where the
system level inventory files reside.

source code. The input to a compiler or assembler,
written in a source language.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

SREL. System release identifier

statement. In programming languages, a language
construct that represents a step in a sequence of
actions or a set of declarations.

SUBSET. The value that specifies the function modifier
(FMID) for a product level. It further specifies an entry
in RETAIN* for a product level.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a controlling
system. Examples are CICS and IMS.

SVA. Shared virtual area.

syntax. The rules governing the structure of a
programming language and the construction of a
statement in a programming language.

SYSMOD. system modification.

SYSMOD ID. system modification identifier.

system abend. An abend caused by the operating
system’s inability to process a routine; can be caused
by errors in the logic of the source routine.

T
target disk. In VM, the disk to which a program is
installed.

target libraries. In SMP/E, a collection of data sets in
which the various parts of an operating system are
stored. These data sets are sometimes called system
libraries.

target zone. In SMP/E, a collection of VSAM records
describing the target system macros, modules,
assemblies, load modules, source modules, and
libraries copied from DLIBs during system generation,
and the system modifications (SYSMODs) applied to
the target system.

text deck. Synonym for object module, object deck.

time sharing option/extended (TSO/E). An option on
the operating system; for System/370, the option
provides interactive time sharing from remote terminals.

TSO/E. Time sharing option/extended.

U
UCLIN. In SMP/E, the command used to initiate
changes to SMP/E data sets. Actual changes are made
by subsequent UCL statements.

UPGRADE. An alphanumeric identifier that specifies a
product level.

user exit. A routine that takes control at a specific
point in an application.

USERMOD. User modification.

user modification (USERMOD). A change to product
code that the customer initiates.

V
virtual machine (VM). (1) A functional simulation of a
computer and its associated devices. Each virtual
machine is controlled by a suitable operating system.
(2) In VM, a functional equivalent of either a
System/370 computing system or a
System/370-Extended Architecture computing system.

VMFINS. An installation aid supplied as part of
VMSES/E to make installation on VM consistent.

334 HLASM V1R4 Toolkit Feature User’s Guide

 Glossary

VM Serviceability Enhancements Staged/Extended
(VMSES/E). A program product for installing and
maintaining products on VM.

VMSES/E. VM Serviceability Enhancements
Staged/Extended.

VOLSER. Volume serial number.

volume. (1) A certain portion of data, together with its
data carrier, that can be handled conveniently as a unit.
(2) A data carrier mounted and demounted as a unit;
for example, a reel of magnetic tape, a disk pack.

volume label. An area on a standard label tape used
to identify the tape volume and its owner. This area is

the first 80 bytes and contains VOL 1 in the first four
positions.

volume serial number (VOLSER). A number in a
volume label assigned when a volume is prepared for
use in a system.

VSAM. Virtual storage access method. A
high-performance mass storage access method. Three
types of data organization are available: entry
sequenced data sets (ESDS), key sequenced data sets
(KSDS), and relative record data sets (RRDS).

word. A space-delimited character string.

 Glossary 335

 Glossary

336 HLASM V1R4 Toolkit Feature User’s Guide

 Bibliography

 Bibliography

High Level Assembler
Publications

HLASM General Information, GC26-4943

HLASM Installation and Customization Guide,
SC26-3494

HLASM Language Reference, SC26-4940

HLASM Licensed Program Specifications,
GC26-4944

HLASM Programmer's Guide, SC26-4941

Toolkit Feature Publications
HLASM Toolkit Feature User's Guide, GC26-8710

HLASM Toolkit Feature Debug Reference
Summary, GC26-8712

HLASM Toolkit Feature Interactive Debug Facility
User's Guide, GC26-8709

HLASM Toolkit Feature Installation and
Customization Guide, GC26-8711

 Related Publications
(Architecture)

Enterprise Systems Architecture/390 Principles of
Operation, SA22-7201

System/370 Enterprise Systems Architecture
Principles of Operation, SA22-7200

System/370 Principles of Operation, GA22-7000

System/370 Extended Architecture Principles of
Operation, SA22-7085

| z/Architecture Principles of Operation, SA22-7832

Related Publications for MVS
| z/OS:

| z/OS MVS JCL Reference, SA22-7597

| z/OS MVS JCL User's Guide, SA22-7598

| z/OS MVS Programming: Assembler Services
| Guide, SA22-7605

| z/OS MVS Programming: Assembler Services
| Reference, Volumes 1 and 2, SA22-7606,
| SA22-7607

| z/OS MVS Programming: Authorized Assembler
| Services Guide, SA22-7608

| z/OS MVS Programming: Authorized Assembler
| Services Reference, Volumes 1 - 4, SA22-7609 -
| SA22-7612

| z/OS MVS Program Management: User's Guide and
| Reference, SA22-7643

| z/OS MVS System Codes, SA22-7626

| z/OS MVS System Commands, SA22-7627

| z/OS MVS System Messages, Volumes 1 - 10,
| SA22-7631 - SA22-7640

| z/OS Communications Server: SNA Programming,
| SC31-8829

 OS/390:

OS/390 MVS JCL Reference, GC28-1757

OS/390 MVS JCL User's Guide, GC28-1758

OS/390 MVS Programming: Assembler Services
Reference, GC28-1910

OS/390 MVS System Codes, GC28-1780

OS/390 MVS System Commands, GC28-1781

OS/390 MVS System Messages, Volumes 1 - 5,
GC28-1784 - GC27-1788

 OpenEdition:

MVS/ESA OpenEdition MVS User's Guide,
SC23-3013

z/OS UNIX System Services User's Guide,
SA22-7801

 MVS/DFP:

MVS/DFP Version 3.3: Utilities, SC26-4559

MVS/DFP Version 3.3: Linkage Editor and Loader,
SC26-4564

 DFSMS/MVS:

| z/OS DFSMS Program Management, SC27-1130

| z/OS DFSMSdfp Utilities, SC26-7414

 TSO/E (z/OS):

| z/OS TSO/E Command Reference, SA22-7782

 TSO/E (OS/390):

OS/390 TSO/E Command Reference, SC28-1869

 SMP/E (z/OS):

SMP/E Messages, Codes and Diagnosis,
GA22-7770

SMP/E Reference, SA22-7772

SMP/E User's Guide, SA22-7773

 SMP/E (OS/390):

 Copyright IBM Corp. 1992, 2004 337

 Bibliography

SMP/E Messages and Codes, SC28-1738

SMP/E Reference, SC28-1806

SMP/E User's Guide, SC28-1740

Related Publications for VM
| z/VM:

| z/VM CMS Application Development Guide,
| SC24-6002

| z/VM CMS Application Development Guide for
| Assembler, SC24-6003

| z/VM CMS User's Guide, SC24-5968

| z/VM CMS Command Reference, SC24-5969

| z/VM CMS File Pool Planning, Administration, and
| Operation, SC24-6058

| z/VM System Messages and Codes - CMS,
| GC24-6031

| z/VM XEDIT User's Guide, SC24-5972

| z/VM XEDIT Command and Macro Reference,
| SC24-5973

| z/VM CP Command and Utility Reference,
| SC24-5967

| z/VM Planning and Administration, SC24-5995

| z/VM Service Guide, GC24-5946

| z/VM VMSES/E Introduction and Reference,
| GC24-5994

Related Publications for VSE
VSE/ESA Administration, SC33-6705

VSE/ESA Guide to System Functions, SC33-6711

VSE/ESA Installation, SC33-6704

VSE/ESA Planning, SC33-6703

VSE/ESA System Control Statements, SC33-6713

VSE/ESA Messages and Codes, Vols.1 - 3,
SC33-6796, SC33-6798, SC33-6799

338 HLASM V1R4 Toolkit Feature User’s Guide

 Index

 Index

Special Characters
240
< 93
* 93
* SuperC process statement 240
*-wildcard

See SuperC asterisk-wildcard
** 93
%-wildcard

See SuperC percent-wildcard
> 93

A
ADATA assembly option 64
ADATA file names 67

listed 67
ADATA files

closing 74
creating 64
downloading 64
listed 91
opening 67
removing 74
sample 66
working with 67

adding context 81
analyzing 62

assembler language programs 62
arcs

appearance 93
colors 93
double-clicking 89
return 83

area box
scrolling 89
zooming 86

ASIS field (SuperC primary search menu)
See SuperC search, primary menu fields

ASMLEAVE macro 12, 21, 25
ASMMREL macro 12
ASMPUT

closing 92
introduction to 62
slide show demo 66

ASMPUT analysis messages
hiding 71
purpose 71
showing 71

ASMPUT Control Flow Graph window
closing 67

ASMPUT Control Flow Graph window (continued)
described 93
icons 95
opening 67
options 95

ASMPUT file list area
contents 67
position 91

ASMPUT finding
See finding in ASMPUT

ASMPUT icons
Collapse 75
Collapse to Context 81
Control Flow Graph window 95
Expand 75
Help 92
Main window 92
Open file 67
Redo 82
Refresh 82
Show Context 81
Show Graph 67
Show Notebook 92
Show Overview 85
Show Return Arcs 83
Show Zoom Slider 86
Zoom In 86
Zoom In Rectangle 86
Zoom Out 86
Zoom Out Rectangle 86

ASMPUT Main window
described 91
file list area 91
file list area contents 67
function 67
icons 92
information notebook 92
opening ADATA files 67
options 92
source code area 92
viewing source code 68

ASMPUT messages 97
ASMPUT options

Center On 89
Collapse All Layers 75
Collapse in Context 75
Collapse Layer 75
Collapse to Context 81
Control Flow Graph window 95
Expand in Context 75
Expand to Window 75
Find 71

 Copyright IBM Corp. 1992, 2004 339

 Index

ASMPUT options (continued)
Find Next 71
Find Next Diagnostic/Message 71
Help Topics 92
Main window 92
Mark 84
Open 67
Redo Layout 82
Refresh 82
Remove 74
Remove All 74
Remove Context 81
Scroll to Source 89
Scroll to Target 89
Show Analysis Messages 71
Show Assembly Diagnostics 70
Show Context 81
Show Expanded Lines 69
Show Graph 67
Show Info Notebook 92
Show Overview 85
Show Return Arcs 83
Show Zoom Slider 86
Unmark 84
Unmark All 84
Zoom In 86
Zoom In On 86
Zoom In Rectangle 86
Zoom Out 86
Zoom Out From 86
Zoom Out Rectangle 86

ASMPUT shortcut keys
described 92
finding 71
finding next 71

ASMPUT tabs
HLASM files 92
Job Id 92
Libraries 92
Options 92
Statistics 92

ASMPUT What's This help 97
ASMPUT windows

Control Flow Graph 93
described 91
Main 91
Main file list area 91
Main information notebook 92
Main source code area 92
Overview 95

ASMXREF
ASMXREF EXEC statement, VSE 123
ASMXREP EXEC statement, VSE 124
CMS 115
CMS EXEC 115
control statements 125

ASMXREF (continued)
DLBL statement, VSE 123
EXEC ASMXREF statement, CMS 119
EXEC ASMXREF statement, MVS 112
EXEC ASMXRPT statement 112
EXEC ASMXRPT statement, CMS 119
invoking 115
JCL requirements, MVS 109
JCL requirements, VSE 120
messages 158
MVS batch 109
MVS procedures 113
MVS sample JCL 109
options 132
SYSIN DD statement 112
understanding reports 135
using 106
VSE 120

ASMXREF control files
CMS 115
MVS 112
VSE 120

ASMXREF control statements
* 125
EXCLUDE 127
INCLUDE 126
LIBRARY 125, 126, 128
PARM 127
REPORT 128

ASMXREF examples
CMS EXEC ASMXREF 119
EXCLUDE control statement 127
INCLUDE control statement 127
LIB parameter to LIBRARY control statement 126
LIBRARY control statement 126
MASK on token control statement 130
MVS JCL 109
REPORT control statement 128
VSE JCL 121

ASMXREF options 132
DUP 132
MSGLEVEL 132
NODUP 132
PAGELEN 132

ASMXREF token statements 129
EXC 129
INC 129
MASK 130
NODEFLT 130
NOSEP 131

ASMXREP
EXEC 119
EXEC statement 112, 124
JCL requirements 112, 124
JCL requirements, MVS 109
JCL requirements, VSE 124

340 HLASM V1R4 Toolkit Feature User’s Guide

 Index

ASMXREP (continued)
MVS sample JCL 109
options 135
understanding CR report 136
understanding LOC report 139
understanding MWU report 147
understanding SOR 148
understanding SWU report 150
understanding TSP 155
understanding TWU report 154
using 106
VSE sample JCL 121

ASMXREP options 135
ASMXRPT MVS procedure 109
ASMXSCAN CMS EXEC 119
ASMXSCAN MVS procedure 109
assembler instructions 92
assembler language programs

analyzing 62
assembly diagnostics (ASMPUT)

hiding 70
purpose 70
showing 70

assembly options
ADATA 64
GOFF 64
XOBJECT 64

auto display pgm field (SuperC primary comparison
menu)

See SuperC comparison, primary menu fields
auto display pgm field (SuperC primary search menu)

See SuperC search, primary menu fields

B
backward indexing 27
block comment 141, 142
branch relative on condition instructions 13
branching to the ENDDO 23

C
C family references 137
CAPS field (SuperC primary search menu)

See SuperC search, primary menu fields
CASE macro 12, 34
CASE structured programming macro set 34
CASENTRY macro 12, 34
CC (SuperC process stmt directive)

See ?
Center On option 89
centering 89
change flags 140

multiplication factor 143
rules for counting 144
standard format 143

Change-Flag Descriptor 140, 141
field definition 141
implicit flags 141
process class codes 141
standard format 141

changed source instructions (CSI) 139
changing font properties 68
CHGNV SuperC process statement 238
closing

ADATA files 74
ASMPUT 92
Control Flow Graph window 67
Overview window 85

CMPBOFS SuperC process statement 241
CMPCOLM SuperC process statement 241
CMPCOLMN SuperC process statement 241
CMPCOLMO SuperC process statement 241
CMPLINE SuperC process statement 242
CMPSECT SuperC process statement 244
CMS

ASMXREF CMS EXEC 115
ASMXREF invoking with EXECs 115
ASMXRPT EXEC 119
Disassembler requirements 44

CMS example for Disassembler 45
CMS EXECs

ASMXREF 115
invoking ASMXREF in CMS 115

CMS XRFLANG file 118
COLHEAD SuperC process statement 249
Collapse All Layers option 75
Collapse icon 75
Collapse in Context option 75
Collapse Layer option 75
Collapse to Context icon 81
Collapse to Context option 81
collapsing layers 75
color coding of source code 92
colors

arcs 93
nodes 93

command field (SuperC primary comparison menu)
See SuperC comparison, primary menu fields

command field (SuperC primary search menu)
See SuperC search, primary menu fields

comment Disassembler statement 52
output description

SYSPRINT - SYSLST 54
SYSPUNCH - SYSPCH 53

comments 92
comments, full line

definition 140
compare type field (SuperC primary comparison menu)

See SuperC comparison, primary menu fields
component name format 141

 Index 341

 Index

context
adding 81
collapsing in 75
collapsing to 81
described 81
removing 81
showing 81

control file
ASMXREF for CMS EXEC 115
ASMXREF for MVS batch 109
ASMXREF for VSE batch 123

control file in CMS 116
Control Flow (CF) report 136
control flow graph

described 62
interacting with source code 89
working with 74

control flow graph area
cyan 93
described 93
gray 93
green 93
magenta 93
target 93
yellow 93

Control Flow Graph window
See ASMPUT Control Flow Graph window

Control statements 124, 125
ASMXREF 124

control statements for Disassembler 48
COPY Disassembler statement 52
COPY segments 92
copyright

observing, on disassembly 42
counting 27
counting comments 140
creating ADATA files 64
Cross-Reference Facility 106
CSECT Disassembler statement 48
cyan node 93

D
DATA only Disassembler statement 49
default ASMXREF options file 117
default token list 132, 133
defaults (Control Flow Graph window)

restoring 69
defaults (Main window)

restoring 69
Disassembler

CMS Example 45
Comment statement 52
control statements 48
COPY statement 52
DATA-only statement 49

Disassembler (continued)
Disassembler options 46
disassembling a module for the first time 52
DS-area statement 50
DSECT definition 50
DSECT header statement format 50
INSTR-only statement 49
invoking 42
module-CSECT statement 48
MVS JCL example 42
options on CMS 46
options on MVS 44
options on VSE 47
output description 53, 54
PARM field (MVS) 44
PARM field (VSE) 47
ULABL statement 51
USING statement 51
VSE JCL example 47

Disassembler, using the 41
display output option (SuperC primary comparison

menu)
See SuperC comparison, primary menu fields

DO loop terminator generation 22
DO macro 12, 21
DO structured programming macro indexing group 22
DO structured programming macro set 21
documentation

High Level Assembler 337
DOEXIT macro 12, 21
double-clicking

an arc 89
downloading ADATA files 64
DPLINE SuperC process statement 250
DPLINEC SuperC process statement 250
DS area Disassembler statement 50
DSECT Disassembler definition 50
DSPL

See display output option
DUP option in ASMXREF 132

E
ELSE macro 12, 14
ELSEIF macro 12, 20
ENDCASE macro 12, 34
ENDDO macro 12, 21
ENDIF macro 12, 14
ENDLOOP macro 12, 31
ENDSEL macro 12, 37
ENDSRCH macro 12, 31
EXC keyword for ASMXREF 127, 129
EXEC statement

ASMXREF MVS EXEC statement 112
ASMXREF VSE EXEC statement 123
ASMXREP VSE EXEC statement 124

342 HLASM V1R4 Toolkit Feature User’s Guide

 Index

EXEC statement (continued)
ASMXRPT MVS EXEC statement 112
MVS ASMXRPT EXEC statement 112
sample MVS JCL 109
sample VSE JCL 121

EXITIF macro 12, 31
Expand All Layers option 75
Expand icon 75
Expand in Context option 75
Expand Layer option 75
Expand to Window option 75
expanded lines

hiding all 69
hiding for one line 69
showing all 69
showing for one line 69

expanding layers 75
explicit specification 26

F
file information 72

viewing 72
file list area

See ASMPUT file list area
File Selection List

See SuperC CMS file selection list
file transfer to PC 149
Find Next Diagnostic/Message option 71
Find Next option 71
Find option 71
finding in ASMPUT

in source code 71
next diagnostic or message 71
shortcut keys for 71

fn ft fm
See ?

format notation, description v—vii
format option 135
FORMAT option in ASMXREP 135
forward indexing 28

G
generic matching rules 131
GOFF assembly option 64
gray node 93
green node 93
grouping flags 141

H
hiding

analysis messages 71
assembly diagnostics 70
expanded lines 69

hiding (continued)
return arcs 83
zoom slider 86

highlighted source code 92
HLASM Files information

viewing 73
HLASM Files tab 92

I
icons

See ASMPUT icons
IF macro 12, 14
IF structured programming macro option A 15
IF structured programming macro option B 16
IF structured programming macro option C 16
IF structured programming macro option D 17
IF structured programming macro set 14
IF structured programming macros with Boolean

operators 18
implicit flag 143
INC keyword for ASMXREF 129
infinite loop 23
information notebook 92
INSTR only Disassembler statement 49
intellectual property rights 42
introduction to ASMPUT 62
invoking ASMXREF 108

general 108
invoking the Disassembler 42

CMS requirements 44
MVS requirements (JCL) 42
VSE requirements 46

ITBSIZE 127
ITERATE macro 12, 21, 23

J
JCL

(MVS) Disassembler 42
(VSE) Disassembler 46
ASMXREF VSE JCL requirements 123
ASMXREP VSE JCL requirements 124
ASMXRPT MVS EXEC statement 112
MVS ASMXREF EXEC statement 112
MVS ASMXREF invoking 109
MVS ASMXREF requirements 109
MVS ASMXREF sample JCL 109
MVS ASMXREF SYSIN DD statement 112
MVS ASMXREP requirements 109
MVS SuperC EXEC statement 181, 206
MVS SuperC invoking 180, 205
MVS SuperC requirements 180, 205
VSE ASMXREF invoking 120
VSE ASMXREF requirements 120
VSE ASMXREF sample JCL 121

 Index 343

 Index

JCL (continued)
VSE ASMXREP EXEC statement 124
VSE ASMXREP requirements 124
VSE EXEC ASMXREF statement 123
VSE SuperC invoking 199, 221
VSE SuperC requirements 199, 221
VSE SuperC sample JCL 199, 222
XRFLANG DLBL statement 123
XRFTOKN DLBL statement 123

JCL (VSE) example for Disassembler 47
Job Id information

viewing 73
Job Id tab 92

K
keyboard shortcuts 92

L
labels 92
language file 132

default token segment 133
language segment 134

layers
collapsing 75
expanding 75

LC (SuperC process stmt directive)
See ?

leaving a nested DO 25
Libraries tab 92
LIBRARY control statement in ASMXREF

ASMXREF 106, 125
Library information

viewing 73
license inquiry 327
Lines Of Code (LOC) report 139
lines of OO code (LOOC) report 145
linked node 62
 listing file examples

DLMDUP listing 279
group FILE compare 281
LOCS listing 282
NARROW listing 278
side-by-side listing 278, 280
WIDE listing 280

listing file ID field (SuperC primary comparison menu)
See SuperC comparison, primary menu fields

listing file ID field (SuperC primary search menu)
See SuperC search, primary menu fields

listing type field (SuperC primary comparison menu)
See SuperC comparison, primary menu fields

LNCT SuperC process statement 254
LOC per Class section

sample report 147

LOC per Object section
sample report 146

LOGSIZE 127
LOOC

sample report 146
LPSFV SuperC process statement 254
LSTCOLM SuperC process statement 254
LT (SuperC process stmt directive)

See ?

M
machine instructions 92
machine instructions, publications 337
macro calls 92
Macro Where Used (MWU) report 147
macros 13, 14, 21, 31, 34, 37

ASMMREL macro 13
case macro set 34
DO macro set 21
IF macro 14
search macro set 31
select macro set 37

magenta node 93
Main window

See ASMPUT Main window
manuals

High Level Assembler 337
Mark option 84
marked node 93
marking nodes 84
MASK keyword for ASMXREF 130, 131
matching rules in ASMXREF 131
maximum zoom 86
member field (SuperC primary comparison menu)

See SuperC comparison, primary menu fields
member field (SuperC primary search menu)

See SuperC search, primary menu fields
Member Selection List

See SuperC CMS file selection list
message level option

ASMXREF in CMS EXEC 115
ASMXREF options 132
MVS ASMXREF EXEC statement 112
VSE ASMXREF EXEC statement 123

message list 159
messages

ASMXREF 158
severity codes 158

messages Disassembler
CMS 55
general 57

minimum zoom 86
module CSECT statement 48
MSGLEVEL option in ASMXREF 132

344 HLASM V1R4 Toolkit Feature User’s Guide

 Index

multiplication factor 143
MVS

ASMXREF EXEC statement 112
ASMXREF invoking with JCL 109
ASMXREF sample JCL 109
ASMXREF SYSIN DD statement 112
ASMXREP JCL requirements 109
ASMXRPT EXEC statement 112
Disassembler JCL requirements 42
SuperC EXEC statement 181, 206
SuperC invoking with JCL 180, 205

MVS procedure
ASMXRPT 109
ASMXSCAN 109

MVS publications 337
MWUSIZE 127

N
name prefixes 93
NCHGT SuperC process statement 238
new file ID field (SuperC primary comparison menu)

See SuperC comparison, primary menu fields
NEWDD SuperC process statement 245, 246
NEXCLUDE SuperC process statement 252
next diagnostic or message

finding 71
NFOCUS SuperC process statement 253
node colors 93
NODEFLT keyword for ASMXREF 130
nodes

See nodes in ASMPUT control flow graph
nodes in ASMPUT control flow graph

color 93
described 63
double-clicking 75
marked 93
marking 84
name prefixes 93
program entry 75
secondary entry 75
selected 93
selecting 89
source 93
three-dimensional 93
two-dimensional 93
unmarking 84
unresolved 75
yellow 84

NODUP option in ASMXREF 132
NOSEP keyword for ASMXREF 131
notation, description v—vii
NTITLE SuperC process statement 262
NY2AGE SuperC process statement 263
NY2C SuperC process statement 263

NY2D SuperC process statement 263
NY2P SuperC process statement 263
NY2Z SuperC process statement 263

O
OCHGT SuperC process statement 238
OEXCLUDE SuperC process statement 252
OFOCUS SuperC process statement 253
old file ID field (SuperC primary comparison menu)

See SuperC comparison, primary menu fields
OLDDD SuperC process statement 245, 246
online help 66, 96
OOSIZE 127
Open file icon 67
Open option 67
opening

ADATA files in ASMPUT 67
Control Flow Graph window 67
Overview window 85

operands 92
options

See ASMPUT options
options file 117
options for ASMXREF 132
options for ASMXREP 135
Options information

viewing 73
Options tab 92
ORELSE macro 12, 31
other resources 66
OTHRWISE macro 12, 37
OTITLE SuperC process statement 262
Overview window

closing 85
described 95
opening 85

OY2AGE SuperC process statement 263
OY2C SuperC process statement 263
OY2D SuperC process statement 263
OY2P SuperC process statement 263
OY2Z SuperC process statement 263

P
PAGELEN option in ASMXREF 132
PARM control statement in ASMXREF 127
PARM field (MVS) for Disassembler 44
PARM field (VSE) for Disassembler 47
PARM option on LIBRARY control statement 127
PL family references 137
pop-up menu

Control Flow Graph window 95
Main window 92

primary entry point 75

 Index 345

 Index

process options field (SuperC primary comparison
menu)

See SuperC comparison, primary menu fields
process options field (SuperC primary search menu)

See SuperC search, primary menu fields
process statements

See SuperC comparison process statements
See SuperC search process statements

process statements ID field (SuperC primary
comparison menu)

See SuperC comparison, primary menu fields
process statements ID field (SuperC primary search

menu)
See SuperC search, primary menu fields

product name format 141
program entry nodes 75
program entry point 75, 93
publications

High Level Assembler 337
HLASM Toolkit 337
machine instructions 337
MVS 337
VM 338
VSE 338

R
railroad track format, how to read v—vii
rc

See SuperC Return Codes
redo 82
Redo icon 82
Redo Layout option 82
refresh 82
Refresh icon 82
Refresh option 82
register initialization 29
remarks 92

definition 140
Remove All option 74
Remove Context option 81
Remove option 74
removed context 74
removing

ADATA files 74
context 81

REPORT control statement in ASMXREF
ASMXREF 128

REPORT option in ASMXREP 112
reports in ASMXREF

ASMXREP VSE EXEC 124
ASMXRPT CMS EXEC 119
ASMXRPT MVS EXEC 112
Control Flow report 136
Lines of Code report 139
list of available 106

reports in ASMXREF (continued)
Macro Where Used report 147
options 135
Spreadsheet Oriented report 148
Symbol Where Used 150
Tagged Source Program 155
Token Where Used report 154
understanding 135

reports, understanding 135
resizing windows 91
restoring defaults (Control Flow Graph window) 69
restoring defaults (Main window) 69
restoring fonts (Main window) 69
return arcs

hiding 83
showing 83

REVREF SuperC process statement 255
REXX references 138
RR (SuperC process stmt directive)

See ?

S
sample ADATA files 66
scan rules for ASMXREF 131
scroll bars 89
Scroll to Source option 89
Scroll to Target option 89
scrolling 89
search file ID field (SuperC primary search menu)

See SuperC search, primary menu fields
SEARCH macro 31
search option directives

ERASRC0 267
NOIMSG 267
NONAMES 267
NOOLF 267
PRINT 267

search process options
ALLMEMS 228
ANYC 228
APNDLST 228
COBOL 229
DPACMT 229
DPADCMT 229
DPBLKCL 230
DPCBCMT 230
DPCPCMT 230
DPFTCMT 230
DPMACMT 230
DPPLCMT 230
DPPSCMT 230
IDPFX 231, 289
LMCSFC 231
LMTO 231, 285—286, 290—291
LNFMTO 231

346 HLASM V1R4 Toolkit Feature User’s Guide

 Index

search process options (continued)
LONGLN 231
LPSF 232, 292
LTO 232, 291
MIXED 232
NOPRTCC 232
NOSEQ 232
NOSUMS 232
SEQ 233
XREF 235, 286—288, 290, 291

SEARCH structured programming macro set 31
secondary entry nodes 75
secondary entry point 75, 93
SELECT macro 12, 37
SELECT structured programming macro set 37
SELECT SuperC process statement 258, 259, 260
SELECTF SuperC process statement 257
selecting a node 89
selection list (SuperC primary search menu)

See SuperC search, primary menu fields
sequence numbers 92
shipped source instructions (SSI) 139, 146
shortcut keys

See ASMPUT shortcut keys
Show Analysis Messages option 71
Show Assembly Diagnostics option 70
Show Context icon 81
Show Context option 81
Show Expanded Lines option 69
Show Graph icon 67
Show Graph option 67
Show Info Notebook option 92
Show Notebook icon 92
Show Overview icon 85
Show Overview option 85
Show Return Arcs icon 83
Show Return Arcs option 83
Show Zoom Slider icon 86
Show Zoom Slider option 86
showing in ASMPUT

analysis messages 71
assembly diagnostics 70
expanded lines 69
return arcs 83
zoom slider 86

slide show demo 66
SLIST SuperC process statement 261
sort order option 135
source code

changing font 68
finding text in 71
highlight 92
interacting with control flow graph 89
viewing 68

source code area 92
color coding 92

source list file in CMS 117
source node 93
Spreadsheet Oriented (SOR) report 148
SRCH (SuperC process stmt directive)

See SuperC search process statement directives
SRCHFOR SuperC process statement 255
SRCHFORC SuperC process statement 255
stacked items vi
standard change flags 141, 142, 143
standard flags 139
starting 64
Statistics information

viewing 73
Statistics tab 92
STRTSRCH macro 12, 31
structured programming macros 13, 14, 15, 16, 17, 18,

20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 34, 37
ASMMREL macro 13
backward indexing 27
branch relative on condition instructions 13
branching to the ENDDO 23
CASE macro set 34
counting 27
DO indexing group 22
DO loop terminator generation 22
DO macro set 21
ELSEIF macro 20
explicit specification 26
forward indexing 28
IF macro option A 15
IF macro option B 16
IF macro option C 16
IF macro option D 17
IF macro set 14
IF macros with Boolean operators 18
infinite loop 23
leaving a nested DO 25
register initialization 29
SEARCH macro set 31
SELECT macro set 37
UNTIL keyword 29
WHILE keyword 29

SuperC asterisk-wildcard 184
SuperC CMS command line option directive 266
SuperC CMS command line statement option

directives 267
SuperC CMS file selection list

ADD 307, 309
BOTTOM 309
CANCEL 307, 309
COMMAND 306
DOWN 307, 309
File/Member Selection List 311
File/Member Selection List commands 306, 307
left scroll window 307

new Sel column 307
new-file-list 307

 Index 347

 Index

SuperC CMS file selection list (continued)
left scroll window (continued)

new-member-list 307
old-file-name 307
old-member-name 307

LOCATE 307, 309
PF key definitions 310—311
RESET 307, 310
right scroll window 307

old Sel field 308
old-file-list 308
old-member-list 308

SELECT 307, 310
SELECT * 307, 310
selection list 305—311
TOP 310
UP 307, 310

SuperC CMS files used 312
SuperC Comparison

EXEC SuperC statement, MVS 181
JCL requirements, MVS 180
JCL requirements, VSE 199
MVS batch 180
MVS sample JCL 180
VSE 199
VSE sample JCL 199

SuperC comparison listing
| (change bar) 273
change bar (|) 273
column title line 271
D (deleted line) 272
DC (delete compose) 272
DEL= (delete TYPE code) 273
delete compose (DC) 272
delete moved (DM) 272
delete replace (DR) 272
deleted line (I) 272
DLMDUP listing example 279
DM (delete moved) 272
DMR= (delete-move-reformat TYPE code) 273
DMV= (delete-move TYPE code) 273
DR (delete replace) 272
FILE compare of file groups 281
I (inserted line) 272
IC (insert compose) 272
id column 271
ID column (listing file) 271
IM (insert moved) 272
IMR= (insert-move-reformat TYPE code) 273
IMV= (insert-move TYPE code) 273
INS= (insert TYPE code) 273
insert compose (IC) 272
insert moved (IM) 272
inserted line (I) 272
LEN column 271
LEN column (listing file) 271

SuperC comparison listing (continued)
LOCS listing example 282
MAT= (match TYPE code) 273
match compose (MC) 272
MC (match compose) 272
member summary section 270
N-LN# 271
N-LN# (listing file) 271
NARROW listing example 278
O-LN# 271
O-LN# (listing file) 271
overall summary section 270
page headings

compare date 270
compare time 270
new file ID 271
old file ID 271
page number 271
printer control character 270
program date 270
program ID 270
program version 270

reformat new (RN) 272
reformat old (RO) 272
RFM= (reformat TYPE code) 273
RN (reformat new) 272
RO (reformat old) 272
RPL= (replace TYPE code) 273
scale 271
section title line 271
side-by-side listing example 278, 280
source line column 271
SOURCE LINE column (listing file) 271
TYPE column 271
TYPE column (listing file) 271
WIDE listing example 280

SuperC comparison process statement directives
CC 268
LC 268
LT 268
RR 269

SuperC comparison process statements
240
* 240
CHNGV 238
CMPBOFS 241
CMPCOLM 241—242
CMPCOLMN 241—242
CMPCOLMO 241—242
CMPLINE 242—243
CMPSECT 244—245
COLHEAD 249—250
DPLINE 250—252
DPLINEC 250—252
LNCT 254
LSTCOLM 254

348 HLASM V1R4 Toolkit Feature User’s Guide

 Index

SuperC comparison process statements (continued)
NCHGT 238—240
NEWDD 245—246—249
NEXCLUDE 252—253
NFOCUS 253—254
NTITLE 262, 271
NY2AGE 263
NY2C 263—266
NY2D 263—266
NY2P 263—266
NY2Z 263—266
OCHGT 238—240
OEXCLUDE 252—253
OFOCUS 253—254
OLDDD 245—246—249
OTITLE 262, 271
OY2AGE 263
OY2C 263—266
OY2D 263—266
OY2P 263—266
OY2Z 263—266
REVREF 255
SELECT 258—259—260—261
SELECTF 185, 257—258, 281
SLIST 261
UPDDD 245—246—249
WORKSIZE 262
Y2PAST 266

SuperC comparison type
BYTE 185, 186
FILE 186
LINE 176, 186, 271
WORD 176, 186, 283

SuperC comparison, on CMS command line input
FILELIST 198
OLF 198
options list file 198
process statements menu 196
PROMPT 196
SUPERC NAMES * 198

SuperC comparison, on CMS menu input
* (selection list) 185
asterisk-wildcard 184
auto display pgm 191
BROWSE 191
compare type 186
COND (display output option) 190, 191
display output 191
display output option 190—191
EPDF 191
execute and quit 191
file ID (new file ID) 184
file ID (old file ID) 184
file_id (listing file id) 187
file_id (process statements id) 190
file_id (process stmts id) 189

SuperC comparison, on CMS menu input (continued)
file_id (update file id) 190
File/Member selection list 185
help 191
hex dump 186
listing file ID 187
listing type 186—187
MACLIB/TXTLIB member 185
new file ID 184
NO (display output option) 190
NO (selection list) 185
old file ID 184
percent-wildcard 185
PF key definitions (SuperC) 191
print 191
proc opts 191
process option menus 191
process statements 191
process statements file 189—190
process statements menu 191
quit 191
selection list 185
SuperC Primary Menu 184
SuperC Process Statements Entry Menu 190
UPD (display output option) 191
update file ID 190
WIDE listing 192
WIDE print menu 191
XEDIT 191
YES (display output option) 190, 191

SuperC comparison, on MVS 180
SuperC comparison, on VSE 199
SuperC comparison, primary menu fields

auto display pgm 184, 191, 214—215
command 184, 208
compare type 184, 186
display output option 184, 190—191, 214
listing file ID 184, 187, 213—214
listing type 184, 186—187
member 184, 185, 209
new file ID 184
old file ID 184
process options 188—189, 212—213
process statements ID 184, 189—190, 214
selection list 185, 211
update file ID 184, 190

SuperC introduction 174
applications 177
find match example 175

SuperC listing type
CHNG 186, 187
DELTA 186, 187, 271
LONG 185, 186, 187
NOLIST 187
OVSUM 186, 187

 Index 349

 Index

SuperC listings 269
SuperC messages 316
SuperC option directives

ERASRC0 267
MENU 267
NOIMSG 267
NONAMES 267
NOOLF 267
PRINT 267

SuperC pairing of CMS files and members 311
SuperC percent-wildcard

CMS SuperC Command Line 192
syntax 192

SuperC process options
ALLMEMS 228
ANYC 228
APNDLST 228
APNDUPD 228
CKPACKL 229
CNPML 229
COBOL 229
COVSUM 229
DLMDUP 229, 279
DLREFM 229
DPACMT 229
DPADCMT 229
DPBLKCL 230
DPCBCMT 230
DPCPCMT 230
DPFTCMT 230
DPMACMT 230
DPPLCMT 230
DPPSCMT 230
FMSTOP 230
FMVLNS 230, 272
GWCBL 231, 273
LOCS 231, 282
LONGLN 231
NARROW 232, 278
NOPRTCC 232, 270, 283
NOSEQ 232
NOSUMS 232
REFMOVR 232
SDUPM 233
SEQ 233
SYSIN 233
UPDCMS8 190, 233, 295—296
UPDCNTL 190, 233, 296—299
UPDLDEL 190, 233, 299
UPDMVS8 190, 234, 300
UPDPDEL 190, 234, 301
UPDREV 176, 190, 234, 293—294
UPDREV2 190, 234, 294—295
UPDSEQ0 190, 235, 301—302
UPDSUMO 190, 235, 302—305
WIDE 235, 280

SuperC process options (continued)
XWDCMP 186, 236
Y2DTONLY 236

SuperC process statements
+ (DPLINE operand) 251
+ (SRCHFOR operand) 256
+start_column (DPLINE operand) 251
+start_column (SRCHFOR operand) 256
B (COLHEAD keyword) 249
BTM (CMPBOFS keyword) 241
BTM (CMPLINE keyword) 243
BTM (CMPSECT keyword) 244
C (COLHEAD keyword) 249
D (COLHEAD keyword) 249
end_col (CMPSECT operand) 245
end_column (CMPCOLM operand) 242
end_position (NEXCLUDE operand) 253
end_position (NFOCUS operand) 253
end_position (OEXCLUDE operand) 253
end_position (OFOCUS operand) 253
fixed (Y2PAST operand) 266
hex_offset (CMPBOFS operand) 241
last_start_column (CMPLINE operand) 243
last_start_column (DPLINE operand) 251
last_start_column (LSTCOLM operand) 254
last_start_column (NCHGT operand) 239
last_start_column (OCHGT operand) 239
last_start_column (SRCHFOR operand) 256
line number (CMPLINE operand) 243
NBTM 241
NBTM (CMPBOFS keyword) 241
NBTM (CMPLINE keyword) 243
NBTM (CMPSECT keyword) 244
new_file_ID (SELECTF operand) 257
new_member (SELECT operand) 259, 260
new_name (SELECT operand) 258
NTOP 241
NTOP (CMPBOFS keyword) 241
NTOP (CMPLINE keyword) 243
NTOP (CMPSECT keyword) 244
number (CHNGV operand) 238
number (LNCT operand) 254
number (LPSFV operand) 254
OBTM 241
OBTM (CMPBOFS keyword) 241
OBTM (CMPLINE keyword) 243
OBTM (CMPSECT keyword) 244
OFF (SLIST operand) 261
old_file_ID (SELECTF operand) 257
old_member (SELECT operand) 259, 261
old_name (SELECT operand) 258
ON (SLIST operand) 261
OTOP 241
OTOP (CMPBOFS keyword) 241
OTOP (CMPLINE keyword) 243
OTOP (CMPSECT keyword) 244

350 HLASM V1R4 Toolkit Feature User’s Guide

 Index

SuperC process statements (continued)
output_string (NCHGT operand) 239
output_string (OCHGT operand) 239
P (COLHEAD keyword) 249
P (SRCHFOR operand) 256
RCVAL=number (REVREF operand) 255
REFID=name (REVREF operand) 255
S (SRCHFOR operand) 256
search_file_ID (SELECTF operand) 257
search_member (SELECT operand) 260, 261
search_name (SELECT operand) 258
search_string (CMPLINE operand) 243
search_string (CMPSECT operand) 245
search_string (NCHGT operand) 239
search_string (OCHGT operand) 239
section ID (CMPSECT operand) 244
sliding (Y2PAST operand) 266
start_column (CMPCOLM operand) 242
start_column (CMPLINE operand) 243
start_column (CMPSECT operand) 245
start_column (DPLINE operand) 251
start_column (LSTCOLM operand) 254
start_column (NCHGT operand) 239
start_column (OCHGT operand) 239
start_column (SRCHFOR operand) 256
start_position (NEXCLUDE operand) 252
start_position (NFOCUS operand) 253
start_position (OEXCLUDE operand) 252
start_position (OFOCUS operand) 253
string (SRCHFOR operand) 256
title_name (NTITLE operand) 262
title_name (OTITLE operand) 262
TOP (CMPBOFS keyword) 241
TOP (CMPLINE keyword) 243
TOP (CMPSECT keyword) 244
W (SRCHFOR operand) 256
Z (COLHEAD keyword) 249

SuperC reasons for differing comparison results 313
SuperC return codes

descriptions 314—315
empty input file error 315
error 314—315
error return codes 314—315
file attributes (inconsistent) 314
inconsistent file attributes 314
insufficient storage error 315
invalid sequence numbers 314
listing file error (disk full) error 314
listing file error (read only) error 315
listing file I/O error 314
no common members/files to compare 315
no data to compare error 315
normal completion 314
normal completion return codes 314
storage (insufficient) error 315
update file error (read only) error 315

SuperC return codes (continued)
update file I/O error 314
warning 314
warning return codes 314

SuperC Search
EXEC SuperC statement, MVS 206
JCL requirements, MVS 205
JCL requirements, VSE 221
MVS batch 205
MVS sample JCL 205
VSE 221
VSE sample JCL 222

SuperC search listing
page headings 283

compare date 284
compare time 284
page number 284
printer control character 283
program date 283
program ID 283
program version 283

SuperC search process statement directives
CC 268
LC 268
LT 268
SRCH(string) 221

SuperC search process statements
240
* 240
CMPCOLM 241—242
CMPLINE 242—243
CMPSECT 244—245
COLHEAD 249—250
DPLINE 250—252
DPLINEC 250—252
LNCT 254
LPSFV 254—255
LSTCOLM 254
NCHGT 238—240
NTITLE 262
SELECT 258—259—260—261
SELECTF 257—258
SLIST 261
SRCHFOR 255—257
SRCHFORC 255—257

SuperC search, on CMS command line input
& ("AND") 221
| ("OR") 221
invoking on CMS, command line input 215
OLF 221
options list file 221
process statements menu 219
PROMPT 219
SUPERC NAMES * 221

SuperC search, on CMS menu input
* (selection list) 211

 Index 351

 Index

SuperC search, on CMS menu input (continued)
asterisk-wildcard 208
auto display pgm 214—215
BROWSE 214
COND (display output option) 214
display output 214
EPDF 214
file ID (new file ID) 208
file ID (old file ID) 208
file_id (listing file id) 213—214
file_id (process statements id) 214
File/Member selection list 211
listing file ID 213—214
MACLIB/TXTLIB member 209
new file ID 208
NO (selection list) 211
old file ID 208
PF key definitions (search) 215
process statements file 214
selection list 211
SuperC Primary Search Menu 208
SuperC Process Statements Entry Menu 214
UPD (display output option) 214
XEDIT 214
YES (display output option) 214

SuperC search, on MVS 205
SuperC search, on VSE 221
SuperC search, primary menu fields

ASIS 208, 210
auto display pgm 208
CAPS 208, 210
command 208
listing file ID 208
member 208
process options 208
process statements ID 208
search file ID 208
search string fields 208
selection list 208

SuperC side-by-side listing 232
SuperC update files

UPDCMS8 295
UPDCNTL 296, 297, 298
UPDLDEL 299, 300
UPDMVS8 300
UPDPDEL 301
UPDREV 293, 294
UPDREV2 Revision File (2) 294
UPDSEQ0 301, 302
UPDSUMO 302, 303, 304, 305

SWUSIZE 127
Symbol Where Used (SWU) report 150

sample report 150
syntax notation, description v—vii
SYSIN DD statement for ASMXREF 112

T
tabs

See ASMPUT tabs
Tagged Source Program (TSP) report 155
target node 93
three-dimensional nodes 93
token statement file in CMS 116, 117
token statement file in MVS 109
token statement file in VSE 120
TOKEN statement in ASMXREF 128
token statements 128
Token Where Used (TWU) report 154
tokens 129

default 132
file 108, 116, 117
statement 128

topic help 96
transfer file to PC 149
two-dimensional nodes 93

U
ULABL Disassembler statement 51
unit descriptor 140, 141
unit descriptor format 141
unit descriptor keywords

$MAC 141
$MOD 141
$SEG 141
COMP 141
PROD 141

unit name format 141
Unmark All option 84
Unmark option 84
unmarking nodes 84
unresolved external call 93
unresolved nodes 75
UNTIL structured programming macro keyword 29
update file ID field (SuperC primary comparison menu)

See SuperC comparison, primary menu fields
UPDDD SuperC process statement 245, 246
user abends 169
users v
using

ASMXREF 106
ASMXREP 106

using ASMPUT online help 96
using CMS EXECs

ASMXREF 115
invoking ASMXREF in CMS 115

USING Disassembler statement 51
using structured programming macros 11
using the Disassembler 41

352 HLASM V1R4 Toolkit Feature User’s Guide

 Index

V
viewing in ASMPUT

file information 72
HLASM Files information 73
information notebook 72
Job Id information 73
Library information 73
Options information 73
source code 68
Statistics information 73

VM publications 338
VSE

ASMXREF invoking with JCL 120
ASMXREF sample JCL 121
ASMXREP EXEC statement 124
ASMXREP JCL requirements 124
Disassembler JCL requirements 46
EXEC ASMXREF statement 123
SuperC invoking with JCL 199, 221
SuperC sample JCL 199, 222

VSE publications 338

W
What's This help 97
WHEN macro 12, 37
WHILE structured programming macro keyword 29
window areas 91

changing size 91
windows

See ASMPUT windows
working with ADATA files 67
working with the control flow graph 74
WORKSIZE SuperC process statement 262

X
XOBJECT assembly option 64
XRFLANG DLBL statement 123
XRFLANG file in CMS 118
XRFTOKN DLBL statement 123
XRFTOKN in CMS 116

Y
Y2PAST SuperC process statement 266
yellow node 84, 93

Z
z/OS publications
Zoom In icon 86
Zoom In On option 86
Zoom In option 86
Zoom In Rectangle icon 86

Zoom In Rectangle option 86
Zoom Out From option 86
Zoom Out icon 86
Zoom Out option 86
Zoom Out Rectangle icon 86
Zoom Out Rectangle option 86
zoom slider 93

hiding 86
showing 86

zooming
in 86
out 86

 Index 353

We'd Like to Hear from You

High Level Assembler for MVS & VM & VSE
Toolkit Feature User’s Guide
Release 5

Publication No. GC26-8710-08

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Electronic mail—Use this Internet ID:

 – Internet: comments@us.ibm.com

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

High Level Assembler for MVS & VM & VSE
Toolkit Feature User’s Guide
Release 5

Publication No. GC26-8710-08

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC26-8710-08 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
J87/D325
555 Bailey Avenue
SAN JOSE, CA 95141-9989

Fold and Tape Please do not staple Fold and Tape

GC26-8710-08

IBM

Program Number: 5696-234

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

High Level Assembler Publications

SC26-4941 HLASM Programmer's Guide.
GC26-4943 HLASM General Information.
GC26-4944 HLASM Licensed Program Specifications.
SC26-4940 HLASM Language Reference.
SC26-3494 HLASM Installation and Customization Guide.

High Level Assembler Toolkit Feature Publications

GC26-8709 HLASM Toolkit Feature Interactive Debug Facility User's Guide.
GC26-8710 HLASM Toolkit Feature User's Guide.
GC26-8711 HLASM Toolkit Feature Installation and Customization Guide.
GC26-8712 HLASM Toolkit Feature Debug Reference Summary.

GC26-871�-�8

S
pine inform

ation:

IB
M

H
L

A
SM

T
oolkit Feature U

ser’s G
uide

R
elease 5

	Contents
	About This Book
	Who Should Use This Book
	Syntax Notation

	Summary of Changes
	Disassembler
	Enhanced SuperC
	Interactive Debug Facility

	Chapter 1. Toolkit Feature Introduction
	Toolkit Feature Components
	Toolkit Feature Structured Programming Macros
	Toolkit Feature Disassembler
	Toolkit Feature Program Understanding Tool
	Toolkit Feature Cross-Reference Facility
	Toolkit Feature Interactive Debug Facility
	Enhanced SuperC

	Potential Uses for the Toolkit Feature
	Recovery and Reconstruction
	Analysis and Understanding
	Modification and Testing
	Summary

	Chapter 2. Using Structured Programming Macros
	Introduction to Structured Programming Macros
	Accessing the Macros
	The ASMMREL Macro
	The IF Macro Set
	IF Macro Option A
	IF Macro Option B
	IF Macro Option C
	IF Macro Option D
	IF Macros with Boolean Operators
	The ELSEIF Macro

	The DO Macro Set
	The DO Indexing Group
	DO Loop Terminator Generation
	Infinite Loop
	Branching To the ENDDO
	Leaving a Nested DO
	Explicit Specification
	Counting
	Backward Indexing
	Forward Indexing
	Register Initialization
	The UNTIL and WHILE Keywords

	The SEARCH Macro Set
	The CASE Macro Set
	The SELECT Macro Set

	Chapter 3. Using the Disassembler
	Introduction to the Disassembler
	Invoking the Disassembler
	Invoking the Disassembler on MVS
	MVS JCL Example
	Disassembler Options on MVS

	Invoking the Disassembler on CMS
	CMS Example
	Disassembler Options on CMS

	Invoking the Disassembler on VSE
	VSE JCL Example:
	Disassembler Options on VSE

	Control Statements
	Module-CSECT Statement (required)
	Format

	DATA-only Statement (optional)
	INSTR-only Statement (optional)
	DS-area Statement (optional)
	DSECT Definitions (optional)
	ULABL Statements
	USING Statements
	COPY Statement (optional)
	Comment Statement (optional)

	Disassembling a Module for the First Time
	Output Description
	SYSPUNCH (SYSPCH for VSE) Content
	SYSPRINT (SYSLST for VSE) Content

	Disassembler CMS Messages
	Disassembler Messages

	Chapter 4. Using the Program Understanding Tool
	Introducing ASMPUT
	More about nodes
	Getting started
	Other resources

	Working with ADATA files
	Opening an ADATA file
	Opening and closing the Control Flow Graph window
	Viewing source code
	Changing font properties
	Restoring defaults
	Showing and hiding expanded lines
	Showing and hiding assembly diagnostics
	Showing and hiding analysis messages
	Finding the next assembly diagnostic or analysis message
	Finding text in source code

	Viewing ADATA file information
	Removing (closing) a file

	Working with the control flow graph
	Expanding and collapsing layers
	Adding and removing context
	Refreshing and redoing
	Hiding and showing return arcs
	Marking and unmarking nodes
	Opening and closing the Overview window
	Zooming
	Scrolling
	The interaction between source code and the control flow graph

	ASMPUT windows and window areas
	Main window
	Main window file list area
	Main window source code area
	Main window information notebook

	Control Flow Graph window
	Overview window

	Restrictions
	Using online help
	Using Topic Help
	Using What's This help
	The OS/2 help

	ASMPUT messages

	Chapter 5. Using the Cross-Reference Facility
	Introduction to ASMXREF
	Invoking the Cross-Reference Facility
	Invoking ASMXREF on MVS
	MVS JCL Example
	Sample Procedures

	Invoking ASMXREF on CMS
	ASMXREF Control File
	ASMXREF Token Statement File
	ASMXREF Source List File
	Default Options File
	ASMXREF Language File
	ASMXSCAN EXEC
	ASMXRPT EXEC

	Invoking ASMXREF on VSE
	VSE JCL Example

	ASMXREF Control Statements
	*
	Library
	Include
	Exclude
	Parm
	Report

	ASMXREF Token Statement
	Token
	Scanning Rules for ASMXREF
	Generic Matching Rules

	ASMXREF Options
	ASMXREF XRFLANG Statements
	Default Token Segment
	Language Segment

	ASMXREP Options
	Understanding the Reports
	Languages Supported by Reports
	Control Flow (CF) Report
	C Family References
	PL Family References
	REXX References

	Lines Of Code (LOC) Report
	Changed Source Instruction (CSI) Measurements

	The LOOC report
	The LOC per Class section
	The LOC per Object section
	The Objects per Class section

	Macro Where Used (MWU) Report
	Spreadsheet Oriented Report (SOR)
	File Transfer to PC

	Symbol Where Used (SWU) Report
	Token Where Used (TWU) Report
	Tagged Source Program (TSP)

	ASMXREF Messages
	Message List

	ASMXREF User Abends

	Chapter 6. Using Enhanced SuperC
	Introduction to Enhanced SuperC
	The SuperC Comparison
	The SuperC Search
	SuperC Features for Date Comparisons
	General Applications

	How SuperC and Search-For Filter Input File Lines
	How SuperC Corrects False Matches
	How SuperC Partitions and Processes Large Files
	Comparing Load Modules
	Comparing CSECTs
	Invoking the SuperC Comparison
	Invoking the Comparison on MVS
	MVS JCL Example

	Invoking the Comparison on CMS using Menu Input
	COMMAND
	New File ID and Old File ID
	Member
	Selection List
	Compare Type
	Listing Type
	Listing File ID
	Process Options
	Process Statements ID
	Update File ID
	Display Output
	Auto Display Pgm
	Primary Comparison Menu PF Key Definitions
	Printing the Wide Listing

	Invoking the Comparison on CMS using Command Line Input
	Types of Options
	Command Line Priority and Overriding
	Compares From FILELIST

	Invoking the Comparison on VSE
	VSE JCL Example 1: Non-VSAM-managed Sequential Files
	VSE JCL Example 2: VSAM-managed Sequential Files
	VSE JCL Example 3: VSAM Files
	VSE JCL Example 4: Tape Files
	VSE JCL Example 5: Librarian Members

	Invoking the SuperC Search
	Invoking the Search on MVS
	MVS JCL Example

	Invoking the Search on CMS using Menu Input
	Invoking the Search on CMS using Command Line Input
	Types of Options
	Command Line Priority and Overriding
	SRCH Process Statement Directive

	Invoking the Search on VSE
	VSE JCL Example 1: Non-VSAM-managed Sequential Files
	VSE JCL Example 2: VSAM-managed Sequential Files
	VSE JCL Example 3: VSAM Files
	VSE JCL Example 4: Tape File
	VSE JCL Example 5: Librarian Members

	Process Options
	Process Statements
	Change Listing Value
	Change Text
	Comment Lines
	Compare Byte Offsets
	Compare (Search) Columns
	Compare Lines
	Compare Sections
	DD-MVS Alternate DD Names
	DD-VSE DLBL/TLBL Definitions
	Define Column Headings
	Do Not Process Lines
	Exclude Data
	Focus on Data
	Line Count
	List Columns
	List Previous-Search-Following Value
	Revision Code Reference
	Search Strings in the Input File
	Select Files from a List of Files (CMS)
	Select Members or Files (CMS)
	Select Members (VSE)
	Select PDS Members (MVS)
	Statements File Listing Control
	Title Alternative Listing
	Work Size
	Year Aging
	Date Definitions
	Global Date

	CMS Command Line Option Directives
	CMS Command Line Statement Option Directives
	Understanding the Listings
	General Listing Format
	How to View the Listing Output
	The Comparison Listing
	Page Headings
	Listing Output Section
	Member Summary Section (CMS)
	Overall Summary Section
	Examples of Comparison Listings

	The Search Listing
	Page Heading
	Source Lines Section
	Summary Section
	Examples of Search Listings

	Update Files
	Revision File
	Revision File (2)
	Update CMS Sequenced 8 File
	Update Control Files
	Update Long Control
	Update MVS Sequenced 8 File
	Update Prefixed Delta Lines
	Update Sequenced 0 File
	Update Summary Only Files

	CMS File Selection List
	Getting to the Selection List Menus
	The Selection List Menu (Comparison)
	The Selection List Menu (Search)

	How SuperC Pairs CMS Files and Members
	CMS Files Used by SuperC
	Reasons for Differing Comparison Results
	Return Codes
	SuperC Messages

	Notices
	Glossary
	Bibliography
	High Level Assembler Publications
	Toolkit Feature Publications
	Related Publications (Architecture)
	Related Publications for MVS
	Related Publications for VM
	Related Publications for VSE

	Index

