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Abstract 

In this study a software package for easily creating and embedding structural health monitoring (SHM) data 

interrogation processes in remote hardware is presented. The software described herein is comprised of two 

pieces. The first is a client to allow graphical construction of data interrogation processes. The second is node 

software for remote execution of processes on remote sensing and monitoring hardware. The client software is 

created around a catalog of data interrogation algorithms compiled over several years of research at Los Alamos 

National Laboratory known as DIAMOND II. This study also includes encapsulating the DIAMOND II 

algorithms into independent interchangeable functions and expanding the catalog with work in feature extraction 

and statistical discrimination. The client software also includes methods for interfacing with the node software 

over an Internet connection. Once connected, the client software can upload a developed process to the 

integrated sensing and processing node. The node software has the ability to run the processes and return results. 

This software creates a distributed SHM network without individual nodes relying on each other or a centralized 

server to monitor a structure. 

For the demonstration summarized in this study, the client software is used to create data collection, feature 

extraction, and statistical modeling processes. Data are collected from monitoring hardware connected to the 

client by a local area network. A structural health monitoring process is created on the client and uploaded to the 

node software residing on the monitoring hardware. The node software runs the process and monitors a test 

structure for induced damage, returning the current structural-state indicator in near real time to the client.  

Current integrated health monitoring systems rely on processes statically loaded onto the monitoring node before 

the node is deployed in the field. The primary new contribution of this study is a software paradigm that allows 

processes to be created remotely and uploaded to the node in a dynamic fashion over the life of the monitoring 

node without taking the node out of service. 
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1 Introduction 
Structural Health Monitoring (SHM) is the process of observing a structure over time, identifying a damage 

sensitive feature in the observations and performing a statistical analysis of these features to determine the health 

of the observed structure. Structures include examples from mechanical, civil and aerospace engineering systems. 

The observations consist of periodically sampled dynamic response measurements from an array of sensors 

deployed on the structure. Damage sensitive features are extracted through modeling of baseline structural 

observations, while the subsequent statistical analysis leads to quantitative information about the current state of 

the observed structure. SHM can be used in one of two modes. In the first mode a SHM system periodically 

checks the health of a structure and assesses the ability of the structure to perform an intended function as the 

inevitable effects of aging and degradation set in. In a second mode of operation, a SHM system is used for rapid 

assessment of structural state after an extreme event, such as an earthquake, to provide near real time information 

about structural integrity. 

People depend upon a vast amount of aerospace, civil and mechanical infrastructure of which little is known 

about the structural state. In the civil engineering sector there are over 600,000 highway bridges (DOT, 2003) in 

the United States all in varying structural states. There are buildings that can undergo seismic loading that can 

potentially damage moment resisting steel joints. In the aerospace industry airplanes undergo maintenance on a 

time-based schedule. Composites, which are hard to diagnose visually, are becoming the building material of 

choice for aerospace and some civil structures. In each of these areas monitoring the health of the system in a 

more analytical way and on a more regular basis could lead to improved life-safety benefits and economic savings. 

The problem of SHM is not “one size fits all”. Each structure, component, geometry, or material must often be 

approached differently. 

The field of SHM covers a diverse group of technologies that must be integrated to monitor the structural 

integrity of bridges, buildings, aerospace, and mechanical structures. Four basic parts of the SHM process are 

defined in the Los Alamos National Laboratory (LANL) statistical pattern recognition paradigm (Farrar, 2000): 1. 

Operational  evaluation, 2. Data acquisition, cleansing and normalization, 3. Feature extraction, and 4. Statistical 

feature discrimination. The enormity of the SHM problem is more manageable when broken into these four parts. 

Many research efforts have focused on finding new damage sensitive features in data and developing feature 

extraction techniques (Doebling, 1998). Another large area of research is in sensor development, which falls under 

the data acquisition portion of the paradigm. Initial work in data normalization and statistical feature 

discrimination has begun with forays into neural networks and statistical hypothesis testing, respectfully. There are 

as many feature extraction techniques, as there are researchers; a plethora of sensors are designed for various 

materials, environments and structures; and various statistical discrimination techniques exist, each with distinct 

advantages for specific applications. 
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1.1 Motivation 

As the SHM field grows and matures, the question of “can a structure’s health be monitored?” is being replaced 

by “which permutation of sensing technology, cleansing, normalization, feature extraction, and statistical 

discrimination yields the best results for the problem outlined in the operational evaluation of a structure?” Next, 

one must ask how a process can be deployed in a testing scenario on a “real-world” structure. And finally, a 

solution must be found for how results from this process can be easily interpreted and transmitted to a central 

structural analysis center. These questions require a set of modular tools for cataloging functions, rapid assembly 

of SHM processes, embedding processes in remote monitoring hardware, and finally for receiving information 

about the monitored structure. 

This thesis is an introduction to the set of modular software developed by LANL and Virginia Tech to interface 

with an integrated hardware system assembled by Motorola. This software and hardware fills the void by bringing 

SHM technologies together in a single package. The integrated set of tools, known as the Husky project1, is robust 

and adaptable to varying structural and environmental requirements. 

1.2 A Review of Selected literature 

There are several sources on creating SHM systems using wired and wireless technology. A SHM system is 

defined in this document as an integrated package of data interrogation software and hardware with both sensing 

and processing capabilities. Many systems therefore are not included here because the system focuses are primarily 

sensing and streaming raw data back to a central sever for analysis. In an effort to cull the papers to a meaningful 

set, only integrated systems specifically designed for SHM in which data are collected, processed, and a result 

returned are reviewed. 

1.2.1 Wired transmission 

Todoroki, (1999) introduces a SHM system called the Plug & Monitor system on the Japanese bullet trains. This 

system incorporates vibration, temperature, and speed sensors as well as cameras under the railroad carriages to 

confirm the condition of the tracks. Each sub-network on the train features its own CPU to process data locally 

and minimize the amount of data transmitted, thereby minimizing chances of data collision. Data collision is a 

problem that results from a network device receiving simultaneous requests to store or retrieve data from another 

device on the network. As networks expand, the chances of data collision increase. The Plug & Monitor operates in 

an unsupervised learning mode, meaning no a priori knowledge of damage is required, with the ability to perform 

damage detection by simply plugging sensors into the system. The embedded software automatically constructs 

simple correlations between distributed sensors and finds deviations from the normal measurements. Web-based 

                                                             

1 The Husky as a breed of dogs has been breed to be small, fast, and yet a work horse in conditions where other animals could 
not survive. Though the Husky developed as a mode of transportation in colder northern regions, it is equally as happy in 
warmer climates where its dual layered coat keeps it cool in summer months. This combination of tenacity to perform its job 
without fail, strength and speed in a small package, and adaptability to the environment are the reason for naming this 
system the Husky project. 
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cameras are used to confirm damage. The authors, however, do not specifically state the algorithm or software 

details of the Plug & Monitor system and only state that the software is written with JAVA for Web portability. 

Moster (2004) from Datatek Applications, Inc. describes the process of detecting gear faults using frequency 

domain techniques and support vector machines (SVM) (Haykin, 1998). A SVM is an algorithm that projects data 

into higher dimensions where it becomes more separable. Gears with simulated cracks are placed into gearboxes 

and acceleration time history is collected as the gearbox is run. The gears with faults show a periodic spike in the 

time history that corresponds to one revolution of the gear. Instead of using raw time history as input to the SVM 

to extract the features, Moster uses the frequency domain analysis to extract features because the periodic spike 

provides a less ambiguous input. Using spectral correlation as the feature, the SVM algorithm is able to correctly 

classify the undamaged and damaged motors when the SVM is operated in a supervised learning mode. In a 

supervised learning mode, examples of damage are included in training. In an unsupervised learning mode, the 

accuracy of the fault detection was lower, with false positive damage indications in the results. The article is 

interesting because this advanced data interrogation process has been  integrated with data acquisition hardware. 

Datatek also provides a GUI interface, and visual display of damage states in the DT-3000 autonomous vibration 

monitoring system. 

The Plug & Monitor system is included because software is bundled with the hardware. Software allows processing 

at a local level and the results transmitted to a central monitoring location via the web for review. This approach is 

similar to the intent of the Husky project; however the Plug & Monitor software is static, it does not include a front 

end for dynamically creating and loading new SHM processes. The SHM process incorporated is also based on 

simple correlation of data between sensors. The SHM processes that can be developed with the Husky project are 

much more complex in terms of feature extraction, data normalization, and statistical modeling for feature 

discrimination. The Husky hardware is also small, portable, and can be wireless.  

Similar to the previous article, data collection and processing by the Datatek system are performed by a central 

processing unit and Ethernet transmits results to a monitoring station. The GUI is for setup and configuration, 

but the SHM process is still statically embedded in the hardware. The large difference, therefore, between the 

Husky project and the DT-3000 is the ability to dynamically change the data interrogation process used to detect 

damage. 

1.2.2 Wireless transmission 

Stepping away from wired transmission to wireless shows a larger emphasis on processing data at the collection 

point. This emphasis is because a design goal of wireless systems is typically to run on battery power. The power 

required to process data is considerably lower than the power required to transmit data. Therefore these systems 

typically perform some form of data compression locally, and only transmit a limited amount of processed 

information. 

Tanner (2001) used the Crossbow “Mote platform” hardware to implement a simple SHM system. The Motes are 

a small, integrated sensor, processor, and RF transmitter originally developed at UC Berkley. The processor 

proved to be very limited, allowing only the most rudimentary data interrogation algorithms to be implemented. 
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Tanner used a process that monitored the autocorrelation between signals using user-defined thresholds. A binary 

result could then either be shown on the mote’s LEDs or transmitted wirelessly to a base station. The system was 

demonstrated using a small portal structure with damage induced by loss of pre-load in a bolted joint. 

Lynch (2002) presented hardware for a wireless peer-to-peer (P2P) SHM system. Using off the shelf components, 

Lynch couples sensing circuits and wireless transmission with a computational core allowing a decentralized data 

collection, analysis, and broadcast of a structural health indicator. The final hardware platform includes two 

microcontrollers for data collection and computation connected to a spread spectrum wireless modem. The 

software is tightly integrated with the hardware and includes the wireless transmission module, the sensing 

module, and application module. The application module implements the AR-ARX time series algorithm 

described in Sohn, 2001. This integrated data interrogation process requires communication with a centralized 

sever to retrieve model coefficients. The object of closely integrating the hardware and software with the dual 

microcontrollers is to produce a power efficient design. 

Spencer (2004) in a review of current “smart sensing” technologies compiled summaries of wireless work in the 

SHM field using small, integrated sensor and processor systems. A smart sensor, as defined by Spencer, is a sensor 

with an embedded microprocessor and wireless communication. Many smart sensors covered in this article simply 

sense and transmit data. However, efforts using the Mote platform are discussed and a new generation of Mote is 

outlined. Two drawbacks of the Mote platform as noted by Tanner were a lack of programming space and 

processing power. These drawbacks severely limited the ability to program complex data interrogation processes. 

The new Mote prototype by Intel ® provides a more powerful processor, but does not deliver more programming 

space. 

A comparison, shown in Table 1, illustrates the differences in the various wireless integrated SHM systems found 

in the previously discussed articles. 

The inadequacy of the Mote processing capabilities is clearly illustrated when compared to the Stanford WiMMS 

system and the Husky project. Both the Stanford system and the Husky project have the ability to perform 

complex data interrogation processes at each node.  

Beyond the processing limitations of the Mote system, implementing new processes on the system requires 

knowledge of the C programming language and the Tiny © operating system (OS). Both C and Tiny © OS require 

a steep learning curve. In contrast, the Husky project provides an easy to learn GUI client for creating and loading 

new processes, and a flexible hardware platform with true computing and sensing power. The physical footprint 

of the mote system is much smaller than the Husky hardware, but the added software and hardware functionality 

out weighs size penalty for this application. The mote platform seems to be far too limited to perform true SHM 

for most applications. 

The Stanford WiMMS system provides hardware that is adequate for sampling sensor data from a structure and 

providing computing power for complex algorithms. There are some differences, however, between the Stanford 

system and the Husky project. The software included in the Husky system provides a dynamic development 

platform for creating new SHM processes. The Stanford WiMMS system relies on a process that is loaded 
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statically and is tightly coupled with a centralized server. Overall, the two platforms differ in that Lynch creates a 

tightly coupled and optimized system targeted for civil applications. The Husky system is a development and test 

platform that is configurable in both software and hardware to find optimal solutions for a variety of different 

SHM problems. While Lynch’s integrated hardware is similar to the Husky system, the philosophy of Lynch’s 

system is quite different. The system developed by Lynch is tightly integrated for optimal power consumption 

purposes. The Husky project is loosely coupled for maximum flexibility and assumes the availability of a 

continuous power source.  

Table 1 - Comparison of wireless systems used for structural health monitoring 

 Stanford 
WiMMS2 

Crossbow MICA23 Intel Mote4 Husky Project 

Processing/Programming 

Program Processor Motorola: 
40 MHz 32 bit  

Amtel: 
16 MHz 8 bit 

Intel: 
12 MHz 32 bit 

Intel: 
Pentium 233 MHz 

Programming Memory 448 Kb 128 Kb 64 Kb 512 Mb5  

Sampling Processor 
Amtel: 
4 MHz 8 bit 

N/A N/A Motorola: 
120 MHz 16 bit 

Sample Memory 8 Kb  512 Kb 512 Kb 36 Kb 
OS Embedded  Tiny OS Tiny OS Linux 

Sensing 
ADC 16 bit 10 bit 10 bit 16 bit 

Max Sample Freq 1 kHz Not Available Not Available 200 kHz 
Sensor Types Analog Analog, Digital Analog, Digital Analog 

Wireless Transmission 

Indoor Range 500 ft. 100 ft. 100 ft. 30 ft. 

IEEE MAC6 Protocol 802.3 (Ethernet) Software7 Software7 802.15.4 (ZigBee) 
Frequency 2.4-2.483 GHz 433, 868/916 MHz  2.4 GHz 2.4 GHz 
Data Rate 1.6 Mbps 38.4 Kbps 57.6 Kbps 230 kbps 

Physical 
Volume 20 in3 0.70 in3 1.4 in3 108 in3 
Power8 78  mW – 2.4 W 0.5  µW – 50  mW Not Available 6 W 

Cost $5009  $150 Not Available $8009 

                                                             

2 Lynch, 2003 

3 www.xbow.com 

4 Spencer, 2004 

5This memory is in the form of a Compact Flash card. Larger or smaller flash cards can be easily used. 

6 Media Access Control - The interface between a node’s logic layer and the network's physical layer. 

7TinyOS implements the Media Access Control Protocol in software allowing more flexibility, but placing a higher burden on 
the processor. 

8The first power rating refers to the system in sleep mode while the second represents the system in active. If only one number is 
shown, this represents active. 

9This figure represents an approximate cost of the research prototype materials. 
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1.3 Scope and overview 

The scope of this thesis encompasses the creation of novel software that presents the first method for dynamically 

creating; implementing and updating a SHM process that is couples with sensing, processing, and telemetry 

hardware. Such a software tool needs to fulfill four basic steps: 

• Present the user with a toolbox of functions including feature extraction, data normalization, and 

statistical modeling for SHM. 

• Allow the user to create a working process from this toolbox of functions. 

• Load and run the process on an integrated sensing and processing hardware platform. 

• Train the process in an effort to establish appropriate thresholds for the damage indicator. 

• Dynamically update the process as new data become available. 

• Transmit and receive information pertaining to the state of the structure. 

It should be noted that the software and hardware platforms developed in this project have been designed to be 

flexible and are not simply restricted to SHM applications. SHM provides an interesting problem where a solution 

was lacking and provides an excellent test bed for the technology.  

The thesis layout follows the flow in which the system is used with background on development and 

implementation at each step. First an overview of the time series and statistical methods employed to create a near 

real-time SHM process is presented. Then the first look at the client software for prototyping these SHM 

processes are presented. Finally, the integrated software and hardware for interrogating a structure is discussed. A 

small proof of concept experimental section is included in which a SHM process is developed, loaded onto the 

integrated hardware, then monitors a small structure, and a damage classification is returned. 
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1.4 Contributions 

The unique contributions of the research and development work summarized herein are: 

Data interrogation: 

• The automation of model order selection for time series models for use in the feature extraction process. 

• Development of a sum of squared error damage feature. 

Software development: 

• Cataloging and encapsulation of SHM functions developed by researchers at LANL and Virginia Tech. 

• Development of a graphical user interface for assembling functions from varying development languages 

into processes and running the processes locally. 

• Development of a server application for remote execution of assembled processes and transmission of 

process results using standard Internet protocols. 

• Development of a framework for loosely coupled hardware and software through TCP/IP 

communication to allow for modular co-development of the hardware and software systems. 
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2 Statistical Pattern Recognition for Structural Health 
Monitoring 

2.1 Introduction 

Statistical pattern recognition is a topic of research in engineering, statistics, computer science and even the social 

sciences. The topic covers the design of systems that recognize patterns in data. In the area of Structural health 

monitoring (SHM) this process typically involves recognizing patterns that differentiate data collected from a 

structure in its undamaged and damaged states. Statistical pattern recognition appeals to researchers in the area of 

SHM because of the ability to quantify and automate the decision making process in the presence of uncertainty. 

This ability leads naturally to the design of integrated hardware and software systems that can continuously 

monitor a structure’s health. 

There are four basic steps to the SHM statistical pattern recognition paradigm: operational evaluation, data 

cleansing and normalization, feature extraction, and feature analysis (Farrar, 2000).  

Operational evaluation is the process of defining the damage that is to be detected and providing justification, 

typically either economic or safety related, for performing the SHM. The operational evaluation portion of the 

statistical pattern recognition paradigm is not covered in this chapter because of the dependence upon the sensing 

hardware and the structure tested. Operational evaluation will be briefly covered in the hardware and experimental 

chapters.  

Data cleansing, normalization, compression and fusion can all be part of the last three steps in this process. 

During data collection, a sensor array measures the system response such as an acceleration time history at points 

on the structure. These data are then cleansed (e.g. filtered) and normalized (e.g. subtract the mean and divide by 

the standard deviation) before features are extracted from the data. Data cleansing and normalization are 

performed in an effort to separate operational and environmental variability from system response changes caused 

by damage. For example, a building’s air handling unit may produce unwanted acoustic signals at a know 

frequency that can be detected by the SHM sensing system and mistaken for the onset of damage. Data cleansing 

filters are then applied to remove these acoustic signals in an effort to reduce false indications of damage. 

Next, a feature that is sensitive to the onset of damage in the system is extracted from the data. If, for example, 

the structure typically behaves in a linear fashion, then a feature that indicates the transition to nonlinear behavior 

may be extracted and used as an indication of damage.  

Feature analysis is performed to identify when changes in the measured response are statistically significant and 

indicate damage as opposed to changing operational and environmental conditions. Almost all of these statistical 

methods employed for SHM provide an indication of damage when the damage feature exceeds a statistically 

determined threshold. To establish the statistical thresholds, the process must go through training on baseline data 

collected from the structure in an undamaged state. 
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This chapter describes the various data cleansing, data normalization, feature extraction, and statistical 

discrimination techniques that are included in the software developed as part of this study.  

2.2 Data cleansing and normalization 

Know effects that alter the data must be removed to allow accurate modeling of the underlying system response. 

These know effects can be environmental or operational such as thermal changes throughout the day or a DC 

offset in the measuring equipment. Such patterns are not of interest in the SHM problem because they are not 

related to damage in the structure. Often one or more data cleansing and normalization techniques are applied to 

the data. 

Data that are collected from natural environments can often display exponential growth, seasonal drift, or cyclic 

patterns. In some cases only certain frequency ranges may be of interest, or the data may need to be differenced to 

remove polynomial trends. These techniques all fall under data cleansing, the process of eliminating unwanted 

data. Possible influences that would require data cleansing include temperature drift, known inputs from 

machinery, or other environmental influences.  

Data that display a shifting of the mean from zero, such as DC offset, or a scalar change in amplitude from one 

data set to the next can be normalized. Data normalization is the process of scaling the data to facilitate a more 

direct comparison of different data sets. By subtracting off the mean of the entire data set and dividing by the 

standard deviation, all of the data sets will be re-scaled to zero mean and common amplitude. Data may also 

display a logarithmic increase in amplitude that can be removed by a log transformation. More complicated 

changes in the data may require more sophisticated normalization techniques such as neural networks (Sohn, 

2003). 

The following example demonstrates the data cleansing and normalization process. The original data are 

numerically generated from a Gaussian white noise process (Figure 1). The data shown in Figure 2 are the original 

data with simulated environmental trends, a simple linear trend, added. 
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Figure 1 - A numeric Gaussian white noise signal demonstrating a random signal that 
could be modeled using time series analysis. 
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Figure 2 – Original data with simulated environmental trends and operational bias added. 

The linear trend is removed by first order differencing the data. Differencing has the same effect as high-pass 

filtering a linear polynomial from the data and is defined as: 

! 

yi = xi " xi+1     i=1...n-1 (1) 

where yi are the transformed data and xi are the original data. Note that in this transformation a degree of freedom 

is lost. Higher order differencing can be used to remove higher order polynomial trends. Such a polynomial trend 

could be introduced into the data by an increasing temperature, humidity or other environmental factor. Figure 3 

shows the results of differencing the original data. 
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Figure 3 - Difference of the original data to remove linear trend. The resulting data are 
stationary and are the result of a Gaussian white noise process. Because of the numerical 
nature of the example, the original and resulting time series are identical. 

After the data cleansing process, the data conform to the definition of a stationary process as is necessary for the 

next portion of analysis. A tool to test if the signal is conditioned well is the periodogram as shown in Figure 4. 

The periodogram is a measure of the intensity, I(fi), at frequency fi as defined by (Box, 1994): 

    

! 

I fi( ) =
N

2
ai

2
+ bi

2( )    i =1,2,...,(N "1) /2  
(2) 

where N is the number of observations and ai and bi are the coefficients from fitting a Fourier series model to the 

data. The signal can be considered stationary white noise if the intensity is spread over all of the frequency 

components. If one or more frequencies dominate the periodogram, then an underlying process may exist. 

Overlay of random time series with linear trend removed with 
the original time series. 
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Figure 4 - Periodogram of the cleansed data. Notice that the distribution of the 
frequency content is spread evenly over the entire range. This spreading is an indication 
that the data are well-formed, stationary white noise, and that there is no underlying 
process.  

2.3 Feature extraction 

Once the environmental and operational effects are removed from the data, models can be applied to identify 

damage sensitive features. The feature extraction technique used herein is to fit a linear predictive model to data 

from the undamaged structure and calculate a residual error between the measured data and the data generated by 

the model. When damage is introduced to the system, it is assumed to exhibit a modified linear or non-linear 

response. The linear model built from the undamaged state is used to predict data from the damaged system, but 

the modified linear or non-linear nature of the response will cause an increase in residual error. Therefore, the 

residual error is the damage-sensitive feature derived from the measured system response data. The particular 

models used in the feature extraction process are described below. 

2.3.1 Time series models 

Often data are collected from a structure over time such as {x1, x2, …, xn}. These data then are referred to as a 

time series and can be modeled using models that assume correlation between sequential points in the time series. 

Time series models were developed to forecast time series such as temperature or species populations (Box, 1994), 

but also have many applications in engineering and process control. The motivation for using time domain models 

in the SHM application is to compress large amounts of data and in the process to extract damage sensitive 

features from these data. Time domain models assume that a current or future point in the time series is a linear 

combination of n preceding time points. There are two basic types of time series models: Auto-Regressive (AR) 

and Moving Average (MA) models. There are also several combinations of these two models that may need to be 

employed to fit data properly. The AR model is of the form: 

Periodogram PSD estimate 
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! 

˜ y 
t( ) = "n y

t#n( ) + $AR
n=1

p

%  
(3) 

With an AR model the estimate of current point,

! 

˜ y 
t( ) , is a linear combination of p previous system response 

terms, y(t-n), weighted by the linear coefficients φn and the addition of an error term, εAR. Equation (3) denotes an 

AR(p) model, where p defines the order, or number of previous time points that are assumed to be strongly 

correlated with the current time point in the model. A MA model again states that the current point is a linear 

combination of previous terms, however, instead of previous system responses a MA model uses previous errors: 

! 

˜ y 
t( ) = 1+ "t#n

n=1

q

$% 
& 
' ( 

) 
* +t  

(4) 

( )ty
~ , the current point, this time it is a combination of the previous q random errors, εt, weighted by linear 

coefficients θ. This model is then denoted as an MA(q) model.  

A combination of the two processes may be present in a time series calling for a mixed model, or Auto-Regressive 

Moving-Average model denoted ARMA(p,q): 

! 

˜ y 
t( ) = "n y

t#n( )n=1

p

$ + 1+ %t#n
n=1

q

$& 
' 
( ) 

* 
+ ,t  

(5) 

The underlying assumptions for these models are that the data are time series (y(t) and ε(t)) that are Gaussian and 

random in nature. The data must therefore be stationary in mean and variance and have any trends, cycles, or bias 

removed, as previously described in data normalization and cleansing discussion. Once the data are “well 

behaved” a more accurate model can be estimated. 

2.3.2 Automation of model order selection 

Time series models are functions of the model order. Using too few coefficients may lead to not capturing the 

underlying mechanism of the data. If too many coefficients are used, the noise in the data begins to be modeled 

which degrades the ability of the model to generalize to other data sets. Interestingly, in theory an AR(p) process 

can also be expressed as a MA(∞) model and vice versa. Often this transformation manifests in an AR process 

being mistakenly modeled by a large ordered MA process or conversely an MA process being modeled as a large 

ordered AR process.  

Because AR and MA time series models are based on the principal that a current point is a linear combination of p 

or q past observations, it is natural to look at correlation functions to decide how a current data point is related to 

n previous points and where this correlation may break down. Two such functions are the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF). The ACF shows the correlation of a two points 

separated by a fixed lag n: 
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where the ACF, ρn, is a function of the expected value, E(), of the time series xt, normalized by µx and σx
2, the 

mean and variance respectively of xt. γn is the covariance at lag n. Not that the ACF at n=0 should always be 1. 

The ACF of a MA process will theoretically diminish after lag n (Box, 1994). Therefore, if the ACF approaches 

zero after n lags, the data are represented with a MA(n) model [Equation (4)]. An example of the ACF for data 

generated by the following MA(1) model: 

! 

˜ y 
t( ) = "t #1.05"t#1

 (7) 

is found in Figure 5.  

 

Figure 5 - Autocorrelation function for a moving-average processor order 1. By looking at 
the autocorrelation function, it can be seen that the process is of order one because of a 
correlation at lag n=1 and insignificant correlation at all other points. The thresholds 
represent a 95% confidence interval that a correlation is insignificant. 

The Partial autocorrelation function (PACF) quantifies the correlation of a time series point and a point at lag n, 

with all other correlations removed. The PACF at a time point lagged by n, φnn , can be found recursively through 

the Yule-Walker equations (Box, 1994):  
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(8) 

In the case of an AR process [Equation (3)] the PACF theoretically goes to zero after n lags. Therefore, if the 

PACF is significantly diminished after n lags, the appropriate order of model would be p=n. In practice, the ACF 

and PACF only approach zero and some judgment is needed to choose an appropriate model order. An example 

of the PACF of an AR(2) process can be found in Figure 6 



Unclassified: LA-UR-04-5697  Page 15  

The ACF decaying in an exponential or sinusoidal fashion is an indication of a AR process and the PACF should 

be checked for confirmation. Alternatively, a MA model will decay exponentially or in a sinusoidal fashion in the 

PACF. If the ACF and PACF both diminish in exponential or sinusoidal fashion, then the underlying process may 

be a mixed model, or ARMA(p,q).  

On the other hand, if neither the PACF nor ACF die out quickly; this indicates that some process exists in the 

data that violates the underlying assumptions of the time series models. In this case, further data cleansing or a 

different modeling approach is required before an accurate model can be fit. 

 

Figure 6 – Partial autocorrelation function for an auto-regressive process. By looking at the 
partial autocorrelation function, it can be seen that the process is of order 2 because of a 
correlation at lags n=1 and 2. Thresholds are based on 95% confidence interval that the 
correlations are insignificant. 

To determine if an appropriate model and order has been chosen, the residuals from the model prediction the 

measured time series data are examined. The residuals should be uncorrelated if the model has performed a 

reasonable prediction (Box, 1994). A simple ACF and PACF plot of the residuals from the AR(2) model 

estimation (shown in Figure 7) can be used to determine if the residuals are correlated. As is seen in Figure 7, the 

residual errors from fitting the AR(2) model are not correlated. 
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Figure 7 – ACF and PACF of the residuals from the model forecast. There is no 
indication of any correlation because all points lie within a 99% confidence interval. Note 
that at Lag 0, a point will always be perfectly correlated with it’s self. 

Once the type model is chosen for the data, there are diagnostics that can help determine if the model order is 

appropriate. Two basic quantities are tested: the residual error and a criterion number. A criterion number is a 

quantitative measurement of how appropriate a model is for a given set of data. Several different criterions exist 

such as Akaike's Information Criterion (AIC), Final Prediction Error (FPE) and Schwartz-Bayesian Criterion 

(SBC), all of which take into account a tradeoff between the prediction errors for a model and penalize for the too 

many fit parameters (Akaike, 1974 and Schwarz, 1978). 

The AIC number is a measure of how well the model predicts the data, adjusted by a penalization factor for the 

number of terms in the model weighted by the number of data points available to fit: 

! 

AIC = log "( ) +
2d

N
 (9) 

where ν is the maximum likelihood estimate of the prediction error (Box, 1994) for the model, d is the number of 

coefficients fit, and N is the number of data points fit. For example, a model of order 6 that fits the data well 

could have a higher AIC than a model of order 4 that fits the data almost as well because of the penalty for extra 

terms that is associated with this criterion. It is important to note that AIC values are only comparable for 

different models identified from the same data set. AIC values from different sets of data are not comparable. 

Similar to the AIC, the FPE and SBC are also functions of the prediction error, the size of the data set fit and a 

penalization for the number of fit coefficients. The two other criteria compared are defined as follows: 
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! 

FPE =
"(N+d)

(N-d)
 (10) 

! 

SBC = N log "( )+d log(N)  (11) 

With the criterion defined, the problem of selecting an appropriate model order becomes an optimization 

problem. An algorithm has been developed to iteratively estimate optimized coefficients for a given model, model 

order, and data set (Allen, 2003). The criterion numbers are then calculated and the model order that minimizes 

the prediction error and number of model coefficients is selected. 

The method for determining an appropriate model order is computationally intensive. Models are fit, residual 

errors analyzed for outliers, and criterion numbers are calculated for a range of model orders. Models that pass the 

residual error test are selected and optimized for the lowest criterion number. The lowest criterion number 

represents the model that most accurately fits the data with the lowest number of coefficients. This method is 

easily automated, only requiring a range of model orders to fit. 

2.3.3 Damage sensitive feature 

Once an appropriate time domain model has been selected, the model coefficients are estimated and the model 

order optimized, the model can be used to predict the response of the structure. This forecast of the response is 

then compared to the observed data. 

It is known that certain types of damage in a structure cause an initially linear structure to behave in a non-linear 

manner. Because the time domain models described above are linear and are trained with data obtained when the 

structure is responding in a linear manner and these training data are assume to be stationary, any non-linear 

effects will cause errors in the predictive abilities of the model. Therefore, these residual errors can be used as a 

damage sensitive feature. 

A scalar damage sensitive feature is the sum of squares error (SSE). The SSE is a measurement of the difference 

between predicted data (fi, predicted) and observed data (fi, observed) at each measurement point: 

! 

SSE = fi,observed " fi,predicted( )
i= f0

fn

#
2

 (12) 

In the case of data interrogation for structural health monitoring, it is assumed that the response of a healthy 

structure can be accurately predicted with a properly trained time series model. The fi,observed  are observations of the 

structure in its current (and possibly damaged) state. The fi,predicted is the time domain model prediction of these data 

based upon a model estimated from the response of the healthy structure. The two responses are subtracted 

creating a measure of the error between the observed and predicted responses at each time point in the series. 

These errors are then squared and summed to provide a single positive scalar indication of how different the 

observed signal is from the expected structural response. 
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2.4 Statistical modeling for feature discrimination 

The task of monitoring changes in the damage sensitive features in a quantitative way leads to the field of 

Statistical Process Control (SPC) (Montgomery, 1996). SPC has been used for many years in the manufacturing 

industry to ensure quality control of products. The techniques developed in this field are time tested, geared 

toward automated decision-making, and can be readily adapted to the SHM problem. SPC operates in an 

unsupervised learning mode for realistic application of the process. When applied to structural health monitoring, 

unsupervised learning means that data from the damaged condition are not available to aid in the damage 

identification process. The objective of unsupervised SPC is to establish a model of the normal system condition 

and thereafter to signal statistically significant departures from this condition.  

First a model must be established from the normal system condition based on the damage-sensitive features 

extracted from measured system response data. This objective can be accomplished in several ways. Some 

methods include the use of control charts (Fugate et al., 2001) based on the mean and standard deviation of a 

damage sensitive feature, or the sequential probability ratio test (Sohn et al., 2002) that monitors a feature based 

on the ratio of the standard deviation.  

SPC with thresholds based on extreme value statistics (EVS) can be used to establish when a significant statistical 

change in the damage-sensitive feature has occurred. The damaged sensitive feature is collected in a sequential 

manner, {x1, x2, …, xn}, and will form a distribution with mean,  µ, and variance, σ2. If the structure is damaged 

the parameters of the parent distribution, µ and σ2, are likely to change showing a broadening or shifting of the 

distribution. Statistical process control provides a framework for monitoring the damage feature and identifying 

when these types of changes in the feature’s distribution occur (Sohn et al., 2003).  

2.4.1 Extreme value statistics 

When looking at turnkey solutions in SPC, it must be realized that there are underlying assumptions in the 

statistical models. SPC methods involve establishing thresholds that in the tails of the feature distribution and 

assume that the damage sensitive feature conforms to a normal distribution. If the feature analyzed is normally 

distributed, then these SPC methods can be implement “as is”, however, if the feature distribution is skewed or is 

heavy in the tails, then the normal distribution assumption is potentially hazardous. For example, if the feature 

distribution is heavy tailed, then a decision process based on central statistics (the mean vector and covariance 

matrix) will set a threshold that results in false-positive indications of damage (i.e. indications of damage when 

none is present). 

A problem with modeling the feature distribution is that often the functional form of the distribution is unknown. 

There are in fact an infinite number of candidate distributions that may represent the random nature of the 

feature. The choice of an appropriate distribution is often made based on a knowledgeable data analyst. 

Parameters of the assumed distribution are then estimated from a set of baseline data. This process is largely 

subjective and will constrain the tails to that of the assumed distribution. Also, in some cases, the extreme values 

of an event may be the only data that are recoded because of sensor or storage limitations. Modeling these data as 

a parent distribution could then bring about erroneous results. 
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EVS is the portion of statistics that is particularly concerned with modeling the tails of distributions. EVS can be 

applied to SPC methods to more precisely establish thresholds by accurately modeling the tails of the data. EVS is 

a branch of order statistics and there are a large number of references in the field. Some are considered classics 

(Gumbel, 1958; Galambos, 1978), and others are more recent (Embrechts et al., 1997; Kotz and Nadarajah, 2000; 

Reiss and Thomas, 2001). Castillo (1988) is notable in its concern with engineering problems in fields like 

meteorology, hydrology, ocean engineering, pollution studies, and strength of materials. Roberts introduced the 

ideas of EVS into novelty detection in (Roberts, 1998 and 2000) and applied them in the bio-signal processing 

context. Although EVS has been widely applied in other areas of research, the technique is only now beginning to 

be applied to SPC and damage identification (Sohn, 2003).  

2.4.1.1 Methodology 

When analyzing sequential samples {X1, X2, …, Xn}, such as the acceleration response of a structure over time, 

the resulting time series can have an arbitrary distribution. The most relevant statistics for studying the tails of this 

parent distribution are the maximum operator, max({X1, X2, …, Xn}) and the minimum operator, min({X1, X2, 

…, Xn}), which selects the point of maximum or minimum value from the sample vector. The pivotal theorem of 

EVS (Fisher, 1928) states that as n→∞, the induced distribution on the extremes of the samples can only take one 

of three forms: Gumbel, Weibull, or Frechet.  

The fundamental theorem of EVS states (Fisher and Tippett, 1928): 

The only three types of non-degenerate distributions H(x) satisfying the limits of the maxima and L(x) 

satisfying the limits of the minima are: 
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Weibull: (14) 
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Gumbel: 
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where ! , δ, and !  are the shape and location parameters, which will be estimated from the data and exp() is the 

exponential function. 

Now, given samples of maximum data from a number of feature populations, it is possible to select an 

appropriate limit distribution and fit a parametric distribution model to the data. It is also possible to fit 

distribution models to portions of the feature distribution’s tails as these models are equivalent in the tail to the 

appropriate underlying distribution. Once the parametric distribution model is obtained, it can be used to compute 

an effective threshold for a SPC method on the true statistics of the extreme feature data as opposed to statistics 

based on a blanket assumption of a Gaussian distribution. (Worden et al., 2002) 

2.4.1.2 Numeric example 

Simulated random data from a lognormal distribution are used to demonstrate the usefulness of the EVS. In the 

example, the 99% confidence intervals for SPC analysis are computed based on the following three distributions: 

(1) The assumed true lognormal parent distribution  

(2) A best-fit normal distribution where the sample mean and standard deviation are estimated from the 

simulated data.  

(3) An extreme value distribution, the parameters of which are estimated from the maximum and minimum 

10% of the simulated data. Choosing 10% of the data is an arbitrary choice to select a small portion for 

to represent the tails.  
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Hereafter, the confidence interval estimation methods based on the above three distributions are referred to as 

“True”, “Normal”, and “Extreme”, respectively.  

Setting a confidence interval on the parent distribution using either the True or Normal cases is fairly trivial. The 

lower and upper thresholds of the confidence interval are constructed by choosing an upper and lower false-

positive threshold, αU and αL. This threshold is related to the percentage of false-positive errors in your base line 

data. For example, an αL=.05 will correspond to a limit at which the lower 5% of the data will be below the lower 

threshold. Conversely a value of αU=.95 will correspond to an upper limit in which the top 5% of the will exceed 

the upper threshold. By using αL=0.005 and αU=0.995 and the inverse cumulative distribution function for either 

the known distribution or a best fit normal distribution, confidence intervals which encompass 99% of the data 

can be obtained. The remaining 1% of the data will lie outside the thresholds. 

For method 3, the lower and upper thresholds are estimated using the parameters from the parametric modeling 

of the maxima and minima and a user defined false-positive error bound. Knowing that a Gumbel distribution can 

model the extreme values of a lognormal (Castillo, 1988) as in Equations (15) the following equation is formulated 

to estimate the lower limit of the confidence interval: 

Lower limit: 

! 

x
m

= " + # ln $ln 1$%( )( )  (16) 

where xM is the threshold, λ and δ are obtained from the Gumbel distribution parameter estimation and α is 

the false-positive error bound (Worden, 2002). The upper limit of the confidence interval is similarly 

formulated, 

Upper limit: 

! 

x
M

= " #$ ln #ln %( )( )  (17) 

Some care must be taken in selecting the α values for the Extreme case in order to obtain thresholds that are 

comparable when applied to the parent distribution. In these numeric examples, the lower and upper 10% of the 

data are selected from the parent distribution to be modeled as the extremes. An α value for method 3 that will 

result in a 1% of the data exceeding the threshold in the parent distribution needs to be selected. When examining 

the parent distribution, 0.5% of the data will be an outlier, which translates to 5% of the extreme data being 

outliers. Therefore, the appropriate false-positive error bounds for method 3 would be α=0.05 and α=0.95. This 

adjustment will allow the thresholds from all of the methods to be comparable. 

2.4.1.3 Lognormal distribution 

A random variable x has a lognormal distribution if the natural logarithm of x is normal. (Ang and Tang, 1975) 

For a lognormal distribution, the density function of x becomes; 
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where ln(x) is the natural logarithm of x. µ and σ are the mean and standard deviation of ln(x), respectively. For 

this simulation, µ=1.0 and  σ= 0.5 are assumed. The associated lognormal density function is displayed in Figure 

8. The skewness and kurtosis of this distribution are 1.74 and 8.45, respectively. Note that, for all normal 

distributions, the values of the skewness and kurtosis should be 0.0 and 3.0, respectively (Wirsching et al., 1995). 

Therefore, the departure of the skewness and kurtosis values from 0.0 and 3.0 indicates non-Gaussian nature of 

the data.  

The least-squares return period relative error method is employed for the maximum of the lognormal data, the 

minimum, however, is fitted using the least-squares probability absolute error method (Castillo, 1988). In this numeric 

example, several techniques of parameter estimation were employed with the method which best fit the 

distribution being decided upon visually. 

 

 

Figure 8 - The exact 99% confidence interval of a lognormal parent distribution 
compared with those computed from either extreme values statistic or the normality 
assumption.  

 

Table 2: Estimation of 99% confidence intervals for the 10,000 data points generated from a lognormal 

parent distribution  

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

Number of outliers out of 
10,000 samples 

True 9.854 0.750 100 
Normal 7.378 -1.206 230 
Extreme 9.827 0.715 103 
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A drawback to the extreme values method is that a different method of parameter estimation is used to optimize 

the distribution fit of the minima and maxima in the example. The advantage is once the extreme values are 

modeled well there is a noticeable advantage for using this approach to establishing thresholds for SPC (Worden 

et al., 2002). 

2.4.2 Control charts 

If the mean (µx) and standard deviation (σx) of the Gaussian feature distribution are known, a control chart can be 

constructed by plotting a horizontal line at µx and two more horizontal lines representing the upper and lower 

thresholds. The upper threshold is drawn at µx + αUσx and the lower threshold at µx -αLσx. The number α is 

chosen so that when the structure is in good condition a large percentage, typically 95% to 99%, of the observed 

features will fall between the thresholds (Allen et al., 2001). 

As each new feature observation is made, the new µx is plotted. If the condition of the structure has not changed, 

the observation should fall between the upper and lower thresholds, with the exact percentage of values falling 

within the thresholds being determined by the choice of α. If the structure is damaged, there might be a shift in 

the distribution of the damage feature, which would then be indicated by the number of charted values beyond 

the thresholds increasing beyond what is consistent with the chosen α. Plotting the individual µx observations in 

this manner is referred to as an X bar chart (Montgomery, 1996). 

Note that observing an unusual number of observations outside the thresholds does not imply that the structure is 

damaged, but only that something has happened to cause the distribution of the damage feature to change. In this 

formulation of the SHM problem, however, it is assumed that a change in the damage feature distribution is 

caused by an undesirable change in the structure. This assumption implies that changes resulting from varying 

operational and environmental conditions do not influence the damage-sensitive feature of their influence has 

been accounted for by data normalization procedures. 

2.4.3 Sequential hypothesis tests 

One approach to quantifying the existence of damage in a structure is a sequential test. Sequential tests are 

particularly relevant if the data are collected sequentially such as the acceleration measured at a point on a structure 

over time. In classical hypothesis testing the number of samples tested or collected is fixed at the beginning of the 

experiment. After all the data are collected, the analysis is performed and conclusions are drawn. Unlike classical 

hypothesis testing, in sequential analysis every data point is analyzed directly after being collected. The data 

collected up to that moment is then compared with threshold values, incorporating the new information obtained 

from the freshly collected data. This approach leads to forming conclusions about the structural state during the 

data collection process. By comparing a new test feature to a baseline feature during data collection, a final 

conclusion can possibly be reached at an earlier stage than is the case in classical hypothesis testing. This sequential 

analysis is particularly appropriate for continuous SHM. 
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2.4.4 Sequential probability ratio test 

Among the various sequential tests, it can be analytically proven that the sequential probability ratio test (SPRT) 

minimizes the average sample number required to make a decision, thus making the SPRT an optimal sequential 

test (Ghosh, 1970). The SPRT is also sensitive to minute disturbances in the tested feature distribution. Because of 

this sensitivity the SPRT has been applied for the critical application of nuclear power plant component 

surveillance (Gross and Humenik, 1991). 

When implementing the SPRT, a trade-off must be considered before assigning values for the false-positive and 

false-negative error. When there is a large penalty associated with false positive alarms (for example, alarms that 

evacuate a building), it is desirable to keep α (false positive threshold) smaller than β (false negative threshold). On 

the other hand, for safety critical systems such as aerospace structures, a false positive alarm is more desirable than 

a false negative because of the potential for catastrophic failure. In this case, it is not uncommon to specify β  

larger than α. 

Using a SPRT, S(b,a), a hypothesis test can be stated as follows (Ghosh, 1970): 

A sequence of feature observations are recorded {xi}(i = 1,2,..,n) successively, and at stage n; 

Accept 
o

H , i.e. the system is undamaged,  if bZ
n
!  

Reject 
o

H , i.e. the system is undamaged,  if aZ
n
!  

Continue observing data if aZb
n
!!  

(19) 

where the transformed random variable Zn is the natural logarithm of the probability ratio at stage n: 

)|(

)|(
ln 1

on

n
n

Xf

Xf
Z

!

!
=  for 1!n  (20) 

where f(Xn|σ0) is the probability distribution function (PDF) of the recorded features (Xn) given a baseline 

standard deviation (σ0), and  f(Xn|σ1)  is the PDF given a damage case standard deviation (σ1). Zn is defined to be 

zero when f(Xn|σ1) = f(Xn|σ0) = 0. σ0 and σ1 are user defined based on previous data. In a supervised learning 

mode, σ1 can be quantified based on data, however in an unsupervised learning mode σ1 will be decided by an 

informed user based on knowledge of σ0 . 

b and a are the two stopping bounds for accepting and rejecting if the system is undamaged respectively, and they 

can be estimated by the following Wald approximations (Wald, 1947): 

! 

b " ln
#

1$%
 and 

! 

a " ln
1#$

%
 (21) 
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The region b≤Zn≤a is called the critical inequality of S(b,a) at stage n. Here there is no conclusion that can be drawn 

about the state of the system, therefore the test remains open. 

2.4.5 Application to extreme value distributions 

The SPRT formulation can now be extended to incorporate the EVS analysis of the feature distribution. In the 

previous section, the SPRT is formulated assuming that the features have a normal distribution. Here the Gumbel 

distribution for maxima values [Equation (15)] is incorporated into the SPRT. Similar formulation of the SPRT 

can be easily derived for the other types of extreme value distribution and for minima values.  

It can be shown that the parameters, λ and σ, of the Gumble maxima distribution are related to its mean µM and 

standard deviation σM (Castillo, 1987): 

! 

" =
6

#
$
M

 and 

! 

" = µ
M
# 0.57772$  (22) 

If the distribution of the maxima is preprocessed such that the mean value is zero, Equation (20) can be rewritten 

in terms of λ and σ, then if {xi} are independent and identically distributed, substituting in the Gumbel 

parameters in Equation (15) results in:  

! 

zi = ln
f (xi | "1,#1)

f (xi | "o,#o)
 for   

! 

i =1, 2,K, n  (23) 

Finally, the cumulative sum of the transformed variable, zi, is monitored against the two stopping bounds, a and b 

calculated in Equation (21). A zi value less than a is indicative of acceptance of the hypothesis that the structure is 

undamaged, while a zi greater than b indicates an acceptance of the hypothesis that the structure is damaged. For a 

more detailed explanation of the process and a less general conclusion please refer to Sohn, 2003. 

2.4.5.1 Numerical Examples 

In this section, the performances of three variations of the SPRT are compared for different types of parent 

distributions. The three variations of the SPRT include: 

(1) The conventional SPRT with the normality assumption of data sets [Equation 23] 

(2) A SPRT formulated using a Gumbel distribution for maxima [Equation (15)] 

Hereafter, these techniques are referred to as SPRT-1, and SPRT-2 respectively. These two SPRT techniques are 

applied to data sets generated from a lognormal distribution. First, a set of data consisting of 8192 observations 

and a known standard deviation of σx is. This data set simulates samples of the damage feature from the initial 

intact condition of the structure. The second data set also consists of 8192 data points has a modified standard 

deviation of σy =Fσx. Here, F is a multiplication factor varying from 0.90 to 1.00, 1.10, 1.15, 1.45, 1.50, 1.60 and 

1.70. This data set represents samples of the feature from test structural conditions.  
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The damage classification problem is cast in such a way that, if the standard deviation of the test feature σy 

becomes greater than a predetermined upper limit, 1.4⋅σx, then the new signal is considered to be from a damaged 

state of the system. On the other hand, if σy is less than the predetermined lower limit 1.2⋅σx, the new signal is 

then assumed to be from the undamaged condition. Otherwise (when 1.2⋅σx < σy < 1.4⋅σx), the damage classifier 

cannot make a confident decision regarding the current state of the structure and continues collecting additional 

data. In the numerical examples, the upper and lower thresholds, 1.2⋅σx and 1.4⋅σx, are selected rather arbitrarily. 

In real applications, the sensitivity of the feature with respect to damage of interest should be first examined to 

establish these two thresholds. This sequential hypothesis test can be stated in a simplified format: 

xyxy DamagedUndamaged !!!! 4.1:and2.1: "#  (24) 

Because the statistical inference in Equation (24) is imposed only on the unknown standard deviation σy, it is 

assumed that the mean of the signals is zero. Therefore, data normalization that subtracts the mean of each signal 

is performed before the hypothesis test.  

When the SPRT is combined with extreme value statistics (SPRT-2), a moving window of 16 time samples is 

stepped through the 8192 points of each data set to generate 512 maxima for each condition. That is, the sample 

size for the maximum value selection is set to be 16 (m=16). The bounds of false positive and false negative errors 

are set to 0.001. The corresponding two bounds are b = –6.9 and a = 6.9, respectively. It should be noted that 

because the parent distribution is assumed unknown for SPRT-2, the hypothesis test in Equation (24) cannot be 

performed and an alternative hypothesis test is conducted on the standard deviation of the “maximum” values; 

yMxMxMyM DamagedUndamaged ,,,, 4.1:and2.1: !!!! "#  (25) 

where σM,x and σM,y are the standard deviations of the “maximum” values for the first and second sets of signals, 

respectively.  

2.4.5.2 Lognormal parent distribution 

The analysis results are summarized in Table 3. Although the formulation of SPRT-1 is based on the normality 

assumption, SPRT-1 surprisingly performs well even for a lognormal distribution. The performance of SPRT-2 is 

comparable with the previous result of the normal case. Again, the several misclassifications of SPRT-2 in Table 3 

are mainly attributed to the difference between the stated and actual hypothesis tests. The SPRT-2 test assumes 

that the true maxima will be available for testing, i.e. that the samples will be ordered and the maximum values 

picked out. In this example, however, the moving window will most likely catch some data that are not true 

maxima of the set, resulting in a slightly skewed estimate of the maxima distribution. 

Table 3: Damage classification results for lognormal distribution data 

Hypo 
o

H  
1
H  

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70 
SPRT-1 100/0/0* 100/0/0 100/0/0 99/1/0 100/0/0 100/0/0 100/0/0 100/0/0 
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SPRT-2 100/0/0 100/0/0 93/1/6 66/15/19 100/0/0 100/0/0 100/0/0 100/0/0 

*The first number denotes the times a correct hypothesis is accepted, and the second number denotes 
the number of rejected correct hypothesis. The last value is the number of cases where the SPRT 
cannot draw a conclusion based on the given data sets. For example, 100/0/0 means that, out of 100 
simulations, 100 cases are correctly assigned to the true hypothesis and there were no misclassification 
or undecided cases. 

When the cumulative statistics (Z) is plotted graphically, the result is similar to Figure 9. As features are 

analyzed the algorithm tends toward accepting the hypothesis that the structure is undamaged. It can also be 

seen from this figure how quickly the SPRT algorithm is able to come to a decision. 

 

Figure 9: A typical SPRT damage classification result for data sets from a lognormal 
distribution (Correct decision: accepting H0) 

2.5 Summary 

In an effort to develop an automated and quantitative method for unsupervised damage identification, a unique 

integration of data normalization and cleansing procedures, time series analysis for feature extraction, and feature 

statistical modeling for feature discrimination that incorporates EVS is undertaken. First, time series modeling 

techniques, solely based on the measured response signals, are fit in an automated fashion and deployed to extract 

damage sensitive features. In this study SPC is employed to provide a more automated statistical tool for the 

decision-making procedure, excluding unnecessary interpretation, such as looking at charts of the observed 

feature, by users. Finally, the performance and robustness of damage classification is improved by incorporating 

EVS of the extracted features into SPC. Data normalization and cleansing are introduced as necessary into the 

process. The framework of the time series analysis and SPC method is well suited for integrating into a continuous 

monitoring system. 

2.6 Contributions 

• The development of automated time series order selection using AIC, FPE, and SBC criteria. 

• The development of the Sum of Squared Error damage sensitive feature. 
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• Numerical examples and demonstrations for EVS and integrated EVS-SPRT methods of statistical 

feature discrimination. 



Unclassified: LA-UR-04-5697  Page 29  

3 Client Side Software Environment 
3.1 Introduction 

A structural health monitoring (SHM) team at Los Alamos national Laboratory (LANL) conceived the idea that 

grew into the GLASS, Graphical Linking and Assembly of Syntax Structure, software. The concept was for 

software that would allow a user to assemble statistical pattern recognition functions into a SHM process in the 

same manner as assembling a puzzle. The project developed from simple graphical interfaces to a modern piece of 

software that provides easy user interaction, expandability, and is easy to maintain. 

As described in the previous chapter, several tools are being developed in an effort to provide accurate and 

quantitative SHM. The original LANL toolbox, DIAMOND (Doebling, 1997), is a graphical-user-interface (GUI) 

driven MATLAB toolbox for experimental modal analysis, finite element model updating and damage 

identification based on changes in modal properties. This toolbox was developed in the mid 1990’s by staff and 

students in LANL’s Engineering Analysis group. With a shift in paradigm from global modal parameter based 

damage identification (Doebling, 1996) to statistical pattern recognition based SHM (Farrar, 1999), a new tool is 

needed to reflect this change. The DIAMOND II module and GLASS technology have been created to meet this 

demand. DIAMOND II, like its predecessor, is a collection of functions based in MATLAB that are assembled to 

provide SHM data interrogation tools. These tools can be categorized as “Data Collection,” “Data Cleansing and 

Normalization,” “Feature Extraction,” and “Statistical Discrimination.” Functions from these categories are 

assembled to form a SHM process. The DIAMOND II MATLAB algorithms have been encapsulated so that 

each is a stand-alone function with defined inputs and outputs. The functions are also based on a single data 

structure allowing them to be assembled in a “plug and play” manner. 

With this new catalog of plug and play functions, an interface is needed to allow simple assembly of a SHM process. 

The GLASS client platform facilitates construction of new processes by allowing drag and drop of MATLAB, C, 

or JAVA functions into a workspace. Variable types, values, and descriptions are displayed and dragging output 

variables from one function to the input variables of another easily links the two functions. Once assembled, a 

process can be run in its entirety or selected functions can be run as needed. Processes can then be saved and 

stored for use in the future, executed remotely, or embedded into microprocessors. GLASS is developed in the 

JAVA programming language to allow for cross-platform compatibility, and to incorporate modular design 

allowing for future expansion. In GLASS, DIAMOND II is one of several modules containing data interrogation 

functions. Other modules include a hardware integration module, a utilities module, and an experimental modal 

analysis module. 

This chapter is compiled in the following order: the creation of the GLASS client software, using GLASS 

technology with emphasis on process development, and a discussion of the DIAMOND II data interrogation 

module with an overview of included functionality. Finally, the GLASS software is summarized and a single SHM 

process is specified for use in the experimental portion of this thesis. 
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3.2 Development of GLASS Technology 

3.2.1 Developing with an object oriented approach 

The first GLASS software versions were developed using the MATLAB GUI environment. It was quickly realized 

that a more powerful language was needed to capture the required functionality. JAVA was chosen because of the 

ability to compile the software independent of a computing platform, ease of development, and JAVA’s Object 

Oriented (OO) language structure. The use of an OO language allows development of reusable objects, decreasing 

development and revision time. 

OO software emulates abstracted objects from the real world. In the case of the GLASS software, the objects to 

model come from the functions, and the organization of these functions. The following is a bottom up listing of 

the objects that are emulated in the GLASS software: 

Variables: Each variable object is assigned a name and type corresponding to the MATLAB workspace. The 

object also has a value and description with which it is associated. An experimentally measured 1024-point 

acceleration time history is an example of an array variable. 

Functions: Function objects encapsulate the ability to execute MATLAB, C or JAVA code. Function objects also 

contain information pertaining to its description, authorship, purpose, and input and output variables. An 

algorithm to perform a Fast Fourier Transform (FFT) is an example of a function. 

Categories: In the DIAMOND II module, the categories reflect the statistical pattern recognition paradigm for 

SHM. In GLASS, a tabbed pane represents each category and displays the contained functions. The FFT function 

might be part of the feature extraction category within DIAMOND II. 

Module: A module is the top level of organization in GLASS. DIAMOND II has been developed as a module to 

allow future expansion and easier assembly of processes. Each module consists of multiple categories. Other 

modules add functionality in different aspects of structural dynamics such as model validation and uncertainty 

quantification or experimental modal analysis. 
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Figure 10 – Universal Markup Language (UML) Diagram for objects that make up the GLASS software system. 

Each block represents an object in the JAVA language with the name of the object instance, the type of object, 

and example methods. UML is typically used to diagram software systems, but can be applied to all kinds of 

processes. 

Figure 10 shows how these JAVA objects are connected to create the GLASS environment. The diagram is 

created using the Universal Markup Language (UML) (Larman, 2002). UML is typically used in describing 

software, but can be applied to a variety of systems and processes. Each box represents an object. The three 

portions of the box are the instance name, object type, and methods. Between the objects are connecting lines. 

For example, FFT is an instance of a Function object. The object can return its name or a list of contained 

variables. A single Function object can also contain many Variable objects. An object exists that is not shown in  

Figure 10, the GlassComponent object. The GlassComponent is an abstract object that contains properties and 

methods that are common to many of the GLASS objects. Object oriented programming is useful because of the 

concept of inheritance. The Module, Category, and Function objects all inherit all of the properties and methods of 

the abstract GlassComponent. This inheritance also allows Modules, Categories, and Functions to be treated 

interchangeably on an abstract level. For example, the Glass client requesting the name of a GlassComponent does 

not make any distinction as to whether the component is a Module, Category, or Function. 
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The variable objects utilize this idea of inheritance as well. An abstract object Variable has several realizations: 

VarString, VarArray, and VarScalar. At an abstract level, all of these variable types are treated the same, however 

the different types can be used to check if proper input has been provided. 

3.2.1.1.1 Integrating a JAVA framework with MATLAB 

In order to execute functions assembled from JAVA objects in the MATLAB workspace, a link between the two 

workspaces must be created. 

 

Figure 11 - Execution of MATLAB functions involves JAVA objects in both the JAVA 
virtual machine and the MATLAB workspace. Because of the JAVA-MATLAB 
Interface, messages and information can only flow from left to right in MATLAB. 

Figure 11 is a sequence diagram showing how a function would be executed using the GLASS technology. Several 

new objects have been introduced in this diagram. The Strategy object contains the sequence of method calls to 

execute a function in the MATLAB workspace. The MATLABControl object encapsulates the JAVA MATLAB 

Interface (JMI), allowing JAVA to evaluate commands in the form of a string in the MATLAB workspace. The 

dataHandler object resides in the MATLAB workspace and allows results from a calculation to be retrieved by 

JAVA objects. Information and objects are passed between objects following the arrow directions and execution 

time flows in a downward fashion. For example, the first action called is setTarget by the Strategy object and a 

Function object is passed to the MATLABControl. 

There is a problem with creating a JAVA interface to MATLAB. JAVA can communicate by evaluating strings in 

the MATLAB workspace, but MATLAB has no direct way to interact with JAVA objects created outside of the 

MATLAB workspace. Creating the dataHandler object in the MATLAB workspace allows the JAVA object access 

to the MATLAB workspace variables. Other JAVA objects outside of the MATLAB workspace can then query 

this JAVA object. This object allows results to be retrieved from the MATLAB workspace and the appropriate 

Variable object to have its value updated. 

getInput() 

return Input 

setTarget(function) 

run(function, input) 

feval(JAVAMetho
d) 

feval(function) 

setOutputTarget(function) 

setOutput(out) 

setOutput(out) 

Function Strategy MatlabControl Matlab dataHandler 
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Another approach to this problem was taken using the Model/View/Controller (MVC) pattern with JMatLink, a 

JAVA library that calls MATLAB via native expressions. The MVC pattern suffered from synchronization issues. 

When JMatLink commands are run, the JAVA commands are run first, and then the MATLAB functions are 

executed second. In this case, GLASS would call all of the functions, MATLAB would execute all of the 

functions, and then the MVC would attempt to update variables in only the last function. A correct 

implementation would execute a single function and then update the output before moving to the next function. 

When implementing JMatLink without the MVC, problems arose such as functions being run out of order. In 

addition, frequent deadlock has been experienced with the JMatLink implementation. Deadlock is a situation in 

which the program is waiting for a command that is never issued and “locks” or “hangs” the program. The pure 

JAVA-MATLAB Interface (JMI) implementation produced similar synchronization issues as the MVC pattern. 

Deadlock was also experienced with the JMI implementation. Because the JMI is not documented or supported, 

some commands have never been fully implemented. By using a thread safe class to implement the JMI, all 

synchronization issues were resolved. A thread safe class is an object that is run independent of the main program. 

If this thread experiences deadlock it can be easily terminated without the entire program suffering. This threading 

of the function execution allowed a list of functions to execute in sequence and correctly pass variable values 

between them. 

With the link between the JAVA and MATLAB workspaces established, functions can be run, variables retrieved, 

expressions evaluated, and MATLAB commands executed. This method provides an extraordinary tool that 

allows graphical manipulation of objects via a JAVA interface and subsequent computational execution in 

MATLAB. JAVA provides a far superior user interface than the native MATLAB GIU toolbox because of the 

drag and drop functionality, threading, and advanced user controls such as the process tree. 

Once MATLAB functions became executable, JAVA classes and C functions were easily encapsulated in the same 

JAVA function framework. This framework allows functions written in the different languages to be integrated 

into a single process, sharing variable values and functionality. 

With GLASS Technology, there exists the ability to create functions in MATLAB, JAVA or C and then 

categorize, visually assemble, and have them execute in a process. The next section discusses the assembly of a 

process from individual functions. 

3.2.2 Graphically prototyping algorithms 

In GLASS, functions are categorized as belonging to a Module and a Category. This hierarchy allows a separation 

of functions by developer, project, or method. For example, the DIAMOND II Module is a collection of 

functions developed by many people in an effort to use the statistical pattern recognition paradigm to tackle the 

SHM problem. This module is then broken into the categories representing the steps followed to analyze data 

using time series analysis. Another module, Hardware integration, contains functions for accessing a data 

acquisition board to collect data and functions for broadcasting data or results over a network. 

GLASS modules can be created, stored, and shared among users. Functions from different modules may also be 

combined together to form new processes. This modular approach was taken in an effort to reduce the number of 
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functions re-written by individuals when various functions (e.g. importing a specific file type) have already been 

written. 

To assemble a new process, functions are selected from the categories and placed in the workspace. Functions can 

be re-ordered or inserted at anytime. Functions are then linked by their input and output variables in a cascading 

fashion. The following example process is used to collect data from hardware, process the data and then return a 

result. 

The first step to assembling a process is data collection. When the data (measured acceleration time histories) are 

collected live from a DSP board described in Chapter 4, a JAVA class for communicating with the DSP board is 

used. The function collectDSPdata starts the process. In this function, the number of data points, sampling 

frequency, and IP address of the hardware are specified. 

Next data cleansing is performed. Because the DSP board used for data collection is a custom and experimental 

board, there is a small transient response at the beginning of all the samples taken. The subset_data function is the 

next step in the process and is used to truncate the sample, removing the initial transient data. 

A damage sensitive feature must be extracted from the time series. In this example, features are based on fitting a 

time series model to measured acceleration time-histories. The residual error that results when this model is used 

to subsequently predict future data sets is considered the damage sensitive feature as described in chapter 2. 

Finally, statistical modeling for feature discrimination is obtained using an X-bar control chart. This test is used to 

determine when there are significant changes in the residual error features. The result of this statistical test is then 

broadcast by a JAVA function over the network to other clients. Figure 12 shows the GLASS GUI 

implementation of this process.  

This process is given purely as an example of how to assemble a process and return results calculated in 

MATLAB. For a more in depth look of the process, please refer to Chapter 2. 

The internal mechanics of adding functions to the GLASS workspace is shown in Figure 13. The GLASS 

workspace is designated as the Routine object. This object holds the list of Function objects making up a process. 

The RoutineTree object is the visual representation of the Routine object. The RoutineTree displays the functions, 

variables, and information in a tree format similar to a file browser. All the visual construction of the algorithm 

interacts with the RoutineTree object such as dragging in new functions, connecting functions via variables, and re-

ordering objects. The underlying Routine object is updated every time the RoutineTree object is changed. 
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Figure 12 - The GLASS GUI showing an algorithm assembled for performing an SPRT 
analysis of a frame structure data collected by an HP analyzer. 

 

Figure 13 – This figure is of a sequence diagram for adding a 
function to the GLASS workspace. 
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In the first steps of dragging and dropping a function the actual object passed is a Transferable. A Transferable object 

is an object with a wrapper that allows it to be passed in a basic universal protocol. For example, once an object is 

made into a Transferable object it could be shared with a word processing, graphics, or spreadsheet program. In this 

case, the Transferable object allows the function to be passed from one JAVA object to another using drag and 

drop. 

Once the function has been added to the RoutineTree, the visual representation, it must be added to the Routine to 

facilitate functionality. It can be seen in Figure 13 that again the function has been wrapped in another object, a 

Strategy object. The Strategy object encapsulates the function with ability for execution. For example, a function 

may be wrapped in a Strategy object that executes the function in MATLAB. Another Strategy object may contain 

functionality for executing C code, or FORTRAN. This approach again makes GLASS a more flexible solution 

and expandable in the future. 

Once assembled, algorithms can be run in their entirety or in selected sequences. The idea is that once an 

algorithm has been assembled, and run once, small changes to parameters should not require the entire sequence 

to be run again, only affected functions need to be rerun and the final results recalculated. New functions can also 

be dragged into the workspace and results recalculated to compare and contrast two methods. Possibilities might 

include comparing results from two different normalization functions. 

Once a process has been created, it can be saved for future use or passed on to other individuals. GLASS 

Technology has been developed to be an open ended and cooperative endeavor that will save time and promote 

understanding of different approaches to SHM. 

3.3 Summary 

Using GLASS Technology allows users to categorize, share, and re-use SHM data interrogation functions. 

Previously every researcher had their own version (or versions) of a MATLAB function that loaded data from a 

specific file type. Now a single version of the function can be re-used and shared with others. Functions were also 

previously pasted together in large and cumbersome master functions that executed a particular algorithm. 

Integrating a new function often required a lot of cut and paste as well as checking indexing, variable names, and 

general continuity. GLASS allows assembly of functions into a SHM process by an intuitive drag and drop 

procedure, similar to moving files around in any modern operating system. Functions written by different 

individuals for entirely different applications can also be easily incorporated into new algorithms. 

GLASS Technology will enable researchers to develop and share functions in a common platform that in turn 

allows them to quickly prototype new SHM processes. Upon assembly, these processes can be shared for review 

or placed into a hardware environment for testing.  

The DIAMOND II Module makes years of research and development in SHM data interrogation algorithms at 

LANL and Virginia Tech available to the new user in a very flexible and adaptable software tool. By using the 

provided functions, new users to the software can quickly assemble and assess various combinations of data 

cleansing, feature extraction, and feature analysis. The users can then analyze their own data or incorporate their 

own newly develop function and have a benchmark for comparison.  
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3.4 Contributions: 

• The development of an innovative connection between the JAVA programming language and the 

MATLAB computational environment to facilitate the transfer of variables between functions. 

• The creation of a GUI development interface for the rapid prototyping of new SHM processes from a 

standardized set of functions. 

• The collection and modularization of statistical pattern recognition tools developed by LANL and 

Virginia Tech to be applied to the SHM problem. 
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4 Node software integrated with sensing and 
processing hardware for inline monitoring 

4.1 Introduction 

The ability to prototype new structural health monitoring (SHM) processes is only half of the solution. To 

develop a true integrated SHM system, the developed processes must be transferred to embedded software and 

hardware that incorporates sensing, processing, and the ability to return a result either locally or remotely. Of 

the off-the-shelf solutions currently available or in development, there is a deficit in processing power that 

limits the complexity of the software and SHM process that can be implemented. A SHM process is 

implemented in these systems, often at the detriment of the complexity of the process. Many integrated 

systems are inflexible because of tight integration between the embedded software, the hardware, and sensing. 

To implement a computationally intensive processes such as described in Chapter 2, a single board computer 

(SBC) is selected to provide true processing power in a compact form. Also included in the integrated system is 

a Motorola developed digital signal processing (DSP) board with six analog to digital converters (ADC) 

providing the interface to a variety of sensing modalitites. Finally a Motorola wireless network board provides 

the ability for the Husky system to relay structural information to a central host, across a network, or through 

local hardware. Each of these hardware parts are built in a modular fashion and loosely coupled through the 

transmission control protocol (TCP) or user datagram protocol (UDP) Internet protocols (IP). Building a 

loosely coupled group of modular hardware and software makes the Husky system extensible and adaptable. By 

implementing a common interface, changing or replacing a single component does not require a redesign of the 

entire system. 

A node version of the GLASS software is designed to run and communicate with this modular hardware. By 

allowing processes developed in the GLASS client to be downloaded and run directly in the GLASS node 

software, the Husky project becomes the first hardware solution where new processes can be created and 

loaded dynamically. This modular nature does not lead to the most power optimized design, but instead 

achieves a flexible development platform that is used to find the most effective combination of algorithms and 

hardware for a specific SHM problem. Optimization for power is of secondary concern and will be the focus of 

follow-on efforts. 

The next section will describe briefly the hardware that is being provided by Motorola. After the hardware is 

discussed, the GLASS node software that provides the communication between the development platform and 

the hardware, as well as the functionality provided by the node software will be discussed in depth. 

4.2 Hardware 

As mentioned in the introduction, the hardware is designed in modular boards. The PC-104 specification (PC-

104 consortium, 2003) is implemented for determining the size and design of each of the hardware boards. 

Drivers are written for each of the hardware portions that allow communication between the hardware boards 
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through a common protocol over a TCP socket as is seen in Figure 14. This communication setup allows the 

back end server to communicate with hardware in an encapsulated form. TCP also allows each hardware 

portion to be accessed individually over an Ethernet connection for testing while the GLASS node software is 

running in emulation on a desktop platform. 

 

Figure 14 - An overview of the hardware configuration showing the modular approach 
and using Ethernet protocols for connecting modules. 

4.2.1 Single board computer 

For the processing center of the Husky project a SBC (Figure 15) is used to provide powerful processing 

capabilities. The SBC houses a 133 MHz Pentium™ processor, 256 Mb of RAM, and a Compact Flash (CF) 

card slot that acts as the hard drive. The SBC can support serial, Ethernet and USB communication with other 

hardware. Developed by Micro/Sys, the SBC adheres to the PC-104 standard and is easily linked to other 

hardware via the PC-104 bus, or the previously described connections.  

4.2.2 Sensing board 

The sensing board utilizes a Motorola DSP56858 chip (www.motorola.com) for reading the ADCs and 

communicating with the SBC. A final production board is shown in Figure 16. A DSP is necessary for sampling 

the ADCs because of the sampling speed requirements. The DSP is an optimized package able to sample and 

return samples in four seconds for 1024 samples. The SBC would not be fast enough to read the ADCs and 

buffer results by itself. The six ADCs are Maxim chips with a maximum sampling speed of 200 kHz. 

The DSP board communicates with the SBC, or other command sources, over the serial port through a TCP 

socket. For example, a command to sample from the DSP board is sent to port 5255 from the CPU, this 

command is then received on port 5255 and relayed to the serial port and the command is then received by the 

DSP. The TCP socket is implemented to remove dependence on the serial port. In the future, if the DSP board 

were to implement the PC-104 bus, the only interfaces that need to be rewritten would be the TCP socket-

serial port interface, not the complex code that actually sends the commands. 



 

Unclassified: LA-UR-04-5697  Page 40  

Because the SBC and DSP board follow the PC-104 standard, they are able to stack on top of one another as 

seen in Figure 17. 

 

Figure 15 - Single board computer (actual size) showing the processor, the compact flash 
drive, and Ethernet port. 

 

Figure 16 - Final DSP board designed on PC-104 specs and incorporating 6 ADCs. 

Compact Flash 

Pentium™ Processor 

Ethernet Port 
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Figure 17 - Showing the stacking of the DSP board on top of the SBC. 

4.2.3 Transmission board 

The neuRFon™ transmission board developed by Motorola provides a wireless access point to the Husky 

system. The neuRFon™ board adheres to the IEEE 802.15.4 standard and is designed to be a self-organizing 

network. For example, if several boards are located within transmission range of each other, a network will be 

created and data dynamically routed along the most efficient path to a host node. The host node provides 

connectivity with an external network. The advantage to this network arrangement is if one node becomes 

disabled or more nodes are added, the network can dynamically reconfigure. 

 

Figure 18 - The Motorola neuRFon™ wireless communication board displayed on top 
of the prototype system. 

Again the wireless board is attached to the SBC through a TCP socket, allowing the neuRFon™ board, another 

wireless solution, or simply an Ethernet cable to act as a sending/receiving gateway. 

NeuRFon™ 

wireless board 

Wireless Antenna 
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4.3 GLASS Node Software 

A team from Motorola assembled the hardware. The contribution of this study, therefore, is not in the 

hardware, but in the software development that allows the hardware to be so flexible, and allows newly created 

SHM processes to be dynamically loaded for execution on the SBC. This software is referred to as node 

software because it runs on the monitoring hardware without any user interface. The GLASS graphical user 

interface (GUI) is the client or software that interacts with a human user. 

4.3.1 Embedding overview 

Originally, the system design called for the GLASS client software to embed a developed process directly to a 

DSP chip. In researching the process of embedding developed MATLAB functions into a DSP it was found 

that no clean and simple solution was available. Some tools existed for targeting the MATLAB functions for 

DSP chips; however, the conversion produces bloated code and linking external math libraries proved to be 

difficult. The conclusion was made that the functions would need to be re-written in C if a SHM process were 

to be easily embedded on a DSP directly from GLASS. 

Because of the time already invested in functions developed in MATLAB code, rewriting the functions in C is 

undesirable. The solution became to implement the full SBC. The SBC solution allows the Linux OS to be run 

and MATLAB in its entirety. MATLAB functions can now be run without a conversion to C. Harnessing the 

full power and flexibility of the MATLAB computational engine is also a significant advantage in SHM process 

development.  

Communication with the GLASS node is accomplished from the GLASS client through a TCP/IP socket. This 

connection allows the Husky system and the process development platform to be physically separated but 

connected through a local area network (LAN), Wireless LAN, or over the Internet. 

The GLASS node allows a process that is created in the GLASS client to be downloaded over this TCP socket 

and then run in an autonomous and continuous fashion. The process can collect data, process the data, and 

then send a result repeatedly until a stop command is sent. 

4.3.2 GLASS node software 

The GLASS node software is both similar too and yet very different from the GLASS client. Where the user of 

the GLASS client is an engineer assembling SHM processes, the user of the GLASS node is a GLASS client. 

Because the user is another piece of software, the graphical user interface (GUI) portion of the software that 

allows a human user to graphically communicate with the software needs to be replaced. Pieces of software 

communicate with each other through a communications protocol, a set of commands and responses that 

designate actions. 

Because the development of the original GLASS client is object oriented (OO) based, many of the objects 

could be reused for the node software. The OO development also allows the process and function objects to 

be easily transferred over an Ethernet socket, allowing the node to share and run objects created on the client.  
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The node software is also designed to reside on an independent piece of hardware, such as the Husky system or 

a remote desktop, and continuously run. Once a client has connected, loaded a process, and set it to run, the 

node will dispatch a thread that will allow the process to run repeatedly until a stop command is sent from a 

client. In the future, an authentication protocol will be developed to ensure that only users registered with the 

node can make changes. 

4.3.3 Client integration 

The original GLASS client was designed solely for constructing SHM processes on a desktop. Now, however, 

integration in the client is added to allow communication with the GLASS node software to share constructed 

processes. 

 

Figure 19 - Screen shot capturing the added Hardware drop down menu. The menu 
items displayed correspond to commands that can be sent to the node. Notice that 
confirmation or errors of the commands sent are displayed in the process bar at the 
bottom. 

A “Hardware” menu (Figure 19) is added to facilitate GUI handling of operations such as opening a 

connection to the hardware, uploading a constructed process, starting and stopping the process remotely, and 

finally receiving results broadcasted over the network. 

4.3.4 Communication and interaction 

To facilitate the communication between the GLASS client and node, a simple command and response 

communications protocol is created. An example of an exchange between the client and node to establish a 

connection and start a process is similar to communication between people: 

Client: Open_Connection 
Node: +OK Connection Opened 
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Client: Send_Process 
Node: +OK Send Process 

Client: starts transfer of Process object 
Node: +OK Process Received 
 
Client: Start_Process 
Node: +OK Process Started 
 
Client: Stop_Process 
Node: +OK Process Stopped 
 
Client: Close_Connection 
Node: +OK Goodbye 

Notice that each step is a command from the client followed by a response from the node. Without a “+OK” 

response, the client will abort and ask the user if they would like to try again. This command and response is 

implemented to prevent deadlock between the two programs. Similarly, if the node receives a command that is 

not expected or the received object is not valid it will return a “-ERR” response notifying the client that there 

was a problem with the communication. 

Each step in the above dialog is also tied to an action in the GLASS client hardware menu. To send the 

Open_Connection command, the user selects “Open Connection” in the Hardware menu. Thereby the user 

controls each step of the process allowing a connection to be established and possibly several versions of the 

process to be uploaded before the Start_Process command is sent. Confirmation of each command is displayed 

in the progress bar at the bottom of the screen (Figure 19). 

All communication between the node and clients occurs on port 5244. The node opens a socket on port 5244 

and constantly listens for a connection request. While multiple clients can access a single node, the protocol is 

setup to allow only a single client to connect at one time. This connection mode means that while connected, a 

client has dedicated and exclusive access to the hardware node. 

4.3.5 Execution of a process 

The purpose of the GLASS node software is to execute processes on remote machines. This is accomplished 

by uploading a process object created on a client to the hardware node. The hardware node must be running 

MATLAB and the GLASS node software. Once uploaded, the process is executed through the same mode as 

described in Chapter 3. In fact, the objects and method developed for the client were simply reused and 

wrapped in the command and response protocol described above. 

Like the client, the process object only contains information on which functions to execute and how to execute 

them. The actual M-file, C file, or JAVA class must exist on the node or machine on which it is to be executed. 

Loading these files onto the node or remote hardware is typically achieved using an FTP client. 

4.3.6 Hardware integration 

To have data to run a process on, data must be collected from the DSP board. Because the DSP board is 

wrapped in TCP, communication can again be simplified to a basic command and response communication 

over a socket. This also allows the DSP board not only to be accessed from the SBC to which it is connected, 
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but also to be accessed from an outside GLASS client. This TCP socket communication takes place on port 

5255. 

New functions are created in JAVA to communicate to the board using the socket communication. The class 

collectDSPdata in the gov.lanl.esawr.glass.hardware package facilitates the interaction with the DSP board. The 

channel, sampling frequency, number of samples, and IP address of the node are designated as input variables. 

A vector of data is then returned after the all of the data are collected. This vector of data can then be passed 

on to other functions in DIAMOND II or other modules for processing. 

4.3.7 Communication of results 

Once the data are collected and processed a result needs to be returned to a client, mobile device, a display, a 

central monitoring device, or all of the above. Following the examples of flexibility above, the result is 

broadcast over a socket opened on port 5266. The difference is that while the above communications were 

limited to a dedicated connection between a client and the node, the result can be broadcast to multiple 

recipients simultaneously. Broadcasting of results to multiple recipients is possible using UDP and the JAVA 

multicasting functionality. This “multicasting” means that several clients, a server for storing the results, and a 

handheld device can all receive the broadcasted result at the same time and without each making a direct 

connection to the device. 

Once a result is calculated, the node will broadcast the result. Any devices that are connected to the appropriate 

multicast group will receive the result. Results are typically in the form of 1, 0, or -1 representing the state as 

damaged, undecided, or undamaged respectively. It is up to the receiving program or device to interpret the 

result. 

The GLASS client is modified to listen for such broadcast results and to display them as a change in the 

progress bar at the bottom of the screen. Another simple program can be run on the node or client that listens 

for a result and then records the result with a time stamp to a text file. A simple program to change the state of 

a green, yellow or red LED cluster, or to show a result on a pocket PC device could also be created. 

4.4 Summary 

The Husky system is comprised of both custom and off-the-shelf hardware components. What makes the 

project unique in the SHM community, however, is the ability to create, load, and run processes remotely 

through the GLASS software and the flexibility of the hardware coupled by TCP/IP. 

The design of the system allows for the SHM problem to be broken into two specific steps, training and 

monitoring. In the first step, the flexibility of the software and hardware allow for baseline data to be 

downloaded from a remote site onto a more powerful development platform. On the development platform, 

different cleansing, normalization, feature extraction and statistical modeling techniques can be employed to 

find the optimal solution. Models and thresholds are developed and formed into a monitoring process from the 

baseline data. 
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By creating client and node interaction, the monitoring processes created in the GLASS client can be remotely 

executed using the GLASS node software. The GLASS node software can reside on another desktop or on 

specialized hardware as assembled herein by Motorola. The monitoring processes are easily transferred from 

the development client to the node using a drop down menu. Once a monitoring process is started, it runs 

continuously collecting data, processing the data, and returning a result until a command to stop is received 

from a client. The results are broadcast over the local area network and can be received by multiple clients 

simultaneously. 

By creating software that allows dynamic interaction between a client and the hardware, the Husky project 

facilitates the training phase and overcomes the limitation of a static and limited SHM process. 

4.5 Contributions 

• Creation of the GLASS node software for remote execution of processes constructed using a GLASS client. 

• Conceptualization of loosely coupled hardware using TCP and UDP Internet protocol sockets. 

• Development JAVA classes for sampling from a DSP board over a TCP socket and returning data to the 

GLASS process for analysis. 

• Creation of a framework for Multicasting results from a GLASS process to multiple recipients and multiple 

platforms. 
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5 Experimental Application 
5.1 Introduction 

As a demonstration of the Husky system a small structure that simulates real world joints is monitored in both an 

undamaged and damaged condition. Damage in this case is defined as a loss in preload in a bolted joint. Baseline 

data are collected and the structural health monitoring (SHM) process is constructed on a remote desktop running 

the GLASS client. The constructed process is then uploaded to the GLASS node and set to continuously monitor 

the structure. Results of the process are broadcast back to the client as well as recorded in a text file on the Husky 

node. 

First the test structure, excitation source, and a method of introducing damage into the system are detailed. Next, 

the SHM process is developed to detect the introduced damage. Finally, the experimental results are presented and 

a summary of the experimental demonstration is presented. 

5.2 Experimental setup 

5.2.1 Test structure 

The test structure consists of a small four-sided frame. Each of the corners is bolted using an angle iron bracket 

on the insides with ¼” 10-32 bolts connecting the sides with the angle iron. The four sides are constructed 

from 6063-Aluminum. The base measures 54 cm by 13 cm and is 0.6 cm thick. Each side measures 26 cm by 

4.5 cm and is 0.3 cm thick. The top is 49 cm by 4.5 cm and is 0.3 cm thick. The top is tapped in the middle to 

thread in the shaker stinger. The stinger transfers excitation from a shaker to the structure.  

The structure is secured to the workbench top using two C-clamps. This connection improves the repeatability 

of the tests. Each of the bolts connecting the sides is tightened to 11.3 N•m. preload. The structure is pictured 

in Figure 20 and the monitored joint is in the upper right corner of the figure.  

Looking closer at the joint in Figure 21, there are two accelerometers located side by side. This location is to 

provide a comparison between the Husky systems data acquisition board and a commercial data acquisition 

system. The accelerometers are PCB, model 336C, and have a nominal sensitivity of 1000 mV/g. The 

accelerometers are mounted to the structure with wax. 

As seen in Figure 22, the bolt on the monitored joint is equipped with a piezoelectric (PZT) stack actuator 

located between the structure and the bolt head. This stack actuator is a model HPST 1000/25-15/15 

produced by Piezomechanik and has a maximum stroke of 15 µm for 1000V. The PZT actuator changes the 

bolt preload of a joint without disturbing the structure. By varying the input voltage to the actuator from –200 

V to +1000 V, a 4 kN change in the bolt tension can be achieved. The PZT actuator allowed for modeling 

gradual degradation or deterioration of a structural system. 
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Figure 20 - Overall view of the experimental structure. The structure has bolted 
connections at the joints and is excited by a small shaker. 

 

Figure 21 - Two accelerometers were placed side 
by side on the test structure. The closer 
accelerometer is attached to the Husky system, 
while the far accelerometer is attached to a 
commercial data acquisition system. 

 

Figure 22 - The bolt holding the joint tight is 
equipped with a piezoceramic stack actuator. The 
actuator is used to apply and remove tension in the 
joint. 
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Stack Actuator 
PCB 
Accelerometer 
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Figure 23 - The laptop based remote development platform. 

Several other pieces of equipment are required in creating the undamaged to damaged actuation. First a 

Wavetek function generator produces a square wave. This wave is used to alternate a Piezomechanik high 

voltage power source from ~1000 V on the high end to ~ -200 V on the low end. This voltage change in turn 

actuates the stack actuator and either tightens or loosens the joint respectively. A Tektronix oscilloscope is also 

attached to monitor the signal. A photo of the addition equipment is shown in Figure 24. 

 

Figure 24 - The test equipment. The function generator provided a square wave to the 
stack actuator power supply. This square wave alternates the power from high to low, 
effectively actuating the joint from tight to loose. The Oscilloscope is used to monitor 
the power output. The multi-meter is used by a parallel experiment.  

 

Function Generator Stack Actuator Power Supply 

Ocilloscope 
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5.3 Benchmarking 

Two methods of benchmarking the Husky system’s ability to collect data accurately are implemented. First, a 

sine wave from a frequency generator is input to the first channel on the data acquisition board. Sine waves at 

different frequencies are recorded by the system. An example of these test results is shown in Figure 25 – A 80 

kHz sampling, 8000 data points and 10 Hz sine wave. Both clipping at the top peak of the wave and small 

abnormalities are displayed in this figure. The clipping is caused by excess DC gain in the ICP power. The 

abnormalities were caused by small bits of electrical interference in part of the board. This was corrected.. 

Two problems are noted when reading in the sine wave. First, the tops of the peaks are clipped. By adjusting 

the DC offset, the center of the sine wave is lowered so the full range of the analog to digital converter (ADC) 

is used and the signal experienced no clipping. Secondly, at some points of the wine wave, the samples 

experience spikes. This problem was caused by electrical interference between wires on the circuit board. After 

appropriate shielding, this problem was eliminated. 

Once the DSP board correctly samples a known electrical signal, an accelerometer is attached via a small signal-

conditioning box. The box provides the ICP power for the accelerometer. The PCB accelerometer is attached 

to a 1g handheld shaker. The output of the shaker is sampled and compared to the known calibration of the 

accelerometer. When adjusted for gain, the system sampled a peak voltage of 996 mV, which when compared 

to 994.6 mV/g calibration, shows less than 1% error. 

 

Figure 25 – A 80 kHz sampling, 8000 data points and 10 Hz sine wave. Both clipping at the top 
peak of the wave and small abnormalities are displayed in this figure. The clipping is caused by 
excess DC gain in the ICP power. The abnormalities were caused by small bits of electrical 
interference in part of the board. This was corrected. 
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These benchmarking tests allow troubleshooting of the hardware data collection and confirmation that the 

system collects data accurately. Once the system is shown to collect data accurately, a SHM test of the structure 

is performed. 

5.4 Structural health analysis 

There are two steps that must be taken to determine if a structure has changed. First, a baseline condition must be 

established. This process requires collection of baseline data, a damage sensitive feature be extracted, and that 

statistical modeling be applied to determine confidence intervals on the baseline data. The data is collected from 

the structure using the Husky hardware, but the baseline feature extraction and statistical modeling is performed 

on the development platform using the GLASS client. 

Once a baseline model and confidence intervals have been established, the process can be uploaded to the 

GLASS server. The server then takes sample datum, applies the baseline model, extracts a feature and 

compares this feature against the baseline confidence intervals. If the feature is statistically similar to the 

baseline data the structure is determined to be unchanged, or undamaged. If the feature is statistically 

abnormal, then the structure is determined to have changed, or is indicative of damage.  

The steps of the statistical pattern recognition paradigm described in chapter 2 are followed in defining the 

demonstration SHM problem presented herein. The data acquisition, feature extraction, and statistical 

modeling are present in both the baseline and testing phases, but are slightly different. The following sections 

outline each of the steps in the paradigm. 

5.4.1 Operational evaluation 

The test structure in question simulates a basic bolted or welded joint. In the case of a bolted joint it is 

desirable to detect a loss of preload that would cause a joint to loosen. It is also desirable to detect too much 

preload because excess stress on the bolt may cause premature failure. This joint can also be seen to abstract 

cracking in a welded joint. When a joint with a crack responds to a dynamic load the crack with open and close, 

much in the same way as a bolt that is loosing preload. Depending on the severity of preload loss and the 

external loading, damage may or may not affect the global response of the structure, but will most likely affect 

the local features. Therefore, a feature that is able to detect a loss of preload, or too much preload, in the bolt 

on a local level is desirable.  

The Husky system can collect up to 8000 data points, which is more data than is required for this test. The 

current system also has no permanent way of storing data locally, but baseline modeling will be performed on a 

development system, therefore the Husky system will only be required to process a single data set at a time 

negating any need for permanent storage. 

Because of the controlled nature of the laboratory, environmental and operational conditions are not 

considered in this test.  

The purpose for monitoring such joints can be both economic and life safety related. For this particular 

application the purpose is to graduate, however, in a larger view detecting a loosening joint has safety and 
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economic implications that are pervasive across mechanical, civil, and aerospace fields. Detecting a bolt 

loosening in an assembly line, for instance, can prevent failure and down time by alerting a technician to this 

condition before failure occurs.  

5.4.2 Data acquisition 

Data is acquired by the Husky system through the Motorola digital signal processor (DSP) board attached to 

the analog PCB accelerometers. The raw acceleration time history is used in the SHM process. When deciding 

on the sampling frequency, several factors came under consideration. First, the damage is considered local and 

not global. Global effects are typically noted in the lower wavelengths where waves are longer. Local effects can 

be seen at higher frequencies because of the short wavelengths interacting with local damage. By sampling at a 

high frequency, effects these local effects are recorded with high resolution. 

To determine a frequency at which to sample, a chirp signal is sent through the structure. The chirp signal 

ranges from 10 Hz to 10 kHz. No response in the structure is observed over 8 kHz and amplitude of response 

is decreased after 7.5 kHz. Therefore, a Nyquist frequency of 7.5 kHz is chosen. 

A short time sample will allow the underlying assumptions of the time series ARMA modeling to hold true. 

These assumptions are that the signal is not changing in mean or variance. By taking a small slice of time, it is 

unlikely that any effects will be seen to affect the mean or variance. 1050 samples (0.07 seconds) are taken. The 

first 26 samples are discarded to cleanse the data of a small transient as the ADC switches on to sample. This 

leaves 1024 samples for analysis. The data acquisition process is shown in Figure 26. 

 

Figure 26 - GLASS client window showing the data collection process used to collect 
baseline data from the test structure. 
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5.4.3 Training feature extraction 

Once an acceleration time history is collected, an auto-regressive moving-average (ARMA) model is applied. 

The Akakie information criteria (AIC) from chapter 2 are used to determine the optimal order of ARMA 

model. The model optimization function in DIAMOND II searched for the optimal model with the number of 

AR and MA coefficients varying between one and ten. In this test, the optimal ARMA model is found to be 

AR=2 and MA=3 for a total of five coefficients. The process can be seen in Figure 27. 

Once the model is established, 60 more training condition acceleration time histories are recorded. The baseline 

model is then applied to each of the baseline histories to attempt to predict each point. The sum of the squared 

difference between the true history and the predicted history becomes a feature. In theory, a model based on a 

training structural state should predict other data sets from the same structural state. However, if damage is 

introduced into the system, the model will fail to predict the histories and will result in a large error. 

The 60 data sets provide a distribution of the sum of squared error (SSE) feature that can be used to set 

confidence intervals. The SSE feature is of dimension one.  

 

Figure 27 - GLASS client showing the process used for feature extraction and statistical 
modeling of the baseline data sets. 
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5.4.4 Training statistical modeling 

For statistical modeling, control charts, specifically X-bar charts, are designed using a moving mean of six 

calculations the SSE. A 95% confidence interval is determined using extreme value statistics on the maximum 

and minimum 5%, totaling 10% of the data, as described in chapter 2. A Gumbel distribution is used to model 

the tails of this distribution. 

5.4.5 Testing process 

Once the baseline model and thresholds are established, the testing process can be implemented. Data are 

collected using the same test parameters as those used in collecting the baseline data. This data set is stored in 

memory on the Husky system instead of being uploaded to the development system. 

Once the data are collected, the optimal ARMA model from the baseline data is applied to predict each data 

point. The SSE feature is obtained after the prediction. Again, this feature extraction is performed at each 

individual Husky node, not on a central server. 

Once the feature for a data set is extracted, it is analyzed with the baseline statistical model. The feature will 

either lie within the confidence intervals, indicating the structure is unchanged from the baseline, or the feature 

will lie outside of the intervals, indicating a change in the structure. Because the feature that is selected is 

sensitive to loosening of the joint, the structural change is assumed to be from the joint loosening. The entire 

process uploaded to the Husky node is shown in Figure 28. 

 

Figure 28 - GLASS Client displaying the process uploaded to the hardware to monitor 
structural health. The model and control chart parameters based on the baseline data are 
contained in the function variables. 
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Once the statistical assessment is complete and the feature is determined to lie inside or outside of the 

confidence intervals, the result is saved to a file on the node for later retrieval. The result is also broadcast back 

to the client software. 

5.5 System Performance 

The laptop and a single node are connected on a Local Area Network (LAN). The laptop is used as a 

development platform, acquiring a set of 60 baseline data sets of 1050 data points over the LAN from the 

node. Each data set is collected and saved on the laptop in an average of seven seconds. 

Once the data are collected, the baseline feature extraction and statistical modeling process is run on the 

development platform. In this test, the optimal ARMA model is found to be AR=2 and MA=3 for a total of 

five coefficients, which is reasonable. The statistical thresholds are determined by a 95% confidence interval 

placed on a moving mean of the extracted SSE feature. The moving mean window is 4 data points wide. This 

process takes approximately 2 minutes on a standard laptop to run with the 60 data sets. 

The testing process is constructed using the optimal ARMA model and the 95% confidence interval. The 

process is uploaded to the node and set to run. Each cycle of the process run on the node takes eight seconds 

from data collection to the client receiving the result. The testing process was run for eight minutes in the 

undamaged condition with the stack actuator at 1000 V. During this period of time, false positive indications 

consistent with the 95% confidence intervals are noted. 

The stack actuator is then reduced to –250 V to simulate the damage. The process on the node is run 

continuously while making the adjustment. The process correctly identifies the structural state as being changed 

to a damaged condition after a short lag. This lag is because the change in structural state takes place during 

processing the previous result. Results from the test are shown in Figure 29. 

During the test, the Husky system rebooted when high voltage was returned to the stack actuator for the first 

time. The cause for this reboot is unknown. The Husky system, however, performed well under the loss of 

power. The process restarted and began to immediately classify the state of the structure correctly. Subsequent 

changes in the stack actuator did not cause the system to reboot. 
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Figure 29 - A plot of the test results showing the structure in both undamaged and 
damaged states. The solid line is a plot of the voltage. The blue crosses represent the 
results received by the client from the node process. It can be seen that there is a 1 or 2-
cycle lag in the damage assessment because of processing time. A high voltage should 
correspond to a –1 result, while a low voltage should correspond to a +1 result. 

5.6 Summary 

In this demonstration, the GLASS client, server and integrated Husky system met all of the design goals. Data 

collection, baseline analysis, and testing processes are easily assembled in the GLASS client from catalogs of 

encapsulated data interrogation functions. These processes then interface with a hardware system to collect and 

analyze baseline data. A final testing process can then be assembled and dynamically loaded onto the hardware 

node. 

The processes created are capable of detecting changes in the test structure that correlated to a loss of preload 

in a bolted joint. The system also accurately assessed when the structure returned to baseline operating 

conditions. 

5.7 Contributions 

• Completed a successful demonstration using the GLASS client to graphicaly assemble a SHM 

processes. 
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• Demonstrated successfully the embedding of SHM processes into the Husky hardware from a remote 

development platform. 

• Demonstrated a near real-time SHM process that correctly classified changes in a structure related to 

loss of preload in a bolted connection. 
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6 Summary 
This study involved: 

1. The collection and creation of data interrogation functions. 

2. The development of a software package for assembling a Structural Health Monitoring (SHM) process 

from the collected functions.  

3. The development of node software and hardware packages for remotely running processes. 

Together, these solutions provide a general and flexible framework for developing future SHM processes.  

In an effort to develop an automated and quantitative method for damage identification, the statistical pattern 

recognition paradigm is followed. A unique integration of data normalization and cleansing, time series analysis for 

feature extraction, and statistical discrimination that incorporates extreme value statistics (EVS) is undertaken 

within the framework of the DIAMOND II module. Time series analysis techniques, solely based on the 

observed vibration signals, are first automated and deployed to extract damage sensitive features from a structure. 

In this study, a control chart is employed to provide a more automated statistical tool for this decision-making 

procedure, excluding unnecessary interpretation of the observed feature by users. Finally, the performance and 

robustness of damage classification is improved by incorporating extreme values statistics of the extracted features 

into the control chart. This framework is well suited for a continuous monitoring system. 

Using the GLASS Client allows users to categorize, share, and re-use SHM data interrogation functions. 

Previously every researcher had a version (or versions) of a commonly performed function. Now a single version 

of the function can be re-used and shared with others. Functions were also previously pasted together in large and 

cumbersome master functions that executed a particular process. Integrating a new function often required a lot 

of cut and paste as well as checking indexing, variable names, and general continuity. GLASS allows assembly of 

functions into a SHM process by an intuitive drag and drop procedure, similar to moving files around in any 

modern operating system. Functions written by diverse people in various languages for entirely different 

applications can also be easily incorporated into a new process. 

GLASS Technology will enable researchers to develop and share functions in a common platform to quickly 

prototype new SHM processes. Upon assembly, these processes can be shared for review, placed into a hardware 

environment for testing, or compared with other processes.  

The Husky system is comprised of both custom and off-the-shelf components. What makes the project unique in 

the SHM community, however, is the ability to create, load, and run processes remotely through the GLASS node 

software. 

By creating client and node interaction, processes created in the GLASS client can be remotely executed using the 

GLASS node. The GLASS node can reside on another desktop or on specialized hardware as assembled herein by 

Motorola. The processes are easily transferred from the client to the node using a drop down menu. Once a 

process is started it runs continuously to collect data, process the data, and return a result until a stop command is 
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received from a client. The results are broadcast over the local area network and can be received by multiple 

clients simultaneously. 

By creating software that allows dynamic interaction between a client and the hardware, the Husky project 

overcomes the limitation of non-adaptation that other embedded SHM systems face.  

In this demonstration, the GLASS client, node and integrated Husky system met all of the design goals. Data 

collection, baseline analysis, and testing processes are easily assembled in the GLASS client from catalogs of 

encapsulated data interrogation functions. These processes then interface with an integrated hardware system to 

collect and analyze baseline data. A final testing process is then assembled and dynamically loaded onto the 

hardware node. The processes are shown capable of detecting changes in the test structure that correlated to a loss 

of preload in a bolted joint. The system is also accurate in assessing the structure as undamaged when the bolt is 

returned to the baseline preload. 

6.1 Contributions: 

• The automation of ARMA order selection for feature extraction using the AIC. 

• The use of the Sum of Squared Error damage sensitive feature. 

• Development of a numerical proof of concept for EVS and SPRT in statistical modeling for SHM. 

• Development of an innovative connection between the JAVA programming language and the MATLAB 

computational environment. 

• The creation of a GUI client interface for rapid prototyping of new SHM processes. 

• The collection and modularization of statistical pattern recognition tools. 

• GLASS node software development for remote execution of constructed processes. 

• Conceptualization of loosely coupled hardware using TCP and UDP Internet protocol sockets. 

• JAVA classes for sampling from a DSP board over a TCP socket and returning data to a GLASS 

process for analysis. 

• Facilitation of multicasting results from a GLASS process to multiple recipients and multiple platforms. 

• Demonstration of graphical assembly of SHM processes using the GLASS client. 

• Demonstration of embedding SHM processes into integrated hardware from a remote client. 

• Demonstration of near real-time SHM process correctly classifying changes in a structure related to 

damage in a bolted connection. 
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