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INTRODUCTION

Progress by investigators at the Georgia Institute of Technology in the
development of techniques for passive microwave retrieval of water vapor
and precipitation parameters using millimeter- and sub-millimeter
wavelength channels is reviewed. Channels of particular interest are in the
tropospheric transmission windows at 90, 150, 220, and 340 GHz ard centered
around the water vapor 1lines at 183 and 325 GHz. Collectively, these
channels have potential application in high-resolution mapping (e.g., from
geosynchronous orbit), remote sensing of cloud and precipitation
parameters, and retrieval of water vapor profiles. Both theoretical and
experimental results to date are discussed. ’ ' )

The theoretical effort has consisted of radiative transfer modeling
using the planar-stratified mumerical model described in Gasiewski and
Staelin (1990). The model incorporates scattering and absorption from
liquid and frozen spherical Mie-scattering hydrometeors. Extremely High
Frequency (EHF) and Submillimeter-Wave (SMMW) brightness temperatures have
been calculated for a variety of hydrameteor scenarios in order to
determine the sensitivity of such spectra to hydrometeor parameters and
water vapor.

The experimental effort has been associated with the design of the NASA
Goddard Millimeter-Wave Imaging Radicmeter (MIR). This instrument, when
operated on the NASA ER-2 high-altitude platform, will provide radiometric
data necessary for evaluation of radiative transfer models and development
of retrieval techniques. Georgia Tech imvolvement has included overall MIR
performance simulation, development of receiver specifications, instrument
layout, data acquisition system design, and radiametric calibration load
characterization and design.



SOMMARY OF ACTIVITIES

Three categories of research by Georgia Tech investigators supported
under this grant can be defined: 1) millimeter- and submillimeter wave
radiative transfer modelling, 2) performance analysis and design of the
Millimeter-wave Imaging Radicmeter (MIR), and 3) mmerical electromagnetic
and thermal analysis of microwave blackbody calibration loads. Progress
within each of these categories will be discussed.

. iative elli

An analysis of the potential uses of specific Extremely High Freguency
(EHF: 30-300 GHz) and Submillimeter-Wave (SMMW: 300+ GHz) channels for-
passive meteorological remote sensing has been performed using an iterative
mmerical radiative transfer model (Gasiewski and Staelin, 1990). The
initial results of this sensitivity analysis are described by Gasiewski
(1990, see Appendix A). A more thorough elaboration will be available in
forthcoming paper to be submitted to the IEEE Transactions on Geoscience
and Remote Sensing. Reported here are the essential findings:

A) Clear-air water vapor profiling can be performed, in principle,
equally well using SMMW chanmnels at 325+\-1,3,7 and 220 GHz as has been
demonstrated using channels at 183+\-1,3,7, and 166 GHz. The enhanced
spatial resolution available at the higher frequencies using diffraction
limited apertures of fixed size make these channels desirable. However,
water profiling using the 325 and 220 GHz channels alone is expected to be
more adversely affected by clouds.

B) Coincident cbservations at using both low and high frequency channel
sets (i.e., 166, 183+\-1,3,7, and 220, 325+\-1,3,7 GHz) are expected to
provide at least one additional observable degree of freedom useful for
estimating cloud water content, and possibly, cloud top altitude. This
degree of freedam can be seen in the difference between camputed 183 and
325 GHz spectra, and is expected to contain information not available using
only one of these two channel sets. The additional degree of freedom will
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be related to cloud particle size and density, but is not expected to be
monotonic in these parameters.

C) Non-precipitating clouds such as high-altitude cumilus and cirrus
are detectable using a 340 GHz or 325+\- 9 GHz channel. At tropical
latitudes, the ability to discriminate between water vapor fluctuations and
non-precipitating clouds using either of these SMMW channels is samewhat
degraded relative to that at middle and polar latitudes, although these
channels are still expected to be useful. Estimation of cloud parameters
such as cirrus ice water content appears feasible, particularly within
middle and polar latitudes. However, further work on the retrieval of cloud
water using EHF and SMMW channels is needed.

D) The SMMW channels are sc;newhat more sensitive to clouds than EHF
channels, although not as sensitive as IR channels. Overall, a 340-Giz
channel will be less sensitive to storm structure and rain rate as one at
90-GHz, but more sensitive to thin ice canopies (<0.1lg/m3 density), and
should be particularly useful for detecting and mapping high-latitude snow
and ice clouds. However, the sensitivity differences between a 90- and a .
340-GHz channel are not expected to be nearly as significant as between a
90-Giiz and an IR chamnel. In addition, the increased spatial resolution
available at 340 GHz relative to 90 GHz (assuming diffraction limited

apertures of equal size) is expected to benefit storm cell mapping.

Work is also in progress on the study of the observable modes in
realistic EHF and SMMW brightness imagery of clouds and precipitation.
Hydrometeor profiles are derived fram volume reflectivity data of a
convective storm cbserved by the CP-2 radar on July 11, 1986 during COHMEX.
The hydrameteor profile data is used as inmput to the planar-stratified
mmerical radiative transfer model, which subsequently produces high-
resolution (approximately 1 km spot size) brightness imagery.

A Karhunen-Ioueve (or principal camponents) decamposition (Gasiewski
and Staelin, 1989) is being implemented to reduce the camplexity of the
brightness spectra. This operation allows the sensitivity of the spectra to
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metecrological parameters to be more easily studied. Using EHF and SMMW
spectra, cbservable modes related to the amount of water and the ice size
distribution are expected, but have not yet been ascertained. Moreover,
these modes would be dependent on the spatial resolution of the imagery. To
simulate satellite-based cbservations, the high-resolution brightness
images are to be convolved with appropriate antenna gain patténls, and
white observation noise will be added. The aobservable modes in these
blurred, noisy images will be representative of what "can be cbtained from
space-based passive imagers.

2. Performance Analysis and Desion of the MIR
The most i:mportant act:LVJ.ty to date has been the design of the MIR.

Aircraft data from this instrument will be i.nd:.spensable for clear-air EHF
and SMMW radiative transfer and water vapor and precipitation sounding
studies. Georgia Tech involvement has included overall MIR performance
similation, development of receiver specifications, instrument layout, data
acquisition system design, and radiometric calibration load
characterization and design.

Our clear-air radiative transfer calculations suggest that the channel -
specifications in Table 1 should be used to achieve reasonably uniform
sampling of the vertical water vapor profile. It is noted that the channel
set 90, 166, and 183+\~1,3,7 GHz exhibits a series of weighting functions
with more uniformly-spaced peak-altitudes than the channel set 90, 150, and
183+\-1,3,7 GHz. Thus, it is expected that the former set (using 166-GHz)
will be samewhat more useful for water vapor profile retrieval then the
latter set (using 150-GHz). In addition, the 166-GHz channel lies in a band
currently allocated for passive Earth remcte sensing. As currently
envisioned, the MIR will have a channel at 150 GHz (rather than 166 GHz) to
coincide with a proposed Advanced Microwave Sounding Unit (AMSU) channel.
This campromise will cause a slight reduction in scientific merit,
particularly in the ability to experimentally assess any advantages in
using either 166 or 150 GHz. However, it will allow coincident aircraft and
AMSU satellite data to be immediately compared.



In order to similate the in-flight performance on board the ER-2
aircraft, a spreadsheet program was written which allows various instrument
parameters (e.g., antenna beamwidth, receiver moise figure, etc.) to be
adjusted. The overall effects of these adjustments on many other dependent
parameters (e.g., scan rate, instrument resolution, data rate, etc.) is
immediately displayed. This program has been useful in optimizing the
design of the MIR subject to the constraints of the ER-2 platform, the
receiver noise figures, the channel frequencies, and.other parameters. As
currently envisioned, the MIR will have 3.5-degree antenna beamwidths for
each chamnel. A spreadsheet printout listing this and other dependent and
independent parameters is shown in Fig. 1.

The MIR will consist of two units: 1) the scanhead, and- 2) the data
acquisition/control and power system (Fig. 2). The scanhead will house the
receivers, calibration 1loads, scanning mirror and motor, and 1load
temperature sensors and regulators, IF and video electronics, and A/D and
D/A comnverters. In order to minimize scanhead weight, the MIR will be a
total power radicameter design. The data acquisition system will consist of
a computer with floppy drive and cartridge tape mass storage unit. In order
to retain an acceptable dynamic rarnge and temperature resolution (400 K and
0.1 K, respectively) in the presence of inevitable receiver gain and offset
fluctuations, an offset campensation circuit is being designed by Georgia
Tech. Optoisolation of the analog module will be employed to decrease
ground-loop noise susceptibility. The power module is to be designed yet,
but will house all circuit breakers, indicators, DC-to-DC converters, and
will function as the aircraft interface.

The implementation of a 325/340 GHz receiver on the MIR has been of
high priority. We are currently in favor of a double-balanced Schottky
dicde mixer design, with a subharmonically-pumped local oscillator (1O)
Gunn diode source. The IO frequency will be 162.5 GHz; the source will be
replaceable with a 170 GHz Gunn oscillator for cbservations at 340 GHz.
Waveguide, as opposed to quasi-optical diplexing seems more practical,
althouch we are reviewing a single-ended quasi-optical Schottky design.
Pending acquisition of funds, we plan to request bids for the 325/340 GHz
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receiver during March, 1991. The receiver should be available for testing
and integration before 1992.

reflectivity needs to be less than 1%, and known to better than 0.1%.
Manufacturer’s specifications typically provide only the specular camponent
of the reflectivity, which is thought to be substantially less than the
total reflectivity. In order to refine our estimates of the total
reflectivity, we are investigating the scattering of an incident plane wave
fram a calibration load modelled as a lossy periodic wedge grating.

One approach we are using is close to that described by Mcharam and
Gaylord (1982), in which the grating is partitioned into a number of thin
planar slab gratings (see Appendix B). Within each slab the electromagnetic
field can be decamposed into Floguet harmonics. A set of coupled wave
equations is subsequently developed to relate the harmonics in adjacent
slabs. A computer program based on this technique has been implemented,
although a more economical matrix imversion method is yet needed for
practical applications. Another approach that we are investigating is based
on the periodic Green’s function (Gasiewski, et al, 1991).

We have also analyzed the steady state thermal distribution in periodic
wedge and pyramid calibration load structures using thermally conductive
plate and rod (respectively) models. Initial results suggest that the
temperature profiles within either wedge- or pyramid-type loads will be
quite similar (for camparable height-to-pitch ratios), and hence either of
these structures are equally acceptable for use as calibration loads in a
dissipative (i.e., non-equilibrium) thermal envirormment.



OONCLIZSIONS AND PIANS FOR FUTURE WORK

EHF and SMMW radiative transfer calculations have been carried out for
hydrometeor-laden tropical, mid-latitude, and polar atmospheres. The
results suggest that SMMW chamnels at 325 and 340 GHz offer significant
potential for passive meteorological remcte sensing, and experimental
confirmation using aircraft cbservations at these frequencies is urged.

The main findings have been emmerated in the previous section, and will be
discussed in detail in a forthcoming publicatiaon.

The Karhm‘xen—lmeve rank reductlon analysm usmg similated EHF and
SMMW brightness imagery provides a quantitative method of determining the °
meteorological information content of passive microwave spectra observed
using selected channel sets. Future plans include the use of more realistic
hydrometeor profiles derived fram a numerical cloud evolution model (the
NASA Goddard Cumulus Ensenble - GCE), as described by Tao et al (1987). We
also plan to investigate the effects of an antemna pattern deconvolution
operator to enhance the resolution of satellite-based imagers. Under
separate funding, the planar-stratified radiative transfer model is
currently being upgraded to describe aspherical hydrameteor distributions.
This capability will be useful in assessing the sensing potential of
polarized EHF and SMMW channels for cirrus parameter retrieval.

To date, we have provided assistance to NASA/GSFC in the mechanical and
electrical design of the MIR. Georgia Tech’s main responsibilities are the
design of the data acquisition system, implementation of MIR software, and
development of the 325/340 GHz receiver. The construction of most
components of the MIR are the responsibility of NASA/GSFC. The earliest
test flight will be during fall 1991, using only the channels up to 220,
GHz. The 325/340 GHz channel is expected to be added in 1992. Particular
attention is being given to the instrument calibration, load temperature
measurement hardware, video circuitry, and overall system interference
immmnity.



The radiametric calibration 1load reflectivity analysis will be
continued beyond this grant, although this study will be of tertiary
importance relative to the MIR construction and the theoretical radiative
transfer analysis. Ultimately, we plan to perform mmerical calculations of
the bistatic scattering coefficient of a lossy periodic grating based on
coupled-wave and periodic Green’s function approaches, and to verify these
calculations against laboratory measurements using similar wedge-shaped
calibration loads. The resulting mmerical model will be useful for the
absolute calibration of the MIR as well as in future calibration load
designs, particularly those wideband loads. Qurent calibration load
designs are highly empirical, and the marmufacturers’ load specifications
are generally :i;xsuffiqient for accurate calibration.
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TABLES AND FIGURES

Table 1. MIR Channel Specifications

¢h # IO Fregq TIFl1 Freq BW
(GHz) (MHz) (MHz)

1l 89.000 1000.0 1000.0
2 150.000 1000.0 1000.0 *
3 183.310 1000.0 1000.0
4 183.310 3000.0 2000.0
5 183.310 7000.0 2000.0
6 220.000 2000.0 .. 2000.0.
7  325.150 ° 1000.0  1000.0°
8 325.150 3000.0 2000.0
9 325.150 7000.0 2000.0
10 340.000 2000.0 2000.0

* Although a similar channel at 166.000 GHz
would provide a more uniformly distributed set of
weighting function peaks, 150.000 GHz was chosen
to coincide with the channel specifications on
current operational satellites.
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Millimeter-wave Imaging Radiometer (MIR)
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Figure 2. MIR block diagram, illustrating components in the
scanhead and data acquisition system.
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