Parallel Implementation of an Adaptive Scheme
for 3D Unstructured Grids on the SP2*

Leonid Oliker!, Rupak Biswas', and Roger C. Strawn?

1 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
2 US Army AFDD, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract. Dynamic mesh adaption on unstructured grids is a powerful
tool for computing unsteady flows that require local grid modifications
to efficiently resolve solution features. For this work, we consider an
edge-based adaption scheme that has shown good single-processor per-
formance on the C90. We report on our experience parallelizing this code
for the SP2. Results show a 47.0X speedup on 64 processors when 10%
of the mesh is randomly refined. Performance deteriorates to 7.7X when
the same number of edges are refined in a highly-localized region. This
is because almost all the mesh adaption is confined to a single proces-
sor. However, this problem can be remedied by repartitioning the mesh
immediately after targeting edges for refinement but before the actual
adaption takes place. With this change, the speedup improves dramati-
cally to 43.6X.

1 Introduction

Unstructured grids for solving computational problems have two major advan-
tages over structured grids. First, unstructured meshes enable efficient grid gen-
eration around highly complex geometries. Second, appropriate unstructured-
grid data structures facilitate the rapid insertion and deletion of points to allow
the mesh to locally adapt to the solution.

Two solution-adaptive strategies are commonly used with unstructured-grid
methods. Regeneration schemes generate a new grid with a higher or lower con-
centration of points in different regions depending on an error indicator. A major
disadvantage of such schemes is that they are computationally expensive. This
is a serious drawback for unsteady problems where the mesh must be frequently
adapted. However, resulting grids are usually well-formed with smooth transi-
tions between regions of coarse and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the exist-
ing grid in regions where the error indicator is high, and removing points from
regions where the indicator is low. The advantage of such strategies is that rela-
tively few mesh points need to be added or deleted at each refinement/coarsening
step for unsteady problems. However, complicated logic and data structures are
required to keep track of the points that are added and removed.

For problems that evolve with time, local mesh adaption procedures have
proved to be robust, reliable, and efficient. By redistributing the available mesh

* Submitted to the 3rd International Workshop on Parallel Algorithms for Irregularly
Structured Problems (IRREGULAR’96), Santa Barbara, CA, August 19-21, 1996

points to capture flowfield phenomena of interest, such procedures make stan-
dard computational methods more cost effective. Highly localized regions of mesh
refinement are required in order to accurately capture shock waves, contact dis-
continuities, vortices, and shear layers. This provides scientists the opportunity
to obtain solutions on adapted meshes that are comparable to those obtained
on globally-refined grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel
computational strategies will be an essential ingredient in solving complex real-
life problems. However, the success of parallel computing relies on the efficient
implementation of such adaptive procedures on multiprocessor machines. Par-
allel performance not only depends on the design strategies, but also on the
choice of efficient data structures which must be amenable to simple manipula-
tion without significant memory contention (for shared-memory architectures)
or communication overhead (for message-passing architectures).

Initialization

Flow solution

N

N

Fig. 1. Overview of our framework for parallel adaptive flow computation

Figure 1 depicts our framework for parallel adaptive flow computation. It es-
sentially consists of a flow solver and mesh adaptor, with a partitioner and load
balancer that redistributes the computational mesh when necessary. The mesh is
first partitioned and mapped among the available processors. The initialization
phase distributes the global data among the processors and generates a database
for all shared objects. The flow solver then runs for several iterations, updating
solution variables that are typically stored at the vertices of the mesh. If mesh
adaption is desired, the procedure first targets edges for refinement or coarsening
based on an error indicator. Local mesh adaption is then performed, generating
a new computational mesh. A quick evaluation step determines if the new mesh
is sufficiently unbalanced to warrant a repartitioning. If the current partition-
ing indicates that it is adequately load balanced, control is passed back to the
flow solver. Otherwise, a mesh repartitioning procedure is invoked to divide the
new grid into subgrids. If the cost of remapping the data is less than the com-
putational gain that would be achieved with balanced partitions, all necessary

data is appropriately redistributed. Otherwise, the new partitioning is discarded
and the flow calculation continues on the old partitions. The finalization step
combines the local grids on each processor into a single global mesh. This is
usually required for some post-processing tasks, such as visualization, or to save
a snapshot of the grid on secondary storage for future restart runs.

Notice from the framework in Fig. 1 that the computational load is balanced
and the runtime communication reduced only for the flow solver but not for the
mesh adaptor. This is acceptable since the flow solver is usually several times
more expensive. However, parallel performance for the mesh adaption procedure
can be significantly improved if the mesh is repartitioned and remapped in a
load-balanced fashion after edges are targeted for refinement and coarsening but
before performing the actual adaption. In fact, the adapted mesh will generally
be balanced as well since it is usually determined by the edge marking pattern.

It is obvious from Fig. 1 that a quick mesh adaption procedure is a critical
part of the framework. This paper presents an efficient parallel implementation
of a dynamic mesh adaption code which has shown good sequential performance.
The parallel version consists of an additional 3,000 lines of C++ with Message-
Passing Interface (MPI), allowing portability to any system supporting these
languages. This code is a wrapper around the original mesh adaption program
written in C, and requires almost no changes to the serial code. Only a few lines
were added to link it with the parallel constructs. An object-oriented approach
allowed this to be performed in a clean and efficient manner.

2 Mesh Adaption Procedure

We give a brief description of the tetrahedral mesh adaption scheme [1] that
is used in this work to better explain the modifications that were made for
the distributed-memory implementation. The code, called 3D_TAG, has its data
structures based on edges that connect the vertices of a tetrahedral mesh. This
means that the elements and boundary faces are defined by their edges rather
than by their vertices. These edge-based data structures make the mesh adap-
tion procedure capable of performing anisotropic refinement and coarsening. A
successful data structure must contain only the information required to rapidly
reconstruct the mesh connectivity when vertices are added or deleted while hav-
ing a reasonable memory requirement.

Recently, the 3D_TAG code has been modified to refine and coarsen hexahe-
dral meshes [2]. The data structures and serial implementation for the hexahedral
scheme are similar to those for the tetrahedral code. Their parallel implemen-
tations should also be similar; however, this paper focuses solely on tetrahedral
mesh adaption.

At each mesh adaption step, individual edges are marked for coarsening,
refinement, or no change. Only three subdivision types are allowed for each
tetrahedral element and these are shown in Fig. 2. The 1:8 isotropic subdivision
is implemented by adding a new vertex at the mid-point of each of the six edges.
The 1:4 and 1:2 subdivisions can result either because the edges of a parent
tetrahedron are targeted anisotropically or because they are required to form
a valid connectivity for the new mesh. When an edge is bisected, the solution
quantities are linearly interpolated at the mid-point from its two end-points.

ENTAN

1:8 1:4 1:2

Fig. 2. Three types of subdivision are permitted for a tetrahedral element

Mesh refinement is performed by first setting a bit flag to one for each edge
that is targeted for subdivision. The edge markings for each element are then
combined to form a binary pattern as shown in Fig. 3 where the edges marked
with an R are the ones to be bisected. Elements are continuously upgraded to
valid patterns corresponding to the three allowed subdivision types until none
of the patterns show any change. Once this edge-marking is completed, each
element is independently subdivided based on its binary pattern.

654321 |Edge#
001011 |Paten=11

Fig. 3. Sample edge-marking pattern for element subdivision

Mesh coarsening also uses the edge-marking patterns. If a child element has
any edge marked for coarsening, this element and its siblings are removed and
their parent element is reinstated. The parent edges and elements are retained at
each refinement step so they do not have to be reconstructed. Reinstated parent
elements have their edge-marking patterns adjusted to reflect that some edges
have been coarsened. The refinement procedure is then invoked to generate a
valid mesh.

Pertinent information is maintained for the vertices, elements, edges, and
boundary faces of the mesh. For each vertex, the coordinates are stored in
coord[3], the flow solution in soln[5], and a pointer to the first entry in the
edge sublist in edges. The edge sublist for a vertex contains pointers to all
the edges that are incident upon it. Such sublists eliminate extensive searches
and are crucial to the efficiency of the overall adaption scheme. The tetrahedral
elements have their six edges stored in edge[6], the edge-marking pattern in
patt, the parent element in parent, and the first child element in child. Sib-
ling elements always reside contiguously in memory; hence, a parent element
only needs a pointer to the first child. For each edge, we store its two end-points
in vertex[2], its parent edge in parent, its two children edges in child[2],
the two boundary faces it defines in bfac[2], and a pointer to the first entry in
the element sublist in elems. The element sublist for an edge contains pointers

to all the elements that share it. Finally, for each boundary face, we store the
three edges in edge[3], the element to which it belongs in elem, the parent in
parent, and the first child in child. Sibling boundary faces, like elements, are
stored consecutively in memory.

3 Distributed-Memory Implementation

The parallel implementation of the 3D_TAG mesh adaption code consists of three
phases: initialization, execution, and finalization. The initialization step consists
of scattering the global data across the processors, defining a local numbering
scheme for each object, and creating the mapping for objects that are shared
by multiple processors. The execution step runs a copy of 3D_TAG on each
processor that refines or coarsens its local region, while maintaining a globally-
consistent grid along partition boundaries. Parallel performance is extremely
critical during this phase since it will be executed several times during a flow
computation. Finally, a gather operation is performed in the finalization step
to combine the local grids into one global mesh. Locally-numbered objects and
corresponding pointers are reordered to represent one single consistent mesh.

In order to perform parallel mesh adaption, the initial grid must first be par-
titioned among the available processors. A good partitioner should divide the
grid into equal pieces for optimal load balancing, while minimizing the number
of edges along partition boundaries for low interprocessor communication. It is
also important that within our framework, the partitioning phase be performed
rapidly. There are several excellent heuristic algorithms for solving the NP-hard
graph partitioning problem [7]. Since mesh partitioning is beyond the scope of
this paper, we will assume that a reasonable partition for our test meshes is
available, and address this issue in future work. For the record, we used the
multilevel spectral Lanczos partitioning algorithm with local Kernighan-Lin re-
finement from the Chaco software package [3].

3.1 Initialization

The initialization phase takes as input the global initial grid and the correspond-
ing partitioning that maps each tetrahedral element to exactly one partition.
The element data and partition information are then broadcast to all processors
which, in parallel, assign a local, zero-based number to each element. Once the
elements have been processed, local edge information can be computed.

In three dimensions, an individual edge may belong to an arbitrary number of
elements. Since each element is assigned to only one partition, it is theoretically
possible for an edge to be shared by all the processors. For each partition, a local
zero-based number is assigned to every edge that belongs to at least one element.
Each processor then redefines its elements in edge[6] in terms of these local
edge numbers. Edges that are shared by more than one processor are identified
by searching for elements that lie on partition boundaries. A bit flag is set to
distinguish between shared and internal edges. A list of shared processors (SPL)
is also generated for each shared edge. Finally, the element sublist in elems for
each edge is updated to contain only the local elements.

The vertices are initialized using the vertex[2] data structure for each edge.
Every local vertex is assigned a zero-based number on each partition. Next the
local edge sublist for each vertex is created from the appropriate subset of the
global edges array. Like shared edges, each shared vertex must be identified
and assigned its SPL. A naive approach would be to thread through the data
structures to the elements and their partitions to determine which vertices lie on
partition boundaries. A faster approach is based on the following two properties
of a shared vertex: it must be an end-point for at least one shared edge, and
its SPL is the union of its shared edges’ SPLs. However, some communication
is required when using this method. An example is shown in Fig. 4 where the
SPL is being formed in PO for the center vertex that is shared by three other
processors. Without communication, PO would incorrectly conclude that the
vertex is shared only with P1 and P3. For each vertex containing a shared edge
in its edges sublist, that edge’s SPL is communicated to the processors in the
SPLs of all other shared edges until the union of all the SPLs is formed. For the
cases in this paper, this process required no more than three iterations, and all
shared vertices were processed as a function of the number of shared edges plus
a small communication overhead.

Before communication After communication
PO shares center vertex with P1, P3 PO shares center vertex with P1, P2, P3

Fig. 4. Example showing why communication is sometimes required to form the shared
processor list for a vertex on a partition boundary

A new data structure has been added to the serial code to represent all this
shared information. Each shared edge and vertex contains a two-way mapping
between its local and its global numbers, and a SPL of processors where its
shared copies reside.

The final step in the initialization phase is the local renumbering of the
external boundary faces. Since a boundary face belongs to only one element,
it is never shared among processors. Each boundary face is defined by its three
edges in edge[3], while each edge maintains a pair of pointers in bfac[2] to the
boundary faces it defines. Since the global mesh is closed, an edge on the grid
boundary is shared by exactly two boundary faces. However, when the mesh is
partitioned, this is no longer true. An example is shown in Fig. 5. An affected
edge creates an empty ghost boundary face in each of the two processors for the
execution phase which is later eliminated during the finalization stage.

At the end of the initialization step, each object of the mesh has been assigned
a local number in every partition, and all shared information has been properly

GBF7

(GE5)

GBF8

1\7 ,,,,,,,,,,,, \ A

Before partitioning After partitioning
Global edge GE5 shared by GES5 stored as LE1 and LE3 in PO and P1
global bdy faces GBF7 and GBF8 GBF7 asLBF3in PO; GBF8asLBFOin P1

Fig.5. Example showing how boundary faces are represented at partition boundaries

stored. The maximum additional storage that is required for the parallel code
depends on the number of processors used and the fraction of shared objects.
For the cases in this paper, this was less than 10% of the memory requirements
of the serial version.

3.2 Execution

The first step in the actual mesh adaption phase is to target edges for refinement
or coarsening. This is usually based on an error indicator for each edge that is
computed from the flow solution. One strategy for targeting edges is to preset
absolute error thresholds for coarsening and refinement. Edges with error values
above a certain level are refined while those with error values below another
specified level are coarsened. A drawback of this approach is that the final mesh
size is unpredictable and a possibility exists that it may be larger than the storage
capacity of the computer. An alternate strategy is to target a specific number of
edges to coarsen and refine at each adaption step. The targeting is still based on
the error indicators for the edges, but the thresholds are automatically adjusted
so that the final mesh size remains bounded.

The parallel version implements the second strategy by first determining a
global error threshold such that a user-specified number of edges is targeted
for adaption. The threshold is computed by a two-step iterative process that
broadcasts a chosen error to all processors, and then counts the local number
of targeted edges for each processor. A global summation is performed at each
iteration to obtain the total number of targeted edges. The threshold is adjusted
accordingly, and the procedure is repeated until the number of targeted edges is
within a specified tolerance.

Since the process of targeting edges for adaption is based on a global error
threshold, it results in a symmetrical marking of all shared edges across parti-
tions. Shared edges have the same flow and geometry information regardless of
their processor number. However, elements have to be continuously upgraded
to one of the three allowed subdivision patterns. This causes some propagation
of edges being targeted for refinement that could mark local copies of shared
edges inconsistently. This is because the local geometry and marking patterns
affect the nature of the propagation. Communication is therefore required after

each iteration of the propagation process. Every processor sends a list of all the
newly-marked local copies of shared edges to all the other processors in their
SPLs. This process may continue for several iterations, and edge markings could
propagate back and forth across partitions.

Figure 6 shows a two-dimensional example of two iterations of the propaga-
tion process across a partition boundary. The process is similar in three dimen-
sions. Processor PO marks its local copy of shared edge GE1 and communicates
that to P1. P1 then marks its own copy of GE1, which causes some internal
propagation because element marking patterns must be upgraded to those that
are valid. During this phase, P1 needs to mark its local copy of shared edge
GE2. This information is then communicated to P0, and the propagation phase
terminates. The four original triangles can now be correctly subdivided into a
total of 12 smaller triangles.

ce2 ce2
--- Shared edge
@ Shared mark — Internal edge
o Internal mark New edge

Fig.6. A two-dimensional example showing communication during propagation of edge
marking

Once all edge markings are complete, each processor executes the mesh adap-
tion code without the need for further communication, since all edges are consis-
tently marked. The only task remaining is to update the shared edge and vertex
information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created during refinement are assigned shared
processor information that depends on several factors. Four different cases can
occur when new edges are created.

o If an internal edge is bisected, the center vertex and all new edges incident on
that vertex are also internal to the partition. Shared processor information is
not required in this case.

o If a shared edge is bisected, its two children and the center vertex inherit its
SPL, since they lie on the same partition boundary.

o If a new edge is created in the interior of an element, it is internal to the parti-
tion since processor boundaries only lie along element faces. Shared processor
information is not required.

e If a new edge is created that lies across an element face, communication is
required to determine whether it is shared or internal. If it is shared, the SPL
must be formed.

All the cases are straightforward, except for the last one. If the intersection
of the SPLs of the two end-points of the new edge is null, the edge is internal.
Otherwise, communication is required with the shared processors to determine
whether they have a local copy of the edge. This communication is necessary
because no information is stored about the faces of the tetrahedral elements. An
alternate solution would be to incorporate faces as an additional object into the
data structures, and maintaining it through the adaption. However, this does not
compare favorably in terms of memory or CPU time to a single communication
at the end of the refinement procedure.

Figure 7 depicts the top view of a tetrahedron in processor PO that shares
two faces with P1. In PO, the intersection of the shared processor lists for the
end-points of all the three new edges LE1, LE2, and LE3 yield P1. However,
when PO communicates this information to P1, P1 will only have local copies
corresponding to LE1 and LE2. Thus, PO will classify LE1 and LE2 as shared
edges but LE3 as an internal edge.

[Shared face with P1
LE1 LE2 [Internal face of PO
— Shared edge with P1
--- Internal edge of PO

Fig.7. Example showing how a new edge that lies across a face is classified as shared
or internal

The coarsening phase purges the data structures of all edges that are re-
moved, as well as their associated vertices, elements, and boundary faces. No
new shared processor information is generated since no mesh objects are created
during this step. However, objects are renumbered as a result of compaction and
all internal and shared data are updated accordingly. The refinement routine is
then invoked to generate a valid mesh from the vertices left after the coarsening.

3.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after one
or more adaption steps. Some post processing tasks, such as visualization, need
to processes the whole grid simultaneously. Storing a snapshot of a grid for future
restarts could also require a global view. Our finalization phase accomplishes this
by connecting individual subgrids into one global data structure.

Each local object is first assigned a unique global number. Next, all local
data structures are updated in terms of these global numbers. Finally, gather
operations are performed to a host processor to create the global mesh. Individ-
ual processors are responsible for correctly arranging the data so that the host
only collects and concatenates without further processing.

It is relatively simple to assign global element numbers since elements are
not shared among processors. By performing a scan-reduce add on the total

number of elements, each processor can assign the final global element number.
The global boundary face numbering is also performed similarly since they too
are not shared among processors.

Assigning global numbers to edges and vertices is somewhat more compli-
cated since they may be shared by several processors. Each shared edge (or
vertex) is assigned an owner from its processor list which is then responsible for
generating the global number. Owners are randomly selected to keep the com-
putation and communication loads balanced. Once all processors complete num-
bering their edges (or vertices), a communication phase propagates the global
values from owners to other processors that have local copies.

After global numbers have been assigned to every object, all data struc-
tures are updated to contain consistent global information. Since elements and
boundary faces are unique in each processor, no duplicates exist. All unowned
edge copies are removed from the data structures, which are then compacted.
However, the element sublists in elems cannot be discarded for the unowned
edges. Some communication is required to adjust the pointers in the local sub-
lists so that global sublists can be formed without any serial computation. The
pair of pointers in bfac[2] that were split during the initialization phase for
shared edges are glued back by communicating the boundary face information
to the owner. Vertex data structures are updated much like edges except for the
manner in which their edge sublists in edges are handled. Since shared vertices
may contain local copies of the same global edge in their sublists on different
processors, the unowned edge copies are first deleted. Pointers are next adjusted
as in the elems case with some communication among processors.

At this time, all processors have updated their local data with respect to
their relative positions in the final global data structures. A gather operation by
a host processor is performed to concatenate the local data structures. The host
can then interface the global mesh directly to the appropriate post-processing
module without having to perform any serial computation.

4 Results

The parallel 3D_TAG procedure has been implemented on the SP2 distributed-
memory multiprocessor located at NASA Ames Research Center. The code is
written in C and C+4++, with the parallel activities in MPI for portability.

The computational mesh is the one used to simulate the acoustics experiment
of Purcell [4] where a 1/7th scale model of a UH-1H helicopter rotor blade was
tested over a range of subsonic and transonic hover-tip Mach numbers. Numerical
results and a detailed report of the simulation are given in [6]. This paper reports
only on the performance of the parallel version of the mesh adaption code.

Timings for the parallel code are presented for one refinement and one coars-
ening step using various marking and load-balancing strategies. Two marking
strategies are used for the refinement step. The first set of experiments consists
of randomly marking 5% and 10% of the edges, while the second set consists
of marking the same numbers of edges but in the smallest possible region of
the mesh. The first strategy targets each edge with a fixed probability, but the
second allows marking only in one connected region. These strategies represent

10

two significantly different scenarios. In general, we expect real marking patterns
to lie somewhere in between. Since the coarsening procedure and performance
are similar to the refinement method, only one case is presented where 35% of
the edges of the largest mesh obtained after refinement are randomly coarsened.

Table 1. Progression of grid sizes through refinement and coarsening

Vertices Elements Edges Bdy Faces

Refinement Initial mesh 13,967 60,968 74,343 16,818
5% random marking 24,293 114,415 143,011 8,550
5% local marking 17,920 82,259 104,178 7,999
10% random marking 54,389 284,086 345,425 13,606
10% local marking 21,851 103,582 129,976 8,962
Coarsening Initial mesh 54,389 284,086 345,425 13,606
35% random marking 25,689 122,850 152,853 8,630

Table 1 presents the progression of grid sizes through the two adaption steps
for each marking strategy. Notice that the meshes obtained after refinement for
the randomly-marked cases are much larger than those for the locally-marked
cases even though exactly the same number of edges are marked. This is due to
the difference in the propagation of edge markings. The random cases cause sig-
nificantly more propagation since refinement is scattered throughout the mesh.
The local cases, on the other hand, cause propagation only at the boundary be-
tween the refined and the unrefined regions since all edges internal to the refined
region are already marked.

4.1 Refinement Phase

Table 2 presents the timings and parallel speedup for the refinement step with
the random marking of edges. The performance is excellent with efficiencies of
almost 90% on 32 processors and 60% to 73% on 64 processors. Notice that the
communication time is less than 10% of the total time for up to 16 processors.
On 32 and 64 processors, the communication time although still quite small,
becomes comparable to the computation time and begins to adversely affect
the parallel speedup. This indicates that the saturation point has been reached
for this example in terms of the number of processors that should be used. For
example, on 64 processors, each partition contains less than 1,000 elements with
31% of the edges on partition boundaries. Since additional work and storage are
necessary for shared edges, the speedup deteriorates as the percentage of such
edges increases. This further highlights the need of a good partitioner that not
only distributes the computational load evenly but also minimizes the number
of edges on partition boundaries.

Parallel mesh refinement when 10% of the edges are randomly marked showed
a slightly better performance than the 5%-marked case due to a bigger computa-
tion-to-communication ratio. The 10%-marked case has a greater computational

11

Table 2. Performance for the refinement step when edges are marked randomly

5% Marked 10% Marked
% Shared Comp Comm Total Comp Comm Total
Procs Edges Time Time Speedup Time Time Speedup

1 0.0 12.941 0.000 1.00 39.237 0.000 1.00

2 3.2 6.652 0.090 1.92 19.698 0.045 1.99

4 12.1 3.659 0.094 3.45 10.091 0.105 3.85

8 23.2 1.927 0.107 6.36 5.245 0.281 7.10

16 23.9 0.952 0.100 12.30 2.638 0.233 13.67

32 29.2 0.323 0.129 28.63 1.098 0.287 28.33

64 31.0 0.246 0.091 38.40 0.646 0.189 46.99

requirement even with the same amount of boundary information. In general,
we expect performance to improve as the problem size increases. This is because
the computational time will increase while the percentage of elements along
processor boundaries will decrease (and so too will the communication time).

Table 3 shows the timings and speedup when edges are marked in a single
region of the global mesh. The performance is extremely poor, with speedups
of only 5.1X and 7.7X on 64 processors. By marking a single, compact region
of the mesh, we are simulating an almost worst case load balance behavior.
This strategy primarily targets elements on one processor only. Most of the
other processors remain idle, since none of their elements need to be refined.
Noticeable speedup is achieved only when using at least 16 processors. This is
because the refinement region remains confined to only one partition until enough
processors are active. Once the refinement region straddles multiple partitions,
parallelization becomes effective. However, the computation time does decrease
somewhat for up to 8 processors, even though all the work is performed by a
single processor. This is due to the reduction in the local mesh size for each
individual partition. As a result, even though one partition is performing all the
work, it has a smaller number of elements to process.

Table 3. Performance for the refinement step when edges are marked in a single region
of the global mesh

5% Marked 10% Marked
% Shared Comp Comm Total Comp Comm Total
Procs Edges Time Time Speedup Time Time Speedup

1 0.0 5.581 0.000 1.00 8.806 0.000 1.00

2 3.2 4.351 0.000 1.28 7.517 0.000 1.17

4 12.1 3.828 0.006 1.46 7.036 0.008 1.25

8 23.2 3.362 0.008 1.66 6.462 0.008 1.36

16 23.9 3.230 0.012 1.72 4.232 0.012 2.07

32 29.2 0.982 0.710 3.30 1.188 0.955 4.11

64 31.0 1.083 0.021 5.06 1.104 0.044 7.67

12

Due to the poor parallel performance when edges are marked in a single
region of the global mesh, it is worthwhile to load balance the parallel 3D_TAG
code based on the distribution of targeted edges before these edges are actually
refined. The mesh is repartitioned if the markings are skewed beyond a specified
tolerance. This significantly improves the performance of the mesh refinement
phase. As an additional bonus, this generates a more balanced mesh after the
adaption since the final grid configuration is generally determined by the marking
patterns.

Table 4. Performance for the repartitioned refinement step when edges are marked in
a single region of the global mesh

5% Marked 10% Marked
Elements in Comp Comm Total # Elements in Comp Comm Total
Procs Min Set Max Set Time Time Speedup Min Set Max Set Time Time Speedup

1 60,968 60,968 5.581 0.000 1.00 60,968 60,968 8.806 0.000 1.00

2 9,069 51,899 2.486 0.757 1.72 6,867 54,101 3.977 0.908 1.80

4 5,575 28,983 1.446 0.178 3.44 3,074 42,701 2.376 0.159 3.47

8 2,120 14,498 0.824 0.019 6.62 1,272 21,358 1.244 0.034 6.89

16 389 7,249 0.287 0.171 12.19 595 10,670 0.622 0.060 12.91

32 190 3,629 0.251 0.012 21.22 281 5,340 0.352 0.011 24.26

64 95 1,812 0.132 0.022 36.24 141 2,670 0.147 0.055 43.59

Using this methodology, the localized-marking experiment was run again af-
ter performing a repartitioning step based on edge markings. A simple heuristic
of assigning an additional weight to elements containing edges that have been
marked for refinement was given to the partitioner. Table 4 presents the perfor-
mance results of this repartitioned local refinement phase. Note that the par-
allel speedups are now comparable to those for the random-marking case. This
demonstrates that mesh adaption can deliver excellent speedups if obtaining a
balanced load is cheaper then the repartitioning cost. A fast evaluator can use a
simple metric to quickly compare the expected savings from the mesh adaption
phase with the cost of repartitioning and remapping. Once again, this calls for
an efficient partitioning scheme, which will be examined in subsequent work.

4.2 Coarsening Phase

The coarsening phase consists of three major steps: marking edges to coarsen,
cleaning up all the data structures by removing those edges and their associated
vertices and tetrahedral elements, and finally invoking the refinement routine to
generate a valid mesh from the vertices left after the coarsening.

Timings and parallel speedup when 35% of the edges of the largest mesh
obtained by refinement are randomly coarsened are presented in Table 5. Note
that the computation time does not include the follow-up mesh refinement time.
It is, instead, only the time required to mark edges to coarsen. This was done so
as to demonstrate the parallel performance of the modules that are only required

13

Table 5. Performance for the coarsening step when edges are marked randomly

Comp Cleanup Comm Total
Procs Time Time Time Speedup

1 3.184 6.949 0.000 1.00
2 1.648 3.564 0.005 1.94
4 0.850 1.822 0.006 3.78
8 0.439 0.962 0.011 7.18
16 0.270 0.499 0.024 12.78
32 0.144 0.271 0.020 23.29
64 0.085 0.132 0.038 39.74

during the coarsening phase. As expected, there is a strong performance gain
because of the similarity of the coarsening and the refinement methods. Notice
that the communication time is negligible while the cleanup time is dominant.
Since the cleanup time depends on the fraction of shared objects, performance
deteriorates as the problem size is over-saturated by processors.

4.3 Initialization and Finalization Phases

Recall from Fig. 1 that unlike the execution phase where the actual adaption
is performed, it is not critical for the initialization and finalization procedures
to be very efficient since they are used rarely (or only once) during a flow com-
putation. Table 6 presents the results for these two phases. The initialization
step is performed on the starting mesh consisting of 60,968 elements, while the
finalization phase is for the adapted mesh consisting of 114,415 elements. It is
apparent from the timings that the performance bottleneck for the two steps
are the global broadcast (one-to-all) and gather (all-to-one) communication pat-
terns, respectively. These times generally increase with the number of processors
so a speedup cannot be expected. However, the computational sections of these

Table 6. Performance for the initialization and finalization steps when 5% of edges
are marked randomly

Initialization Finalization
Comp Bcast Total Comp Gather Total
Procs Time Time Speedup Time Time Speedup

1 4.500 0.328 1.00 4.035 0.682 1.00

2 2.479 0.645 1.55 2.312 0.665 1.58

4 1.523 1.175 1.79 1.494 0.676 2.17

8 0.962 0.918 2.57 1.019 0.714 2.72

16 0.568 1.008 3.06 0.647 0.785 3.29

32 0.409 1.214 2.97 0.393 0.890 3.68

64 0.242 1.503 2.77 0.286 0.977 3.73

14

procedures do show favorable speedups of 18.6X and 14.1X on 64 processors. In
any case, the overall run times of these routines are acceptable for our purposes.

Note that the broadcast and gather times are non-zero even for a single
processor because the current implementation uses a host to perform the data
I/0O. The number of processors shown in Table 6 indicates those that are actually
performing the mesh adaption.

5 Summary

Fast and efficient dynamic mesh adaption is an important feature of unstructured
grids that make them especially attractive for unsteady flows. For such flows,
the coarsening/refinement step must be performed frequently, so its efficiency
must be comparable to that of the flow solver. For this work, the edge-based
adaption scheme of Biswas and Strawn [1] is parallelized for distributed-memory
architectures.

The code consists of approximately 3,000 lines of C++ with MPI which
wrap around the original version written in C. The serial code was left almost
completely unchanged except for the addition of 10 lines which interface to the
parallel wrapper. This allowed us to design the parallel version using the serial
code as a building block. The object-oriented approach allowed us to build a clean
interface between the two layers of the program while maintaining efficiency.
Only a slight increase in space was necessary to keep track of the global mappings
and shared processor lists for objects on partition boundaries.

Parallel performance is extremely promising showing a 47-fold speedup on
64 processors compared to sequential execution. In the worst case when a single
compact region of the mesh is refined, speedup increased from 8- to 44-fold by
repartitioning the mesh using the edge-marking information. We are currently
in the process of combining this parallel mesh adaption code with a dynamic
partitioner and load balancer [5].

References

1. Biswas, R., Strawn, R.: A new procedure for dynamic adaption of three-dimensional
unstructured grids. Appl. Numer. Math. 13 (1994) 437-452

2. Biswas, R., Strawn, R.: A dynamic mesh adaption procedure for unstructured hex-
ahedral grids. 34th ATAA Aerospace Sciences Meeting (1996) Paper 96-0027

3. Hendrickson, B., Leland, R.: The Chaco user’s guide — Version 2.0. Sandia National
Laboratories Technical Report SAND94-2692 (1994)

4. Purcell, T.: CFD and transonic helicopter sound. 14th European Rotorcraft Forum
(1988) Paper 2

5. Sohn, A., Biswas, R., Simon, H.: A dynamic load balancing framework for unstruc-
tured adaptive computations on distributed-memory multiprocessors. 8th ACM
Symposium on Parallel Algorithms and Architectures (1996) to appear

6. Strawn, R., Biswas, R., Garceau, M.: Unstructured adaptive mesh computations of
rotorcraft high-speed impulsive noise. J. Aircraft 32 (1995) 754-760

7. Van Driessche, R., Roose, D.: Load Balancing Computational Fluid Dynamics Cal-
culations on Unstructured Grids. AGARD Report R-807 (1995)

15

This article was processed using the IAXIRX macro package with LLNCS style

16

