
ADVANCED MPI

Dr. David Cronk
Innovative Computing Lab
University of Tennessee

9/2/2004 David Cronk

Course Outline

Day 1
Morning - Lecture

Communicators/Groups
Extended Collective Communication
One-sided Communication

Afternoon - Lab
Hands on exercises demonstrating the use of

groups, extended collectives, and one-sided
communication

9/2/2004 David Cronk

Course Outline (cont)

Day 2
Morning – Lecture

MPI-I/O
Afternoon – Lab

Hands on exercises using MPI-I/O

9/2/2004 David Cronk

bCourse Outline (cont)

Day 3
Morning – Lecture

Performance Analysis of MPI programs
TAU
Vampir/VampirTrace

Afternoon – Lab
Hands on exercises using Vampir and

VampirTrace

9/2/2004 David Cronk

Communicators and Groups

Introduction
Group Management
Communicator Management
Intercommunicators

9/2/2004 David Cronk

Communicators and Groups

Many MPI users are only familiar with the communicator
MPI_COMM_WORLD

A communicator can be thought of a handle to a group
A group is an ordered set of processes

Each process is associated with a rank
Ranks are contiguous and start from zero

For many applications (dual level parallelism)
maintaining different groups is appropriate

Groups allow collective operations to work on a subset
of processes

Information can be added onto communicators to be
passed into routines

9/2/2004 David Cronk

Communicators and Groups(cont)

While we think of a communicator as spanning
processes, it is actually unique to a process

A communicator can be thought of as a handle
to an object (group attribute) that describes a
group of processes

An intracommunicator is used for
communication within a single group

An intercommunicator is used for
communication between 2 disjoint groups

9/2/2004 David Cronk

Communicators and Groups(cont)

MPI_COMM_WORLD
Comm1

P3

P2

P1

P0

Comm4

Comm5

Comm2
Comm3

9/2/2004 David Cronk

Communicators and Groups(cont)
Refer to previous slide

There are 4 distinct groups
These are associated with intracommunicators

MPI_COMM_WORLD, comm1, and comm2, and comm3
P3 is a member of 2 groups and may have different ranks in

each group(say 3 & 4)
If P2 wants to send a message to P1 it must use

MPI_COMM_WORLD (intracommunicator) or comm5
(intercommunicator)

If P2 wants to send a message to P3 it can use
MPI_COMM_WORLD (send to rank 3) or comm1 (send to
rank 4)

P0 can broadcast a message to all processes associated with
comm2 by using intercommunicator comm5

9/2/2004 David Cronk

Group Management

All group operations are local
As will be clear, groups are initially not

associated with communicators
Groups can only be used for message

passing within a communicator
We can access groups, construct groups,

and destroy groups

9/2/2004 David Cronk

Group Accessors

MPI_GROUP_SIZE(group, size, ierr)
MPI_Group group int size (C)
INTEGER group, size, ierr (Fortran)
This routine returns the number of processes in the

group
MPI_GROUP_RANK(group, rank, ierr)

MPI_Group group int rank (C)
INTEGER group, rank, ierr (Fortran)
This routine returns the rank of the calling process

9/2/2004 David Cronk

Group Accessors (cont)

MPI_GROUP_TRANSLATE_RANKS (group1,
n, ranks1, group2, ranks2, ierr)
MPI_Group group1, group2 int n, *ranks1, *ranks2
INTEGER group1, n, ranks(), group2, ranks(), ierr
This routine takes an array of n ranks (ranks1) which

are ranks of processes in group1. It returns in
ranks2 the corresponding ranks of the processes
as they are in group2

MPI_UNDEFINED is returned for processes not in
group2

9/2/2004 David Cronk

Groups Accessors (cont)
MPI_GROUP_COMPARE (group1, group2

result, ierr)
MPI_Group group1, group2 int result
INTEGER group1, group2, result, ierr (Fortran)
This routine returns the relationship between group1

and group2
If group1 and group2 contain the same processes,

ranked the same way, this routine returns
MPI_IDENT

If group1 and group2 contain the same processes,
but ranked differently, this routine returns
MPI_SIMILAR

Otherwise this routine returns MPI_UNEQUAL

9/2/2004 David Cronk

Group Constructors

Group constructors are used to create new groups from existing
groups

Base group is the group associated with MPI_COMM_WORLD
(use mpi_comm_group to get this)

Group creation is a local operation
No communication needed

Following group creation, no communicator is associated with the
group
No communication possible with new group

Each process in a new group MUST create the group so it is
identical!

Groups are created through some communicator creation routines
covered later

9/2/2004 David Cronk

Group Constructors (cont)

MPI_COMM_GROUP (comm, group, ierr)
MPI_Comm comm MPI_Group group (c)
INTEGER comm, group, ierr (Fortran)
This routine returns in group the group

associated with the communicator comm

9/2/2004 David Cronk

Group Constructors (cont)
Set Operations

MPI_GROUP_UNION(group1, group2,
newgroup, ierr)

MPI_GROUP_INTERSECTION(group1,
group2, newgroup, ierr)

MPI_GROUP_DIFFERENCE(group1,
group2, newgroup, ierr)
MPI_Group group1, group2, *newgroup (C)
INTEGER group1, group2, newgroup, ierr

(Fortran)

9/2/2004 David Cronk

Group Constructors (cont)
Set Operations

Union: Returns in newgroup a group consisting
of all processes in group1 followed by all
processes in group2, with no duplication

Intersection: Returns in newgroup all processes
that are in both groups, ordered as in group1

Difference: Returns in newgroup all processes
in group1 that are not in group2, ordered as
in group1

9/2/2004 David Cronk

Group Constructors (cont)
Set Operations

Let group1 = {a,b,c,d,e,f,g} and group2 =
{d,g,a,c,h,I}

MPI_Group_union(group1,group2,newgroup)
Newgroup = {a,b,c,d,e,f,g,h,I}

MPI_Group_intersection(group1,group2,newgro
up)
Newgroup = {a,c,d,g}

MPI_Group_difference(group1,group2,newgrou
p)
Newgroup = {b,e,f}

9/2/2004 David Cronk

Group Constructors (cont)
Set Operations

Let group1 = {a,b,c,d,e,f,g} and group2 =
{d,g,a,c,h,I}

MPI_Group_union(group2,group1,newgroup)
Newgroup = {d,g,a,c,h,l,b,e,f}

MPI_Group_intersection(group2,group1,newgro
up)
Newgroup = {d,g,a,c}

MPI_Group_difference(group2,group1,newgrou
p)
Newgroup = {h,i}

9/2/2004 David Cronk

Group Constructors (cont)

MPI_GROUP_INCL(group, n, ranks,
newgroup, ierr)
MPI_Group group, *newgroup int n, *ranks
INTEGER group, n, ranks(), newgroup, ierr
This routine creates a new group that

consists of all the n processes with ranks
ranks[0]..ranks[n-1]

The process with rank i in newgroup has
rank ranks[i] in group

9/2/2004 David Cronk

Group Constructors (cont)

MPI_GROUP_EXCL(group, n, ranks,
newgroup, ierr)
MPI_Group group, *newgroup int n, *ranks
INTEGER group, n, ranks(), newgroup, ierr
This routine creates a new group that consists of all

the processes in group after deleting processes
with ranks ranks[0]..ranks[n-1]

The relative ordering in newgroup is identical to the
ordering in group

9/2/2004 David Cronk

Group Constructors (cont)

MPI_GROUP_RANGE_INCL(group, n, ranges,
newgroup, ierr)
MPI_Group group, *newgroup int n, ranges[][3]
INTEGER group, n, ranges(*,3), newgroup, ierr)
Ranges is an array of triplets consisting of start rank,

end rank, and stride
Each triplet in ranges specifies a sequence of ranks

to be included in newgroup
The ordering in newgroup is as specified by ranges

9/2/2004 David Cronk

Group Constructors (cont)

MPI_GROUP_RANGE_EXCL(group, n, ranges,
newgroup, ierr)
MPI_Group group, *newgroup int n, ranges[][3]
INTEGER group, n, ranges(*,3), newgroup, ierr)
Ranges is an array of triplets consisting of start rank,

end rank, and stride
Each triplet in ranges specifies a sequence of ranks

to be excluded from newgroup
The ordering in newgroup is identical to that in group

9/2/2004 David Cronk

Group Constructors (cont)

Let group = {a,b,c,d,e,f,g,h,i,j}
n=5, ranks = {0,3,8,6,2}
ranges= {(4,9,2),(1,3,1),(0,9,5)}
MPI_Group_incl(group,n,ranks,newgroup)

newgroup = {a,d,I,g,c}
MPI_Group_excl(group,n,ranks,newgroup)

newgroup = {b,e,f,h,j}
MPI_Group_range_incl(group,n,ranges,newgroup)

newgroup = {e,g,I,b,c,d,a,f}
MPI_Group_range_excl(group,n,ranges,newgroup)

newgroup = {h}

9/2/2004 David Cronk

Communicator Management

Communicator access operations are local,
thus requiring no interprocess communication

Communicator constructors are collective and
may require interprocess communication

All the routines in this section are for
intracommunicators, intercommunicators will
be covered separately

9/2/2004 David Cronk

Communicator Accessors
MPI_COMM_SIZE (MPI_Comm comm, int size, ierr)

Returns the number of processes in the group associated with
comm

MPI_COMM_RANK (MPI_Comm comm, int rank, ierr)
Returns the rank of the calling process within the group

associated with comm
MPI_COMM_COMPARE (MPI_Comm comm1,

MPI_Comm comm2, int result, ierr) returns:
MPI_IDENT if comm1 and comm2 are handles for the same

object
MPI_CONGRUENT if comm1 and comm2 have the same

group attribute
MPI_SIMILAR if the groups associated with comm1 and

comm2have the same members but in different rank order
MPI_UNEQUAL otherwise

9/2/2004 David Cronk

Communicator Constructors

MPI_COMM_DUP (MPI_Comm comm,
MPI_Comm newcomm, ierr)

This routine creates a duplicate of comm
newcomm has the same fixed attributes as

comm
Defines a new communication domain

A call to MPI_Comm_compare (comm, newcomm,
result) would return MPI_IDENT

Useful to library writers and library users

9/2/2004 David Cronk

Communicator Constructors
MPI_COMM_CREATE (MPI_Comm comm,MPI_Group

group, MPI_Comm newcomm, ierr)
This is a collective routine, meaning it must be called by

all processes in the group associated with comm
This routine creates a new communicator which is

associated with group
MPI_COMM_NULL is returned to processes not in group
All group arguments must be the same on all calling

processes
group must be a subset of the group associated with

comm

9/2/2004 David Cronk

Communicator Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)

newgroup is set to MPI_COMM_NULL in processes 0
through 9 of MPI_COMM_WORLD

9/2/2004 David Cronk

Communicator Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_GROUP (MPI_COMM_WORLD, wgroup, ierr)

ranges (1,1) = 10
ranges(1,2) = size-1
ranges(1,3) = 1
CALL MPI_GROUP_RANGE_INCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)
CALL MPI_GROUP_RANGE_EXCL (wgroup, 1, ranges, newgroup, ierr)
CALL MPI_COMM_CREATE (MPI_COMM_WORLD, newgroup, newcom, ierr)

9/2/2004 David Cronk

Communicator Constructors
MPI_COMM_SPLIT(MPI_Comm comm, int

color, int key, MPI_Comm newcomm, ierr)
MPI_Comm comm, newcomm int color, key
INTEGER comm, color, key, newcomm, err
This routine creates as many new groups and

communicators as there are distinct values of
color

The rankings in the new groups are determined by
the value of key, ties are broken according to the
ranking in the group associated with comm

MPI_UNDEFINED is used as the color for processes
to not be included in any of the new groups

9/2/2004 David Cronk

Communication Constructors

00183913210Key

3U13373113UColor

kjihgfedcbaProc
ess

109876543210Rank

Both process a and j are returned MPI_COMM_NULL
3 new groups are created

{i, c, d}
{k, b, e, g, h}
{f}

9/2/2004 David Cronk

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = MPI_UNDEFINED

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)

9/2/2004 David Cronk

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = 1

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)

9/2/2004 David Cronk

Group 1

Group 2

9/2/2004 David Cronk

Destructors

The communicators and groups from a
process’ viewpoint are merely handles

Like all handles in MPI, there is a limited
number available – YOU CAN RUN
OUT

MPI_GROUP_FREE (MPI_Group group,
ierr)

MPI_COMM_FREE (MPI_Comm comm,
ierr)

9/2/2004 David Cronk

Intercommunicators

Intercommunicators are associated with 2
groups of disjoint processes

Intercommunicators are associated with a
remote group and a local group

The target process (destination for send,
source for receive) is its rank in the
remote group

A communicator is either intra or inter,
never both

9/2/2004 David Cronk

Intercommunicators

Intercommunicator

9/2/2004 David Cronk

Intercommunicator Accessors
MPI_COMM_TEST_INTER (MPI_Comm

comm, int flag, ierr)
This routine returns true if comm is an

intercommunicator, otherwise, false
MPI_COMM_REMOTE_SIZE(MPI_Comm

comm, int size, ierr)
This routine returns the size of the remote group

associated with intercommunicator comm
MPI_COMM_REMOTE_GROUP(MPI_Comm

comm, MPI_Groupgroup, ierr)
This routine returns the remote group associated

with intercommunicator comm

9/2/2004 David Cronk

Intercommunicator Constructors

The communicator constructors described
previously will return an intercommunicator if
the are passed intercommunicators as input
MPI_COMM_DUP: returns an intercommunicator

with the same groups as the one passed in
MPI_COMM_CREATE: each process in group A

must pass in group the same subset of group A
(A1). Same for group B (B1). The new
communicator has groups A1 and B1 and is only
valid on processes in A1 and B1

MPI_COMM_SPLIT: As many new communicators
as there are distinct pairs of colors are created

9/2/2004 David Cronk

MPI_COMM_CREATE

Intercomm1 is an intercommunicator that relates to groups A =
{a,b,c,d,e,f,g,h,I,j} and groups B = {k,l,m,n,o,p,q,r,s,t}

All processes in group A create a new group A’ = {f, g, h, I, j}
All processes in group B create a new group B’ = {p, q, r, s, t}
All processes in group A call MPI_Comm_create with

comm=intercomm1 and group = A’
All processes in group B call MPI_Comm_create with

comm=intercomm1 and group = B’
Processes {a,b,c,d,e, and k,l,m,n,o} are each returned newcomm =

MPI_COMM_NULL
All processes in A’ are returned an intercommunicator with A’ as

the local group and B’ as the remote group
All processes in B’ are returned an intercommunicator with B’ as

the local group and A’ as the remote group

9/2/2004 David Cronk

MPI_COMM_SPLIT

00183913210Key

3U13371133UColor

kjihgfedcbaProc
ess

109876543210Rank

Group A

00183913210Key

3U17333U135Color

vutsrqponmlProc
ess

109876543210Rank

Group B

9/2/2004 David Cronk

MPI_COMM_SPLIT

Processes a, j, l, o, and u would all have
MPI_COMM_NULL returned in
newcomm

newcomm1 would be associated with 2
groups: {e, i, d} and {t, n}

newcomm2 would be associated with 2
groups: {k, b, c, g, h} and {v, m, p, r, q}

newcomm3 would be associated with 2
groups: {f} and {s}

9/2/2004 David Cronk

Intercommunicator Constructors

MPI_INTERCOMM_CREATE (local_comm, local_leader,
bridge_comm, remote_leader, tag, newintercomm, ierr)

This routine is called collectively by all processes in 2 disjoint
groups

All processes in a particular group must provide matching
local_comm and local_leader arguments

The local leaders provide a matching bridge_comm (a
communicator through which they can communicate), in
remote_leader the rank of the other leader within bridge_comm,
and the same tag

The bridge_comm, remote_leader, and tag are significant only at
the leaders

There must be no pending communication across bridge_comm
that may interfere with this call

9/2/2004 David Cronk

Intercommunicators

comm1
comm2
comm3

9/2/2004 David Cronk

Communication Constructors

CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

IF (myrank .ge. 10) THEN
color = 0

ELSE
color = 1

ENDIF

CALL MPI_COMM_SPLIT (MPI_COMM_WORLD, color, 1, newcomm, ierr)
CALL MPI_INTERCOMM_CREATE (newcom, 0, MPI_COMM_WORLD,

0, 111, newintercomm, ierr)

Now processes in each group can communicate with the intercommunicator.
For instance, process 0 of MPI_COMM_WORLD can broadcast
a value to all the processes with rank >= 10 in MPI_COMM_WORLD

9/2/2004 David Cronk

1 2 3 4 5 6 7 8 90

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

Intercommunicator interA

MPI_COMM_SPLIT (…..) Group of masters
Group of slaves

MPI_INTERCOMM_CREATE(..)
Process 0 call MPI_BCAST with interA….

9/2/2004 David Cronk

Intercommunicators

MPI_INTERCOMM_MERGE (MPI_Comm intercomm,
int high, MPI_Comm newintracomm, ierr)
This routine creates an intracommunicator from a union

of the two groups associated with intercomm
High is used for ordering. All process within a particular

group must pass the same value in for high (true or
false)

The new intracommunicator is ordered with the high
processes following the low processes

If both groups pass the same value for high, the ordering
is arbitrary

9/2/2004 David Cronk

TAKE
A

BREAK

9/2/2004 David Cronk

Extended Collective
Communication

The original MPI standard did not allow
for collective communication across
intercommunicators

MPI-2 introduced this capability
Useful in pipelined algorithms where data

needs to be moved from one group of
processes to another

9/2/2004 David Cronk

Three types of collective

Rooted:
MPI_Gather and MPI_Gatherv
MPI_Reduce
MPI_Scatter and MPI_Scatterv
MPI_Bcast

All-to-all:
MPI_Allgather and MPI_Allgatherv
MPI_Alltoall, MPI_Alltoallv, and MPI_Alltoallw
MPI_Allreduce, MPI_Reduce_scatter

Other:
MPI_Scan, MPI_Exscan, and MPI_Barrier

9/2/2004 David Cronk

Data movement in extended
collectives

Rooted:
One group (root group) contains the root process

while the other group (leaf group) has no root
Data moves from the root to all the processes in the

leaf group (one-to-all) or vice-versa (all-to-one)
The root process uses MPI_ROOT for its root

argument while all other processes in the root
group pass MPI_PROC_NULL

All processes in the leaf group pass the rank of the
root relative to the root group

9/2/2004 David Cronk

Data movement in extended
collectives

All-to-all
Data sent by processes in group A are

received by processes in group B while
data sent by processes in group B are
received by processes in group A

9/2/2004 David Cronk

MPI_Barrier (comm, ierr)

Syntactically identical to a situation where
all processes are in the same group and
call a barrier with the intracommunicator
associated with said group

That is, all processes in group A may exit
the barrier after all processes in group B
have entered the call, and vice-versa

9/2/2004 David Cronk

MPI_BCAST (buff, count, dtype,
root, comm, ierr)

Data is broadcast from the root to all processes
in the leaf group

Root group: Root process passes MPI_ROOT
for the root argument while others pass
MPI_PROC_NULL. Buff, count, and dtype
are not significant in non-root processes

Leaf group: All processes pass the same
argument in root, which is the rank of the root
process in the root group. count and type
must be consistent with count and type on the
root

9/2/2004 David Cronk

MPI_Bcast

root

MPI_BCAST
Leaf groupRoot group

9/2/2004 David Cronk

MPI_Gather (sbuf, scount, stype,
rbuf,rcount,rtype,root, comm,ierr)
Data is gathered in rank order from all the processes in

the leaf group into rbuf of the root
Root group: Root process passes MPI_ROOT for the

root argument while others pass MPI_PROC_NULL.
Leaf group: All processes pass the same argument in

root, which is the rank of the root process in the root
group. scount and stype must be consistent with
rcount and rtype on the root

Send arguments are only meaningful at processes in
the leaf group

Receive arguments are only meaningful at the root

9/2/2004 David Cronk

MPI_GATHER

Root group

root

Leaf group
MPI_GATHER

9/2/2004 David Cronk

MPI_Scatter (sbuf, scount, stype,
rbuf,rcount,rtype,root, comm,ierr)
Data is scattered in rank order from the root to all the

processes in the leaf group
Root group: Root process passes MPI_ROOT for the

root argument while others pass MPI_PROC_NULL.
Leaf group: All processes pass the same argument in

root, which is the rank of the root process in the root
group. rcount and rtype must be consistent with
scount and stype on the root

Receive arguments are only meaningful at processes in
the leaf group

Send arguments are only meaningful at the root

9/2/2004 David Cronk

MPI_SCATTER

Root group

root

Leaf group
MPI_SCATTER

9/2/2004 David Cronk

MPI_Allgather (sbuf,scount,stype,
rbuf,rcount,rtype, comm,ierr)

All arguments are meaningful at every
process

Data from sbuf at all processes in group A
is concatenated in rank order and the
result is stored at rbuf of every process
in group B and vice-versa

Send arguments in A must be consistent
with receive arguments in B, and vice-
versa

9/2/2004 David Cronk

MPI_ALLGATHER

MPI_ALLGATHER B
A

9/2/2004 David Cronk

MPI_Alltoall (sbuff, scount, stype,
rbuf, rcount, rtype, comm, ierr)

Result is as if each process in group A scatters
its sbuff to each process in group B and each
process in group B scatters its sbuff to each
process in group A

Data is gathered in rbuff in rank order according
to the rank in the group providing the data

Each process in group A sends the same
amount of data to group B and vice-versa

9/2/2004 David Cronk

MPI_ALLTOALL

MPI_ALLTOALL

9/2/2004 David Cronk

MPI_Reduce (sbuf, rbuf, count,
datatype, op, root, comm, ierr)
Root group: Root process passes MPI_ROOT for the

root argument while others pass MPI_PROC_NULL
Leaf group: All processes pass the same argument in

root, which is the rank of the root process in the root
group

sbuf is only meaningful at processes in the leaf group
rbuf is only meaningful at the root
The result is as if the leaf group did a regular reduce

except the results are stored at root
count, datatype, and op should be meaningless

at non-root processes in root group

9/2/2004 David Cronk

MPI_Allreduce (sbuf, rbuf, count,
datatype, op, comm, ierr)
The result is as if group A did a regular reduce

except the results are stored at all the
process in group B and vice versa

Count should be the same at all processes

9/2/2004 David Cronk

MPI_Reduce_scatter (sbuf, rbuf,
rcounts, datatype, op, comm, ierr)
The result is as if group A did a regular reduce

with count equal to the sum of rcounts
followed by a scatter to group B, and vice-
versa

rcount should be the same at all processes in
each group and the sum of all the rcounts in
group A should equal the sum of all rcounts in
group B

9/2/2004 David Cronk

MPI_REDUCE_SCATTER

6 9 1 5 9 8 2 1 0 9 7 5

0 3 5 9 6 5 0 9 2 1 9 7

9 2 4 8 6 5 9 8 3 2 0 8

7 13 17 5

5 3 11 9

1210 6 2

4 7 9 3 2 1 5 4 7 6 4 2

3 6 8 2 3 2 6 5 5 4 2 0

7 13 17 5 5 3 11 9 1210 6 21514 10 22 2118 11 18 5 12 16 20

1514 10 22 2118

1118 5 12 16 20

op = SUM, rcounts = 6 op = SUM, rcounts = 4

9/2/2004 David Cronk

MPI_Scan and MPI_Exscan

There are no extended collective
operations for these 2 routines

9/2/2004 David Cronk

One Sided Communication

One sided communication allows shmem style
gets and puts

Only one process need actively participate in
one sided operations

With sufficient hardware support, remote
memory operations can offer greater
performance and functionality over the
message passing model

MPI remote memory operations do not make
use of a shared address space

9/2/2004 David Cronk

One Sided Communication

By requiring only one process to
participate, significant performance
improvements are possible
› No implicit ordering of data delivery
› No implicit synchronization

Some programs are more easily written
with the remote memory access (RMA)
model
› Global counter

9/2/2004 David Cronk

One Sided Communication

RMA operations require 3 steps
1. Define an area of memory that can be

used for RMA operations (window)
2. Specify the data to be moved and

where to move it
3. Specify a way to know the data is

available

9/2/2004 David Cronk

One Sided Communication

Get

Put

WindowsAddress space

9/2/2004 David Cronk

One Sided Communication

Memory Windows
A memory window defines an area of memory that

can be used for RMA operations
A memory window must be a contiguous block of

memory
Described by a base address and number of bytes
Window creation is collective across a

communicator
A window object is returned. This window object is

used for all subsequent RMA calls

9/2/2004 David Cronk

One Sided Communication

MPI_WIN_CREATE (void *base, MPI_Aint size,
int disp_unit, MPI_Info info, MPI_Comm
comm, MPI_Win *win, ierr)
base is the base address of the window
size is the size in bytes of the window
disp_unit is the displacement unit for data access (1

for bytes)
info is used for performance tuning
comm is the communicator over which the call is

collective
win is the window object returned

9/2/2004 David Cronk

One Sided Communication

Data movement
MPI_PUT
MPI_GET
MPI_ACCUMULATE

All data movement routines are non-
blocking

Synchronization call is required to ensure
operation completion

9/2/2004 David Cronk

One Sided Communication
MPI_PUT (void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win
window, ierr)
origin_addr is the address in the calling process of the data to

be transferred. It need not be within a memory window
origin_count is the number of elements of type origin_datatype

to be transferred
target_rank is the rank within the window object of the

destination process
target_disp is the offset into the window on the destination

process. This is in terms of disp_unit used in window
creation on target process

target_count and target_datatype are similar to count and
datatype used in a receive

window is the window object returned from creation

9/2/2004 David Cronk

One Sided Communication
MPI_GET (void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win
window, ierr)
origin_addr is the address in the calling process where the data

is to be transferred. It need not be within a memory window
origin_count is the number of elements of type origin_datatype

to be transferred into origin_addr
target_rank is the rank within the window object of the

destination process
target_disp is the offset into the window on the destination

process. This is in terms of disp_unit used in window
creation on target process

target_count and target_datatype are similar to count and
datatype used in a send

window is the window object returned from creation

9/2/2004 David Cronk

One Sided Communication
MPI_ACCUMULATE (void *origin_addr, int

origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype
target_datatype,MPI_Op op,MPI_Win
window,ierr)
All arguments besides op are the same as in get and

put
op is an MPI_Op as in MPI_Reduce
op can only be a pre-defined operation
Still a one-sided operation (not collective)
Combines communication and computation

Like a put, but with a computation

9/2/2004 David Cronk

One Sided Communication

Completing data transfers
There are a number of different ways to complete data

transfers
The simplest is a barrier like mechanism (fence)
This mechanism can also be used to ensure data is available
The fence operation is collective across all process in the

communicator used to create the windows
Most suitable for data parallel applications
A fence is used to separate local load/stores and RMA

operations
Multiple RMA operations may be completed with a single call to

fence

9/2/2004 David Cronk

One Sided Communication

MPI_WIN_FENCE (int assert, MPI_Win
win, ierr)
assert is an integer value used to provide

information about the fence that may allow
an MPI implementation to do performance
optimization

win is the window object return in the
MPI_Win_create call

9/2/2004 David Cronk

Point-to-Point Message Passing
CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
IF (rank .eq. 0) then

CALL MPI_ISEND (outbuff, n, MPI_INT, 1, 0,
MPI_COMM_WORLD, request, ierr)

ELSE
CALL MPI_IRECV (inbuff, n, MPI_INT, 0, 0,

MPI_COMM_WORLD, request, ierr)
ENDIF
……..
Do other work
……..
CALL MPI_WAIT (request, status, ierr)

9/2/2004 David Cronk

One Sided Communication
CALL MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
CALL MPI_TYPE_SIZE (MPI_INT, size, ierr)
IF (rank .eq. 0) then
CALL MPI_WIN_CREATE (MPI_BOTTOM, 0, 1, MPI_INFO_NULL,

MPI_COMM_WORLD, win, ierr)
ELSE
CALL MPI_WIN_CREATE (inbuf, n*size, size, MPI_INFO_NULL,

MPI_COMM_WORLD, win, ierr)
ENDIF
CALL MPI_WIN_FENCE (0, win, ierr)
IF (rank .eq. 0) then
CALL MPI_PUT (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win, ierr)

ENDIF
………
Do other work
………
CALL MPI_FENCE (0, win, ierr)
CALL MPI_WIN_FREE (win, ierr)

9/2/2004 David Cronk

One Sided Communication

MPI_Win_fence (0, win);
MPI_Get (…. , win);
MPI_Win_fence (0, win);
A[rank] = 4;
MPI_Win_fence (0, win);
MPI_Put (… , win);
MPI_Win_fence (0, win);

MPI_Win_create (A, …., &win);
MPI_Win_fence (0, win);
If (rank == 0) {
MPI_Put (….., win);
MPI_Put (….., win);
……
MPI_Put (….., win);

}

9/2/2004 David Cronk

One Sided Communication

Passive target RMA
Requires synchronization calls by only the process initiating

data transfer
MPI_Win_lock and MPI_Win_unlock define an access epoch
Lock and unlock apply only to the remote memory window, not

the entire window object
A call to unlock ensures all RMA operations performed since

the call to lock have completed
Lock and unlock pairs are required around local access to

memory windows as well
Locks can be shared or exclusive
Some implementations may require windows to be allocated by

MPI_Alloc_mem

9/2/2004 David Cronk

One Sided Communication

MPI_WIN_LOCK (int locktype, int rank, int
assert, MPI_Win win,ierr)

MPI_WIN_UNLOCK (int rank, MPI_Win win,
ierr)
Locktype can be MPI_LOCK_SHARED or

MPI_LOCK_EXCLUSIVE
Rank is the rank of the process that owns the

window to be accessed
Assert is an integer value used for optimization
Win is the window object of which the targeted

window is part

9/2/2004 David Cronk

One Sided Communication

If (rank == 0) {
MPI_Win_lock (MPI_LOCK_SHARED, 1, 0, win);
MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
MPI_Win_unlock (1, win);

}

9/2/2004 David Cronk

One Sided Communication

Not widely implemented
MPICH and LAM only support active

synchronization
Passive synchronization is in development

May be useful for applications that lend themselves
to the get/put programming model

Evidence of some performance optimization on
shared memory machines (and Cray!)

I have seen no evidence that there is any
performance advantage on distributed memory
machines. (Other than Cray!)

9/2/2004 David Cronk

Course Outline

Day 2
Morning – Lecture

MPI-I/O
Afternoon – Lab

Hands on exercises using MPI-I/O

9/2/2004 David Cronk

MPI-I/O

Introduction
› What is parallel I/O
› Why do we need parallel I/O
› What is MPI-I/O

MPI-I/O
› Terms and definitions
› File manipulation
› Derived data types and file views

9/2/2004 David Cronk

OUTLINE (cont)

MPI-I/O (cont)
› Data access

• Non-collective access
• Collective access
• Split collective access

› File interoperability
› Gotchas - Consistency and semantics

9/2/2004 David Cronk

INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file

9/2/2004 David Cronk

INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file
› Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access
• Block or cyclic distributions cause non-

contiguous file access

9/2/2004 David Cronk

Non-Contiguous Access

File layoutLocal Mem

9/2/2004 David Cronk

INTRODUCTION
What is parallel I/O?

› Multiple processes accessing a single file
› Often, both data and file access is non-

contiguous
• Ghost cells cause non-contiguous data access
• Block or cyclic distributions cause non-

contiguous file access
› Want to access data and files with as few

I/O calls as possible

9/2/2004 David Cronk

INTRODUCTION (cont)

Why use parallel I/O?
› Many users do not have time to learn the

complexities of I/O optimization
› Use of parallel I/O can simplify coding

• Single read/write operation vs. multiple
read/write operations

› Parallel I/O potentially offers significant
performance improvement over traditional
approaches

9/2/2004 David Cronk

INTRODUCTION (cont)

Traditional approaches
› Each process writes to a separate file

• Often requires an additional post-processing
step

• Without post-processing, restarts must use
same number of processor

› Result sent to a master processor, which
collects results and writes out to disk

› Each processor calculates position in file
and writes individually

9/2/2004 David Cronk

INTRODUCTION (cont)

What is MPI-I/O?
› MPI-I/O is a set of extensions to the

original MPI standard
› This is an interface specification: It does

NOT give implementation specifics
› It provides routines for file manipulation

and data access
› Calls to MPI-I/O routines are portable

across a large number of architectures

9/2/2004 David Cronk

MPI-I/O

Terms and Definitions
› Displacement - Number of bytes from the

beginning of a file
› etype - unit of data access within a file
› filetype - datatype used to express access

patterns of a file
› file view - definition of access patterns of a

file
• Defines what parts of a file are visible to a

process

9/2/2004 David Cronk

MPI-I/O

Terms and Definitions
› Offset - Position in the file, relative to the

current view, expressed in terms of number
of etypes

› file pointers - offsets into the file
maintained by MPI

• Individual file pointer - local to the process that
opened the file

• Shared file pointer - shared (and manipulated)
by the group of processes that opened the file

9/2/2004 David Cronk

FILE MANIPULATION

MPI_FILE_OPEN(MPI_Comm comm, char
*filename, int mode, MPI_Info info, MPI_File
*fh, ierr)
Opens the file identified by filename on each

processor in communicator Comm
Collective over this group of processors
Each processor must use same value for mode and

reference the same file
info is used to give hints about access patterns

9/2/2004 David Cronk

FILE MANIPULATION
MODES

MPI_MODE_CREATE
Must be used if file does not exist

MPI_MODE_RDONLY
MPI_MODE_RDWR
MPI_MODE_WRONLY
MPI_MODE_EXCL

Error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE
MPI_MODE_UNIQUE_OPEN
MPI_MODE_SEQUENTIAL
MPI_MODE_APPEND

9/2/2004 David Cronk

Hints
Hints can be passed to the I/O implementation

via the info argument
MPI_Info info
MPI_Info_create (&info)
MPI_Info_set (info, key, value)

key is a string specifying the hint to be applied
value is a string specifying the value key is to be set

to
There are 15 pre-defined keys
The implementation may or may not make use

of hints

9/2/2004 David Cronk

Hints

striping_factor
The number of I/O devices to be used

striping_unit
The number of bytes per block

collective_buffering
true or false: whether collective buffering should be performed

cb_block_size
Block size to be used for buffering (nodes access data in

chunks this size
cb_buffer_size

The total buffer size that should be used for buffering (often
block size times # nodes)

9/2/2004 David Cronk

FILE MANIPULATION (cont)

MPI_FILE_CLOSE (MPI_File *fh)
This routine synchronizes the file state and

then closes the file
The user must ensure all I/O routines have

completed before closing the file
This is a collective routine (but not

synchronizing)

9/2/2004 David Cronk

DERIVED DATATYPES & VIEWS

Derived datatypes are not part of MPI-I/O
They are used extensively in conjunction

with MPI-I/O
A filetype is really a datatype expressing

the access pattern of a file
Filetypes are used to set file views

9/2/2004 David Cronk

DERIVED DATATYPES & VIEWS
Non-contiguous memory access
MPI_TYPE_CREATE_SUBARRAY

› NDIMS - number of dimensions
› ARRAY_OF_SIZES - number of elements in each dimension

of full array
› ARRAY_OF_SUBSIZES - number of elements in each

dimension of sub-array
› ARRAY_OF_STARTS - starting position in full array of sub-

array in each dimension
› ORDER - MPI_ORDER_(C or FORTRAN)
› OLDTYPE - datatype stored in full array
› NEWTYPE - handle to new datatype

9/2/2004 David Cronk

NONCONTIGUOUS MEMORY
ACCESS

0,1010,0

1,1 1,100

101,1 100,100

101,101101,0

9/2/2004 David Cronk

NONCONTIGUOUS MEMORY
ACCESS

INTEGER sizes(2), subsizes(2), starts(2), dtype, ierr
sizes(1) = 102
sizes(2) = 102
subsizes(1) = 100
subsizes(2) = 100
starts(1) = 1
starts(2)= 1
CALL MPI_TYPE_CREATE_SUBARRAY(2,sizes,subsizes,starts,

MPI_ORDER_FORTRAN,MPI_REAL8,dtype,ierr)

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

MPI_FILE_SET_VIEW(
MPI_File FH,
MPI_Offset DISP,
MPI_Datatype ETYPE,
MPI_Datatype FILETYPE,
char *DATAREP,
MPI_Info INFO,
IERROR)

header

100 bytes

Memory layout

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective
MPI_TYPE_CONTIGUOUS(NUM,OLD,NEW,IERR)

NUM - Number of contiguous elements
OLD - Old data type
NEW - New data type

MPI_TYPE_CREATE_RESIZED(OLD,LB,EXTENT,
NEW, IERR)

OLD - Old data type
LB - Lower Bound
EXTENT - New size
NEW - New data type

9/2/2004 David Cronk

‘Holes’ in the file

Memory layout

File layout (2 ints followed by 3 ints)

CALL MPI_TYPE_CONTIGUOUS(2, MPI_INT, CTYPE, IERR)

DISP = 4

LB = 0

EXTENT=5*4

CALL MPI_TYPE_CREATE_RESIZED(CTYPE,LB,EXTENT,FTYPE,IERR)

CALL MPI_TYPE_COMMIT(FTYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH,DISP,MPI_INT,FTYPE,’native’,MPI_INFO_NULL, IERR)

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective

A block-cyclic data distribution

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective

A block-cyclic data distribution
MPI_TYPE_VECTOR(

COUNT - Number of blocks
BLOCKLENGTH - Number of elements per block
STRIDE - Elements between start of each block
OLDTYPE - Old datatype
NEWTYPE - New datatype)

9/2/2004 David Cronk

Block-cyclic distribution

P0 P1 P2 P3

File layout (blocks of 4 ints)

CALL MPI_TYPE_VECTOR(3, 4, 16, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 4 * 4 * MYRANK

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’,
MPI_INFO_NULL, IERR)

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective

A block-cyclic data distribution
multi-dimensional array access

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective

A block-cyclic data distribution
multi-dimensional array access

MPI_TYPE_CREATE_SUBARRAY()

9/2/2004 David Cronk

Distributed array access

(0,199)

(199,0) (199,199)

(0,0)

9/2/2004 David Cronk

Distributed array access

Sizes(1) = 200

sizes(2) = 200

subsizes(1) = 100

subsizes(2) = 100

starts(1) = 0

starts(2) = 0

CALL MPI_TYPE_CREATE_SUBARRAY(2, SIZES, SUBSIZES, STARTS,
MPI_ORDER_FORTRAN, MPI_INT, FILETYPE, IERR)

CALL MPI_TYPE_COMMIT(FILETYPE, IERR)

CALL MPI_FILE_SET_VIEW(FH, 0, MPI_INT, FILETYPE, ‘NATIVE’,
MPI_INFO_NULL, IERR)

9/2/2004 David Cronk

NONCONTIGUOUS FILE ACCESS

The file has ‘holes’ in it from the
processor’s perspective

A block-cyclic data distribution
multi-dimensional array distributed with a

block distribution
Irregularly distributed arrays

9/2/2004 David Cronk

Irregularly distributed arrays

MPI_TYPE_CREATE_INDEXED_BLOCK
COUNT - Number of blocks
LENGTH - Elements per block
MAP - Array of displacements
OLD - Old datatype
NEW - New datatype

9/2/2004 David Cronk

Irregularly distributed arrays

0 1 2 4 7 11 12 15 20 22

0 1 2 4 7 11 12 15 20 22

MAP_ARRAY

9/2/2004 David Cronk

Irregularly distributed arrays

CALL MPI_TYPE_CREATE_INDEXED_BLOCK (10, 1, FILE_MAP, MPI_INT,
FILETYPE, IERR)

CALL MPI_TYPE_COMMIT (FILETYPE, IERR)

DISP = 0

CALL MPI_FILE_SET_VIEW (FH, DISP, MPI_INT, FILETYPE, ‘native’,
MPI_INFO_NULL, IERR)

9/2/2004 David Cronk

DATA ACCESS

Explicit
Offsets

Individual
File Pointers

Shared
File Pointers

Blocking

Non-Blocking

Non-Collective
Collective

9/2/2004 David Cronk

COLLECTIVE I/O

Memory layout on 4 processor

MPI temporary memory buffer

File layout

9/2/2004 David Cronk

Two-Phase I/O

I/O Node I/O Node

9/2/2004 David Cronk

Two-Phase I/O

I/O Node I/O Node

SHUFFLE

9/2/2004 David Cronk

Two-Phase I/O with Data Sieving

I/O Node I/O Node

Shuffle and Sieve

9/2/2004 David Cronk

Collective I/O

Server-based Collective I/O
› Similar to client based, but the I/O nodes collect

data in block sizes for file access
› No system buffer space needed on compute

nodes
Disk-Directed I/O (DDIO)

Uses server-based collective I/O, but reads data
from disk in a manner than minimizes disk head
movement. The data is transferred between I/O
nodes and compute nodes as they are
read/written

9/2/2004 David Cronk

DATA ACCESS ROUTINES

9/2/2004 David Cronk

EXPLICIT OFFSETS

Parameters
› MPI_File FH - File handle
› MPI_Offset OFFSET - Location in file to start
› void *BUF - Buffer to write from/read to
› int COUNT - Number of elements
› MPI_Datatype DATATYPE - Type of each element
› MPI_Status STATUS - Return status (blocking)
› MPI_Request REQUEST - Request handle (non-

blocking,non-collective)

9/2/2004 David Cronk

EXPLICIT OFFSETS (cont)

I/O Routines
› MPI_FILE_(READ/WRITE)_AT ()
› MPI_FILE_(READ/WRITE)_AT_ALL ()
› MPI_FILE_I(READ/WRITE)_AT ()
› MPI_FILE_(READ/WRITE)_AT_ALL_BEGIN ()
› MPI_FILE_(READ/WRITE)_AT_ALL_END (FH,

BUF, STATUS)

9/2/2004 David Cronk

EXPLICIT OFFSETS

header

50 bytes

int buff[3];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen,
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 58;
MPI_File_open (MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write_at (fh, 5, buff, 3, MPI_INT, &status);
MPI_File_close (&fh);

9/2/2004 David Cronk

IDIVIDUAL FILE POINTERS

Parameters
› MPI_File FH - File handle
› void *BUF - Buffer to write to/read from
› int COUNT - number of elements to be

read/written
› MPI_Datatype DATATYPE - Type of each element
› MPI_Status STATUS - Return status (blocking)
› MPI_Request REQUEST - Request handle (non-

blocking, non-collective)

9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

I/O Routines
› MPI_FILE_(READ/WRITE) ()
› MPI_FILE_(READ/WRITE)_ALL ()
› MPI_FILE_I(READ/WRITE) ()
› MPI_FILE_(READ/WRITE)_ALL_BEGIN()
› MPI_FILE_(READ/WRITE)_ALL_END (FH,

BUF, STATUS)

9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

fp0 fp1 fp0 fp1 fp0 fp1

int buff[12];

count = 6;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen,
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = 50 + myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buff, 6, MPI_INT, &status);
MPI_File_write(fh, buff, 6, MPI_INT, &status);
MPI_File_close (&fh);

9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen,
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);

9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen,
stride, MPI_INT, &ftype);

MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
disp = disp + 4*20;
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);

9/2/2004 David Cronk

INDIVIDUAL FILE POINTERS

int buffA[10];
Int buffB[10];

count = 5;
blocklen = 2;
stride = 4

MPI_Type_vector (count, blocklen,
stride, MPI_INT, &atype);

extent = count*blocklen*nprocs*4;
MPI_Type_create_resized (atype, 0,

extent, &ftype);
MPI_Type_commit (ftype);

disp = myrank*8;
MPI_File_open (MPI_COMM_WORLD, filename,

MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_set_view (fh, disp, MPI_INT, ftype, “native”,

MPI_INFO_NULL);
MPI_File_write(fh, buffA, 10, MPI_INT, &status);
MPI_File_write(fh, buffB, 10, MPI_INT, &status);
MPI_File_close (&fh);

9/2/2004 David Cronk

SHARED FILE POINTERS

All processes must have the same view
Parameters

› MPI_File FH - File handle
› void *BUF - Buffer
› int COUNT - Number of elements
› MPI_Datatype DATATYPE - Type of the elements
› MPI_Status STATUS - Return status (blocking)
› MPI_Requests REQUEST - Request handle (Non-

blocking, non-collective

9/2/2004 David Cronk

SHARED FILE POINTERS

I/O Routines
› MPI_FILE_(READ/WRITE)_SHARED ()
› MPI_FILE_I(READ/WRITE)_SHARED ()
› MPI_FILE_(READ/WRITE)_ORDERED ()
› MPI_FILE_(READ/WRITE)_ORDERED_B

EGIN ()
› MPI_FILE_(READ/WRITE)_ORDERED_E

ND (FH, BUF, STATUS)

9/2/2004 David Cronk

SHARED FILE POINTERS
comm = MPI_COMM_WORLD;
MPI_Comm_rank (comm, &rank);
amode = MPI_MODE_CREATE |

MPI_MODE_WRONLY;
…..
MPI_File_open (comm, logfile, amode,

MPI_INFO_NULL, &fh);
…..
do some computing
if (some event occurred) {

sprintf(buf, “Process %d: %s\n”, rank, event);
size = strlen(buf);
MPI_File_write_shared (fh, buf, size

MPI_CHAR, &status);
}
MPI_File_close (&fh);
…..

int buff[100];

MPI_File_open (comm, logfile, amode,
MPI_INFO_NULL, &fh);

MPI_File_write_ordered (fh, buf, 100,
MPI_INT, &status);

MPI_File_close (&fh);

P0 P1 Pn-1P2

100 100 100 100

9/2/2004 David Cronk

FILE INTEROPERABILITY

MPI puts no constraints on how an
implementation should store files

If a file is not stored as a linear byte
stream, there must be a utility for
converting the file into a linear byte
stream

Data representation aids interoperability

9/2/2004 David Cronk

FILE INTEROPERABILITY (cont)

Data Representation
› Native - Data stored exactly as it is in

memory.
› Internal - Data may be converted, but may

be readable by the same MPI
implementation, even on different
architectures

› external32 - This representation is defined
by MPI. Files written in external32 format
can be read by any MPI on any machine

9/2/2004 David Cronk

FILE INTEROPERABILITY (cont)

Some MPI-I/O implementations (Romio),
created files are no different than those
created by the underlying file system.

This means normal Posix commands (cp,
rm, etc) work with files created by these
implementations

Non-MPI programs can read these files

9/2/2004 David Cronk

GOTCHAS - Consistency &
Semantics

Collective routines are NOT synchronizing
Output data may be buffered

› Just because a process has completed a
write does not mean the data is available
to other processes

Three ways to ensure file consistency:
› MPI_FILE_SET_ATOMICITY ()
› MPI_FILE_SYNC ()
› MPI_FILE_CLOSE ()

9/2/2004 David Cronk

CONSISTENCY & SEMANTICS

MPI_FILE_SET_ATOMICITY (MPI_File fh, int
flag, ierr)
› Causes all writes to be immediately written to disk.

This is a collective operation
MPI_FILE_SYNC (MPI_File fh, ierr)

› Collective operation which forces buffered data to
be written to disk

MPI_FILE_CLOSE (MPI_File *fh)
› Writes any buffered data to disk before closing the

file

9/2/2004 David Cronk

Cached

Process 0 Process 1

Write aqua dataRead magenta data

Close file

Read aqua data

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL
MPI_FILE_SET_ATOMICITY
(FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL
MPI_FILE_SET_ATOMICITY
(FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL
MPI_FILE_SET_ATOMICITY
(FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL
MPI_FILE_SET_ATOMICITY
(FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_FILE_CLOSE (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

GOTCHA!!!

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
100, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_SYNCH (FH)

CALL MPI_FILE_READ_AT (FH,
0, …)

CALL MPI_FILE_OPEN (…, FH)

CALL MPI_FILE_WRITE_AT (FH,
0, …)

CALL MPI_FILE_SYNCH (FH)

CALL MPI_BARRIER ()

CALL MPI_FILE_SYNCH (FH)

CALL MPI_FILE_READ_AT (FH,
100, …)

9/2/2004 David Cronk

CONCLUSIONS

MPI-I/O potentially offers significant
improvement in I/O performance

This improvement can be attained with
minimal effort on part of the user
Simpler programming with fewer calls to I/O

routines
Easier program maintenance due to simple

API

9/2/2004 David Cronk

Recommended references

MPI - The Complete Reference Volume 1, The
MPI Core

MPI - The Complete Reference Volume 2, The
MPI Extensions

USING MPI: Portable Parallel Programming
with the Message-Passing Interface

Using MPI-2: Advanced Features of the
Message-Passing Interface

9/2/2004 David Cronk

Recommended references

http://pdb.cs.utk.edu
Click “View Database”
Go to “Documents”

• MPI_CHECK
• Guidelines for writing portable MPI programs

http://www.cs.utk.edu/~cronk/Using_MPI_IO.pdf
http://www.cs.utk.edu/~cronk/Using_MPI_IO.doc

http://pdb.cs.utk.edu/
http://pdb.cs.utk.edu/

9/2/2004 David Cronk

Course Outline

Day 3
Morning – Lecture

Performance Analysis of MPI programs
TAU
Vampir/VampirTrace

Afternoon – Lab
Hands on exercises using Vampir and

VampirTrace

9/2/2004 David Cronk

Performance Analysis

It is typically much more difficult to debug
and tune parallel programs

Programmers often have no idea where to
begin searching for possible bottlenecks

A tool that allows the programmer to get a
quick overview of the program’s
execution can aid the programmer in
beginning this search

9/2/2004 David Cronk

Basic Tuning Process

Select “best” compiler flags
Select/interface with “best” libraries
Measure
Validate
Hand-tune (routine/loop-level tuning)
… iterate

Observation: The best way to improve parallel performance is often
still to simply improve sequential performance!

9/2/2004 David Cronk

Performance Analysis in Practice

Observation: many application developers
don’t use performance tools at all (or
rarely)

Why?
Learning curve can be steep
Results can be difficult to understand
Investment (time) can be substantial
Maturity/availability of various tools
Not everyone is a computer scientist

9/2/2004 David Cronk

Profiling

Recording of summary information during execution
inclusive, exclusive time, # calls, hardware statistics, …

Reflects performance behavior of program entities
functions, loops, basic blocks
user-defined “semantic” entities

Very good for low-cost performance assessment
Helps to expose performance bottlenecks and hotspots
Implemented through

sampling: periodic OS interrupts or hardware counter traps
instrumentation: direct insertion of measurement code

No temporal context

9/2/2004 David Cronk

Tracing

Recording of information about significant points
(events) during program execution
entering/exiting code region (function, loop, block, …)
thread/process interactions (e.g., send/receive message)

Save information in event record
timestamp
CPU identifier, thread identifier
Event type and event-specific information

Event trace is a time-sequenced stream of event
records

Can be used to reconstruct dynamic program behavior

9/2/2004 David Cronk

TAU Performance System
Tuning and Analysis Utilities (11+ year project effort)
Performance system framework for scalable parallel and

distributed high-performance computing
Targets a general complex system computation model

nodes / contexts / threads
Multi-level: system / software / parallelism
Measurement and analysis abstraction

Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
Portable performance profiling and tracing facility
Open software approach with technology integration

University of Oregon , Forschungszentrum Jülich, LANL

9/2/2004 David Cronk

TAU Instrumentation Approach

Support for standard program events
Routines
Classes and templates
Statement-level blocks

Support for user-defined events
Begin/End events (“user-defined timers”)
Atomic events (e.g., size of memory allocated/freed)
Selection of event statistics

Support definition of “semantic” entities for mapping
Support for event groups
Instrumentation optimization

9/2/2004 David Cronk

TAU Instrumentation

Flexible instrumentation mechanisms at multiple
levels
Source code

manual
automatic

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP spec)

Object code
pre-instrumented libraries (e.g., MPI using PMPI)
statically-linked and dynamically-linked

Executable code
dynamic instrumentation (pre-execution) (DynInstAPI)
virtual machine instrumentation (e.g., Java using JVMPI)

9/2/2004 David Cronk

Multi-Level Instrumentation

Targets common measurement interface
TAU API

Multiple instrumentation interfaces
Simultaneously active

Information sharing between interfaces
Utilizes instrumentation knowledge between levels

Selective instrumentation
Available at each level
Cross-level selection

Targets a common performance model
Presents a unified view of execution

Consistent performance events

9/2/2004 David Cronk

TAU Performance Measurement

TAU supports profiling and tracing measurement
Robust timing and hardware performance support using

PAPI
Support for online performance monitoring

Profile and trace performance data export to file system
Selective exporting

Extension of TAU measurement for multiple counters
Creation of user-defined TAU counters
Access to system-level metrics

Support for callpath measurement
Integration with system-level performance data

Linux MAGNET/MUSE (Wu Feng, LANL)

9/2/2004 David Cronk

TAU Measurement Options
Parallel profiling

Function-level, block-level, statement-level
Supports user-defined events
TAU parallel profile data stored during execution
Hardware counts values
Support for multiple counters
Support for callgraph and callpath profiling

Tracing
All profile-level events
Inter-process communication events
Trace merging and format conversion

9/2/2004 David Cronk

TAU Analysis

Parallel profile analysis
Pprof

parallel profiler with text-based display
ParaProf

Graphical, scalable, parallel profile analysis and display

Trace analysis and visualization
Trace merging and clock adjustment (if necessary)
Trace format conversion (ALOG, SDDF, VTF,

Paraver)
Trace visualization using Vampir (Pallas/Intel)

9/2/2004 David Cronk

Pprof Output (NAS Parallel
Benchmark – LU)Intel Quad

PIII Xeon
F90 +

MPICH
Profile

- Node
- Context
- Thread

Events
- code
- MPI

9/2/2004 David Cronk

Terminology – Example
int main()
{ /* takes 100 secs */

f1(); /* takes 20 secs */
f2(); /* takes 50 secs */
f1(); /* takes 20 secs */

/* other work */
}

/*
Time can be replaced by counts
from PAPI e.g., PAPI_FP_INS. */

For routine “int main()”:
Exclusive time

100-20-50-20=10 secs
Inclusive time

100 secs
Calls

1 call
Subrs (no. of child routines

called)
3

Inclusive time/call
100secs

9/2/2004 David Cronk

ParaProf (NAS Parallel
Benchmark – LU)

node,context, thread Global profiles Routine
profile across
all nodes

Event legend

Individual profile

9/2/2004 David Cronk

Using TAU

Install TAU
% configure ; make clean install

Instrument application
TAU Profiling API

Typically modify application makefile
include TAU’s stub makefile, modify variables

Set environment variables
directory where profiles/traces are to be stored

Execute application
% mpirun –np <procs> a.out;

Analyze performance data
paraprof, vampir, pprof, paraver …

9/2/2004 David Cronk

Description of Optional Packages

PAPI – Measures hardware performance data e.g.,
floating point instructions, L1 data cache misses etc.

DyninstAPI – Helps instrument an application binary at
runtime or rewrites the binary

EPILOG – Trace library. Epilog traces can be analyzed
by EXPERT [FZJ], an automated bottleneck
detection tool.

Opari – Tool that instruments OpenMP programs
Vampir – Commercial trace visualization tool [formally

Pallas, now intelb]
Paraver – Trace visualization tool [CEPBA]

9/2/2004 David Cronk

TAU Measurement System
Configuration

configure [OPTIONS]
{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation

(JDK)
-opari=<dir> Specify location of Opari OpenMP

tool
-papi=<dir> Specify location of PAPI
-pdt=<dir> Specify location of PDT
-dyninst=<dir> Specify location of DynInst

Package
-mpi[inc/lib]=<dir> Specify MPI library

instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-epilog=<dir> Specify location of EPILOG

9/2/2004 David Cronk

TAU Measurement System
Configuration

configure [OPTIONS]
-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEMEMORY Track heap memory for each

routine
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers

9/2/2004 David Cronk

Compiling

% configure [options]
% make clean install

Creates <arch>/lib/Makefile.tau<options> stub Makefile
and <arch>/lib/libTau<options>.a [.so] libraries which defines a
single configuration of TAU

9/2/2004 David Cronk

Compiling: TAU Makefiles

Include TAU Stub Makefile (<arch>/lib) in the user’s Makefile.
Variables:

TAU_CXX Specify the C++ compiler used by TAU
TAU_CC, TAU_F90 Specify the C, F90 compilers
TAU_DEFS Defines used by TAU. Add to CFLAGS
TAU_LDFLAGS Linker options. Add to LDFLAGS
TAU_INCLUDE Header files include path. Add to CFLAGS
TAU_LIBS Statically linked TAU library. Add to LIBS
TAU_SHLIBS Dynamically linked TAU library
TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
TAU_FORTRANLIBS Must be linked in with C++ linker for F90
TAU_CXXLIBS Must be linked in with F90 linker
TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
TAU_DISABLE TAU’s dummy F90 stub library

Note: Not including TAU_DEFS in CFLAGS disables instrumentation in
C/C++ programs (TAU_DISABLE for f90).

9/2/2004 David Cronk

Including TAU Makefile - F90
Example 3.5/rs6000/lib/Makefile.tau-pdtinclude $PET_HOME/PTOOLS/tau-2.1

F90 = $(TAU_F90)
FFLAGS = -I<dir>
LIBS = $(TAU_LIBS) $(TAU_CXXLIBS)
OBJS = ...
TARGET= a.out
TARGET: $(OBJS)

$(F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)
.f.o:

$(F90) $(FFLAGS) -c $< -o $@

9/2/2004 David Cronk

TAU Makefile for PDT with MPI
and F90include $PET/PTOOLS/tau-2.13.5/rs6000/lib/Makefile.tau-mpi-pdt

FCOMPILE = $(TAU_F90) $(TAU_MPI_INCLUDE)
PDTF95PARSE = $(PDTDIR)/$(PDTARCHDIR)/bin/f95parse
TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor
PDB=merged.pdb
COMPILE_RULE= $(TAU_INSTR) $(PDB) $< -o $*.inst.f –f sel.dat;\

$(FCOMPILE) $*.inst.f –o $@;
LIBS = $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
OBJS = f1.o f2.o f3.o …
TARGET= a.out
TARGET: $(PDB) $(OBJS)

$(TAU_F90) $(LDFLAGS) $(OBJS) -o $@ $(LIBS)
$(PDB): $(OBJS:.o=.f)

$(PDTF95PARSE) $(OBJS:.o=.f) $(TAU_MPI_INCLUDE) –o$(PDB)
This expands to f95parse *.f –I…/mpi/include -omerged.pdb
.f.o:

$(COMPILE_RULE)

9/2/2004 David Cronk

Compensation of Instrumentation
Overhead

Runtime estimation of a single timer overhead
Evaluation of number of timer calls along a

calling path
Compensation by subtracting timer overhead
Recalculation of performance metrics to improve

the accuracy of measurements
Configure TAU with –COMPENSATE

configuration option

9/2/2004 David Cronk

TAU Performance System Status

Computing platforms (selected)
IBM SP / pSeries, SGI Origin 2K/3K, Cray T3E / SV-1 / X1, HP

(Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6,
Linux clusters (IA-32/64, Alpha, PPC, PA-RISC, Power,
Opteron), Apple (G4/5, OS X), Windows

Programming languages
C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python

Thread libraries
pthreads, SGI sproc, Java,Windows, OpenMP

Compilers (selected)
Intel KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, Sun, Microsoft,

SGI, Cray, IBM (xlc, xlf), Compaq, NEC, Intel

9/2/2004 David Cronk

Vampir/VampirTrace

Vampirtrace is an instrumented MPI
library to link with user code for
automatic tracefile generation on
parallel platforms

Vampir is a visualization program used to
visualize trace data generated by
Vampitrace

9/2/2004 David Cronk

Vampir/VampirTrace

http://www.pallas.com/e/products/vampir
Version 4.0
Languages and Libraries: C, C++,

Fotran77/90/95, HPF, MPI, OpenMP
support being worked on

Supported Platforms: Most all HPC
platforms (for how long?)

http://www.pallas.com/e/products/vampir
http://www.pallas.com/e/products/vampir

9/2/2004 David Cronk

Vampirtrace

Profiling library for MPI applications
Produces tracefiles that can be analyzed with

the Vampir performance analysis tool or the
Dimemas performance prediction tool.

Merely linking your application with Vampirtrace
enables tracing of all MPI calls. On some
platforms, calls to user-level subroutines are
also recorded.

API for controlling profiling and for defining and
tracing user-defined activities.

9/2/2004 David Cronk

Vampir Features

Tool for converting tracefile data for MPI
programs into a variety of graphical
views

Highly configurable
Timeline display with zooming and

scrolling capabilities
Profiling and communications statistics
Source-code clickback

9/2/2004 David Cronk

Running and Analyzing Vampirtrace-
instrumented Programs

Programs linked with Vampirtrace are
started in the same way as ordinary
MPI programs.

Use Vampir to analyze the resulting
tracefile.

A configuration file is saved that
controls all your default values

9/2/2004 David Cronk

An example program

Poisson solver (iterative)
After each iteration, each process must

exchange data with both its left and
right neighbor

Each process does a sendrecv to its right
followed by a sendrecv to its left

9/2/2004 David Cronk

Getting Started

If your path is set up correctly, simply enter “vampir”

To open a tracefile, select “File” followed by “Open Tracefile”
Select tracefile to open or enter a known tracefile

The entire event trace is not opened. Rather, metadata
Is read and a frame display is opened. This is a preview
Of the trace

9/2/2004 David Cronk

Frame Display

Right click to get a context menu and select load/Whole Trace

9/2/2004 David Cronk

Summary Chart
By default, Vampir starts with a summary chart of the entire
execution run

9/2/2004 David Cronk

Summary Timeline

9/2/2004 David Cronk

Timeline

9/2/2004 David Cronk

Zoomed Timeline

9/2/2004 David Cronk

Clicking on an activity

9/2/2004 David Cronk

Clicking on an activity

9/2/2004 David Cronk

Clicking on an activity

9/2/2004 David Cronk

Zoomed Timeline

9/2/2004 David Cronk

Zoomed Summary CHart

9/2/2004 David Cronk

A different approach

Rather than use sendrecv, use non-
blocking communication

Allows data movement to occur
concurrently

Should greatly reduce the amount of time
spent waiting for data

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

9/2/2004 David Cronk

A Different Approach

By switching to non-blocking communication we
have reduced the overall execution time.

Much of the remaining time is from start-up
We have eliminated the sever imbalance in wait

time
There is still a high ratio of MPI to application

› Probably due to not having a large enough
problem size

9/2/2004 David Cronk

Another example

Parallel sort
Each process sorts its portion of the data

and sends the results to process 0
Process 0 merges the results into a final

sort

9/2/2004 David Cronk

Activity Chart

9/2/2004 David Cronk

Timeline

9/2/2004 David Cronk

Message statistics

9/2/2004 David Cronk

A different approach to sort

Each process still sorts its local data
Pass the data based on a tree algorithm,

with half the processes receiving data
and merging it

Continue up the tree to the root

9/2/2004 David Cronk

A different approach to sort

9/2/2004 David Cronk

A different approach to sort

9/2/2004 David Cronk

A different approach to sort

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Process Activity Chart Displays

9/2/2004 David Cronk

Displays

Timeline
Activity Chart
Summary Chart
Message Statistics
File I/O Statistics

9/2/2004 David Cronk

Global Timeline Display

Context menu is activated with a right
mouse click inside any display window

Zoom in by selecting start of desired
region, left click held, drag mouse to
end of desired region and release

Can zoom in to unlimited depth
Step out of zooms from context menu

9/2/2004 David Cronk

Activity Charts

Default is pie chart, but can also use
histograms or table mode

Can select different activities to be shown
Can hide some activities
Can change scale in histograms

9/2/2004 David Cronk

Summary Charts

Shows total time spent on each activity
Can be sum of all processors or average

for each processor
Similar context menu options as activity

charts
Default display is horizontal histogram,

but can also be vertical histogram, pie
chart, or table

9/2/2004 David Cronk

Communication Statistics

Shows matrix of comm statistics
Can show total bytes, total msgs, avg msg

size, longest, shortest, and transmission
rates

Can zoom into sub-matrices
Can get length statistics
Can filter messages by type (tag) and

communicator

9/2/2004 David Cronk

Tracefile Size

Often, the trace file from a fully
instrumented code grows to an
unmanageable size
› Can limit the problem size for analysis
› Can limit the number of iterations
› Can use the vampirtrace API to limit size

• vttraceoff (): Disables tracing
• vttraceon(): Re-enables tracing

9/2/2004 David Cronk

Performance Analysis and Tuning

First, make sure there is available
speedup in the MPI routines
› Use a profiling tool such as VAMPIR
› If the total time spent in MPI routines is a

small fraction of total execution time, there
is probably not much use tuning the
message passing code

• BEWARE: Profiling tools can miss compute
cycles used due to non-blocking calls!

9/2/2004 David Cronk

Performance Analysis and Tuning

If MPI routines account for a significant
portion of your execution time:
› Try to identify communication hot-spots

• Will changing the order of communication
reduce the hotspot problem?

• Will changing the data distribution reduce
communication without increasing
computation?

– Sending more data is better than sending more
messages

9/2/2004 David Cronk

Performance Analysis and Tuning

› Are you using non-blocking calls?
• Post sends/receives as soon as possible, but

don’t wait for their completion if there is still
work you can do!

• If you are waiting for long periods of time for
completion of non-blocking sends, this may be
an indication of small system buffers. Consider
using buffered mode.

9/2/2004 David Cronk

Performance Analysis and Tuning

› Are you sending lots of small messages?
• Message passing has significant overhead

(latency). Latency accounts for a large
proportion of the message transmission time for
small messages.

– Consider marshaling values into larger messages if
this is appropriate

– If you are using derived datatypes, check if the MPI
implementation handles these types efficiently

– Consider using MPI_PACK where appropriate
» dynamic data layouts or sender needs to send

the receiver meta-data.

9/2/2004 David Cronk

Performance Analysis and Tuning

› Use collective operations when appropriate
• many collective operations use mechanisms

such as broadcast trees to achieve better
performance

› Is your computation to communication ratio
too small?

• You may be running on too many processors
for the problem size

9/2/2004 David Cronk

MPI_CHECK

Tool developed at the University of Iowa for
debugging MPI programs written in free or
fixed format Fortran 90 and Fortran 77

You can download your own free copy of the
software and license at
http://www.hpc.iastate.edu/MPI-CHECK.htm

MPI-CHECK does both compile-time and run-
time error checking

http://www.hpc.iastate.edu/MPI-CHECK.htm
http://www.hpc.iastate.edu/MPI-CHECK.htm

9/2/2004 David Cronk

Compile Time Error Checking

Checks for consistency in the data type of
each argument

Checks the number of arguments
Checks the little used intent of each

argument

9/2/2004 David Cronk

Run-Time Error Checking

Buffer data type inconisistency
This error is flagged if the Fortran data type of the

send or receive buffer of an MPI send or receive
call is inconsistent with the declared datatype in
the MPI call

Buffer out of bounds
This error is flagged if either the starting or ending

address of a send or receive buffer is outside the
declared bounds of the buffer

Improper placement of MPI_Init or MPI_Finalize

9/2/2004 David Cronk

Run-Time Error Checking

Illegal message length
Invalid MPI Rank
Actual or potential deadlock

Any cycle of blocking send calls creates a
potential for deadlock. While this deadlock
may not be manifest on all machines, MPI-
CHECK will detect if the potential for
deadlock exists.

9/2/2004 David Cronk

Using MPI-CHECK

Programs are compiled the same way as
normal, except mpicheck is the first command
on the command line:
f90 –o a.out –O3 main.f90 sub1.f90 sub2.f90 –lmpi
Becomes
mpicheck f90 –o a.out –O3 main.f90 sub1.f90

sub2.f90 –lmpi
Source files are required, rather than object files
Programs are ran just as without MPI-CHECK

9/2/2004 David Cronk

Remarks

While MPI-CHECK does not flag all possible MPI errors, and it may
flag some instances of correct usage as potential errors, it has
been shown to be very useful in discovering many subtle, yet
common, MPI programming errors. It is easy to use and adds
little overhead to the execution times of programs.

More information on MPI-CHECK and MPI-CHECK2 (deadlock
detection) can be found at:

http://www.hpc.iastate.edu/Papers/mpicheck/mpicheck1.htm
and
http://www.hpc.iastate.edu/Papers/mpicheck2/mpicheck2.htm

http://www.hpc.iastate.edu/Papers/mpicheck/mpicheck1.htm
http://www.hpc.iastate.edu/Papers/mpicheck2/mpicheck2.htm

	ADVANCED MPI
	Course Outline
	Course Outline (cont)
	bCourse Outline (cont)
	Communicators and Groups
	Communicators and Groups
	Communicators and Groups(cont)
	Communicators and Groups(cont)
	Communicators and Groups(cont)
	Group Management
	Group Accessors
	Group Accessors (cont)
	Groups Accessors (cont)
	Group Constructors
	Group Constructors (cont)
	Group Constructors (cont)Set Operations
	Group Constructors (cont)Set Operations
	Group Constructors (cont)Set Operations
	Group Constructors (cont)Set Operations
	Group Constructors (cont)
	Group Constructors (cont)
	Group Constructors (cont)
	Group Constructors (cont)
	Group Constructors (cont)
	Communicator Management
	Communicator Accessors
	Communicator Constructors
	Communicator Constructors
	Communicator Constructors
	Communicator Constructors
	Communicator Constructors
	Communication Constructors
	Communication Constructors
	Communication Constructors
	Destructors
	Intercommunicators
	Intercommunicators
	Intercommunicator Accessors
	Intercommunicator Constructors
	MPI_COMM_CREATE
	MPI_COMM_SPLIT
	MPI_COMM_SPLIT
	Intercommunicator Constructors
	Intercommunicators
	Communication Constructors
	Intercommunicators
	Extended Collective Communication
	Three types of collective
	Data movement in extended collectives
	Data movement in extended collectives
	MPI_Barrier (comm, ierr)
	MPI_BCAST (buff, count, dtype, root, comm, ierr)
	MPI_Bcast
	MPI_Gather (sbuf, scount, stype, rbuf,rcount,rtype,root, comm,ierr)
	MPI_GATHER
	MPI_Scatter (sbuf, scount, stype, rbuf,rcount,rtype,root, comm,ierr)
	MPI_SCATTER
	MPI_Allgather (sbuf,scount,stype, rbuf,rcount,rtype, comm,ierr)
	MPI_ALLGATHER
	MPI_Alltoall (sbuff, scount, stype, rbuf, rcount, rtype, comm, ierr)
	MPI_ALLTOALL
	MPI_Reduce (sbuf, rbuf, count, datatype, op, root, comm, ierr)
	MPI_Allreduce (sbuf, rbuf, count, datatype, op, comm, ierr)
	MPI_Reduce_scatter (sbuf, rbuf, rcounts, datatype, op, comm, ierr)
	MPI_REDUCE_SCATTER
	MPI_Scan and MPI_Exscan
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	Point-to-Point Message Passing
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	One Sided Communication
	Course Outline
	MPI-I/O
	OUTLINE (cont)
	INTRODUCTION
	INTRODUCTION
	Non-Contiguous Access
	INTRODUCTION
	INTRODUCTION (cont)
	INTRODUCTION (cont)
	INTRODUCTION (cont)
	MPI-I/O
	MPI-I/O
	FILE MANIPULATION
	FILE MANIPULATION
	Hints
	Hints
	FILE MANIPULATION (cont)
	DERIVED DATATYPES & VIEWS
	DERIVED DATATYPES & VIEWS
	NONCONTIGUOUS MEMORY ACCESS
	NONCONTIGUOUS MEMORY ACCESS
	NONCONTIGUOUS FILE ACCESS
	NONCONTIGUOUS FILE ACCESS
	‘Holes’ in the file
	NONCONTIGUOUS FILE ACCESS
	NONCONTIGUOUS FILE ACCESS
	Block-cyclic distribution
	NONCONTIGUOUS FILE ACCESS
	NONCONTIGUOUS FILE ACCESS
	Distributed array access
	Distributed array access
	NONCONTIGUOUS FILE ACCESS
	Irregularly distributed arrays
	Irregularly distributed arrays
	Irregularly distributed arrays
	DATA ACCESS
	COLLECTIVE I/O
	Two-Phase I/O
	Two-Phase I/O
	Two-Phase I/O with Data Sieving
	Collective I/O
	EXPLICIT OFFSETS
	EXPLICIT OFFSETS (cont)
	EXPLICIT OFFSETS
	IDIVIDUAL FILE POINTERS
	INDIVIDUAL FILE POINTERS
	INDIVIDUAL FILE POINTERS
	INDIVIDUAL FILE POINTERS
	INDIVIDUAL FILE POINTERS
	INDIVIDUAL FILE POINTERS
	SHARED FILE POINTERS
	SHARED FILE POINTERS
	SHARED FILE POINTERS
	FILE INTEROPERABILITY
	FILE INTEROPERABILITY (cont)
	FILE INTEROPERABILITY (cont)
	GOTCHAS - Consistency & Semantics
	CONSISTENCY & SEMANTICS
	GOTCHA!!!
	GOTCHA!!!
	GOTCHA!!!
	GOTCHA!!!
	GOTCHA!!!
	GOTCHA!!!
	CONCLUSIONS
	Recommended references
	Recommended references
	Course Outline
	Performance Analysis
	Basic Tuning Process
	Performance Analysis in Practice
	Profiling
	Tracing
	TAU Performance System
	TAU Instrumentation Approach
	TAU Instrumentation
	Multi-Level Instrumentation
	TAU Performance Measurement
	TAU Measurement Options
	TAU Analysis
	Pprof Output (NAS Parallel Benchmark – LU)
	Terminology – Example
	ParaProf (NAS Parallel Benchmark – LU)
	Using TAU
	Description of Optional Packages
	TAU Measurement System Configuration
	TAU Measurement System Configuration
	Compiling
	Compiling: TAU Makefiles
	Including TAU Makefile - F90 Example
	TAU Makefile for PDT with MPI and F90
	Compensation of Instrumentation Overhead
	TAU Performance System Status
	Vampir/VampirTrace
	Vampir/VampirTrace
	Vampirtrace
	Vampir Features
	Running and Analyzing Vampirtrace-instrumented Programs
	An example program
	Getting Started
	Frame Display
	Summary Chart
	Summary Timeline
	Timeline
	Zoomed Timeline
	Clicking on an activity
	Clicking on an activity
	Clicking on an activity
	Zoomed Timeline
	Zoomed Summary CHart
	A different approach
	A Different Approach
	A Different Approach
	A Different Approach
	A Different Approach
	A Different Approach
	A Different Approach
	A Different Approach
	Another example
	Activity Chart
	Timeline
	Message statistics
	A different approach to sort
	A different approach to sort
	A different approach to sort
	A different approach to sort
	Process Activity Chart Displays
	Process Activity Chart Displays
	Process Activity Chart Displays
	Process Activity Chart Displays
	Process Activity Chart Displays
	Process Activity Chart Displays
	Process Activity Chart Displays
	Displays
	Global Timeline Display
	Activity Charts
	Summary Charts
	Communication Statistics
	Tracefile Size
	Performance Analysis and Tuning
	Performance Analysis and Tuning
	Performance Analysis and Tuning
	Performance Analysis and Tuning
	Performance Analysis and Tuning
	MPI_CHECK
	Compile Time Error Checking
	Run-Time Error Checking
	Run-Time Error Checking
	Using MPI-CHECK
	Remarks

