Using IDL

IDL Version 6.2
July 2005 Edition
Copyright © RSI

All Rights Reserved

0705IDL62USG

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any othersresulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

INTFOAUCING IDL et e e e e 9
(@< V=YV o 1 15 S 10
SUPPOItEd FilE€ FOMMALSocveceieciecie ettt et sr e et sne e 12
=11 Vo 1 Vo N 0TS 15
Launching the ITOOIScviivieiceee et rs 17
Environment Variables USed DY IDLc.cocveiieiicic ettt 20
Command Line OptionS fOr IDL SEArtUPcccceevereeeeeere et 23
=T (0T T RS 30
Message Of the Day FIlEScuoiiieceese e e 31
UsiNg Your MOUSE WIth IDLcueeieee ettt st s 32
Using Keyboard ACCEIEratOrSoiviieieieieseee ettt s sa et saesne e 33
Getting HEIP WITh IDL ..o 35
Typographical CONVENLIONSccceiieiiiriieree e seeseesee s e seese e e e sreesteesseeseeeesnesnneennes 45
QUITEING DL .ttt ettt b e et st b e 46

Using IDL 3

REPOrting ProbIEMS ..o st 47
Chapter 2

The IDL Development ENVIFONMENTooooiiiiiiiiiiiiiiieeeeeeeeeeee e 51
ComponentS Of tNE IDLDEccoiiiiieeeerese ettt b e 52
FHIE IMIBNU ..ttt ettt sb e s et et ete s besme e e et e seesae e 59
o 1Y = T 63
SEATCN MBINU ..ttt b et be et naenneas 65
RUN IVIEINU ..ttt ettt b et e b e e bt e e be e e ne e e abe e e sareesnreennneeas 67
(0=t B 1Y/ o 73
MBEIOS IMIEINU ...ttt ettt et s bt e e b e e st e s be e e ne e e abe e e sareesnseennneans 74
WINOOW IMIBNU ..ttt sttt e et eea et e s besaeene e e e s nesne e 76
HEID MBNU .ottt bbb e e 79
L 101 o T 1 80
IDL Printer Setup in UNIX 0F MAC OS X ..ot 81
Chapter 3

Setting IDL PreferencCes ... 93
ADOUL IDL PrEfEIENCESooivieieeee ettt sttt sae e neesaesne e 94
(@0 (0] 11141 o I 1 RSP URSN 95
GENEral PrEfEIEINCESoiviieieieee ettt et e seeeneenseneesaeeneas 97
(= Yo UL 1= 1= (0= 100
GraphiCS PrEfEIENCES eeeieie ettt neeee s 104
EdItOr PrEfErENCES ...ooviiiieeee et 107
SEArtUP PrEfEIENCES ...eiieieiee et e et sneeneens 110
FONE PrEFEIENCES ...ttt 112
L Ll = = 000 U 115
Chapter 4

Creating Development Environment Macrosccccoceeeeeeeveveeeeeennnnns 119
WHat ATE IMICIOS? ..ottt sttt sttt ettt st eb e st a et na e b e 120
Creating UNIX IMBCIOS ...o.veeeeieieeeee ettt sae e seeseestesaesne e e enseseesneens 121
Creating WIiNAOWS MECTOScceiueeieiie sttt ee et esae st te et sne e ee st sneeneens 124
Command Stream SUDSHTULIONScccuoiiierieiesiseeee e 126
Building IDL EXaMPIE MECIOScccveiiiiiieeesie st sieeteesie st ee et e et sne e sne s 127

Contents Using IDL

Chapter 5

Customizing IDL on Motif SYyStEMSoovvvvviiiiiiiiiiii e 131
Using X Resourcesto CUStOMIzZE IDLcccvecieiiice e s 132
X Resources at the Command LinNecooeoieiriineese e 136
Modifying the Control Panelcccoviiiieieie e 138
ACHON ROULINES ...ttt sttt st ene e aesnesne e e e nsesne e 141
Chapter 6

Importing and Writing Data into Variablesccccccvvriiiicicienennn. 149
Overview of Data ACCESS IN IDL ..o e 150
AcCessiNg FIIESUSING DIdlOgScoereeeruiriiniiieiriesie st 151
REAAING ASCIH DELAcveeviiiieeeieeiesie et s e e saeee e 153
REAING BIiNArY DELAcceiuiieieieeiesieieesie sttt 154
Accessing Files ProgrammatiCallycccccvveeiieieeseese et 156
Accessing Image Data ProgrammatiCallyccccoeeerinernieniseneseeeseseee e 158
Accessing Non-Image Data Programmaticallyccooccvvvvvin i, 162
USING IDL IMBEIOS ...ttt sttt sttt et st se e sne e 164
File ACCESS ROULINESviieieiieiisiestee ettt sttt s tesneeneesee e 171
Chapter 7

Getting Information About Files and Dataccccceeeeeeeieiiiviveeeeeinnnnns 173
Investigating FIl1eS and Dalaccccueieiiiiieieeie e 174
Returning Image File INfOrmMationcooeoeiieii e 175
Returning Type and Size INfOrmationcccceceiiiieeieene e 179
Getting Information ADOUt SAVE FlESooui e 181
Returning Object Type and Validitycccooveveiiiiiiiciee e 186
Returning Information ADOUL @ FIlecoueieeei e 188
Chapter 8

Graphic Display ESSentialScccccuuiiiiiiiiiiiiiiiieeeeeei 189
IDL Visual DiSplay SYSIEMSc.cooiiiriieiresinie st s 190
IDL COOrdiNGte SYSLEIMSueeieieeeieeeeiesieeieeereesee e see st sre e e seeseesseeneessesnesneeneesesae e 193
Coordinates Of 3-D GraphiCSccivieeeeieserii et st sae e ens 195
COoOrdiNate CONVEISIONSccueeierierieeeeiente et ereeseeseesteeseeseeseeeseesessesseeseensessessesneenseseesnes 198
INterpolation MELNOAScccveiiiii e 201
Polygon Shading Methodoooieeoie e 203
(00 Lo LGSV (1 0P 204

Using IDL Contents

Display Device COlOr SCNEMESccv ittt e 207
Colorsand IDL GraphiC SYSLEIMScoieieiiriieeere e 209
Indexed and RGB Image OrganiZationcccceveveieeeeseseseeseese e e esee e ssee e 213
Loading aDefault Color TaDIEooe i 218
Using FONtSin GraphiC DISPlaySccccviveeeeie ettt e 221
Printing GraphiCsooeoieiiiciee ettt e e enes 222
Chapter 9

Y= Vo I o (oY =T o 4 o o =SSP 223
(@Y VY= Y Ao 1Y =] o 1 o RS 224
Graphics TechniqUES TOr MaPPIiNgc.veoveeeeririerieeeerre st sre s 225
MaD PrOJECHION TYPESveeiveeiieeieeiteeieeieerteesteesteete st te e saeesaeesaeesneesaeesneesaeenseenseessenns 227
AZIMULNE] PrOJECTIONS ...ttt 228
(O3 1] g e [Tor= I C0 = ox 1 o 1P 237
Pseudocylindrical ProJECLIONScciiiirieerieresese ettt 242
High-Resolution Continent OQULIINEScevcieiiereeriereere s 246
L= £ 000 S 248
Chapter 10

SIgNAl PrOCESSING ceviiiiiiiiiiiiiieeee et 249
Overview Of SIgNal PrOCESSINGcccoerrerreieeerrisresree e ene s 250
[T Tl = ST = 251
Signal ANalYSIS TraNSFOINMSc.coviiiriiieeeeri e 253
The FOUFEr TraNSFOMMcvcieiieierieee ettt b e 254
INterpreting FFET RESUILS ...o..eoeiee ettt 255
Displaying FFT RESUILSccveiiiieieeece sttt sttt 256
USING WINUOWS ...ttt sttt ste sttt eseestesaeeneentessesneeneeneeseeennenes 260
F Y =S 11 SOOI 263
FFET AIQOrithm DELaIlScoeeiiieieeee et 264
The HIilDert Transform ...t 265
The Wavelel TransformM ..o eneas 267
(0001 01Y70] U1 1 To] o [OOSR 268
Correlation and COVAINTANCEcccceriirieiieieriesieeeeee et e et e e eesaeeeeseeseesneenseeens 269
[Xo = I T 0= 1 o S 270
Finite Impulse Response (FIR) FlTErScooi i 271
FIR Filter IMplementalionccceveiiiieeese et s 273
Infinite IMPulSe RESPONSE FIITEIS ..o 275

Contents Using IDL

REFEIEINCES ...ttt s a e 278
Chapter 11

1Y = U =T 0 = oSSR 279
Overview of MathematiCSiN IDLcccooeiiiieeeer e 280
IDL’s Numerical RECIPES FUNCLIONScccuviieieeiiesieeree e e stee et eee e see e sneesneens 281
COrrelalion ANAIYSISoveeeiriisieseeeeer ettt b e e e b sne e 282
Curve and SUIMECE FItliNgccccoveieecieiece et sre e e 286
Eigenvalues and EIgENVECLOTSccoioeiriiirienieesesie et 288
Gridding and INtErPOIELIONccceecieeiieeie e e e reenre e e 294
HYPOINESIS TESLING ...veeeveiiieeeieie ettt st sne e 295
T 100 = (0] o OSSP 297
LINEAI SYSLEMIS ..ottt ettt sttt se e b b e e et besn e s 302
NONIINEAr EQUBLIONSecveeieeieeie e eee st e e sre e re e s re e e s re e s eteeneenneeneenees 309
(@] 0111 10112 o] o PSPPSRV P PSRV 311
R 0SS = Y £ S 313
TIME-SENES ANBIYSIS ..ottt b e 316
MUIIVArTEIE ANBIYSIS ..oeeeecieciece et e st e b e et e et e e sre e neennas 319
REFEIENCES ...ttt st et tesbesneenteseesteenaensenrenreas 325
INAEX ettt aaaaaaas 329

Using IDL Contents

Chapter 1
Introducing

IDL

This chapter includes information about IDL, the IDL documentation set, and how to contact RS
Technical Support. The following topics are covered in this chapter:

Overviewof IDLt 10
Supported FileFormats 12
LaunchingIDL 15
LaunchingtheiTools 17
Environment VariablesUsed by IDL 20
Command Line Options for IDL Startup . .. 23
Startup Files 30

Using IDL

Message of theDay Files 31
Using Your MousewithIDL 32
Using Keyboard Accelerators 33
GettingHelpwithIDL 35
Typographica Conventions 45
QuittingIDL, 46
Reporting Problems 47

9

10 Chapter 1: Introducing IDL

Overview of IDL

IDL (the Interactive Data Language) is a complete computing environment for the
interactive analysis and visualization of data. IDL integrates a powerful, array-
oriented language with numerous mathematical analysis and graphical display
techniques. Programming in IDL is atime-saving aternative to programming in
FORTRAN or C. Using IDL, tasks which require days or weeks of programming with
traditional languages can be accomplished in hours. You can explore data
interactively using IDL commands and then create complete applications by writing
IDL programs.

Analysis advantages include:

e Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.
Compilation and execution of IDL commands provides instant feedback and
hands-on interaction.

e Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

» |IDL’sflexible input/output facilities allow you to read any type of custom data
format. See* Supported File Formats” on page 12 for details.

Visualization advantages include:

e Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow immediate observation of your computation’s
results.

e Support for OpenGL-based hardware accelerated graphics.
Application devel opment advantages include:

e IDL isacomplete, structured language that can be used interactively and to
create sophisticated functions, procedures, and applications.

e |IDL’sIntelligent Tools (iTools) can be customized with your own operations
or data manipulations.

« |IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

e Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display engine.

Overview of IDL Using IDL

Chapter 1: Introducing IDL 11

e IDL programsrun across all supported platforms (UNIX, Macintosh and
Microsoft Windows) with little or no modification. This application portability
allows you to easily support a variety of computers.

Using IDL Overview of IDL

12 Chapter 1: Introducing IDL

Supported File Formats

IDL supports accessing the following types of file formats.
Image File Formats

For specific routine and object information used in IDL to access these type of files,
see the “Image Data Formats’ category under “Input/Output” in the IDL Quick

Reference manual .
Format Description

BMP Windows Bitmap format

DICOM Digital Imaging and Communicationsin Medicine

GIF Graphics Interchange Format

Interfile Interfile version 3.3 format

JPEG Joint Photographic Experts Group format

JPEG 2000 JPEG 2000 format

MPEG Moving Picture Experts Group format

MrSID Multi-resolution Seamless Image Database format

NRIF NCAR Raster Interchange Format

PICT Macintosh version 2 PICT files (bitmap only)

PNG Portable Network Graphics format

PPM PPM/PGM format

SRF Sun Raster File format

TIFF 8-bit or 24-hit Tagged Image File format

X11 Bitmap X11 Bitmap format used for reading bitmaps for
IDL widget button labels

XWD X Windows Dump format

Table 1-1: IDL-Supported Graphics Standards

Supported File Formats Using IDL

Chapter 1: Introducing IDL

13

Scientific Data Formats

IDL supports the HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific dataformats. Collections
of built-in routines provide an interface between IDL and these formats. For specific
routine and object information used in IDL to access these type of files, see the
“Scientific Data Formats’ category under “Input/Output” in the IDL Quick Reference

manual.

Format

Description

CDF

Common Data Format version 2.7r1

HDF

Hierarchical Data Format version 4.1r5

HDF5

Hierarchical Data Format version 5-1.6.3

HDF-EOS

Hierarchical Data Format-Earth Observing System
version 2.8

NCDF

Network Common Data Format version 3.5

Table 1-2: IDL-Supported Scientific Data Formats

Other Data Formats

For specific routine and object information used in IDL to access these datatypes, see
the “Other Data Formats® category under “Input/Output” in the IDL Quick Reference

manual.

Format

Description

ASCII

American Standard Code for Information
Interchange

Binary

Digital data encoded as a sequence of hits

DXF

Drawing eX change Format

ESRI Shapefile

Stores non-topological geometry and attribute
information

SYLK

Symbolic Link Format

Table 1-3: Other IDL-Supported File Formats

Using IDL

Supported File Formats

14 Chapter 1: Introducing IDL

Format Description
VRML Virtual Reality Modeling Language
WAV Microsoft Waveform Format
WAV E Wavefront Advanced Data Visualizer Format
XDR eXternal Data Representation
XML eXtensible Markup Language

Table 1-3: Other IDL-Supported File Formats (Continued)

Supported File Formats Using IDL

Chapter 1: Introducing IDL 15

Launching IDL

To launch the IDL program, do one of the following:

On Windows platforms — Launching IDL means starting the IDL Development
Environment application (no command-line mode is available under Windows). The
IDL Development Environment is described in detail in Chapter 2, “The IDL
Development Environment”. To start IDL, double-click onthe IDL icon or select IDL
from the Start menu.

On UNIX platforms — IDL offers two interfaces:

¢ Incommand-line mode, IDL usesatext-only interface and sends output to your
terminal screen or shell window. (Graphics are displayed in IDL graphics
windows.) To start IDL in command-line mode, enter 1d1 at the shell prompt.

¢ Ingraphical mode, IDL displaysthe IDL Development Environment, an X-
windows application that allows you to select options from menus, work with a
built-in editor, and more. The IDL Development Environment is described in
detail in Chapter 2, “The IDL Development Environment”. To start IDL in
graphical mode, enter id1de at the shell prompt.

On the Macintosh MacOS X platform — IDL islaunched in the same way as on
UNIX platforms, except that you must explicitly open an X11 Terminal window.

¢ Incommand-linemode, IDL usesatext-only interface and sends output to your
terminal screen or shell window. (Graphics are displayed in IDL graphics
windows.) To start IDL in command-line mode, enter 1d1 at the X11 Terminal
window shell prompt.

¢ Ingraphical mode, IDL displaysthe IDL Development Environment, an X-
windows application that allows you to select options from menus, work with a
built-in editor, and more. The IDL Development Environment is described in
detail in Chapter 2, “The IDL Development Environment”. To start IDL in
graphical mode, double-click on the IDL icon or enter idlde at the X11
Terminal window shell prompt.

Startup Options

Using IDL

You can specify options to the command that starts IDL. On UNIX platforms, simply
append the option flag after the id1 or id1de command at the shell prompt. On
Windows platforms, modify the Tar get field of the propertiesdialog for the IDL icon
to include the option flag. See “ Command Line Options for IDL Startup” on page 23
for alisting of the available startup options.

Launching IDL

16 Chapter 1: Introducing IDL

Troubleshooting

When IDL isready to accept acommand, it displaysthe IDL> prompt. If IDL does

not start, take the following action depending upon the operating system you are
running:

* Windows: Be surethat the path listed in the Propertiesdialog for the IDL icon
accurately reflects the location of the IDL executablefile id1lde. exe.

UNIX: Be sure that your PATH environment variable includes the directory
that contains IDL.

Launching IDL Using IDL

Chapter 1: Introducing IDL 17

Launching the iTools

Using IDL

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based onthe IDL Object Graphics system, theiTools are designed to help you get the
most out of your datawith minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment. Each tool is designed around a specific visualization type:

Two and three dimensional plots (line, scatter, polar, and histogram style)
Surface representations

Contour maps

Image displays

Volume visualizations

Maps

£l IDL ivolume =lalx|

Flle Edit Insert Operations ‘Window Help

DlElBlg] || f[=e [w oley] & o] AlN[o|o|é|e
ﬂ Volumel
Y

[s

| v

[ata Charmels:

Fender |

| futa-Berder

Huality

I Low [testures] * l

Boundany

b IWire frame - l

Frender Step

)i
i
e —

y

1]
|Elic:k on item to select, or click & drag selection box |[1 EB.202]

Figure 1-1: Black Hole Density Data in the iVolume Tool

Launching the iTools

18 Chapter 1: Introducing IDL

For detailed information on the new iTools and how to use them, see the iTool User’s
Guide.

TheiTools are built upon an object-oriented framework, or set of object classes, that
serve as the building blocks for their interface and functionality. IDL programmers
can easily use this framework to create custom data analysis and visualization
environments. Such custom Intelligent Tools may be called from within alarger IDL
application, or they may serve as the foundation for a complete application in
themselves. For more information on creating your own custom i Tools, see the i Tool
Developer’s Guide.

Starting an iTool

To get started using the new IDL iTools, from the IDLDE command line, simply type
the name of the tool you wish to call. The tools available are:

e iContour
e ilmage

e iPlot

* iSurface
e iVolume
e iMap

You can also launch an iTool using these other methods:
¢ From Windows:
Start — Programs — RSI IDL 6.1 — iTools — iTool Name
* Fromthe IDLDE:
File - New — Visualization — iTool Name

Loading Data into an iTool

There are multiple options for loading your datainto your chosen iTool for
visualization:
e Command Line Argument — At the IDL Command Line enter:

mydata = RANDOMU (SEED, 45)
iPlot, mydata

This option alows you to have control over parameters and keyword options
for setting up the way you wish your plot (or other visualization) to appear.

Launching the iTools Using IDL

Chapter 1: Introducing IDL 19

e File— Open — The quickest way to create a default visualization of your
data.

e File— Import — IDL variable— Thiswill invoke the IDL Import wizard.
* File— Import — From a File-— This also invokes the IDL Import wizard.

e Insert — Visualization — This method gives you parameter control similar to
using the command line.

Note
For more detailed information on loading data into the i Tools, see Chapter 2,
“Importing and Exporting Data” in the iTool User’s Guide manual.

The iTools Data Manager

All data used by any iTool isfirst loaded into the iTools Data Manager, which keeps
track of which data items are associated with an iTool visuaization. The Data
Manager provides a convenient and structured environment in which to import and
view files and variables.

The process of loading data into the Data Manager is entirely automatic if you
specify data when launching aniTool at the IDL command line or if you open a data
file using the Open command from the iTool’s File menu. In these cases, the iTool
will import the data in the specified file or variable and create a visualization of the
default type for the selected data and the iTool you are using.

If you want more control over the process of creating a visualization, you can load
data into the Data Manager manually, either from a data file or from one or more
variablesthat exist in your current IDL session. Once adataitem isplaced in the Data
Manager, itisavailable to al iTools until it is removed.

Using IDL Launching the iTools

20 Chapter 1: Introducing IDL

Environment Variables Used by IDL

When IDL starts, it checks for the presence of anumber of environment variables. If
one of these environment variables exists, its value is used in one of two ways.

e Asthevauefor apreference
e Toconfigure IDL’'s environment in such away that it can load and run

Preferences

Preferences are internal values that control various aspects of the environment IDL
presents to its users. While user preference values are most often retrieved from
preferencefiles, the value of any preference can be defined by setting an environment
variable of the same name to the appropriate value. For example, to set the value of
the IDL_PATH preference, which supplies the initial value of the |PATH system
variable, you would define an environment variable named IDL_PATH.

If an environment variable corresponding to a preference exists, its value will be used
asthe value of that preference unless the value is explicitly overridden with avalue
set at the command line when invoking IDL. See Appendix E, “IDL Preferences’ in
the IDL Reference Guide manual for a detailed description of IDL's preferences
system and the precedence given to different sources for preference values.

Non-Preference Environment Variables

IDL checks the following environment variables at startup, but does not use the
values as the values of IDL preferences.

CLASSPATH

The IDL-Java bridge uses the value of the CLASSPATH environment variable to
locate user-defined Java classes.

DISPLAY

On UNIX platforms, IDL usesthe DISPLAY environment variable to choose which
X display is used to display graphics.

HOME

IDL usesthe value of the HOME environment variable when storing user-specific
information in the local file system.

Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 21

Note
Under Microsoft Windows, the HOME environment variable might not be set in all
cases. If itisnot set, IDL first attempts to substitute the USERPROFILE
environment variable (which usually 1ooks something like ¢ : \Documents and
Settings\username Where usernameis the login name of the current user). If
USERPROFILE isnot set, IDL usesthe value of the first of the following it finds:
the TEMP environment variable, the TMP environment variable, or the Windows
system directory.

IDLJAVAB_CONFIG

The IDL-Java bridge uses the value of the IDLJAVAB_CONFIG environment
variable to locate the IDL-Java bridge configuration file. See “Initializing the IDL-
Java Bridge” in Chapter 8 of the External Devel opment Guide manual for additional
details.

IDLJAVAB_LIB_LOCATION

The IDL-Java bridge uses the value of the IDLJAVAB _LIB_LOCATION
environment variable to determine which JVM shared library within a given Java
version to use. See“Initializing the IDL-Java Bridge” in Chapter 8 of the External
Development Guide manual for additional details.

LM_LICENSE_FILE

IDL’s FLEXIm-based license manager uses the value of the LM_LICENSE FILE
environment variable to determine where to search for valid license files. Consult the
license manager documentation for details.

PATH

When IDL asks for an operating system resource such as a shell, the executable file
for that resource must be located in the operating system’s path. While IDL itself
does not use the value of the PATH environment variable explicitly, its value does
affect IDL’s behavior when attempting to launch other applications.

TERM

On UNIX platforms, IDL uses the environment variable TERM to determine the type
of terminal in use when IDL isin command-line mode.

Using IDL Environment Variables Used by IDL

22 Chapter 1: Introducing IDL

Setting Environment Variables

The process used to set environment variables varies depending on the operating
system you are using.

UNIX and MacOS X Systems

On UNIX systems, environment variables are generally specified in afile read by
your shell program at startup. Syntax for setting environment variables varies
depending on the shell you are using, as does the file you use to specify the variables.
If you are unsure how to set environment variables on your system, consult the
system documentation or a system administrator.

For example, to set the environment variable IDL_PATH to the value
/usr/local/idl when using aC shell (csh), you would add the following line to
your .cshrc file:

setenv LM LICENSE FILE /usr/local/idl/license/license.dat

Similarly, to set the same variable when using aBourne shell (sh), you would add the
following linesto your .profile file

LM _LICENSE FILE="/usr/local/idl/license/license.dat" \
; export LM LICENSE FILE

Microsoft Windows Systems

On Microsoft Windows systems, environment variables are set in the Environment
Variables dialog, which is accessible from the System Control panel. Some Windows
versions alow you to set environment variables either only for the user you logged in
as (“user variables’) or for all users (“system variables’). Setting IDL environment
variables as user variables means that other users who log on to the computer will not
have access to your environment variable values.

Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 23

Command Line Options for IDL Startup

You can alter some IDL behaviors by supplying command-line switches along with
the command used to invoke IDL. The following table shows the IDL command-line
switches and the IDL interfaces to which they apply:

UNIX Windows Windows
Switch idl idlde.exe idlrt.exe
idlde

-32 .

-arg o o .
-args . . .
-autow .

-demo . o o
-e (] ° °
-em ° °
-novm . . .
-nw .

-pref . . .
-queue . . .
-quiet . . .
-t ° .
-student . o .
-ulicense o o .
-vm . .
-W .

Table 1-4: Command Line Switches

Using IDL Command Line Options for IDL Startup

24

Chapter 1: Introducing IDL

Preference Switches

In addition to the switches listed above, you can specify the value of IDL preferences
when invoking IDL. See “ Specifying Preferences at the Command Line” on page 29
for details.

X Defaults

In addition to the switches listed above, there are numerous command-line switches
that control the appearance of the IDL Development Environment on UNIX systems.
Those options are not listed here, and future versions of the UNIX Devel opment
Environment might not continue to support them. See “ X Resources at the Command
Line” in Chapter 5 for details.

Batch Mode

IDL can also be started in non-interactive “batch” mode by specifying the name of a
batch file at startup time. See Chapter 3, “ Executing Batch Jobsin IDL” in the
Building IDL Applications manual for details.

Command-Line Switches

The following command line switches can be used when invoking IDL. Unless
otherwise noted, switches can be combined and can be specified in any order.

-32

Syntax: -32

Starts IDL in 32-bit mode. If this switch isnot set, IDL startsin 64-bit mode by
default for those platforms that support 64-bit. If you have not installed the 64-bit
version, the 32-bit version will automatically be started. If you have not installed the
32-bit version, this flag will not work.

This switch isonly available on UNIX platforms.

-arg

Syntax: -arg value

Specifies a single command line option to be saved for later access viathe
COMMAND_LINE_ARGS function. The value string is saved. Multiple -arg
switches are allowed; the values are saved in the order specified. The -arg option
can be used to pass program-specific information from the command line to IDL
programs.

Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 25

-args

Syntax: -args valuel value? ... valueN

Specifies one or more command line options to be saved for later accessviathe
COMMAND_LINE_ARGS function. When IDL seesthe -args option, it takes any
command-line arguments that follow it and saves them all. There can only be one
-args option on an IDL command line, and it is always the final option. The -args
switch can be used with the -arg switch; if both switches are specified, occurrences
of -arg must comefirst, and the values specified by -args are saved following any
values specified by -arg.

-autow

Syntax: -autow

Starts IDL with the graphical user interface if possible. If for any reason IDL cannot
display the graphical user interface, it starts in command-line mode.

This switch isonly available on UNIX platforms.

-demo

-€

Using IDL

Syntax: -demo

Forces IDL to run in seven-minute demo mode.

Syntax: -e IDL_statement

Specifiesasingle IDL statement to be executed. Once the statement has executed,
IDL waits for any widget applications to exit, and then IDL itself exits. Only the last
-e switch on the command line is honored.

Note
If the IDL statement includes spaces, it must be enclosed in quote marks. Under
UNIX the statement can be enclosed in either single or double quotes, but under
Microsoft Windows the statement must be enclosed in double quotes.

Under UNIX, the -e switch always uses the command line interface (that is, the
idlde command followed by the -e switch behaveslikethe id1 command followed
by the -e switch).

Under Microsoft Windows, the id1de command displays the full development
environment, but the user is not prompted for IDL commands to execute. This mode

Command Line Options for IDL Startup

26 Chapter 1: Introducing IDL

is primarily useful because the output log window is visible, and will show any
output generated by the IDL statement. The id1rt command also supportsthe -e
option, and in this mode requires a standard IDL license. Since id1rt does not
display the output generated by IDL statements, it is primarily of use for widget
based applications that provide a graphical user interface to their functionality.

Note
Because the -e switch causes DL to exit as soon as the statement is complete, if
the IDL statement being executed produces graphics, you may wish to delay the
exit until the user has a chance to view the graphics. In such a case, you must
explicitly cause IDL to wait before exiting. For example, the following will produce
aplot of one cycle of asinusoid:

idlde -e "PLOT, SIN(FINDGEN (628)/100) & t=DIALOG MESSAGE ('Done')"

The plot will remain on the screen until the user dismissesthe dialog, at which point
IDL will exit.

-em

Syntax: -em=file

Starts IDL with an embedded license. The file argument should be an IDL . sav file
that contains an embedded (“ unlimited right to distribute”) IDL license. See Chapter
24, “Distributing Runtime Mode Applications’ in the Building IDL Applications
manual for details on creating applications with an embedded IDL license.

This switch is accepted on UNIX platforms and by the id1rt . exe application on
Microsoft Windows platforms.

-novim

Syntax: -novm

Forces IDL to run in seven-minute demo mode rather than Virtual Machine mode if
no license is available. This switch can only be used in conjunction with the -rt
switch or the id1rt . exe executable.

If IDL attemptsto load and run an IDL application in runtime mode, but finds no
license available, it will load the application in Virtual Machine mode by default.
Setting the -novm switch prevents the application from running in Virtual Machine
mode, and instead causesit to run in demo mode.

Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 27

-nw

Syntax: -nw

Starts IDL in command-line mode no matter what. Note that specifying idlde -nw
at the shell prompt will start IDL in command-line mode.

This switch isonly available on UNIX platforms.
-pref

Syntax: -pref=file

Loads the specified preferencefile. The file argument should be atext file containing
IDL preference/value pairs. See Appendix E, “IDL Preferences’ inthe IDL Reference
Guide manual for adetailed description of IDL’s preferences system, the format of
preference files, and the precedence given to different sources for preference values.

Thisfeatureis of particular interest to those writing stand-alone applicationsin IDL,
possibly using the runtime or Virtual Machine modes of operation. The use of a
command-line preference file allows authors of such applications to control the
values of preferencesimportant to their applications in away that is user-adjustable
and not hardwired into the code of their application.

-queue

Syntax: -queue

Causes IDL to wait for alicense to become available before beginning an IDL task
such as batch processing. This switch is useful for users of counted floating licenses
who need their IDL processto run in licensed mode rather than in seven-minute
demo mode.

-quiet
Syntax: -quiet

Suppresses printing of the IDL announcement and the motd . txt file. See“Message
of the Day Files’ on page 31 for details on message-of-the-day files.

-rt

Syntax: -rt=file

Starts IDL with aruntime license. If the file argument is specified, it should be an
IDL . sav file. If thefile argument is not specified, IDL attempts to run afile named

Using IDL Command Line Options for IDL Startup

28

Chapter 1: Introducing IDL

runtime.sav. See Chapter 24, “Distributing Runtime Mode Applications’ in the
Building IDL Applications manual for details on creating runtime applications.

This switch is accepted on UNIX platforms and by the id1rt . exe application on
Microsoft Windows platforms. It is, however, redundant when using the idlrt .exe
application.

-student

Syntax: -student

Forces DL to start in student mode. This switch isuseful for testing IDL applications
that should run in student mode.

-ulicense

Syntax: -ulicense

Check out aunique license evenif IDL isalready running on the samedisplay. If IDL
has checked out a unique license using this flag, the user is allowed to change the
DISPLAY environment variable after IDL has started.

-vim

Syntax: -vm=file

Startsthe IDL Virtual Machine. If the file argument is specified, it should be an IDL
.sav file. If thefile argument is not specified, IDL displays afile selection dialog.
See Chapter 25, “Distributing Virtual Machine Applications’ in the Building IDL
Applications manual for details on creating applications that run in the IDL Virtual
Machine.

This switch is accepted on UNIX platforms and by the id1rt . exe application on
Microsoft Windows platforms.

Syntax: -w

Starts IDL with the graphical user interface. Thisisthe same asentering id1de at the
command prompt.

This switch isonly available on UNIX platforms.

Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 29

Specifying Preferences at the Command Line

In addition to the command line switches described above, the value of any IDL
preference can be specified at the command line using the following syntax:

idlcommand -PREFERENCE value

where idlcommand is the command used to launch IDL (oneof id1, idlde, or
idlrt), PREFERNCE isthe name of an IDL preference (note the leading hyphen),
and value isthe value for the preference. For example, to set the value of the
IDL_MORE preference to one when launching IDL in command-line mode on a
UNIX machine, you would use the following command line:

idl -IDL MORE 1

Any number of preference values can be specified the command line. See Appendix
E, “IDL Preferences’ inthe IDL Reference Guide manual for adetailed description of
IDL’s preferences system and the precedence given to different sources for
preference val ues.

Using Switches Under Windows

Under Microsoft Windows, applications can be launched either from the prompt in a
Command Window or by double-clicking on the application icon. If you launch IDL
from acommand prompt, simply specify the switch on after the name of the IDL
executable you are using. For example, to start IDL in Virtual Machine mode using
the -vm switch, you would use the following command line:

C:\RSI-Directory\bin\bin.x86\idlrt.exe -vm=file.sav

where RST-Directory isthe directory where you have installed IDL and
file.savisthe name of the SAVE file you wish to restore and run.

If you launch IDL by double-clicking on the application icon, set switches by
modifying the target specified in the application’s shortcut properties to include the
switch.

Using IDL Command Line Options for IDL Startup

30

Chapter 1: Introducing IDL

Startup Files

Startup Files

A startup fileis abatch file that is executed automatically each timethe IDL is
started. The name of the startup file is specified by the IDL_STARTUP preference.
(See Appendix E, “IDL Preferences’ in the IDL Reference Guide manual for
information on IDL’s preferences system.)

Common uses for startup filesinclude the following:

¢ Restoring variable data contained in a . sav file or reading in commonly used
data

e Setting common keywords to the DEVICE procedure
e Specifying shared or private color maps for PseudoColor devices

Startup files are executed one statement at atime. It is not possible to define program
modules (procedures, functions, or main-level programs) in the startup file. For more
information on creating batch files, see Chapter 3, “Executing Batch Jobsin IDL” in
the Building IDL Applications manual.

Using IDL

Chapter 1: Introducing IDL 31

Message of the Day Files

Using IDL

When IDL starts, it displays the contents of the motd. txt file, located in the
help/motd subdirectory of the IDL distribution, in the Output Log. You can use this
Message of the Day file to provide information to IDL users every time IDL starts.

In addition, IDL will display the contents afile with the name platform. txt
located in the help/motd subdirectory of the IDL distribution, where platformisa
string corresponding to the current operating system platform. For example, on
Microsoft Windows systems, IDL displays afile named win32 . txt.

You can determine the correct name for thisfile on a given platform by using the
following IDL command:

PRINT, !VERSION.OS
and appending the “ . txt” extension to the operating system name.

If you do not want to see either themotd . txt file or the platform-specific file each
time IDL starts, remove them from the he1p/motd subdirectory of the IDL
distribution.

Note
Themotd. txt and platform-specific files are smply an ASCI| text files—not IDL
programs or batch files. To execute a series of IDL commands, select a startup file
as described in “ Startup Files” on page 30.

Message of the Day Files

32 Chapter 1: Introducing IDL

Using Your Mouse with IDL

IDL supports the use of mice with up to three buttons. Because some systems use
mice with one or two buttons, IDL provides mechanisms for simulating a three-
button mouse.

Using a Two-Button Mouse

Many mice used with Microsoft Windows systems have only two buttons. To
simulate a middle-button press, hold down the CONTROL key and press the left mouse
button.

Using a Macintosh (One-Button) Mouse

Many mice used with Macintosh systems have only one button. The X Window
System software provided with MacOS X provides multi-button mouse emulation,
allowing you to configure the system to generate middle- and right-button press
events. See your MacOS X system documentation for details.

Using Your Mouse with IDL Using IDL

Chapter 1: Introducing IDL 33

Using Keyboard Accelerators

IDL supportsthe use of keyboard accelerators or shortcutsin three different contexts:
in the IDL Development Environment (menu actions), in the IDLDE Editor window,
and in IDL widget applications. For information on development environment
keyboard shortcuts, see one of the following:

* Chapter 2, “The IDL Development Environment” provides descriptions of
each available menu item including keyboard shortcuts

e “Editor Window Keyboard Shortcuts’ in Chapter 2 of the Building IDL
Applications manual describes keyboard shortcuts specifically designed for
use in the Editor window

Keyboard shortcuts can also be defined for individual buttons and menu itemsin an
IDL widget application. Defining shortcut key combinations is the responsibility of
the IDL programmer who creates the widget application; if you are using a widget
application and are unsure about whether keyboard shortcuts have been defined,
contact the author of the widget application. For information on adding keyboard
accelerators to your own widget applications, see “ Enhancing Widget Application
Usahility” in Chapter 30 of the Building IDL Applications manual.

Enabling Alt Key Accelerators on Macintosh

Using IDL

If you are using IDL on a Macintosh and wish to use keyboard accelerators that use
the Alt key, you will need to perform the following steps to make the Apple
(Command) key to function as the Alt key:

1. Createa . Xxmodmap filein your home folder and add the following three lines
toit:

clear modl
clear mod2
add modl = Meta L

When Apple's X11 program starts, thisfile will automatically be read, and the
Apple key will be mapped to the left metakey 3, which for IDL’s purposesis
the Alt key. (Windows Alt key accel erators are mapped to the Macintosh
Apple key, not the Option (alt) key.)

2. Run Apple’'s X11 program and change its preferences. Under Input inthe X11
Preferences dialog, make sure that the following two items are unchecked:

¢ Follow system keyboard layout
« Enablekey equivalents under X11

Using Keyboard Accelerators

34 Chapter 1: Introducing IDL

Note
You must relaunch Apple's X11 program for these changes to take effect.

Once you have performed these steps, keyboard shortcuts will operate in the normal
Macintosh fashion — namely, pressing the Apple key in conjunction with X, C, and
V will perform cut, copy and paste. The IDLDE's other shortcuts and any widget
accelerators defined to use the Alt key will also work.

Using Keyboard Accelerators Using IDL

Chapter 1: Introducing IDL 35

Getting Help with IDL

IDL’s online help system provides access to information on al aspects of IDL. The
complete IDL documentation set isavailable onlinein HTML format. To usethe IDL
online help system, do one of the following:

¢ Enter the > command (optionally followed by aroutine or object name) at the
IDL command prompt

» Cadll the ONLINE_HELP procedure at the IDL command prompt or within an
IDL program

e |If you arerunning the IDL Development Environment (IDLDE), select the
Help option from the menu bar

e Select IDL Help from the Microsoft Windows Start menu
* Double-click on the IDLHelp Macintosh icon

In addition to the online help format, IDL documentation is available in a set of
Adobe Acrobat PDF files located on the IDL CD-ROM. See “Using the PDF
Documentation Set” on page 43 for details.

Using the IDL Online Help Viewer

IDL’s online help system uses a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech. This
section describes how to use the IDL Assistant application. For information on
creating help content that uses the IDL Assistant for your own IDL applications, see
Chapter 23, “Providing Online Help For Your Application” in the Building IDL
Applications manual.

The Main Window

The IDL Assistant main window contains the text of the current topic. Within the
main window you can:
* Follow hypertext links to other topics, or to sections within the current topic

« Navigate to the next or preceding topic using arrows at the top of the topic
screen

e Display multiple topics simultaneously using the tabbed interface

« Create new tabs and close existing tabs using icons to the right and left of the
tabs

Using IDL Getting Help with IDL

36 Chapter 1: Introducing IDL

e Perform common tasks including display of the next/previous topic, tab
management, text sizing, copying text to the clipboard, and finding text within
the topic using the context menu

The Sidebar

The IDL Assistant sidebar provides four tabs that allow you to navigate through the
IDL documentation set. All of the tabs provide a context menu that allows you to
open the selected topic the current tab, a new tab, or a new window.

The Contents Tab

The Contentstab displays a hierarchical listing of the contents of the various books
in the IDL documentation set.

The Index Tab

The Index tab provides a keyword index of the contents of the IDL documentation
set. Enter atext string in the Look For: field to see keywords that match the string.

The Search Tab

The Search tab allows you to search the text of the IDL documentation set for words

or phrases. Text matching your search string is highlighted when atopic is displayed

in the main window.

Tip
Words or phrases entered in the Sear ch tab are not case sensitive.

To search for words, enter one or more strings in the Sear ching for: field, separated
by spaces and click Search. IDL Assistant displays alist of topicsthat contain all of
the words you entered.

To search for a phrase, enclose the phrase in single or double quote marks.

Warning
The IDL documentation set is quite large. The results of afull-text search query
may take several moments to appear in the Search tab.

Thelist of topics containing the search words or phrase is displayed as alist ranked
roughly according to the number of occurrences of the words or phrases, with the
topics containing the largest number of occurrences listed given higher rankings.

Each entry in thelist of topicsis followed by an abbreviation of the title of the
manual in which the topic appears. See “Book Name Abbreviations” on page 38 for
thelist of abbreviations.

Getting Help with IDL Using IDL

Chapter 1: Introducing IDL

Using IDL

Allowed Characters

37

The following characters are alowed in the Sear ch tab:

e Letters (upper- and lower-case)

* Numbers(0-9)

¢ Quotemarks (single ('), double (), backwards (~))

e Exclamation marks (1), colons(:), and periods (.)

e Spaces

* Hyphens(-)

e Underscores()

e Agterisk () asawildcard matching one or more unspecified characters

Note

The * character cannot be used within quotes or at the beginning of a string.

All other characters are disallowed; you cannot enter them in the Sear ching for:

field.
Warning

Searches that contain single-character strings (such as“a’ or “8”) are not allowed
and will return no results. Thisistrue even when the single character is combined
with a punctuation character such as ahyphen. For example, searching for the string
“8-bit” will return no results.

Examples

convol
convol*

base widget

"base widget"

List all topics that contain the word “convol”
List all topics that contain a word beginning with “convol”

List all topics that contain the word “base” and the word
“widget”

List all topicsthat contain the phrase “ base widget”

Getting Help with IDL

38

Chapter 1: Introducing IDL

Book Name Abbreviations

Thefollowing abbreviations of book titlesare used in thelist of topicsreturned by the

search:

bld
dm
edg
gs
img
inst
ionj
ions
itd
itu
med
obj
obs
ref
sdf
use
wav

wIl

Building IDL Applications
DataMiner Guide

External Development Guide
Getting Started with IDL
Image Processing Guide
Installing and Licensing IDL
ION Java User's Guide

ION Script User’s Guide
iTool Developer’s Guide
iTool User's Guide

Medical Imaging in IDL
Object Programming
Obsolete Features

IDL Reference Guide
Scientific Data Formats
Using IDL

Wavelet Toolkit User's Guide
What’s New in IDL

The Bookmarks Tab

The Bookmar ks tab allows you to save links to specific topicsin the IDL
documentation set for easy reference.

Getting Help with IDL

Using IDL

Chapter 1: Introducing IDL 39

The Menu Bar

The IDL Assistant menu bar runs across the top of the IDL Assistant window, and
provides access to the features listed below. Keyboard shortcuts to invoke various
menu items are listed in the menus themselves.

Menu Item Function
File New Window | Open anew IDL Assistant window.
Add Tab Open a new tab displaying the same topic as the
currently selected tab.
Close Tab Close the currently selected tab.
Print Print the contents of the currently selected tab. See
“Printing” on page 42 for details.
Close Close the current IDL Assistant window.
Exit Close dl IDL Assistant windows.
Edit Copy Copy text selected in the main window to the

system clipboard.

Find in Text... | Search for atext string in the currently displayed

topic.

Find Next Find the next instance of the text string in the
currently displayed topic.

Find Previous | Find the previous instance of the text string in the
currently displayed topic.

Settings... Display the Settings dialog. See “ Settings” on

page 42 for details.

Table 1-5: IDL Assistant Menus

Using IDL Getting Help with IDL

40

Chapter 1: Introducing IDL

Menu Item Function
View Zoom in Increase the text size in the main window. See
“Text Zoom” on page 41 for important notes.
Zoom out Decrease the text size in the main window. See
“Text Zoom” on page 41 for important notes.
Views... Control display of the Sidebar and Standard
toolbar.
Note - The Line Up feature realigns the tool bar if
it has been moved.
Go Previous Display the current tab’s previous topic.
Next Display the current tal’'s next topic.
Home Display the IDL online help Home page.
Next Tab Select the tab to the right of the current tab, if any.
PreviousTab | Select the tab to the left of the current tab, if any.
Bookmark | Add Create abookmark for the currently selected topic.
Bookmark
Bookmark list | Existing bookmarks are displayed at the bottom of
this menu.
Help IDL Assistant | Display this help topic.
Manual
About Display information about IDL Assistant.
IDL Assistant
What's This? | Display context-sensitive pop-up help about some

portions of the IDL Assistant interface.

Getting Help with IDL

Table 1-5: IDL Assistant Menus

Using IDL

Chapter 1: Introducing IDL 41

The Tool Bar

The IDL Assistant tool bar provides quick accessto asubset of the features available
viathe menubar.

Icon Name Function
Previous Display the current tab’s previous topic.
& Splay p Y
Next Display the current tab’s next topic.
5 Splay p
Yy Home Display the IDL online help Home page.
@ Copy Copy text selected in the main window to the system
clipboard.
oy Find in Text Search for atext string in the currently displayed
topic.
0 Print Print the contents of the currently selected tab. See
“Printing” on page 42 for details.
Q Zoomin Increase the text size in the main window. See “ Text
Zoom” on page 41 for important notes.
@; Zoom out Decrease the text size in the main window. See “ Text
Zoom” on page 41 for important notes.
2 What'sthis? | Display context-sensitive pop-up help about some
) portions of the IDL Assistant interface.

Table 1-6: IDL Assistant Toolbar

Text Zoom

Select Zoom in or Zoom out from the View menu to change the size of thetext inthe
IDL Assistant main window.

The smoothness of the text zoom operation depends on the ability of the operating
system to provide fonts of the appropriate size for the zoomed text. On platformsthat
provide robust font-management mechanisms, the Zoom operations will work
smoothly. On platforms that provide more limited font support, a single Zoom
operation may, depending on the current text size and font support, change the text
size for only some text elements in the main window, or none at all. In these cases,
repeated applications of the Zoom operations may change the text size.

Using IDL Getting Help with IDL

42 Chapter 1: Introducing IDL

If you find that the text zooming feature does not work adequately with the default
fonts, try changing the fonts used by IDL Assistant (see “ Settings’ on page 42 for
details.) On platforms that use a set of fixed-size fonts, choosing afont with alarger
number of available sizeswill allow smoother text zooming.

Printing

Select Print from the File menu or toolbar to display a platform-native Print dialog
that allows you to select a printer on which to print.

Note
Currently, the only text range option available is All. Printing all will print the

entire contents of the topic currently displayed in the main window.

Tip
The quality of the printed output from IDL Assistant depends on the platform and
printer in use. For high-quality printed output, consider printing from the PDF
version of the document you are viewing. See “Using the PDF Documentation Set”
on page 43 for details.

Settings

Select Settings from the Edit menu to display atabbed dialog that allows you to
control several IDL Assistant settings.

General Tab

The General tab allows you to select fonts for text display in the main window. By

default, the Font is set to Helvetica, and the Fixed Font is set to Courier.

Tip
Depending on the configuration of your system, you may be able to select alternate
fonts that provide better appearance or smoother zooming behavior than the
defaults. Thisis especially true on UNIX systems that have a limited set of fonts
available. Trying different font settings may improve both the legibility of the text
and the ability to zoom in the IDL Assistant viewer.

The General tab also allows you to select a color for hyperlinks and specify whether
the links should be underlined. Depending on your platform, changing these values
may not produce the effect you expect.

Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 43

Web Tab

The Web tab allows you to define the web browser that should be invoked when you
click on ahyperlink that refersto aweb site rather than to afilein the IDL
documentation set.

The Web tab also allows you to specify an HTML file that should be displayed when
you select Home from the Go menu or click the Home toolbar icon. By default, the
home page is defined as

<IDL DIR>/help/online help/home.html
where <IDL_DIR> isthefull path to your IDL installation.
PDF Tab

The PDF tab allows you to define a Portable Document Format (Adobe Acrobat) file
browser that should be invoked when you click on a hyperlink that refersto a PDF
file.

Using the PDF Documentation Set

The complete IDL documentation set is available in a set of Adobe Portable
Document Format (PDF) files. The PDF documentation set is hyperlinked, provides
navigational bookmarks in the bookmarks pane, and provides acompiled full-text
search index.

Adobe Systems Inc. created the Portable Document Format in the early 1990s, basing
it on their PostScript language. PDF is intended to allow documents to be displayed
in exactly the same manner on awide variety of computing platforms.

The IDL PDF files are electronic representations of the individual books in the
documentation set, and can be either viewed on screen or printed (in full or in part) on
alocal printer. When viewed on-screen, the PDF books provide hyperlinked cross-
references, tables of contents, and indices, allowing for speedy navigation through
the set. In addition, some versions of the Adobe Acrobat software provide afast full-
text search capability, using a pre-compiled full-text index of the entire document set.

Viewing PDF Files

Using IDL

Viewing PDF files requires a separate application, not included in the IDL
installation. Various PDF viewing applications are in wide use, and one or more may
aready be installed on your system.

The PDF version of the IDL documentation set is designed to be viewed using Adobe
Acrobat or Adobe Reader. Other third-party PDF viewers (notably GhostScript and
Appl€e's Preview) are available, but these viewers may not support all of the features

Getting Help with IDL

44 Chapter 1: Introducing IDL

available when viewing the IDL PDF filesin Adobe Acrabat. | nter-document
hyperlinks may or may not work correctly when using other viewers, and the
compiled full-text search index (the Acrobat “ Search” feature) will almost surely not
work correctly in other viewers.

The Adobe Reader software is available at no charge directly from Adobe:

www . adobe . com/reader

Locating the PDF Documentation Set

The PDF version of the documentation set is not installed with IDL. The PDF files
are located in the info/docs subdirectory of the IDL installation CD-ROM.

Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 45

Typographical Conventions

Using IDL

set:

Thefollowing typographical conventions are used throughout the IDL documentation

UPPER CASE type

IDL functions and procedures, and their keywords are displayed in UPPER
CASE type. For example, the calling sequence for an IDL procedure looks like
this:

CONTOUR, Z [, X, Y]

Mixed Case type
IDL object class and method names are displayed in Mixed Case type. For
example, the calling sequence to create an object and call a method looks like
this:

object = OBJ_NEW('IDLgrPlot')

object -> GetProperty, ALL=properties

Italic type

Argumentsto IDL procedures and functions — data or variables you must
provide— aredisplayed initalic type. In the above example, Z, X, and Y are all
arguments.

Square brackets ([])

Square brackets used in calling sequences indicate that the enclosed arguments
are optional. Do not type the brackets. In the above CONTOUR example, X
and Y are optional arguments. Square brackets are also used to specify array
elements.

Courier type

In examples or program listings, things that you must enter at the command
lineorinafilearedisplayedin courier type. Results or datathat IDL
displays on your computer screen are also shown in courier type. An example
might direct you to enter the following at the IDL command prompt:

array = INDGEN (5)
PRINT, array

In this case, the results are shown like this:

0 1 2 3 4

Typographical Conventions

46 Chapter 1: Introducing IDL
Quitting IDL

To quit IDL, do one of the following:
e Enter the ExIT command at the IDL command prompt.

e |If you arerunning the IDL Development Environment (IDLDE), select the
Exit option from the File menu.

* Under Microsoft Windows, press Alt+F4.

* Under UNIX or MacOS X, if you use IDL’'s command-line mode, press
Ctrl+D asthefirst character in command-line mode causes IDL to exit back to
the operating system. The ExXIT procedure has the same function. If Ctrl+D is
not the first character, it simply ends the input line as if areturn had been
entered.

Note
When using IDL’s command-line mode under UNIX or MacOS X, you can
normally press Ctrl+Z to suspend IDL and return you to the shell process without
exiting IDL. After completing any shell commands, type £g to return IDL to the
foreground. Although the UNIX suspend character can be changed by the user
outside of IDL, thisisrarely done. For the purposes of this manual, we assume the
default convention.

Quitting IDL Using IDL

Chapter 1: Introducing IDL 47

Reporting Problems

Using IDL

We strive to make IDL asreliable and bug free as possible. However, no program
with the size and complexity of IDL is perfect, and problems do surface. When you
encounter a problem with IDL, the manner in which you report it has alarge bearing
on how well and quickly we can fix it.

The relnotes.txt file accompanying each release includes information about new
featuresin that release, bug fixes, and known problems which may be of help.

This section isintended to help you report problems in away which helps us to
address the problem rapidly.

Background Information

Sometimes, a problem only occurs when running on a certain machine, operating
system, or graphics device. For these reasons, we need to know the following facts
when you report a problem:

e Your IDL installation number.

e Theversion of IDL you are running.

¢ Thetype of machine on which it is running.

» The operating system version it is running under.

e Thetype and version of your windowing system if you are on UNIX.

e Thegraphics device, if the problem involves graphics and you know what
graphics device is on your system.

Theinstallation number is assigned by us when you purchase IDL and isincluded in
the license information that we sent you. The IDL version, site number, and type of
machine are printed when IDL is started.

For example, the following startup announcement appears indicating you are running
IDL version 6.2 under Sun Solaris using installation number xxxxx-X, under a
floating license located on a particular license manager.

IDL Version 6.2, Solaris (sunos sparc m64).
(c) 2004, Research Systems, Inc.

Installation number: XxXxxx-X.

Licensed for use by: RSI IDL floating licenses

Reporting Problems

48 Chapter 1: Introducing IDL

Under UNIX, the version of the operating system can usually be found in the file
/etc/motd. It isalso printed when the machine boots. In any event, your system
administrator should know this information.

Under Windows, select About from the Help menu in the Windows Explorer.
Double Check

Before reporting a problem double check with the manual or alocal expert if oneis
available. Sometimes, it is a simple matter of misinterpreting what is supposed to

happen.

If you cannot determine what should happen in a given situation by consulting the
reference manual, the manual needs to be improved on that topic. Please let us know
if you fedl that the manual was vague or unclear on a subject.

Another question to ask is whether the problem lies within IDL, or with the system
running IDL. Is your system properly configured with enough virtual memory and

sufficient operating system quotas? Does the system seem stable and is everything

else working normally?

Describing The Problem

When describing the problem, it isimportant to use precise language. Terms like
crashes, blows up, and fails are vague and open to interpretation. Doesiit really crash
IDL and leave you looking at an operating system prompt? Thisis how RS technical
support personnel interpret a problem report of acrash. If the behavior being reported
refers to an unexpected error message being issued before returning another prompt,
then describing it as a crash becomes misleading. What isreally meant by aterm like
"“fails?"

It isalso important to separate concrete facts from conjecture about underlying
causes. For example, a statement such as"IDL dumps core when allocating dynamic
memory" is not nearly as useful asthis statement, "IDL dumps core when | execute
the following statements... "

Reproducibility

Intermittent problems are by far the hardest kind to fix. In general, if we can't make it
happen on our machine, we can't fix it. It is far more likely that we can help you if
you can tell us a sequence of IDL statements that cause the problem to happen.
Naturaly, there are degrees of reproducibility. Situations where a certain sequence of
statements causes the problem 1timein 3 tries are fairly likely to be fixable.
Situations where the problem happens once every few months and no oneis sure
what triggered it are nearly impossible to identify and correct.

Reporting Problems Using IDL

Chapter 1: Introducing IDL 49

Simplify the Problem

Using IDL

In accordance with RSI Technical Support policy, when reporting aproblem, itis
important to give us the shortest possible series of IDL statements that cause it. Here
are some suggestions for simplifying your problem:

Copy the procedure and function files that are involved to a scratch second copy.
Never modify your only copy!

Eliminate everything not involved in demonstrating the problem. Don't do this all at
once. Instead, do it in a series of dow careful steps. Between each step, stop and run
IDL on the result to ensure that the problem still appears.

If asimplification causes the problem to disappear, then slowly restore the statements
involved until you can identify the source of the problem. The end result of such
simplification should be a small number of IDL statements that demonstrate the
problem.

If the problem does not invalve file Input/Output, strive to eliminate all file 1/O
statements. Use IDL routines to generate a dummy data set, rather than including
your own dataif at all possible. If your problem report does not involve your data, it
will be much easier for usto reproduce.

On the other hand, if the problem involves file Input/Output, and the problem only
happens with a certain datafile or type of data, we will need to look at your data or a
sample of your data.

If it is necessary to send us your data, use one of the following methods:

« If thedataset issmall, please send it as an attachment in your email to us:
support@RSInc.com.

e If thedataset islarge, please placeit on our ftp site at:
ftp.RSInc.com/incoming.

Be sure to include the commands that reproduce your problem in your message to
use. If you have placed your data on the ftp site, include the name of the data set and
when it was uploaded.

Problems with Dynamic Loading

Under some operating systems, the CALL_EXTERNAL and LINKIMAGE system
routines allow you to dynamically load routines written in other languages into IDL.
Thisisavery powerful technique for extending IDL, but it is considerably more
difficult than simply writing IDL statements. At this level, the programmer is outside
the user level shell of IDL and is not protected from programming errors. These
errors could give incorrect results or crash IDL. In such situations, the burden of

Reporting Problems

mailto:support@RSInc.com
ftp://ftp.rsinc.com/incoming

50

Chapter 1: Introducing IDL

proving that a problem iswithin IDL and not the dynamically loaded code is entirely
the programmer’s.

Although it is certainly true that a problem in this situation can be within IDL, it is
very important that you exhaust all other possibilities before reporting the problem. 1f
you decide that you need to report the problem, the comments above on simplifying
things are even more important than usual. If you send us a small example that
exhibits the problem, we may be able to respond with a correction or advice.

Contact Us

To report a problem, contact us at the following addresses:

Electronic Mail
support@RSInc.com

Telephone

(303) 786-9900

(303) 786-9909 (Fax)

(303) 413-3920 (IDL technical support direct line)
Mail

Research Systems, Inc.

4990 Pearl| East Circle

Boulder, CO 80301

Web Site
http://mww.RSInc.com

Reporting Problems Using IDL

mailto:support@RSInc.com
http://www.rsinc.com

Chapter 2

The IDL Development
Environment

This chapter describes the IDL Development Environment.

Componentsof the IDLDE 52 MacrosMenu 74
FileMenu........................... 59 WindowMenu 76
EditMenu 63 HepMenu 79
SearchMenu 65 PrintinginIDL 80
RunMenu 67 IDL Printer Setupin UNIX or MacOSX . 81
ProjectMenu 73

Using IDL 51

52 Chapter 2: The IDL Development Environment

Components of the IDLDE

The IDL Development Environment (IDLDE) is a convenient multiple-document
graphical user interface that includes built-in editing and debugging tools. This
section describes briefly the components of the IDLDE. The Windows version is
shown on the left and the UNIX version is shown on the right within the following
figure.

Control Panel Project Window Toolbars
Buttons

Menu Bar

BH1IDL #9999% | - RSI IDL floatin
Fie Edt Seach Fun

EEEL
B

Bl IDL Development Environment

File Edit Sgarch Run Project Macros Window

EEFEEEEEEEEE EEEEEE R EEE FEE TS
BIE B ® s @ (-Untitledo
ol [

Groups | Build Order -

4 7t R i

=

= I]
[101> [Y Ve Teee] Value X
Ready / \Z
LEEELI> Parans [commans |sjttsm| =
L - !
| |
Multiple Output Variable Command Status Bar
Document Panel Log Watch Window Input Line

Figure 2-1: The IDL Development Environment
for Windows (left) and UNIX (right).

Note
Individual components are similar across platforms.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 53

Menu Bar

Using IDL

The menu bar, located at the top of the main IDLDE window, allows you to control
various | DLDE features. When you select an option from amenu item in the IDLDE,
the Status Bar displays a brief description.

You can display menu commands for each menu using the following methods:
¢ Clicking the menu on the Menu bar.

e Pressing the Alt key plusthe underlined letter in the menu’stitle. For example,
to display the File menu, press Alt+F.

You can select or execute amenu command using the following methods:
¢ Clicking the item in the menu.

¢ Pressing the Alt key plus the underlined letter in the menu’stitle, and then
pressing the letter underlined in the menu item. For example, to select the
menu item File — Open, press Alt+F+0O.

e Using the cursor and the arrow keysto highlight a menu item, and then
pressing the Enter key.

Note
Many items (on each platform) have keyboard shortcuts displayed to theright of the
corresponding menu option.

The menu bar consists of the following menu items:

Menu Item Description of Functions

FileMenu The File Menu gives you options such as opening, closing and
creating new Editor windows and Projects and other options
such as printing, printer setup, preferences and exiting IDL.

Edit Menu The Edit Menu provides edit-related options such as undo,
redo, cut, copy, paste, delete, select al, clear all and clear log.

Search Menu The Search Menu allows you to find text in currently active
Editor windows as well as other options such as find again,

find selection, enter selection, replace, replace & find, go to
line and go to definition.

Table 2-1: The IDLDE Menus

Components of the IDLDE

54 Chapter 2: The IDL Development Environment
Menu Item Description of Functions
Run Menu Run Menu items are enabled when an IDL program is loaded

into an IDL Editor window. The run menu allows you
program related functionality such as compiling, resolving
dependencies, resetting, and editing programs among other
things. For more information on running programsin IDL, see
Chapter 2, “ Creating and Running Programsin IDL” in the
Building IDL Applications manual.

Project Menu

The Project Menu provides project-related functionality such
as adding/removing files, grouping and moving files, building,
running and exporting projects and so on. For more
information on working with IDL projects, see Chapter 22,
“Creating IDL Projects” in the Building IDL Applications
manual.

Macros M enu

The Macro Menu provides functionality for creating new
macros and using existing macrosin IDL. Fore more about
working with macrosin IDL, see Chapter 4, “Creating
Development Environment Macros’.

Window Menu

The Window Menu gives functionality related to Multiple
Document Panel windows.

Help Menu The Help Menu alows you to call IDL Online Help. You can
call the entire Online Help system in the IDL Online Help
Viewer or find help by topic. For more information on the IDL
Help System, see “ Getting Help with IDL” on page 35.
Table 2-1: The IDLDE Menus (Continued)
Toolbars

There are three toolbarsin the IDLDE: Standard, Run & Debug, and Macros. In
addition, when you open an IDL GUIBuilder window (Windows only), its associated
toolbar is displayed. When you position the mouse pointer over atoolbar button, the
Status Bar displays a brief description. If you click on atoolbar button which
represents an IDL command, the IDL command issued is displayed in the Output
Log. Display or hide toolbars by making selections among the Windows —

Toolbarsitems.

Components of the IDLDE

Using IDL

Chapter 2: The IDL Development Environment 55

Project Window

The Project Window displays information about the current Project you have openin
the IDLDE. IDL Projects alow you to easily develop applicationsin IDL. Through a
Project, you can compile, run, and create distributions of your IDL application. The
IDL Project Window allows you to access and manage all of the files required for
your application. Thismakesit easier to create a distribution for other devel opers,
colleagues, or users.

For further information on the IDL Projects, refer to Chapter 22, “ Creating IDL
Projects’ in the Building IDL Applications manual.

Multiple Document Panel

The section of the main IDL window where IDL Editor windows and GUIBuilder
windows are displayed is known as the multiple document panel. Any number of files
may be open at asingle time. You can access different files from the Windows menu
by clicking on the appropriatefile.

Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously. No Editor
windows are open when IDL isfirst started. Editor windows can be created by
selecting File — New or File — Open. See “Maximizing the Editor’s Capabilities’
in Chapter 2 of the Building IDL Applications manual for more information on the
IDL Editor.

To see the Multiple Document Panel at work, open thefile examples.pro by typing
.COMPILE examples.pro a thelDL command line. (See “Command Line” on
page 57 for details.)

Using IDL Components of the IDLDE

56

Chapter 2: The IDL Development Environment

The following figure shows the IDL program file opened in the Windows IDLDE.

&j C:\RSIMDL53\example_pro [_ (O] %]

end

pro WID BASE 0, GROUP_LEADER=wiGroup. _EXTRA=_ VUEExtra_
Resolwe Routine, 'examnple eventch' ; Load ewvent callback r_I

WID_BASE 0 = Widget_ Base(GROUP_LEADER=wGroup. UNAME='WID BASE
CEQOFFSET=5 | ¥YOFFSET=5 SCR_XSIZE=300 SCR_YSIZE=200 &
TITLE="IDL' ,SPACE=3 ,XPAD=3 ¥PAD=3)

-

AV

Figure 2-2: Editor Window showing example.pro

GUIBuilder Windows

Under Microsoft Windows, IDL GUIBuilder windows alow you to interactively
create user interfaces. Then, you can generate the IDL code that defines the interface
and the code to contain the event-handling routines. You can modify the code,
compile, and run the application in the IDLDE. To open a GUIBuilder window, you
can select File— New — GUI or you can select File — Open. See Chapter 29,
“Using the IDL GUIBuilder” in the Building IDL Applications manual. for more
information on the GUIBuilder.

Graphics Windows

IDL Graphics windows are not displayed in the Multiple Document Panel, but do
appear when you use IDL to plot or display data. You can copy the contents of a
Graphics window—iTool, Object or Direct—directly to the operating system
clipboard in abitmap format using CTRL+C.

When an IDL Graphics window is minimized (iconized), the icon displays the name
of the IDL window. Thisicon appears on the desktop, not in the Multiple Document
Panel, as with an iconized Editor window.

Warning
If the backing store is not set when awindow isiconized, it will not be refreshed

upon return. For more information about setting the backing store for graphics
windows, see “Graphics Preferences’ on page 104.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 57

Command Line

The Command Lineisan IDL prompt where you can enter IDL commands. The text
output by IDL commandsis displayed in the Output Log window. IDL isan
interpreted language and commands entered at the Command Line are executed
immediately. To see the IDL Command Line in action, enter the following in the
Command Line at the IDL prompt and press Enter:

print, 'Hello World!'

& 1L |

Figure 2-3: IDLDE Command Line

If you click the right mouse button while positioned over the Command Input Line, a
popup menu appears displaying the command history, with a default buffer of 20
entries and amaximum of 100 entries. Select an entry to reissue the command. See
“Recalling Commands” in Chapter 2 of the Building IDL Applications manual for
additional information about the command recall buffer.

Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when the IDLDE isfirst started. Notice the result of our print command in the Output
Log in the following figure.

IDL> PRINT, "Hello ‘wWorld!™
Hello wiorld!

Figure 2-4: The IDL Output Log

If you click the right mouse button while positioned over the Output L og, a context
menu appears allowing you to move to a specified error or clear the contents of the
Output Log. An additional Windows-only context menu option allows you to copy
selected contents.

Using IDL Components of the IDLDE

58 Chapter 2: The IDL Development Environment

Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps
track of variables as they appear and change during program execution (tabs exist for
viewing variables by type; Locals, Params, Common and System). For more
information about the Variable Watch window, see “ The Variable Watch Window”

in Chapter 8 of the Building IDL Applications manual.

Status Bar

When you position the mouse pointer over a Control Panel or Toolbar button, or
select an option from amenu in IDLDE, the Status Bar displays a brief description.

Docking/Undocking

In IDL for Windows, four sections of the IDLDE can be moved within and
unanchored from the main IDLDE window: the Toolbars, Output Log, Variable
Watch Window, and Command Line. Click on the border and drag the left mouse
button. You will notice the outline of the chosen section moving with your mouse.
When alocation is chosen, rel ease the mouse button to dock the window. If you
move this outline so that it overlaps an edge of the window space being used by the
IDLDE, the section will be docked to the nearest available side of the main IDLDE
window. The Toolbars, Output Log, Variable Watch window, and Command Line
will remain between the Menu Bar and the Status Bar when docked. They can be
docked in any order to an edge. If the outline doesn’t overlap an edge, the section will
float on the desktop. If you hold down the [CtrI] key, the sections will float instead of
docking to the nearest available side of the IDLDE.

Control Panel Buttons

InIDL for UNIX, the Control Panel buttonsissue IDL commands for the currently-
selected Editor window when pressed. The IDL command issued is displayed in the
Output Log. By default, there are three different toolbars and the buttons displayed as
well asthe commands they issue are completely configurable (see Chapter 3, “ Setting
IDL Preferences’ for more on these toolbars). When you position the mouse pointer
over a Control Panel Button, the Status Bar displays a brief description.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 59

File Menu

The following options are available in the File menu.

Note
See “Using Keyboard Accelerators’ on page 33 for information about using IDL's

keyboard shortcuts on a Macintosh.

Menu Item Description

New Select from the following sub-menu items:

» Editor [CtrI+N]: Opensanew IDL Editor window.

e GUI (Microsoft Windows Only): opensanew IDL
GUIBuilder file. See Chapter 29, “Using the
IDL GUIBuilder” in the Building IDL Applications manual
for details.

» Project...: opensthe New Project diaog.

» Visualization: Launches an iTool. See “Introducing the
iTools” in Chapter 1 of the iTool User’s Guide manual.

New windows are Untitledn Or UntitledPrcn (Wherenis
the numerical index of the new file) until saved with another
name.

Table 2-2: IDLDE File Menu Items

Using IDL File Menu

60

Chapter 2: The IDL Development Environment

Menu ltem

Description

Open...
Ctrl+O

Select this option to open single or multiple text filesfor editing.
(On Microsoft Windows platforms, you can also select an IDL
GUIBuUilder * . prc portable resource file.) In the Open dialog,
you can select a continuous range of files by holding down the
Shift key after selecting thefirst file, or select multiple, separate
files by selecting each file while holding down the Control key.
A new IDL Editor window is created to contain each text file.

Note - On Matif platforms, if the Multiple Windows option is
selected, anew IDL Editor window is created outside the main
window to contain each text file. See “Layout Preferences’ on
page 100 for details.

Note - You can also open text files from the Command Line.
Enter the following at the IDL prompt:
.EDIT file; [file, ... file,]

where fileisthe name of thetext file you want to open. If thefile
isnot in adirectory included in the 'PATH system variable, you
must enter the full path for file. See“.EDIT” in the IDL
Reference Guide manual for more information.

Close

Select this option to close the currently-selected IDL Editor
window. If you have made changesin an IDL Editor window,
you are asked if you want to save the changes before closing the
window.

Open Project...

Select this option to open anew IDL Project. The Open dialog
appears. Select the project you want to open and click Open.

Save Project

Select this option to save the current IDL Project. If the Project
has not yet been saved, you are prompted for afilename with the
Save Asdialog.

Save Project
As...

Select this option to save the current IDL Project to a specified
filename. The Save As dialog appears.

Close Project

Select this option to close the current IDL Project. If you have
made changesin to the project, you are asked if you want to save
the changes before closing the window.

File Menu

Table 2-2: IDLDE File Menu Items (Continued)

Using IDL

Chapter 2: The IDL Development Environment 61

Menu Item Description
Save Select this option to save the contents of an IDL Editor window.
Ctrl+S If the file has not yet been saved, you are prompted for a

filename with the Save As diaog.

Note - Changes made to a previously-compiled routine are not
available to IDL until that routine is re-compiled. Executing the
routine without first saving and re-compiling ssmply re-runs the
previously-compiled version, without incorporating recent
changes.

Select the Compile option in the Run menu to return to the
main program level and re-compile the routine. Select Compile
from Memory in the Run menu to save and compile recent
changes to atemporary file.

Save As... Select this option to save the contents of an IDL Editor window
ctrl+W (Motif) | to aspecified filename. The Save As dialog appears. On
Windows, when the File — Save As... option is selected, the
default file nameis the name of the last procedure or function in
the file. On UNIX, the default file nameis* . pro. For
portability between platforms, the filename is lowercase letters.

Revert to Select this option to reload the last saved version of the
Saved document.

Warning - Unsaved changes are lost without warning.

Generate .pro | Microsoft Windows Only

On a Microsoft Windows system, select this option to generate
source code files from GUIBuilder interface definitions. When
you generate code for thefirst time, all options open the Save As
dialog so that you can select alocation and specify afilename.
The following are generated:

» Thewidget definition code to a * . pro file.
» The event-handler callback codeto a* eventcb.pro file.

For information about the IDL GUIBuilder generated code, see
“Generating Files’ in Chapter 29 of the Building IDL
Applications manual.

Table 2-2: IDLDE File Menu Items (Continued)

Using IDL File Menu

62 Chapter 2: The IDL Development Environment

Menu Item Description
Print... On Microsoft Windows systems, select this option to
Ctrl+P immediately print the contents of the currently-selected window

to the default printer.

On Motif systems, the Print dialog appears. Select Numbered
Linesto include line numbers in the printout. Select Wrapped
Linesto cause lines longer than the width of the printed page to
wrap to anew line. Select Two Pages to print two pages per
sheet of paper (each logical pageis printed at half normal size).
Select Header to include file information at the top of each

page.

Print Setup... Select this option to change the printer and printing options. The
Print (Windows) or Printer Setup (Motif) dialog appears. For
further information on setting up a printer, see“Printing in IDL”
on page 80.

Recent Files Select this option to open recently opened or created files. This
menu item lists the last ten opened or created files. (On
Microsoft Windows systems, it includes both text and
GUIBuilder files.) To open afileon thislist, select it.

On Motif systems, to change the maximum number of files
displayed from ten to another number, modify the
idlde.numRecentFiles resourceinyour .idlde resource
file. See Chapter 5, “ Customizing IDL on Matif Systems’, for
details.

Recent Select this option to open recently opened project files.
Projects

Preferences... | Select thisoption to display the tabbed Preferences dialog,
which allows you to customize your interaction with the
IDLDE. The options available viathe Preferences dialog are
described in detail in Chapter 3, “ Setting IDL Preferences’.

Exit Select this option to exit IDL.
Ctrl+Q

Table 2-2: IDLDE File Menu Items (Continued)

File Menu Using IDL

Chapter 2: The IDL Development Environment

Edit Menu

Using IDL

63

The following options are available in the Edit menu.

Note

See “Using Keyboard Accelerators’ on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu ltem

Description

Undo

Ctrl+Z (Windows)
Alt+Z (Motif)

Select this option to undo previous editing actions. Multiple
undo operations are supported; the first reverses the most
recent operation, the next reverses the second most recent
operation, etc. If the most recent action isirreversible, this
option will not be accessible.

Redo

Ctrl+Y (Windows)
Alt+Y (Motif)

Select this option to redo previously undone editing actions.
Successive redo operations are supported; the first redo
reverses the most recent undo, etc.

Cut

Ctrl+X (Windows)
Alt+X (Motif)

Select this option to remove currently-selected text from an
IDL Editor window or the Command Line to the Windows
clipboard.

Copy

Ctrl+C (Windows)
Alt+C (Matif)

Select this option to copy the currently-selected text in an
IDL Editor window, Output Log window, or Command
Line to the clipboard. Copy also allows you to copy
graphics from an IDL graphics window or draw widget to
the clipboard.

Paste

Ctrl+V (Windows)
Alt+V (Motif)

Select this option to paste the contents of the Windows
clipboard at the current insertion point. The insertion point
can only be placed in an IDL Editor window.

Comment Add the comment character (;) to aline or selected block of
text in the Editor window.
Uncomment Remove the comment character (;) from aline or selected

block of text in the Editor window.

Table 2-3: IDLDE Edit Menu ltems

Edit Menu

64 Chapter 2: The IDL Development Environment

Menu Item Description
Delete Select this option to delete the currently-sel ected text. The
Del deleted text is not placed on the clipboard.
Select All Use this option to highlight the entire contents of an IDL

Editor window.

Clear All Use this option to clear the entire contents of the current
Ctrl+Del (Windows) | 'PL Editor window.

Clear Log Use this option to clear the entire contents of the Output
Ctrl+Y (Motif) Log.
Properties Microsoft Windows Only

Select this option to open the GUIBuilder Properties dial og,
which you can use to set the attribute and event properties
for awidget. For information on the Properties dialog, see
“Using the Properties Dialog” in Chapter 29 of the Building
IDL Applications manual.

Menu Microsoft Windows Only

Select this option to open the GUIBuilder Menu Editor,
which you can use to define menus for top-level base
widgets and button widgets. For information on the Menu
Editor, see “Using the Menu Editor” in Chapter 29 of the
Building IDL Applications manual.

Table 2-3: IDLDE Edit Menu Items (Continued)

Edit Menu Using IDL

Chapter 2: The IDL Development Environment 65

Search Menu

The following options are available in the Search menu.

Note

See “Using Keyboard Accelerators’ on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu ltem

Description

Find...

Ctrl+F (Windows)
Alt+F (Motif)

Select this option to find text in an IDL Editor window or
windows. The Search or Find/Replace dialog appears.

Enter the text to find in the field marked Search for or
Find; click Find next to highlight the search text in the
currently activefile.

Platform Differences
¢ On Windows platforms, you can a so choose an entry
from the pulldown list of recent search terms rather than
entering a new term in the Search for field.

¢ On Windows platforms, you can specify replacement
text by checking the Replace with checkbox and
entering a replacement term. Click Replace to replace
the selected text.

Check the Case sensitive checkbox to match the case of the
text you enter. Check Whole wor ds only to match only
entire words (the default isto match sub-strings). To replace
all instances of the search text, check the Replace all
checkbox and click Replace. Select Forward from cur sor
or Backward from cur sor to specify the direction in which
you would like to begin the search, or Entirefile to search
from the beginning of thefile.

By default, the search will take place in the currently-
selected window. Choose a different file or All Windows
from the pulldown list marked Sear ch in file to search other
windows.

Using IDL

Table 2-4: IDLDE Search Menu ltems

Search Menu

66

Chapter 2: The IDL Development Environment

Menu Item Description
Find Again Select this option to repeat the previous Find operation.
F3 (Windows)

Alt+G (Motif)

Find Selection

Ctrl+E (Windows)
Alt+l (Motif)

Select this option to find the next occurrence of the selected
text in an IDL Editor window.

Enter Selection
Alt+T (Motif)

Motif Only

Select this option to enter selected text in the Find field of
the Find/Replace diaog.

Replace...

Ctrl+H (Windows)
Alt+R (Motif)

Select this option to find text in an IDL Editor window and
replace it with new text. The Replace dialog box appears.
The Replace dialog has the same controls as the Search
dialog, described above in the Find item. By default, the
Replace with checkbox is checked.

Replace & Find
Alt+P

Motif Only

Select this option to repeat the most recent search-and-
replace operation.

Replace Again

Select this option to repeat the previous Replace operation.

Shift+F3
Go To Line... Select this option to jump directly to the specified line
Ctrl+G number in an IDL Editor window. The Go To Line dialog

appears.

Go To Definition

Ctrl+D (Windows)
Ctrl+T (Motif)

Use this option to go to and mark with a current line
indicator (blue arrow) the procedure or function call of the
item next to which the cursor is positioned. The item must
be either user-defined or a procedure or function written in
IDL, and must have been compiled during the current
IDLDE session.

Search Menu

Table 2-4: IDLDE Search Menu Items (Continued)

Using IDL

Chapter 2: The IDL Development Environment 67

Run Menu

Run menu items are enabled when an IDL program isloaded into an IDL Editor
window and compiled. If you click the right mouse button while positioned over an
editor window, a popup menu appears alowing you to quickly access several of the
most convenient commands. The popup menu changesto display common debugging
commands if IDL is running a program. See Chapter 8, “Debugging and
Error-Handling” in the Building IDL Applications manual for more information.

Note

See " Using Keyboard Accelerators’ on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu ltem

Description

Compile filename.pro
Ctrl+F5

Select this option to compile a . pro file. The currently-
selected fileis only recognized asan IDL procedure or
function if suffixed with . pro. Selecting this optionis
the same as entering . coMPILE at the Command Line,
with the appropriate Editor window selected in the
Multiple Document Panel.

You can aso compile files from the Command Line.
Enter the following at the IDL prompt:

.COMPILE filel [file2 ... filen]
where fi1e isthe name of the file you want to open. IDL
opens your filesin editor windows and compiles the
procedures and functions contained therein. If the path is
not specified in the Path Preferences from the File
menu, you must enter the full path for file.

See“.COMPILE” in the IDL Reference Guide manual
for amore detailed explanation.

Table 2-5: IDLDE Run Menu ltems

Using IDL

Run Menu

68

Chapter 2: The IDL Development Environment

Menu ltem

Description

Compile filename.pro
from Memory

Ctrl+F6

Select this option to save and compile changes to the
current editor window without affecting the last-saved
version of the file. The temporary file created alows you
to experiment without committing changes to the
permanent file. Selecting this option is the same as
entering . COMPILE -f at the Command Line. See
“.COMPILE” in the IDL Reference Guide manual for a
more detailed explanation.

Compile All

Select this option to compile all currently open * .pro
files.

Run filename
F5

Select this option to execute thefile called £i1ename
contained in the currently-active editor window.
Selecting this option is the same as entering the
procedure name at the Command Line or using the .GO
executive command at the Command Line.

If the fileisinterrupted while running, selecting this
option resumes execution; it is the same as entering
.CONTINUE at the Command Line. For more
information, see .CONTINUE and .GO inthe IDL
Reference Guide.

Warning - In order for the Run option to reflect the

correct procedure name in the Run menu, the .pro

filename must be the same as the main procedure name.

For example, the file named squish.pro must include:
pro squish

Resolve
Dependencies

Alt+F5 (Motif)

Select this option to iteratively compile all un-compiled
IDL routines that are referenced in any open and
compiled files. Selecting this option is the same as
entering RESOLVE_ALL, /QUIET at the Command
Line. The guieT keyword suppresses informational
messages. See “RESOLVE_ALL” inthe IDL Reference
Guide manual for amore detailed explanation.

Table 2-5: IDLDE Run Menu Items (Continued)

Run Menu

Using IDL

Chapter 2: The IDL Development Environment 69

Menu Item

Description

Profile

Select this option to access the Profile dialog. The IDL
Code Profiler allows you to analyze the performance of
your applications. You can identify which modules are
used most frequently, and which modules take up the
greatest amount of time.For more information about the
IDL Code Profiler, see “The IDL Code Profiler” in
Chapter 10 of the Building IDL Applications manual.

Test GUI
Ctrl+T

Microsoft Windows Only

Select this option to test the GUI interfacein a
GUIBuilder window. This option allows you to see how
the interface you have designed will look wheniitis
running.

To exit test mode:
Press the Esc key.
or

Click the X in the upper-right corner of the
application window of the running test application.

Note - Thisoptionis not available if ablocking widget is
currently active.

Break

Ctrl+Break (Windows)
Ctrl+C (Motif)

Select this option to interrupt program execution. IDL
inserts a marker to the left of the line at which program
execution was interrupted.

Stop
Ctrl+R

Select this option to stop program execution and return to
the main program level. Selecting thisitem isthe same as
entering the following at the Command Line:

RETALL

WIDGET CONTROL, /RESET

CLOSE, /ALL

HEAP_GC, /VERBOSE
See RETALL, WIDGET_CONTROL, CLOSE, or
HEAP_GC in the IDL Reference Guide for details.

Table 2-5: IDLDE Run Menu Items (Continued)

Using IDL

Run Menu

70

Chapter 2: The IDL Development Environment

Menu ltem

Description

Reset

Select this option to completely reset the IDL
environment. This option executes .RESET_SESSION.
See“.RESET_SESSION” inthe IDL Reference Guide
manual for details.

Step Into
F8

Select this option to execute a single statement in the
current program. The current-line indicator advances one
statement. If the statement being stepped into calls
another IDL procedure or function, statements from that
procedure or function are executed in order by successive
Step commands. Selecting thisitem is the same as
entering . STEP at the IDL Command Line. See*.STEP”
in the IDL Reference Guide manual for amore detailed
explanation.

Step Over
F10

Select this option to execute a single statement in the
current program. The current-line indicator advances one
statement. If the statement which is stepped over calls
another IDL procedure or function, statements from that
procedure or function are executed to the end without
interactive capability. Selecting thisitem isthe same as
entering . STEPOVER at the IDL Command Line. See

“ . STEPOVER” in the IDL Reference Guide manual for
details.

Step Out
Ctrl+F8

Select this option to continue processing until the current
program returns. Selecting thisitem isthe same as
entering . ouT at theIDL Command Line. See*.OUT” in
the IDL Reference Guide manual for amore detailed
explanation.

Table 2-5: IDLDE Run Menu Items (Continued)

Run Menu

Using IDL

Chapter 2: The IDL Development Environment 71

Menu Item

Description

Trace...

Select this option to access the Trace Execution dialog.
You can modify the interval between successive .STEP
or .STEPOVER commands, depending on whether Step
into routinesor Step over routinesis checked. The
current-line indicator points to program lines as they are
executed. Selecting thisitem at full speed isthe same as
entering . TRACE at the IDL command prompt. See
“.TRACE" in the IDL Reference Guide manual for a
more detailed explanation.

Run to Cursor
F7

Select this option to execute statements in the current
program up to the line where the cursor is positioned.
Selecting thisitem is the same as setting a one-time
breakpoint at a specificline. See “BREAKPOINT” inthe
IDL Reference Guide manual for details.

Run to Return
Ctrl+F7

Select this option to execute statements in the current
procedure or function up to the line where the returniis
positioned. Selecting thisitem is the same as setting a
one-time breakpoint at a specific line. See“.RETURN”
in the IDL Reference Guide manual for details.

Set Breakpoint

Clear Breakpoint
F9

Select this option to set or clear a breakpoint on the
current line. See Chapter 8, “ Debugging and
Error-Handling” in the Building IDL Applications
manual for details.

Disable Breakpoint
Ctrl+F12 (Matif)

Select this option to access disable a breakpoint in the
current line. See Chapter 8, “ Debugging and
Error-Handling” in the Building IDL Applications
manual for details.

Edit Breakpoint...

Select this option to access the Edit Breakpoint dialog.
See Chapter 8, “Debugging and Error-Handling” in the
Building IDL Applications manual for details.

Up Stack
Ctrl+Up Arrow

Select this option to move up the call stack by one.

Table 2-5: IDLDE Run Menu Items (Continued)

Using IDL

Run Menu

72 Chapter 2: The IDL Development Environment
Menu Item Description
Down Stack Select this option to move down the call stack by one.

Ctrl+Down Arrow

List Call Stack

Select this option to display the current nesting of
procedures and functions. Selecting thisitem is the same
asentering HELP, /TRACEBACK at the IDL Command
Line. See “HELP” in the IDL Reference Guide manual
for details.

Table 2-5: IDLDE Run Menu Items (Continued)

Run Menu

Using IDL

Chapter 2: The IDL Development Environment 73

Project Menu

For more information on the following Project menu items, see Chapter 22,
“Creating IDL Projects’ in the Building IDL Applications manual.

Note

See “Using Keyboard Accelerators’ on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description
Add/Remove Select this option to add or remove files from the current
Files... project.

Remove Selected
Ctrl+H

Motif Only

Select this option to remove the currently selected file from
your IDL Project.

Move To

Motif Only

Select this option to move the currently selected file to the
indicated project directory.

Groups...

Selecting this option displays the Project Groups dialog
from which you can create a new group or rename, remove,
move up or down, or set to filter specific file types for the
default groups within an IDL Project.

Options...

Select this option to change the options for a project. The
Project Optionsdiaog is displayed.

Compile

Select this option to compile filesin a project. You can
choose either All Filesto compile all the sourcefilesin a
project or M odified Filesto compile only thefilesthat have
been modified since the last compile.

Build

Select this option to build your project.

Run

Select this option to run the project application.

Export

Select this option to export your project.

Using IDL

Table 2-6: IDLDE Project Menu Items

Project Menu

74 Chapter 2: The IDL Development Environment

Macros Menu

The following options are available in the M acr os menu.

Menu Item Description

Edit... Select thisitem to access the Edit Macros dialog.
Macros which have already been defined arelisted in
the Macros: field. To edit amacro, click on the
macro to access its characteristics and click OK
when your adjustments are compl ete.

To add amacro, click Add..., which will accessthe
Add Macro diaog. Enter the name of the new macro
in the given field and click OK. Enter the IDL
command to be executed by the new macro in the
IDL Command: field. Enter the menu item name,
the full path to the toolbar bitmap file, the tooltip
text, and the status bar text in the appropriate fields.
Select the accelerator by specifying the key in the
Key: field and then optionally clicking on any
combination of Ctrl, Alt and Shift.

Note - Bitmap files for toolbar buttons must be 16
pixels by 16 pixels, and must contain 256 colors or
fewer.

To remove a macro, click Remove. To change the
position of amacro in the M acro menu and on the
Macro Toolbar, click on the macro to highlight it
and click on either Move Up or Move Down.

Import... Microsoft Windows Only

Use this menu selection to display the Import
Macros dialog box. Use this dialog to select the
previous IDL installation from which you want
macros to be imported.

Table 2-7: IDLDE Macros Menu Items

Macros Menu Using IDL

Chapter 2: The IDL Development Environment 75

Menu ltem

Description

Print Var (Windows)
Print Variable (Motif)

Select this option to print the selected variable.
Selecting thisitem isthe same as entering PRINT, x
at the IDL Command Line, where x is the selected
variable.

Help On Var (Windows)
Help On Variable (Motif)

Select this option to list attributes of the selected
variable. Selecting thisitem is the same as entering
HELP, x, /STRUCTURE atthelDL CommandLine,
where x isthe selected variable.

Import Image

Select this option to import an image file into IDL.
For more information, see “Using Macros to Import
Image Files” on page 165.

Import ASCII

Select this option to import an ASCI| fileinto IDL.
For more information, see “Using Macros to Import
ASCII Files’ on page 167.

Import Binary

Select this option to import abinary fileinto IDL.
For more information, see “Using Macros to Import
Binary Files’ on page 169.

Import HDF Select this option to import an HDF fileinto IDL. For
moreinformation, see“Using Macrosto Import HDF
Files’ on page 170.

Demo Select this option to access IDL’'s Demo application.

Table 2-7: IDLDE Macros Menu Items (Continued)

Using IDL

Macros Menu

76 Chapter 2: The IDL Development Environment

Window Menu

The following options are available in the Window menu.

Note

See “Using Keyboard Accelerators’ on page 33 for information about using IDL's
keyboard shortcuts on a Macintosh.

Menu Item Description

Read Only Motif Only
Select this option to enable or disable editing of the
currently selected window. A filled square next to the item
indicates Read-Only status.

Next Select this option to shift IDL’s focus to the next numbered

F6 (Windows) editor window.

F11 (Motif)

Previous Select this option to shift IDL's focus to the previous

Shift+F6 (Windows)
Alt+F11 (Motif)

numbered editor window.

Cascade

Select this option to cascade all the IDL Editor windows
within the main window.

Tile Horizontally

Microsoft Windows Only

Select thisoption to tileal the IDL Editor windows on top
of one another within the main window.

Tile Vertically Microsoft Windows Only
Select this option to tile all the IDL Editor windows side-
by-side within the main window.

Tile Motif Only

Select this option to arrange al open windows in a non-
overlapping fashion.

Table 2-8: IDLDE Window Menu ltems

Window Menu

Using IDL

Chapter 2: The IDL Development Environment 77

Menu Item Description

Arrange Icons Select this option to arrange al minimized Editor or
Graphics windows.

Close All Select this option to close adl IDL Editor windows. If the
text within an IDL Editor window has changed, you are
asked if you want to save the file before closing.

Configure Motif Only

Select this option to access a pulldown menu which alters
the appearance of the IDLDE. Select each toggle option to
hide or show each component. For more information about
each component, see “Components of the IDLDE” on

page 52.
* Hide Control (Show Control)

* Hide View (Show View)

» HideLog (Show Log)

» Hide Variable Watch (Show Variable Watch)
* Hide Command (Show Command)

* Hide Status (Show Status)

» HideProject (Show Project)

Command Input Microsoft Windows Only

Ctrl+l If this menu item has a check mark by it, the IDL
Command Lineisvisiblein the main IDL window. If this
item does not have a check mark next to it, the IDL
command lineis not visible. Use this menu item to toggle

between the two states.
Output Log Microsoft Windows Only
Ctri+L I this menu item has a check mark by it, the Output L og

isvisible in the main IDL window. If thisitem does not
have a check mark next to it, the M ultiple Document
Panel is maximized in the main IDL window. Use this
menu item to toggle between the two states.

Table 2-8: IDLDE Window Menu Items (Continued)

Using IDL Window Menu

78 Chapter 2: The IDL Development Environment

Menu Item Description
Variable Watch Microsoft Windows Only
Ctri+A If this menu item has a check mark by it, the Variable

Watch Window isvisible in the main IDL window. If this
item does not have a check mark net to it, the Variable
Watch Window is not visible. Use this menu item to
toggle between the two states.

Project Microsoft Windows Only

If this menu item has a check mark by it, the Project
Window isvisible in the main IDL window. If thisitem
does not have a check mark net to it, the Project Window
isnot visible. Use this menu item to toggl e between thetwo
states.

Toolbars Select this option to access a pulldown menu with the three
Windowstoolbars: Standard, Run & Debug, and
Macros. If atoolbar has a check mark by it, itisvisible
below the menu bar items.

Status Bar Microsoft Windows Only

If this menu item has a check mark by it, the Status bar is
visible at the very bottom of the Main IDL window.

Numbered The numbered menu items at the bottom of the Window
Windows menu display open files. Select any of these menu items to
make that window the current window.

Table 2-8: IDLDE Window Menu Items (Continued)

Window Menu Using IDL

Chapter 2: The IDL Development Environment 79

Help Menu

The following options are available in the Help menu.

Note
See “Using Keyboard Accelerators’ on page 33 for information about using IDL's
keyboard shortcuts on a Macintosh.

Menu Item Description
Contents Select this menu item to display the IDL Online Help
Ctrl+F1 Viewer.
Find Topic... Select this menu item to display the Search dialog for IDL
F1 Online Help.
About IDL... Select this option to display information onthe IDL versionin
use.

Table 2-9: IDLDE Help Menu ltems

Using IDL Help Menu

80 Chapter 2: The IDL Development Environment

Printing in IDL

IDL allows you two ways to print:
¢ Printing graphics from the IDL language
¢ Printing IDL source code from the File menu of the IDLDE.

While these sources are fundamentally different, the methods used to specify and
configure a print device according to your operating system are the same. Thistopic
is covered in the following sections. See “Printing Graphics’ on page 222 for
information on how to print from an IDL program.

Printer setup in Windows isrelatively straightforward, and is described in the
following section. UNIX printer setup is slightly moreinvolved and is covered in
“IDL Printer Setup in UNIX or Mac OS X" on page 81.

IDL Printer Setup in Windows
Setting up aprinter in IDL for Windows uses the common Windows Printer Setup

dialog. For more information on setting up a Printer on Windows, see your Windows
operating system documentation or support.

Print HE
— Prirter
Mame: IKodak EktaPluz 7016 j Properties |
Status: Feady
Type: Kodak EktaPlus 7016
Wwhere: COM4:
Comment:
— Print range Copie:
& Al Mumber of copies: |1 3:
) Fages [I e I
Ijl ™ Callate
) Selestion
Help | Cancel |

Figure 2-5: Common Printer Setup Dialog in Windows

Printing in IDL Using IDL

Chapter 2: The IDL Development Environment 81

IDL Printer Setup in UNIX or Mac OS X

IDL for UNIX uses the Xprinter print technology from Bristol Technology to create

and output information to awide variety of printers. This section describes the
Xprinter setup dialogs.

The Xprinter Setup Dialog

The Xprinter Setup dialog allows you to select model-specific printer options such as
paper trays, paper size, page orientation, and the UNIX print spooler command.
Printer options are saved inthe SHOME/ . XprinterDefaults file. Once configured,
the desired information is saved to the file system and used in future IDL sessions.

> Printer Setup

Output Format: | «w Printer Specific “ Generic (File Only) ABoUt. ..
File Name: ‘EXprinter.eps EPSF
Orientation: =
Scale :[;L,oo
- Portrait
w Landscape Copies: [31
Apply | Save | Fezet | Cancel | Ot ions, .. | Install...

Figure 2-6: The Printer Setup Dialog
Printer Setup Dialog Buttons

The action area of the Printer Setup dialog contains six buttons:

Button Description

OK Writes current configuration information to your default

printer information file $HOME/ . XprinterDefaults. This
button also dismisses the dial og.

Table 2-10: Printer Setup Dialog Buttons

Using IDL IDL Printer Setup in UNIX or Mac OS X

82 Chapter 2: The IDL Development Environment

Button Description
Save Writes current configuration information to your default
printer information file $HOME/ . XprinterDefaults.
Reset Rel oads default configuration from
SHOME/ .XprinterDefaults.
Cancel Closes dialog and cancels all configuration changes.
Options Displaysthe options dial og box that lets you select an alternate

printer setup. This button is disabled if output is configured to
be sent to afile instead of a printer.

Install Displays the installation dialog box that allows you to add or
remove printer devices and printer ports from the
$HOME/ .XprinterDefaults file

Table 2-10: Printer Setup Dialog Buttons (Continued)
Configuring Printer Setup Options

Specify the following options on theinitial Printer Setup dialog:

Option Description

Output Format: | Specify whether to send output to afile or a printer. If you
choose Printer Specific, you can send output to any printer
type/port combination configured in your

$HOME/ .XprinterDefaults file. If the portis FILE:,
Xprinter creates an output file for the specified printer type. If
you choose Generic (File Only), print output is sent to an
Encapsulated PostScript or generic PCL file.

Printer: Thisfield appears only if you select Output Format: Printer
Specific. It specifies the name of the default printer type/port
to which to send print output. Click the Options button to
specify adifferent printer type/port combination.

Table 2-11: Specifying Printer Setup Options

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 83

Option Description

File Name: Thisfield appears only if you choose Output Format: Generic
(File Only). Type the name of the print file you wish to create.
To pipe print output to acommand, enter a ! character asthe
first character and then specify the command to which to send
output. For example, to send output to the Ip command, enter

the following:
I1p
EPSF Thisfield only appearsif you select Output Format: File.
PCL 4 Click this button to display alist of output file types and select

the desired type. Available types are EPSF (Encapsul ated

PCL5 PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale To increase the size of the output, specify avalue greater than
1.00. To reduce the size, specify avalue less than 1.00. For
example, avalue of 2.00 would double the size of the output; a
value of 0.50 would reduce it by half.

Copies Specify the number of copiesto print.

Table 2-11: Specifying Printer Setup Options (Continued)

To set additional options, such as selecting a different printer or changing the page
size, click the Options button. The Options dialog appears.

The Options dialog is only available when sending output to a printer.

¢ Options [%]
Frinter Mame:|HP LaserJet IV PCL Cartridge on FILE: id
Resolution: |300 Ld
Page Size: Letter id
Faper tray: |Eassette |V

Ol | Cancel |

Figure 2-7: The Options Dialog

Using IDL IDL Printer Setup in UNIX or Mac OS X

84 Chapter 2: The IDL Development Environment

Use this dialog to set the Printer Setup options:

Option Description

Printer Name Usethisfield to select the current printer. Click the down
arrow to display alist of configured printers.

Resolution Specify printer resolution with thisfield. Values vary
depending on printer.

Page Size Specify paper size with thisfield. Values vary depending on
printer.

Paper tray Specify paper tray with thisfield. Values vary depending on
printer.

Duplex Specify duplex options (if the selected printer supports duplex

printing). Valid values include None (no duplex printing),
Duplex Tumble (flips over the short edge), and Duplex No
Tumble (flips over the long edge). If the selected printer does
not support duplexing, thisfield is disabled.

Table 2-12: The Printer Setup Options
Adding a New Printer to the List of Printer Choices

To add a new printer to your list of available printers:
« Defineaport, which isan aiasfor the print command.

¢ Associate the port with the printer’s PPD file.
Defining a New Port

To define anew port using the Printer Setup dialog:

1. Display the Ports dialog. From the Printer Setup dialog, select Install, Add
Printer, and Define New Port.

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment

Using IDL

85

Ports

local=1lp -t3XPDOCHAME

Edit Port:

Add-Replace Rrmdmee Spooler Dismiss Cancel

Figure 2-8: Defining a New Port

2. Typethe port definition in the Edit Port edit box. Port definitions have the

following format:
port=print command

The print_command is the command for sending output to the printer port. If
you were to have two printers named ORION and SIRIUS for example, the
definitions would appear as follows:

ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

Both printers here are connected to the system bandit, so the print command is
aremote shell command executed on bandit. ORION is a PostScript printer, so
thecommand 1p -d ps isexecuted on bandit to print to ORION. SIRIUS
though isa PCL5 printer, so the print command executed on bandit to print to
SIRIUSis1p -d ps -T pcls.

Click Add/Replace and the new port is now included in the list of current port
definitions.

4. Repeat the above step for each printer to which you wish to send output.

IDL Printer Setup in UNIX or Mac OS X

86 Chapter 2: The IDL Development Environment

Note
To create aprinter port for each available queue on hp700 systems, click the
Spooler button on the Ports dialog. This command creates a default printer port for
each available printer queue returned by the 1pstat -acommand.

Modifying an Existing Port

In order to modify an existing port using the Printer Setup dialog:

1. Display the Ports dialog. From the Printer Setup dialog, click Install, Add
Printer, and Define New Port.

2. Select the port you wish to modify and edit the port information in the Edit
Port edit box.

3. Click Add/Replace. The modified port is now included in thelist of current
port definitions.

Matching a Printer Device to a Port
In order to match a printer device to a port using the Printer Setup dialog:

1. Display the Add Printer dialog. From the Printer Setup dialog, click I nstall
and Add Printer.

2. InthePrinter Devicesfield, select the description that matches the printer you
aretoinstall. If no description matches this printer, contact your printer vendor
for a printer description (PPD) file.

3. Select the desired port in the Current Port Definitions list box and click Add
Selected. The new printer is now included in the list of currently installed
printers.

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment

Using IDL

87

Printer Devices Current Port Definitions
AP5-PS PIF with APS-B-108 : o] local=1p =t3:XPODOCHAME
APS-FS PIP with AFS-5-80 FILE:=

APS-PS PIP with LZR 1200

APS=FS PIP with LZR 2600

AST TurbolLaser-FS

Adobe LaserJet II Cartridge

Agfa Matrix ChromaScript

Agfa TabScript CS00 PostScript Printer
Agfa-Compugraphic S400F

Apple Laserbriter]

fidd Selecoed Define Hew Port... Dismiss

Figure 2-9: Adding a Printer

Removing an Installed Printer
In order to remove a printer device/port combination using the Printer Setup dialog:

1. Display the Printer Installation dialog. From the Printer Setup dialog, click
Install.

2. IntheCurrently Installed Printerslist box, select the printer you wish to
remove and click on Remove Selected.

Manually Modifying Default Printer Setup Values

Xprinter retrieves default printer setup information from the file
.XprinterDefaults inyour home directory. If thisfile does not exist, Xprinter
reads the information from the file $XPHOME /xprinter/XprinterDefaults Of
SXPPATH/XprinterDefaults.

Note
For IDL, $XPATH isset to $IDL._DIR/resource/xprinter.

The Xprinter Printer Setup dialog writes modifications to the default information in
$HOME/ .XprinterDefaults. However, it never modifies the default information
inthefile SXPHOME /XprinterDefaults OF $XPPATH/XprinterDefaults. If
thefile sHOME/ . XprinterDefaults doesnot already exist, the Xprinter Printer
Setup dialog createsiit.

Although the most common way to modify the default Printer Setup is using the
Printer Setup dialog, which updates $HOME/ . XprinterDefaults automaticaly,
you may also edit this file with any text editor and make changes directly.

IDL Printer Setup in UNIX or Mac OS X

88

Chapter 2: The IDL Development Environment

You may also set up the $HOME/ . XprinterDefaults file to do the following:
e Define printer ports.
e Maitch printer types to defined ports.
e Specify the default printer.
e Specify printer-specific options.
Defining a Port

A printer port isan alias for the print command. It is defined in the [ports] section of
$HOME/ .Xpdfaults and appears as part of the Printer Name in the Printer Setup
dialog. For instance, the following isthefirst Printer Name in the Printer Setup dialog
before you make any changesto $HOME/ . XprinterDefaults:

ApplelaserWriter v23.0 PostScript on FILE:

For this Printer Name, FILE: isthe port name. To send output to a printer instead of a
file, you first must define a port for each printer to which you wish to direct output.
Port entries in the [ports] section have this format:

port=print_ command

The print_command is the command for sending output to the printer port. For
instance, if you have two printers (ORION and SIRIUS), your [ports] section may
appear asfollows:

[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

In the above, both printers are connected to the system bandit, so the print command
is aremote shell command executed on bandit. ORION is a PostScript printer, so the
command 1p -d ps isexecuted on bandit to print to ORION. SIRIUS, though, isa
PCL5 printer, and thus the print command executed on bandit to print to SIRIUSis
lp -d ps -T pcls

If aprinter is connected to your local system, you will need to add an entry for that
printer as well. For the local printer, your entry should be like the following:

[ports]

ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcll5"
LOCAL=1p -d ps

Your printer port can be any name you choose except FILE:, which isthe only
reserved port name. It causes Xprinter to create a print file formatted specifically for
the specified printer type.

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 89

An entry must be created in the [ports] section for every printer to which you wish to
be ableto print.

Matching a Printer Type to a Defined Port

After you have defined a port for each printer, you must tell Xprinter what type of
printer is associated with each port. List device typesin the [devices] section of the
.XprinterDefaults file. Each entry in the [devices] section has the following
format:

alias=PPD file driver,port
Note

There must be a space between the PPD_file and driver and a comma between the
driver and the port. The following table describes each part of this entry.

Field Description

aias The dias is a descriptive name used to identify the printer. It
can be anything you choose. The alias is the name which
appears in the Printer Setup dialog (such asHP LaserJdet
III SI PostScript).

PPD_file The PPD_fileisthe name of the printer description (PPD) file
used by the printer, without a . pPD extension. Search in the
directory $XPHOME/xprinter/ppds/ to find the PPD file
for your printer.

driver The driver isthe type of driver your printer uses. Value values
are postScript, PCL4, and PCLS5.

port The port isthe printer port aslisted in the [ports] section of the
.XprinterDefaults file (ORION, SIRIUS, and LOCAL in
the example [ports] section).

Table 2-13: Associating a Printer with a Port

Using IDL IDL Printer Setup in UNIX or Mac OS X

Chapter 2: The IDL Development Environment

Here's an example configuring three printers:

Port Printer Type Output Type
ORION HP LaserJet 111Si PostScript v52.3 PostScript
SIRIUS HP LaserJet 4M PCL Cartridge PCL
LOCAL QMS-PS 2200 v52.3 PostScript

Table 2-14: Example Configuration

First, be sure to choose an alias for each printer. In order to make it simpler to
identify the printer from the Printer Setup dialog you wish to use, you may use the
following aliases:

HP LaserJet PS

HP LasterJet PCL
QMS PS

It isimportant to note that if you utilize the Printer Setup dial og to associate ports and
PPD files, you cannot specify a printer alias. You must instead choose an alias from
the predefined listing that appears in the Printer Devices list box in the Add Printer
dialog. The corresponding PPD file is already associated with the printer aliasesin
thislist box.

Now, identify the PPD file associated with each of these printers.
Thus the [devices] section of the . XprinterDefaults file would be as follows:

[devices]

HP LaserJet PS=HP3SI523 PostScript, ORION
HP LaserJet PCL=HP4M PCL, SIRIUS

QMS PS=Q2200523 PostScript, LOCAL

After these entries have been added to your . XxprinterbDefaults file, thefollowing
printer choices are available from the Printer Setup dialog:

HP LaserJet PS on ORION

HP LaserJet PCL on SIRIUS
QMS PS on LOCAL

Specifying a Default Printer

After you have configured all available printers, you may select one of them as the
default printer. To make a specific printer the default printer on the Printer Setup
dialog, add an entry (in the following format) to the [windows] section of the
.XprinterDefaults file

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 91

Using IDL

[windows]
device=PPD file,driver, port

Simply provide the same information that you used in the [devices] section. Only the
format of the entry is different; there is acomma between the PPD_file and the driver
instead of a space.

For example, suppose you wish the default printer to be the printer at port ORION.
The [windows] section would appear as follows:

[windows]
device=HP3SI523,PostScript, ORION

[ports]

ORION=rsh bandit "lp -d ps"

SIRIUS=rsh bandit "lp -d ps -T pcl5"
LOCAL=1p -d ps

[devices]

HP LaserJet PS=HP3SI523 PostScript, ORION
HP LaserJet PCL=HP4M PCL, STIRIUS

QMS PS=Q2200523 PostScript, LOCAL

Inyour default . xprinterDefaults file, the [windows] entry appears:

[windows]
device=NULL, PostScript, FILE:

Since no PPD fileislisted (NULL), the default on the Printer Setup dialog is to print
generic PostScript to afile. You may specify the filename and change the type of
output to PCL on the Printer Setup dial og.

Specifying Printer-Specific Options

You may include a section that lists the default printer-specific options for each
printer defined in the devices section. The options available vary between differing
printers, but typical options include number of copies, page size, paper tray, and
orientation. An example follows of a printer-specific section for a default printer in
theexample .XprinterDefaults file

[HP3SI523,PostScript]
Scale=0.80

Copies=1
PaperTray=Lower
PageSize=Letter
Orientation=Portrait
DPI=300

IDL Printer Setup in UNIX or Mac OS X

92 Chapter 2: The IDL Development Environment

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 3

Setting IDL

Preferences

The IDL Development Environment can be customized by setting preferences. This chapter

describes the sections of the Preferences dialog:

Layout Preferences
GraphicsPreferences

Using IDL

Editor Preferences 107
Startup Preferences 110
Font Preferences 112
Path Preferences 115

93

94 Chapter 3: Setting IDL Preferences

About IDL Preferences

Preferences are internal values that control various aspects of the environment that
IDL presentsto its users. Preferences supply initial values for many system variables
and control the layout of the IDL development environment (IDLDE) and avariety of
other aspects of IDL’s behavior. Preferences can be specified from a variety of
sources. They persist between IDL sessions, meaning that once you get them setin a
way that satisfies your needs, you can forget them, and IDL will behave in the way
you have specified every time you run it.

You can specify values for many of the IDL preferences through the IDLDE'’s
Preferences dialog. For more information, see “Customizing IDL” on page 95.

Some preferences are not visible in the Preferences dialog. To customize them, use
the IDL PREF_* routines, environment variables, or user preference files to specify
preference/value pairs. You can also use these mechanisms to modify preference
valuesvisiblein the Preferences dialog. For more information, see Appendix E, “1DL
Preferences’ in the IDL Reference Guide manual.

Unavailable Preferences

The value of a preference can come from avariety of sources. Thereisahierarchy to
these sources, and IDL will use the value from the source with the highest priority.

Preferences specified at the command line when launching IDL have the highest
priority, followed by preferences specified in environment variables. If a preference
takes its value from either of these sources, you will not be able to change the
preference’s value during the course of the IDL session, and the value will be
desensitized in the Preferences dialog.

See “Understanding Preference Sources’ in Appendix E of the IDL Reference Guide
manual for additional information about the hierarchy of preference sources.

About IDL Preferences Using IDL

Chapter 3: Setting IDL Preferences 95

Customizing IDL

Various settings for the IDL Development Environment can be customized using the
Preferences dialog. To open the Preferences dialog, select Preferencesfromthe IDL
Development Environment File menu.

Note

On UNIX platforms, including Macintosh OS X, some settings can also be
customized by editing IDL’s resource files. For further information about editing
resource files on UNIX and Macintosh OS X, see Chapter 5, “Customizing IDL on

Motif Systems”.

The Preferences dialog contains tabbed sections that allow you to customize your
interaction with the IDLDE. The tabs and their uses are described below.

Note

The terminology used on the Preferences dialogs differs between Microsoft
Windows and Matif systems. In this documentation, if the wording is significantly
different between the two platforms, the wording used in the Windows dialogsis
listed first, followed by the wording used in the Motif dialogs.

Tab Description

General This tab allows you to specify how the IDLDE session begins

Preferences and ends, to control the number of linesin the recall buffer and
the Output Log, and to designate how the files should be
opened and read.

Layout Thistab allowsyou to specify the location and size of themain

Preferences IDLDE window on the screen. You can aso designate which
components of the IDLDE will be visible.

Graphics This tab allows you to set the layout of windows that contain

Preferences IDL graphics, and to specify the backing store, the size of the
TrueType font cache, and the object graphic rendering
preference.

Editor Thistab allows you to customize the IDL’s built-in editor and

Preferences also offers several compiling options.

Using IDL

Table 3-1: Preference Dialog Tabs

Customizing IDL

96

Chapter 3: Setting IDL Preferences

Tab

Description

Startup
Preferences

This tab allows you to specify the locations of the working
directory and a startup file.

Font Preferences | Thistab allows you to specify different fonts, styles, and sizes

for the Editor, Command Line and Output Log.

Path Preferences | Thistab alows you to specify the IDL Files Search Path and

path cache settings.

Table 3-1: Preference Dialog Tabs (Continued)

Platform Differences

Microsoft Windows and UNIX platforms (including Macintosh OS X) implement the
Preferences dialog using different dialog application buttons. The following table
lists the buttons, the platforms on which they are found in the Preferences dia og,
and the action performed when the button is used.

Platform Button Result
Windows, | OK Changes are saved and applied to the current session,
UNIX and the Preferences dialog is dismissed.

Cancel Any changes that were not applied are ignored, and
the Preferences dialog is dismissed.

Apply Changes are applied to the current session, but not
saved. (On UNIX, changesto items marked on the
dialog with an asterisk take effect in the next session.
To make the changes for the current session, use
OK.) The Preferences dialog remains visible.

Help Displays IDL online help.

Windows Reset Restores the preferences on the dialog to the
only preference values from the start of the current IDL
session.

Customizing IDL

Table 3-2: Preferences Dialog Button Descriptions

Using IDL

Chapter 3: Setting IDL Preferences

General Preferences

The General tab of the Preferences dialog has three sections: Program, Log and

Command Window, and Files.

Preferences ¢ Preferences
General }Laynut} Graphics | Editor | Startup | Forts | Path | Genera T Lagout] Graphlcs] Edn—.] Star*tup] Fonts] Paths]
Program Programs
[V Shaw Splash Screen F #Show Splazh Screen
I™ Canfirm Exit F Confirm Exit
Log windaw Log & Comman o Windows
Number of lings to display in the log: 1000 wlines to Save: FL000 sDelete on Limit: [Z50
Murnber of log lines to delete at limit: 100

Command Recall Bufer
Number of lines saved in the recall buffer: |20

W Save Recall Buffer Between Sessions

Files
[Change Directary on Open
I~ Open Files Read Only

Feset

oK Cancel Apply | Help

Limes saved im the recall buffers: Ezo

F Save recall buffer betuween sessions

Files:

4 Change Directory on Open

4 Open Files Read Only

Hill take effect in the next session,
#% Values for desensitized items cannot be changed during
thiz zeszion, Click Help for additional information,

Cancel apply | Help

Figure 3-1: General Preferences Dialog

97

Note

Some preference settings may be desensitized. See “ Unavailable Preferences’ on

page 94 for details.

Program Section

You can specify how IDL handles starting up and exiting. Click on the following
check boxes to apply or disable the options:

e Show Splash Screen — Select this option to show the IDL splash screen on
startup. This selection takes effect the next time an IDL session is started.

Using IDL

This control setsthe value of the IDL_WDE_SPLASHSCREEN preference
(Windows) and the IDL_MDE_SPLASHSCREEN preference (UNIX). For
more information, see Appendix E, “IDL Preferences’ in the IDL Reference
Guide manual.

Confirm Exit — Select this option to display awarning dialog when you exit
IDL.

General Preferences

98

Chapter 3: Setting IDL Preferences

This control setsthe value of the IDL_WDE_EXIT_CONFIRM preference
(Windows) and the IDL_MDE_EXIT_CONFIRM preference (UNIX). For
more information, see Appendix E, “IDL Preferences’ in the IDL Reference
Guide manual.

Log and Command Window Section

Note

On Microsoft Windows systems, these preferences are divided between the Log
Window and Command Recall Buffer sections of the dialog.

The number of lines saved in the recall buffer for the Command Line has an impact
on the performance of IDL. The amount of memory required for greater numbers of
saved linesin the buffer affects the speed at which IDL runs. Click in the field next to
each description and enter your adjusted value to change the settings.

Number of linesto display in thelog/ Linesto Save — Thisfield controls
the maximum number of lines retained by the Output L og window. The
default is 1000 lines.

This control setsthe value of the IDL_WDE_LOG_LINES preference
(Windows) and the IDL_MDE_LOG_LINES preference (UNIX). For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Number of log linesto deleteat limit / Delete on Limit — Thisfield controls
the number of linesthat will be deleted from the Output Log window when the
maximum number of linesis reached. The earliest linesin the log are deleted.

Thedefault is 100 for Microsoft Windows systems and 250 for UNIX systems.

This control setsthe value of the IDL_WDE_LOG_TRIM preference
(Windows) and the IDL_MDE_LOG_TRIM preference (UNIX). For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Number of lines saved in therecall buffer — Thisfield controlsthe
maximum number of lines saved in the recall buffer. (See “Recalling
Commands” in Chapter 2 of the Building IDL Applications manual for
information on using the recall buffer.) The default is 20 lines.

This control setsthe value of the IDL_RBUF_SIZE preference. For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

General Preferences Using IDL

Chapter 3: Setting IDL Preferences 99

Save Recall Buffer Between Sessions — Select this option to have the recall
buffer persist between IDL sessions.

This control setsthe value of the IDL_RBUF _PERSIST preference. For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Files Section

Using IDL

You can change the way in which IDL handles opening files. Select or clear the
following check boxes to apply or disable the options:

Change Directory on Open — Select this option to cause IDL to change the
current working directory when you open afile. The new current working
directory will be the directory that contains the opened file.

This control setsthe value of the IDL_WDE_EDIT_CWD preference
(Windows) and the IDL_MDE_EDIT_CWD preference (UNIX). For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Open Files Read Only — Select this option to open files so that they can be
viewed, but not changed.

This control setsthe value of the IDL_WDE_EDIT_READONLY preference
(Windows) and the IDL_MDE_EDIT_READONLY preference (UNIX). For
more information, see Appendix E, “IDL Preferences’ in the IDL Reference
Guide manual.

General Preferences

100

Layout Preferences

Chapter 3: Setting IDL Preferences

This tab allows you to control the appearance and placement of the IDLDE.

Preferences " Preferences
General - Layout lﬁlﬂphlﬂsl Editor | Stattup | Forts | Path | Genera 1] Eraphlcs] Ed:t] Startup] Fm’\ts] Paths]
il it HHain Windows
O Default lapout DeFault Left [T Width [E7-
(o i i
Specify lapout ,— ,— w Specify Top [Heizht [T
% Remember layout 4 Remember
Showe Window Windows:
¥ Command Input ¥ Standard Toolbar Editor Lagout: o Multiple
M Dutput Log ¥ Fun & Debug Toolbar Hide: 4 Control 4 Wiew o Log F MWatch
M Status Bar V¥ Macros Taolbar
X Hide: J Command J Status F Project
[Variable Watch [Froject 4
Separatel d Comman d 4 Control 4 Log o Match 4 Project
Control Panel:
Hide Tools: 4 Standard 4 RuntDebug o User
Hunber of Rous: [2 Vertical 4
% Will take sffect in the next session
#m Walues for desensitized items carmot be changed during
this session, Click Help for additional information,
Reset
oK Cancel Apply ‘ Help | 0k | cancel | Apply | Help |

Some preference settings may be desensitized. See “Unavailable Preferences’ on
page 94 for details.

Main Window Section

Use the fields in this section to specify the default size and placement of the IDL
Development Environment’s main window. (See “ Components of the IDLDE” in
Chapter 2 for descriptions of the components of the IDLDE.)

e Select the Default Layout radio button to use the IDLDE's default layout,
which depends on the size and resolution of your computer screen. If you
select this radio button, all of the IDLDE’s windows and toolbars will be
displayed in their standard locations.

¢ Select the Specify L ayout radio button to manually specify the layout of the
IDLDE:

« Enter the number of pixels from the left-hand edge of the screen the
IDLDE window should be displayed in the L ft field

Layout Preferences Using IDL

Chapter 3: Setting IDL Preferences 101

Using IDL

« Enter the number of pixels from the top edge of the screen the IDLDE
window should be displayed in the Top field

e Enter the width of the IDLDE window in pixelsin the Width field
« Enter the height of the IDLDE window in pixelsin the Height field

Note that if you select the Default L ayout radio button after specifying values
in these fields, your values will be replaced with “-1” to indicate that the
default values will be used the next time IDL starts.

e Select the windows and toolbars to be displayed from the Show Window
section (Windows) or Windows and Control Panel sections (Motif)

Click Apply to apply your changes to the current IDLDE window without
saving the values. (This allows you to use the L ayout tab to control the
appearance of the IDLDE for the current session without making your changes
permanent.) Click OK to apply your changes and save the values; they will be
used the next time IDL starts.

Select the Remember Layout radio button and click OK to save the current
layout of the IDLDE windows for use the next time IDL starts. This optionsis
useful if you have configured the windows manually and wish to save your
changes.

Undocking IDLDE windows

Some of the elements of the IDLDE can be “undocked” from the interface and appear
as separate, free-floating windows. On Microsoft Windows systems, use the mouse to
select an element and drag it away from the main IDLDE window to undock the
element. On UNIX systems, you can use the checkboxes in the Windows section to
undock elements. For more information, see “ Docking/Undocking” in Chapter 2.

The following elements can be undocked:

Command Line
Toolbars

Output Log

Variable Watch Window
Project Window

Layout Preferences

102

Chapter 3: Setting IDL Preferences

Show Window Section (Windows Only)

By def

ault, all the listed options are checked, signifying that they are al visiblein the

IDLDE main window. Click on the check boxes to show or hide the following
windows:

Command line

Output Log window
Status Bar

Variable Watch window
Standard Tool bar

Run & Debug Toolbar
Macros Tool bar

Project window

Click Apply to apply your changes to the current IDL session. (Thisisthe same as

selecti

ng the corresponding options in the Window menu.)

Windows Section (Motif Only)

Useth
the D

Layout Preferences

e options in this section to control the appearance of the window elements of
LDE.

Editor Layout — Click Multipleto display open Editor and Project windows
separately from the main IDLDE window. Note that if the M ultiple Windows
option is enabled, the choice to hide or view the Editor windows is not
available.

Hide — Select the check box for elements of the IDLDE you wish to hide
from view. By default, none of the sections are hidden.

» Control hidesthetoolbars;

* View hides the Project window and the Editor window;

¢ Log hides the Output L og window;

* Watch hides the Variable Watch window;

¢ Command hidesthe Input Command Line;

e Statushidesthefly over statusline at the base of the Main IDL window;

e Project hidesthe Project window and extends the Editor window to the
full width of the IDLDE.

Using IDL

Chapter 3: Setting IDL Preferences 103

e Separate — Select the check box for the constituent window you want to
separate from the IDLDE Main Window. When the Separ ate action is applied,
the element is “undocked” from the interface and appears as separate, free-
floating window.

Click Apply to apply your changes to the current IDL session. (Thisisthe same as
selecting the corresponding options in the Window menu.)

Control Panel Section (Motif Only)
You can specify how you would like to display the various toolbars on the Control
Panel.

e Hide Tools — Select the check box for any of the available toolbars
(Standard, Run & Debug, and User) to hide that toolbar.

¢ Number of Rows— Enter the number of rowsto usein displaying any visible
toolbars. You can select from 1 to 3 rows.

¢ Vertical — Select this check box to cause the toolbars to be stacked vertically
one on top of the other rather than horizontally next to each other.

Using IDL Layout Preferences

104 Chapter 3: Setting IDL Preferences

Graphics Preferences

Thistab allows you to control the layout and default size of IDL graphics windows.
You can aso control IDL’s default use of backing store and the size of the TrueType
font cache. Note that the values set here are defaults; the values can be overridden
when a graphics window is created.

preferences
Genelal} Layout Graphics wEdilUr] Starlup] Fonts 1 Path I General] Laguut] Edit] Stapw’o] Fonts] pathsl

“Window layout Windows Sizel

" Tile Width: Height: Default Width: [B40 Default Height: [Biz

" Cascade ¥ 1/4 ScreenSize [Alwaps On Top Use F 1/4 the screen size
Backing store Backing Store:

" Mone [direct-draw] RETAIN =0 + Mone CRETAIM = &)

+ System buffered RETAIN =1 # System ¢RETAIH = 1)

" Bitmap buffered RETAIN =2 ~ Pixmap (RETAIN = 23
True Type Fonts Graphics Attributes:

Size of glyph cache [in glyphs): 256 $ize of TrueTupe Font Cache (in gluphsi: [[Z66

= = Object Graphics Renderert

Derfiau\t object graphics renderer + Harduare Rendering COpanGL)

O

Hardware [DpentiL] + Softuare Rendering
" Software
¥ Will hake effect in bhe newt session.
#H Walues For cesensitized items cannot ke changed during
this session. Click Help for additional information.
Resst
ok I Cancel | Apply | Help ‘ 0K | cancel | Apply Help

Some preference settings may be desensitized. See “ Unavailable Preferences’ on
page 94 for details.

Window Layout / Windows Size Section

Specify the default width and height of IDL graphics windows in the Width and
Height fields. These controls set the values of the IDL_GR_WIN_HEIGHT and
IDL_GR_WIN_WIDTH preferences (Windows) and the IDL_GR_X_HEIGHT and
IDL_GR_X_WIDTH preferences (UNIX). For more information, see Appendix E,
“IDL Preferences’ in the IDL Reference Guide manual.

Alternatively, you can specify that graphics windows have a default width and height
of half the screen width and height by checking the 1/4 Screen Size checkbox. This
control setsthe value of the IDL_GR_WIN_QSCREEN preference (Windows) and

Graphics Preferences Using IDL

Chapter 3: Setting IDL Preferences 105

Using IDL

the IDL_GR_X_QSCREEN preference (UNIX). For more information, see
Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Platform Differences

On Windows systems, you can specify that graphics windows should be created side-
by-side, with no overlap by selecting the Tile radio button, or that they should be
created overlapping by selecting the Cascade radio button. This control setsthe value
of theIDL_GR_WIN_LAYOUT preference. For more information, see Appendix E,
“IDL Preferences’ in the IDL Reference Guide manual.

Select the Always On Top checkbox to ensure that graphics windows float above all
other IDL windows. This control setsthe value of the IDL_GR_WIN_ONTOP
preference. For more information, see Appendix E, “IDL Preferences’ inthe IDL
Reference Guide manual.

Backing Store Section

When backing store is enabled, a copy of each Graphics window is kept in memory;
the copy is used to refresh the window when it has been covered and uncovered.
IDL’s performance may increase when no backing store is used, since the amount of
memory required to save copies can affect the speed at which IDL will run. Settings
in this section correspond to settings of the RETAIN keyword to the DEVICE
procedure; see “Backing Store” in Appendix A of the IDL Reference Guide manual
for more information.

¢ None (RETAIN = 0): Select this option to refrain from keeping a copy of the
window. In some situations, disabling backing store may lead to anincreasein
IDL’s performance.

* System (RETAIN = 1): Select this option to request backing store from the
windowing system. Thisis the default.

* Bitmap / Pixmap (RETAIN = 2): Select this option to specify that IDL should
maintain the backing store using its own memory.

Note
Backing Stor e preference changes do not take effect until the next IDL session.

This control setsthevalue of theIDL_GR_WIN_RETAIN preference (Windows) and
the IDL_GR_X_RETAIN preference (UNIX). For more information, see Appendix
E, “IDL Preferences’ in the IDL Reference Guide manual.

Graphics Preferences

106 Chapter 3: Setting IDL Preferences

True Type Fonts Section

Note
On UNIX systems, this preference isincluded in the Graphics Attributes section of
the dialog, described below.

IDL saves TrueType fonts as a set of glyphs; each glyph represents the triangulation
data for drawing one character. The Size of TrueType Font Cache (in glyphs) field
allows you to set the number of glyphs to keep in cache memory; keeping glyphsin
memory speeds drawing of fontsin IDL graphics windows. The default number of
glyphsin cache memory is 256, roughly two TrueType font sets.

Enter the number of TrueType characters for which to save triangul ation information.
Saving the triangulation information for TrueType characters meansthat IDL will not
have to calculate the polygons to draw the next time a character of the same font and
sizeisrendered. Larger values will use more memory but can increase drawing speed
if multiple fonts are used. The default is 256.

This control setsthe value of the IDL_GR_TTCACHESIZE preference. For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Default Object Graphics Renderer / Graphics Attributes Section

IDL supports two methods of rendering object graphics: via a hardware graphics
accelerator or via a software rendering package. Select Har dwar e rendering if your
system has OpenGL graphics accelerator hardware. Select Softwar e rendering
otherwise. This control setsthe value of the IDL_GR_WIN_RENDERER preference
(Windows) and the IDL_GR_X_ RENDERER preference (UNIX). For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

See "Hardware vs. Software Rendering” in Chapter 12 of the Object Programming
manual for information about the differences between the two rendering systems.

Graphics Preferences Using IDL

Chapter 3: Setting IDL Preferences 107

Editor Preferences

Thistab allows you to specify settings for the built-in IDL Editor and control the way
IDL compilesfilesloaded in editor windows. On Microsoft Windows systems, this
tab aso alows you to specify syntax-highlighting and other editor features.

Preferences ¢ Preferences
General | Layout | Graphics ~Editar ISta'tUP] Forts | Path | General] Lagout] Graphics] Startup] Fonts] F‘aths]
[¥ Enable colored spntas ¥ Enable Open on debug F Hske backup copy of source File
V¥ Backup on save
Campiling Compiling:
(* Ask to save changes before cornpiling
" Automatically save changes before compiling # Ask te save changes kefore compiling
" Corpile from memaorny [don't save befare compiling) « Butomatically sawve changes kefore compiling
Tabs w Compile From memory Cdon’t save before ocomeilingd
Mumber of spaces to indent for each tab: |4
(¥ Use tahs " Use spaces
-
Colors:

|Iser Procedures Forearound: Background:

User Functi
System Procedures ,i‘ 'j‘

§ystem Functions ﬂ

Mill take effect in the next sesszion,
#¥ Walues for desensitized items cannot be changed during

this session, Click Help for additionsl information,
Fieset
ak Cancel | Apply | Help | oK. | Cancel | Apply | Help

Figure 3-4: Editor Preferences Dialog

Note
Some preference settings may be desensitized. See “Unavailable Preferences’ on
page 94 for details.

Backup on Save

Select the Backup on Save/ M ake backup copy of sour ce file check box to cause
IDL to create a backup of the original file when saving afilein an IDL editor
window.

This control setsthe value of the IDL_WDE_EDIT_BACKUP preference (Windows)
and the IDL_MDE_EDIT_BACKUP preference (UNIX). For more information, see
Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Using IDL Editor Preferences

108 Chapter 3: Setting IDL Preferences

Syntax Highlighting (Windows Only)

On Microsoft Windows systems, you can choose to use syntax highlighting in IDL
editor windows. If syntax highlighting isturned on, IDL statements are displayed in
different colors. Select the Enable colored syntax checkbox to enable syntax
highlighting. This control sets the value of the IDL_WDE_EDIT_CHROMACODE
preference. For more information, see Appendix E, “IDL Preferences’ inthe IDL
Reference Guide manual.

Open on Debug (Windows Only)

If you want IDL to open the source file for a program that generates an error in an
IDL editor window, select the Enable Open on debug checkbox. This control sets
the value of the IDL_WDE_EDIT_OPEN_ON_DEBUG preference. For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Compiling Section

Select the Ask to save changes before compiling radio button if you would like to
save changes when you compile aprogram in an IDL editor window. Thisisthe
default.

Select the Automatically save changes before compiling radio button if you do not
want to be prompted each time you compile, but do want to save the changes.

Select the Compile from memory (don’t save before compile) radio button if you
do not want to save files before compiling them.

Note
You can override your default selection by selecting the appropriate menu item
from the Run menu.

This control setsthe value of theIDL_WDE_EDIT_COMPILE_OPTION preference
(Windows) and the IDL_MDE_EDIT_COMPILE_OPTION preference (UNIX). For
more information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Tabs Section (Windows Only)

You can specify the width of the white space to be used when you press the Tab key
inan IDL editor window. Enter a number in the Number of spacesto indent for
each tab field to specify the width of the indent to be used. This control setsthe value
of the IDL_WDE_EDIT_TAB_WIDTH preference. For more information, see
Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Editor Preferences Using IDL

Chapter 3: Setting IDL Preferences 109

If you want the IDL editor to insert atab character (ASCII 9) when you press the Tab
key, select the Use tabs radio button. If you want IDL to insert the specified number
of space characters (ASCII 32) when you press the Tab key, select the Use spaces
radio button. This control setsthe value of theIDL_WDE_EDIT_TAB_ENABLE
preference. For more information, see Appendix E, “IDL Preferences’ in the IDL
Reference Guide manual.

If you have selected the Use spaces radio button, you have the option to convert tab
characters to spaces when the file is saved by selecting the Convert tabsto spaces
on save checkbox. This control setsthe value of the
IDL_WDE_EDIT_TAB_SP_ON_SAVE preference. For more information, see
Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Colors Section (Windows Only)

Using IDL

Use this section to select the colors that will be used in the IDL editor when syntax
highlighting is enabled. To set colors, select atype of IDL statement from the
scrolling listbox at left, then select the foreground and background colors for that
type of statement.

These controls set the values of the IDL_WDE_EDIT_BCOLOR_* and
IDL_WDE _EDIT_FCOLOR _* preferences. For more information, see
“IDL_WDE_EDIT_[B|FJCOLOR_*" in Appendix E of the IDL Reference Guide
manual.

Editor Preferences

110 Chapter 3: Setting IDL Preferences
Startup Preferences

This tab allows you to specify the locations of the default working directory and any

Preferences > Preferences
Genersl | Lapout | Graphics | Edtor Startup]F°"“5 | Path | Genera 1] Lagnut] Gr‘aphics] Ed)t] ant;] Paths]
‘whorking Directan:
[CHRSINDLEZ Browse | Select Morking Direstoru...| [1
Startup file:
|| Browse.. Startup Filet
#Select Startup Flle“‘llf
Will take effect in the next session,
wx Walues for desensitized items camnob be changed during
this session. Click Help for additional information.
Feset
|
0K | Cancel | Apply | Help | 0K | Cancel ApplY | Help |

Figure 3-5: Startup Preferences Dialog

Note

Some preference settings may be desensitized. See “ Unavailable Preferences’ on
page 94 for details.

Working Directory

Thisfield allows you to set the initial working directory for future IDL sessions. The
General Preferences tab contains a“ Change Directory on Open” option, which also
affects the working directory.

This control setsthe value of the IDL_WDE_START_DIR preference (Windows)
and the IDL_MDE_START_DIR preference (UNIX). For more information, see
Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Startup Preferences Using IDL

Chapter 3: Setting IDL Preferences 111

Startup File

Use thisfield to specify the name of an IDL batch file to be executed automatically
each time IDL isrun. See “Startup Files” on page 30 for additional details.

This control setsthe value of the IDL_STARTUP preference. For more information,
see Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Using IDL Startup Preferences

112 Chapter 3: Setting IDL Preferences

Font Preferences

This tab allows you to specify fonts to be used in various sections of the IDLDE

interface.
Preferences ™ Preferences
General | Layout | Graphics | Editer | Starup Fents Wpa'h | Genera 1] LagDut] Graphics] Edlt] Star‘tup] Paths]
Window: Font name:;
|Cnu|ier Default. .. I_“_—misc—ﬁxed—mea1um—><—»<—;e—>e—1oo
Cormmand [nput
Output Log Chilada ICG Das] Herubar . . . |“9><15
Chilada ICG Tres -
Chilada ICG Uno o
City Medium Control, .. Iu—misc—f‘ixed— —————————— Bii—si—wi—re
T Comic 5 ans M5
Edit, .. |V9><15
Sk Syl Sizer Lo o |;_ax15
" Regular 10
A=sBbYyZz Command., , I_"_BxiE
Bold - [z =
Default
Will take effect in the next =zession,
Walues for desensitized items cannot be changed during
thi=z session, Click Help for additional information,
Reset
q
oK I Cancel | Apply | Help | oK | Cahoel | Apkly Help |
Figure 3-6: Font Preferences Dialog
Note
Some preference settings may be desensitized. See “Unavailable Preferences’ on
page 94 for details.

Microsoft Windows

Under Microsoft Windows, IDL uses a standard Windows font-selection dialog. You
can select different fonts for IDL Editor windows, the Command Line, and the
Output Log. Click on one of these areasin the Window lit, then select the font,

style, and size using the appropriate lists. Click Use Default Fonts to change to the
IDL default font selections for all three areas.

These controls set the values of the IDL_WDE_EDIT_FONT,
IDL_WDE_INPUT_FONT, and IDL_WDE_LOG_FONT preferences. For more
information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide manual.

Font Preferences Using IDL

Chapter 3: Setting IDL Preferences 113

UNIX

This tab allows you to control which fonts are to be used for the main IDL window.
Click on any of the following buttons to specify the relevant font:

e Default — dialog boxes

¢ Menubar — menuitems

¢ Control — the Control Panel
e Edit — editor windows

¢ Log— the Output Log

¢ Command — the Command Line
Selecting a Font

Clicking any of the buttons on the Fonts tab of the Preferences dialog brings up the
Select Font dialog. This dialog allows you to select fonts from the X Windows
Server font database, based on the attributes Foundry, Family, Weight, Sant,
SetWidth, and Sze. Using this dialog is similar to using the xfontsel X Window

Using IDL Font Preferences

114 Chapter 3: Setting IDL Preferences

utility. See your X Window system font documentation for additional details. Once
you have selected afont, click OK to accept your selection or Cancel to abandon it.

> Select Font |]

20 names match

Foundry : adobe — Family : helvetica_ll

Weight @ medium — | Slant g limr |

SetWidth: normal — | Size e |
*1234567890-=qwertyUiop(]: Al
asdfghjkl;'zxcvbnm,./ J
~l@EEsLE () +OWERTYUIOPS i
I~ I
Selection

IE—adobe—he1vetiCa—medium—r“—m:nﬂma1—*—*—140—*—*—*—*—*—*

oK | Eancell Help |

Figure 3-7: Motif Select Font Dialog.

Note
The UNIX IDLDE storesfont preference information inthe ~/ . id1de X Resource
file. See Chapter 5, “Customizing IDL on Motif Systems’ for details.

Font Preferences Using IDL

Chapter 3: Setting IDL Preferences 115

Path Preferences

This tab allows you to control where IDL looks for procedures and functions. The
path elements specified in the Search Path / IDL Files Search Path are used to set
the IDL_PATH preference and the | PATH system variable.

Preferences » Preferences [x]
Beneral | Layout | Graphics | Editer | Statup | Forts Path 1 Gener-al] Lagnut] Graph)cs] Edlt] startup] ants]
Search path: IDL Files Search Psth (x means search subdirectoriesit
<|DL_DEFALULT> M <IDL_DEFAULT: i
A
Al ¥ Insert,,.| Insert Standard Libraries| Remove Expand|
Ingert Insert Standard Libraries| Remove Expand
A preceding check means “search subdirectaries. " F Enable Path Cache
¥ Enable Path Cache
ill take effect in the next session.
3¢ Walues for desensitized items canmot be chanzed during
thi sion. Click Help for additional information.
Reset
i
ok Cancel ‘ Apply | Help | oK | Cancel fpply | Help |

Figure 3-8: Path Preferences Dialog

Note
Some preference settings may be desensitized. See “Unavailable Preferences’ on
page 94 for details.

Search Path / IDL Files Search Path

The IDLDE Path Preferences dial og uses the same mechanism to expand the
elements of the Search Path field asis used by the EXPAND_PATH function. By
default, thisfield is populated with the current value of the IDL_PATH preference.
For more information, see Appendix E, “IDL Preferences’ in the IDL Reference
Guide manual.

Note
If you have not changed the value of the IDL_PATH preference, it containsasingle
entry (<IDL_DEFAULT>) indicating that the default IDL path will be used. See” The

Using IDL Path Preferences

116

Path Preferences

Chapter 3: Setting IDL Preferences

Path Definition String” under “EXPAND_PATH” in the IDL Reference Guide
manual for complete details on how this token is expanded.

If the box to the left of a path element is checked, all directories below the listed
directory that contain at least one . pro or . sav filewill beincluded in 'PATH. (This
mechanism is analogous to the use of a“+” symbol in an EXPAND_PATH path
definition string.)

Note

If the <IDL._DEFAULT> entry is present, the box to its left is both checked and
greyed out (Windows) or completely blacked out (Matif), indicating that the token
will always be expanded.

You can modify the value of the |PATH system variable in the following ways using
this dialog:

Changetheorder of the path elements — using the up- and down-arrows,
you can reorder the path elements. When searching the directoriesin the
IPATH system variable for files, IDL will use the first matching fileit finds. If
you have multiple files with the same name in different directories within
IPATH, you may need to adjust the order in which the directories are scanned.

Insert... — To add a path to the Search Path list, click Insert... to display the
Select Directory dialog. The new path isinserted before the first selected path.
If none of the paths are selected, the new path is appended to the end of thelist.

Insert Standard Libraries— Click Insert Standard Librariesto insert the
<IDL DEFAULT> path element into the list.

Remove — Click on Remove to delete the selected path.

Expand — Click on Expand to include the individual subdirectories of the
selected path element in the Search Path list. When you click Expand, the
checkmark is removed from the original path element, since the subdirectories
are now explicitly included in the path search list.

See “"Automatic Compilation” in Chapter 2 of the Building IDL Applications manual
for more information on how 'PATH is used by IDL when compiling and running
programs.

Enable Path Cache

Select Enable Path Cache to enable IDL's path caching mechanism. Path caching is
enabled by default, and in almost all cases should be |eft enabled. See

Using IDL

Chapter 3: Setting IDL Preferences 117

“PATH_CACHE" in the IDL Reference Guide manual for more information about
IDL’s path cache.

This control setsthe value of the IDL_PATH_CACHE_DISABLE preference. For
more information, see Appendix E, “IDL Preferences’ in the IDL Reference Guide
manual.

Using IDL Path Preferences

118 Chapter 3: Setting IDL Preferences

Path Preferences Using IDL

Chapter 4

Creating Development
Environment Macros

This chapter discusses the following topics:

What AreMacros? 120 Command Stream Substitutions 126
Creating UNIX Macros 121 Building IDL Example Macros 127
Creating WindowsMacros 124

Using IDL 119

120 Chapter 4: Creating Development Environment Macros

What Are Macros?

A macro alows you to execute commonly-used I DL tasks with the press of a mouse
button or through a single keystroke (*hot key”) combination. In IDL you can create
your very own macros using the following items:

e routines

e procedures

¢ statements

» command stream substitutions

For example, you may customize and extend the functionality of the IDL
Development Environment (such as writing a procedural macro to change IDL's
working directory, which we will see later in this section).

Predefined IDL Macros

IDL offers several existing macro options on its Macro Toolbar. These macros allow
you quick access to commonly used IDL functionality such as printing avariable,
importing various file types, and running the IDL Demos.

Import Image File
Print Variable l Import Binary File

;I E fﬁ% qﬂﬂ pF ﬁ<—RunDemo

/ot N

Help on Variabl .. Import HDF Fil
elp on Variable Import ASCII File port ©

Figure 4-1: The IDLDE’s Macro Toolbar

See“Using IDL Macros’ on page 164 for more information.

What Are Macros? Using IDL

Chapter 4: Creating Development Environment Macros 121

Creating UNIX Macros

You can modify the contents of the M acros menu and macros tool bar, either using
the Edit Macros dialog (displayed by selecting Edit... from the M acr os menu) or by
manually editing the user resource (. id1de) file.

Using the Edit Macros Dialog

The Edit Macros dialog allows you to add, remove, or modify macros that appear
either in the Macros menu or the M acr os tool bar.

¢ Edit Macros
i1 Aclcl s
Remove
import_image
import_ascii A
import_binary * 4 ¥

Macro Attributes:

Hame: I?primtvar

R I:F'r'int Yar

Bltmap: Ijidl,pr‘intvar‘

Stotls bon fexE. I:Primt Selected Variable.

Tip fext: I:Fr'int Yariable.

IDL Command : I)jrimt,%S

1 Menu I Toolbar

aK | Apply Dismiss Help

Figure 4-2: The Edit Macros Dialog.

To add a new macro, do the following:

1. Enter anamefor your macro in the Name field. The Name appearsonly in the
Edit Macros dialog.

2. Enter alabel for your macro in the Label field. The label will be used in the
Macros menu (if selected).

3. Enter the name of the bitmap (. xbm or . xpm) file associated with the macro in
the Bitmayp field. The bitmap will be used on the Macros toolbar (if selected).
See “Bitmaps for Control Panel Buttons®” on page 122 for details.

Using IDL Creating UNIX Macros

122 Chapter 4: Creating Development Environment Macros

4. Enter text to be displayed on the IDLDE status bar in the Status bar text field.

Enter text to be displayed as atooltip when the mouse cursor is positioned over
the toolbar button in the Tip text field.

6. Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions” on page 126 for information on the types of
dynamic information that can be included in the command.

In addition to IDL-language commands, you can attach IDL Motif Action
Routines to amacro. See “Action Routines’ on page 141 for details.

7. Select the Menu checkbox if you want the macro to appear on the M acros
menul.

8. Select the Toolbar checkbox if you want the macro to appear on the Macros
toolbar.

9. Click Add to add the new macro, then click OK.
To Remove an existing macro, select it from thelist and click Remove. To rearrange
macrosin the list, use the up- and down-arrow buttons.
Bitmaps for Control Panel Buttons

It is recommended that bitmaps for control panel buttons:

1. Beinether XBM (X 11 bitmap file) or XPM (X 11 system pixmap file) format,
with the file extension . xbm Or . xpm.

2. Supply the full path name to the bitmap file. Alternatively, if the bitmap is
located in one of the following directories, you can supply only the basefile
name:

e SIDL DIR/resource/X11l/lib/app defaults

e $SIDL DIR/resource/X11/lib/app_defaults/bitmaps
e SHOME

e SHOME/bitmaps

Note
The above directories show the default search path for a bitmap file if nothing other
than theroot file name is specified in the .idldefile.

Creating UNIX Macros Using IDL

Chapter 4: Creating Development Environment Macros 123

Manually Editing the Resource File

Although thereislittle advantage in doing so, you can also modify the M acros menu
or toolbar by manually editing either your own local IDL resource file or the system-
wide resourcefile. For details, see “Moaodifying the Control Panel” on page 138.

Using IDL Creating UNIX Macros

124 Chapter 4: Creating Development Environment Macros

Creating Windows Macros

You can modify the contents of the M acros menu and macros toolbar using the Edit
Macros dialog (displayed by selecting Edit... from the M acr os menu). The Edit

M acros dialog alows you to add, remove, or modify macros that appear either in the
M acros menu or the M acr os tool bar.

Edit Macros [%]
iEn Add...
Importimage Bemove |
Importdscii —
ImportBinary
ImportHDF M
Demo Move Down |

IDL command:

print, s

Accelerator
Menu item name: I&F'rint War

™ Crl
Toolbar bitrnap file: IE:\HSI\IDL54\res &b Kew I_
Tacltip text: IF'rint Yariable I stift

Status bar test:
Print Selected Y ariable.

Ok I Lancel |

Figure 4-3: The Edit Macros Dialog.

To add a new macro, do the following:

1. Click Add and enter a name for your new macro. The name you specify
appears only in the Edit Macros dialog.

2. Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions’ on page 126 for information on the types of
dynamic information that can be included in the command.

3. If you want your macro to be included in the M acros menu, enter alabel for
your macro in the Menu Item Name field.

4. If you want your macro to be included in the Macros toolbar, enter the full path
name of the bitmap button file in the Toolbar bitmap file field. Bitmaps used
as macro buttonsin IDL must be 16 by 16 pixel . bmp files. IDL’s default

Creating Windows Macros Using IDL

Chapter 4: Creating Development Environment Macros 125

bitmaps are stored in the resources/bitmaps subdirectory of the IDL
distribution.

5. Enter text to be displayed as atooltip when the mouse cursor is positioned over
the toolbar button in the Tooltip text field. Thisvalueisignored if no bitmap
fileis specified.

6. Enter text to be displayed on the IDLDE status bar in the Status bar text field.

7. Optionaly, inthe Accelerator field, enter a keystroke shortcut combination
for your new macro. Note that you can create a macro that is available only by

pressing the keystroke combination if you supply neither alabel for the
M acros menu nor a bitmap for the Macros tool bar.

To Remove an existing macro, select it from the list and click Remove. To rearrange
macrosin the list, use the up- and down-arrow buttons.

Click OK to accept your changes or Cancel to abandon them.

Using IDL Creating Windows Macros

126

Chapter 4: Creating Development Environment Macros

Command Stream Substitutions

You can use command stream (%) substitutions as shortcuts to incorporate certain
types of information into the IDL command for your macro.

Command
Stream Result
Substitution

%F The filename associated with the currently active editor
window.

%P The full path filename associated with the currently active
editor window.

%N The base name of the filename without its path or suffix.

%B The base name of the filename without its path, but with its
suffix.

%S The currently selected text.

%L The line number with the current insertion point.

%% Insertsthe “ %" character.

Table 4-1: Listing of Useful Command Stream Substitutions

Note

When creating a new macro, you may store the macro in the folder (directory)
which IDL has aready provided for the existing IDLDE macros. This folder exists
inthe 1ib\macros directory of your installation directory. If you wish to create a
unique folder for the storage of only macros which you have created you may do so.

Command Stream Substitutions

Using IDL

Chapter 4: Creating Development Environment Macros 127

Building IDL Example Macros

Below are two examples that illustrate how amacro is created in IDL. The first
example below isa UNIX-only example; the second example will work on either
Microsoft Windows or UNIX.

Creating a Macro to Call a Text Editor in IDL for UNIX

On UNIX platforms, you can create amacro to open afilethat is currently openinthe
IDL Editor in another editor, such as emacs or vi. Use the following procedure to
create the macro:

1. Select Macros — Edit menu to bring up the Edit Macros dialog box. You can
use this dialog to create, edit, or remove macros.

2. Complete the fieldsin the Edit Macros dialog:

« Name: The name that you wish to appear in the Macros list in the Edit
Macros dialog. For example, enter Edit in emacs.

¢ Labd: The name that you wish to appear on the M acr os menu. For
example, enter emacs.

* Bitmap: The bitmap to use as the toolbar button label. Use the file paths
and file name extensions discussed in “ Bitmaps for Control Panel Buttons”
in Chapter 4.

e Statushbar text: Thetext that appearsin the status bar when the mouseis
help over the menu item or toolbar button.

« Tiptext: Thetext for thetool tip that appears when the mouse is held over
the toolbar button.

* |DL command: ThelDL command to execute when the macro is sel ected.
To create amacro for editing in Emacs, enter the following:

SPAWN, 'emacs +%L %P &'

e Select the Menu and/or Toolbar checkbox to specify whether the macro
will appear in the M acr os menu and/or the toolbar.

3. Create the new macro by pressing the Add button. If you entered emacs inthe
Label field, anew “emacs’ macro is added to the Macros list.

4. Toadd amacro for editing in vi, repeat the above steps, but enter the following
inthe“IDL command” field:

SPAWN, 'xterm -e vi +%L %P &'

Using IDL Building IDL Example Macros

128 Chapter 4: Creating Development Environment Macros

Note
The IDLDE aways checks to determine whether the current file has been externally
modified before using it. If afile was modified with an external editor, IDLDE
notifies you, and asks you to reload the file before using it. You can also use the
Revert to Saved option from the File menu to reload the file.

Creating a Macro to Change the Working Directory

The following macro will select and change your current working directory. The
steps bel ow describe the fields of the Macros dialog on a Microsoft Windows system,
but the macro will work equally well on a UNIX system.

First we will create a . pro filein IDL which will display a platform-specific
directory-selection dialog.

1. FromthelDLDE, open anew IDL Editor window by selecting File > New —
Editor.

2. Type (or copy) the following lines of code into the new Editor window to form
aprogram:
PRO cd_test
dir = DIALOG_PICKFILE(/DIRECTORY)
IF (dir) THEN BEGIN
PRINT, 'Changing to: ', dir
CD, dir
ENDIF
END

3. Savethefileascd test.proinadirectory included in IDL’s path. (Thefile
must bein IDL’s path so that IDL will find it automatically when the
command cd_test is executed by the macro we will create.)

4. Select Macros — Edit menu to bring up the Edit Macros dialog box.

Click Add to create a new macro. Enter “Change Directories’ as the macro
name.

Building IDL Example Macros Using IDL

Chapter 4: Creating Development Environment Macros 129

6. Complete the following fields in the Edit Macros dial og:
e Enter “cd test” inthe DL command field.
¢ Enter “Change Directories’ in the M enu item name field.

¢ Leavethe Toolbar bitmap file field blank. This macro will appear only in
the M acr os menu.

* Leavethe Tooltip text field blank. This valueis used only when a toolbar
button is present.

e Leavethe Status bar text field blank. Thisvalue is used only when a
toolbar button is present.

To use the new macro, select “ Change Directories’ from the M acros menu.

Using IDL Building IDL Example Macros

130 Chapter 4: Creating Development Environment Macros

Building IDL Example Macros Using IDL

Chapter 5

Customizing IDL on
Motif Systems

This chapter describes techniques for customizing versions of IDL running under the X Window
System (Motif) graphical user interface.

Using X Resourcesto Customize IDL ... 132 Modifying the Control Panel
X Resources at the Command Line 136 ActionRoutines 141

Using IDL 131

132 Chapter 5: Customizing IDL on Motif Systems

Using X Resources to Customize IDL

IDL on UNIX platforms respects the values of a number of X Window System
(Motif) resources.

X Resources and IDL Preferences

Beginning with IDL 6.2, many values used to customize the appearance and behavior
of IDL on UNIX platforms are stored in IDL preferences rather than in X resources.
See Appendix E, “IDL Preferences’ in the IDL Reference Guide manual for a
detailed description of IDL’s preferences system.

To provide backwards compatibility with older versions, current versions of IDL are
till able to check the values of X resourcessetintheuser's . idlde or .Xdefaults
files and transfer them, if found, to the corresponding IDL preference setting. The
mechanism used is described in detail in “ Support for Obsolete Preference
Mechanisms’ in Appendix E of the IDL Reference Guide manual.

Not al X resources have corresponding preference values. Generally speaking, the
X resource values that have not been implemented as preferences either control
aspects of the appearance of the IDL Development Environment or define user
macros. These values may become IDL preferencesin afuture version of IDL.

X Resources in Brief

The component widgets of an X Window System application each have two names, a
class name that identifiesits type (e.g., XmText for the Motif text widget) and an
instance name (e.g., command, the name of the IDLDE command input text widget).
The class name can be used to set resources for an entire class of widgets (e.g., to
make all text widgets have a black background) while the instance name is used for
control of individual widgets (e.g., set the IDLDE command input window font
without affecting other widgets).

Applications consist of atree of widgets, each having a class name and an instance
name. To specify aresource for a given widget, list the names of the widgets lying
between the top widget and the target widget from left to right, separated by periods.
In amoderately complicated widget hierarchy, only some of the widgets are of
interest; there are intervening widgets that serve uninteresting purposes (such as a
base that holds other widgets). A star (*) character can be used as awildcard to skip
such widgets. Another fact to keep in mind is that a given resource specification is
interpreted as broadly as possible to apply to any widget matching that description.

Using X Resources to Customize IDL Using IDL

Chapter 5: Customizing IDL on Motif Systems 133

This allows avery small set of resource specifications to affect alarge number of
widgets.

Resource Files

There are two resource files used to customize the IDL Development Environment.
An installation-wide resource file called 141 islocated in

$IDL DIR/resource/X11l/lib/app-defaults
and a user resourcefile called . id1de islocated in your home directory.

Modifying the global Td1 resource file effects an installation-wide customization.
Changesto the 141 file are not migrated when anew version of IDL isinstalled.

The user resourcefile, . id1de, customizesindividual versionsof IDLDE and is
divided into two sections. The first section contains user-defined customization
resources. You can place comments starting with “!” or “!1” in the first section of
.id1de. When newer versions of . id1de arewritten, system comments are prefixed
with “!1!” The second section of . id1de isused to store IDLDE preferences; it is
modified when IDLDE preferences are modified viathe Preferencestab of the Motif
IDLDE, and should not be modified manually.

Note
IDLDE preferences saved in the . id1de file should not be confused with the IDL
preference system included in IDL versions 6.2 and later. In some cases, values of
the IDLDE preferences from the . id1de file are migrated to the newer preferences
system; see “ Support for Obsolete Preference Mechanisms’ in Appendix E of the
IDL Reference Guide manual for details.

If you use IDL in command-line mode rather than viathe IDL Development
Environment, you can include resourcesin the .xdefaults file located in your
home directory.

Format of IDL Resources

Using IDL

IDL resource strings begin with the characters “1d1”. Most of these resources have
been superseded by preferencesin the IDL preference system.

Resource strings that apply only to the IDL Development Environment begin with
the characters“1d1de” or “id1de”. For example, the resource

idlde*hideCommand

controls whether the IDLDE Command Lineis visible when IDL starts up.

Using X Resources to Customize IDL

134

Chapter 5: Customizing IDL on Motif Systems

Resourcesthat include the string “ id1de” must be included either in the system-wide
1d1 resourcefile, orina . idlde filein your home directory. Resourcesthat apply to
IDL whether it is running in command-line mode or viathe IDLDE can be included
in either the system-wide 1d1 resourcefileor ina .xdefaults filein your home

directory.

To specify avalue for an X resource, append a colon character and the value after the
resource string. Whitespace isignored. For example:

idlde*hideCommand:False
isthe same as

idlde*hideCommand: False

X Resources Used by IDL

IDL uses alarge number of resources to control the behavior and appearance of the
IDL Development Environment and any graphical application writtenin IDL. To
learn more about the specific resources used, or to modify individual values, inspect
the installation-wide resource file 1d1, located in

$IDL DIR/resource/X11l/lib/app-defaults

Note
In order to maintain backward compatibility with previous versions of IDL, the 1d1

resource file contains values for some resources that correspond to IDL preferences.
X resources that have been superseded by preferences areignored by IDL. See
“Support for Obsolete Preference Mechanisms’ in Appendix E of the IDL
Reference Guide manual for details.

Tip
RSI suggests that you use preferences rather than X resources when possible. If you
must make changes to X resources, make the changesin auser-specific . id1lde file

or .xdefaults file

Reserving Colors

If you use a PseudoColor display device, when IDL starts, it attempts to secure
entriesin the shared system color map for use when drawing graphics. If the entry
Id1.colors existsin one of the X resource filesinspected by IDL at startup, IDL
will first migrate the specified value to the value of the IDL_GR_X_ COLORS
preference, and then attempt to allocate the number of colors specified from the
shared colormap. If for some reason it cannot allocate the requested number of colors

Using X Resources to Customize IDL Using IDL

Chapter 5: Customizing IDL on Motif Systems 135

Using IDL

from the shared colormap, IDL will create a private colormap. Using a private
colormap ensures that IDL has the number of colormap entries necessary, but can
lead to colormap flashing when the cursor or window focus moves between IDL and
other applications.

One way to avoid creating a private colormap for IDL isto set the
IDL_GR_X_COLORS preference equal to anegative number. This causes IDL to try
to use the shared colormap, allocating all but the specified number of colors. For
example, setting the preference valueto -10 instructs IDL to allocate all but 10 of the
currently available colors for its use. Thus, if there are atotal of 220 colors not yet
reserved by other applications (such as the windowing system), IDL will allocate 210
colors from the shared colormap.

The IDLDE application itself uses between 10-15 colors. On startup, the IDLDE will
attempt to use colors in the shared colormap, but will reserve colors for itself if
appropriate matching colors in the shared colormap are not found. As aresult,
running IDL with the IDLDE may use more colors than running IDL with the tty
(plain command line) interface.

Note
If you use a TrueColor display device, IDL does not rely on the system'’s shared
color map when drawing graphics. Thereisno need to either reserve colorsfrom the
shared color map or create a private color map.

Using X Resources to Customize IDL

136 Chapter 5: Customizing IDL on Motif Systems

X Resources at the Command Line

The appearance of the UNIX IDLDE can also be customized from the command line
using the command line flags described below. Command line flags are given
precedence over global resource files (1d1) and user resourcefiles (. id1de). For
more information about resources, see “Using X Resources to Customize IDL” on
page 132.

X Resource Command Line Switches

The following command line switches can be used to control the values of X
resources when invoking IDL on UNIX platforms. Unless otherwise noted, switches
can be combined, and can be specified in any order.

-nocommand

Hides the Output Log window and Command Line at startup. The related resource is
Idl*idlde*hideCommand: True.

-command

Displays L og window and Command Input window at startup. Therelated resourceis
Idl*idlde*hideCommand: False.

-nocontrol

Hides the Control panel buttons at startup. The related resourceis
Idl*idlde*hideControl: True.

-control

Displays the Control Panel buttons at startup. The related resourceis
Idl*idlde*hideControl: False.

-nolog

Hides the Output Log at startup. The related resource is
Idl*idlde*hideLog: True.

-log

Displays the Output Log at startup. The related resourceis
Idl*idlde*hidelog: False.

X Resources at the Command Line Using IDL

Chapter 5: Customizing IDL on Motif Systems 137

-nostatus

Hides the Status Bar at startup. The related resourceis
Idl*idlde*hideStatus: True.

-status

Displays the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: False.

-single

Displaysfilesin asingle window, which is a child of the main IDLDE window. The
related resourceis 1dl1*idlde*multiWindowEdit: False.

-multi

Displays files in multiple windows, each onein a separate main level window. The
related resourceis Idl1*idlde*multiWindowEdit: True.

-view

Displays the Multiple Document Panel in single window mode at startup. Therelated
resourceisrdl*idlde*hideview: False.

-noview

Hides the Multiple Document Panel at startup. The related resourceis
Idl*idlde*hideView: True.

-title "Title"

Use Title asthetitle of the main IDLDE window. The related resourceis
idlde.title.

Using IDL X Resources at the Command Line

138 Chapter 5: Customizing IDL on Motif Systems

Modifying the Control Panel

The Control Panel, with the resource name control, islocated below the IDL
Development Environment M enu bar. The Control Panel bar is a RowColumn
widget containing buttons which serve as shortcuts for common commands.

You can modify the existing Control Panel settings by editing the id1de*control
valuesin the system-wide 141 resource file or overriding those settingsin your local
.id1de file. In addition, you can add buttons to the M acr os toolbar or menu by
adding resourcesto your . idlde file.

Note
If you wish to add, modify, or remove the buttons on the M acr os toolbar or menu,
you can do so viathe IDLDE interface using the Edit M acros dialog. See“Creating
UNIX Macros’ on page 121 for details. Whether you modify your macros using the
dialog or by editing aresource file manually, the results are the same. Thereislittle
advantage to adding macros to the . id1de file manually.

Adding Macros Toolbar Buttons

The id1ButtonsUser resource defines the resource name for each button on the
M acros toolbar in the Control Panel. The resource name details button attributes,
such asitslabel or pixmap, its associated IDL command, and its status bar message.

To add a button to the M acr os tool bar, make the following modifications to the
.idlde file:

« Addanew nametothe idlde*control*idlButtonsUser list. The buttons
are created in the order specified.

e Addidlde*control*<new button>*labelString Of labelPixmap
resources (or both). These resources define the button text or image. If you
choose to use a pixmap label, be sure the file you specify abides by the
restrictions described in “Bitmaps for Control Panel Buttons’ on page 122.

e Addan idlde*control*<new buttons>*idlCommand resource. Thisis
the text of the IDL command to execute. You can aso include command
stream substitutions; see “ Command Stream Substitutions’ on page 126 for
details.

Alternatively, you can add an id1Action resource. See “Action Routines’ on
page 141 for details.

Modifying the Control Panel Using IDL

Chapter 5: Customizing IDL on Motif Systems 139

¢ Addanidlde*control*<new button>*hint resource. Thisisthe text
that appears in the Status Bar when the cursor is positioned over the new
button.

e Addanidlde*control*<new buttons*tip resource. Thisisthetext that
appears as a “tooltip” when the cursor is positioned over the new button.

If you want your changes to be available to all users on the system, you can aso
modify the system-wide 1d1 resource file, located in the following directory:

$IDL DIR/resource/X11l/lib/app-defaults
Adding Macros Menu Entries

To add entries into the M acr os menu, follow the same steps outlined above,
modifying the id1de*menubar*macrosMenu*macrosListUser resource and
substituting id1de*menubar*macrosMenu*<new menu items> for
idlde*control*<new buttons> inthe above steps.

Examples

To add a button called Reset All to the Control Panel with a color pixmap stored in
thefile resetall . xpm located in your home directory, add the following resources
tothe . id1de filein your $SHOME directory:

idlde*control*idlButtonsUser: <exiting buttons> resetall
idlde*control*resetall*labelPixmap: resetall.xpm
idlde*control*resetall*labelString: Reset All
idlde*control*resetall*idlCommand: \

RETALL & WIDGET_CONTROL,/RESET
idlde*control*resetall*statusString:\

Stop execution of the current code and return to\

the main programming level

Note that in this example the new button is added at the end of the list of existing
buttons. You can locate the new button anywherein thelist.

To specify a pixmap located in particular directory, specify the full file path of the
pixmap file, for example:

idlde*control*resetall*labelPixmap:\
/home /user/bitmaps/resetall .xpm

To create two rows of the Control Panel from the default of one row, set the
numColumns resource to 2:

idlde*control*numColumns: 2

Using IDL Modifying the Control Panel

140 Chapter 5: Customizing IDL on Motif Systems

To use labdl (text) buttonsin the Control Panel set 1abelType t0 XmSTRING. TO Use
icon (graphics) buttons set 1abelType t0 XmPIXMAP.

idlde*control*labelType: XmSTRING
or
idlde*control*labelType: XmPIXMAP

Modifying the Control Panel Using IDL

Chapter 5: Customizing IDL on Motif Systems 141

Action Routines

Using IDL

Most Motif widgets supply action routines which can be bound to events (such as
keypress events). Action routines provided by IDL can be used to define commands
for Control Panel buttons or menu items by using the id1Action resource.

The following action routines can be used in the same manner as the IDL commands
specified in an 1d1command resource. The syntax to add an action routine to a
control panel button is:

Idl*idlde*control*buttonName*idlAction: Action
or
Idl*idlde*control*buttonName*idlAction: Action (Arguments)

where buttonName is the name of the button and Action is the name of the action
routine. Arguments to the action routine, if require, are enclosed in parentheses.

IdIBreakpoint

Use 1d1Breakpoint to control the placement of breakpoints. If no parameter is
specified, the breakpoint is set on the current line. At least one of the arguments from
the following table must be set:

Argument Action
SET Set a breakpoint on the current line.
CLEAR Clear the breakpoint on the current line.

TOGGLE Toggle (SET or CLEAR) the state of the
breakpoint on the current line.

COMPLEX Display breakpoint dialog to set a complex
breakpoint.

LIST List all currently set breakpoints

Table 5-1: Breakpoint Arguments

For example, to use this action routine to clear a breakpoint, the Action specified
would be:

Id1Breakpoint (CLEAR)

Action Routines

142

IdIClearLog

Chapter 5: Customizing IDL on Motif Systems

Use I1d1ClearLog to erase the contents of the Output Log.

IdIClearView

Use rdlcClearView to clear the contents of the currently-active filein the Multiple

Document Panel.
I[diCommandHide

Use 1d1CommandHide to hide or expose the Command Area, which includes the
Command Line and the Output L og. One of the following arguments must be set:

Show, Hide, or Toggle.
IdICompile

Use Id1compile to compile the filein the currently-active editor window. One of

the arguments from the following table must be set:

Argument

Action

FILE

Compiles the currently-active
file.

TEMPORARY

Compiles the currently-active
fileinto atemporary file

RESOLVE

Resolves all referenced and
uncompiled IDL routines

Table 5-2: Compiling Arguments

IdIControlHide

Use Id1controlHide to hide or expose the Control Panel. One of the following

arguments must be set: Show, Hide, or Toggle.

Action Routines

Chapter 5: Customizing IDL on Motif Systems 143

IdIEdit

Use Id1Edit to manipulate the contents of the currently-selected editor window.
One of the arguments from the following table must be set:

Argument Action

UNDO Undo previous editing action.

REDO Redo previously undone
action.

CuUT Remove currently-selected
text to UNIX clipboard.

COoPY Copy currently-selected text
to UNIX clipboard.

PASTE Paste contents of UNIX
clipboard at current insertion
point.

SELECTALL Select all of the text in the
currently-sel ected editor
window.

GOTODEF Display the definition of the
currently-selected procedure
or function.

GOTOLINE Move directly to the specified
line number.

Table 5-3: Editor Window Editing Arguments

IdIEditMacros
Use Id1EditMacros to display the Edit Macros dialog.
IdIEXit

Use 1d1Exit to cause IDLDE to act as though the EXIT command has been entered.
Note that thisis usually tied to a menu accelerator (Ctrl-Q in this case), so this
routine israrely called directly.

Using IDL Action Routines

144 Chapter 5: Customizing IDL on Motif Systems

IdIFile

Use I1d1File to manipulate the currently-selected editor window. One of the
arguments in the following table must be set:

Argument Action

NEW Creates a new editor window.

OPEN Opens an existing file.

SAVE Saves the contents of the
currently-selected editor
window.

PRINT Prints the contents of the
currently-selected editor
window.

Table 5-4: Editor Window Arguments

IdIFileReadOnly

Use1dlFileReadOnly to specify the read/write status of the currently-active editor
window. One of the arguments from the following table must be set:

Argument Action

READONLY Disable editing of the
currently-sel ected editor
window.

READWRITE | Enables editing of the
currently-selected window.

Table 5-5: Read/Write Arguments

IdIFunctionKey

Use 1d1FunctionKey to alow entry of an IDL command into the input command
stream. It istypically used to tie IDL commands to function keys. For example:

<Key>F5:IdlFunctionKey ("print, 'F5 pressed'")\n

Action Routines Using IDL

Chapter 5: Customizing IDL on Motif Systems 145

IdlInterrupt

UseIdlInterrupt to cause IDLDE to receive an interrupt. Note that thisis usually
tied to Ctrl-C as a menu accelerator.

IdIListStack

Use 1d1ListStack to display the current nesting of procedures and functions
(calling stack).

IdILogHide

Use 1d1LogHide to hide or expose the Output Log. One of the following arguments
must be set: Show, Hide, or Toggle.

IdIRecallCommand

Use Id1RecallCommand to recalls previously entered commandsinto the command
widget. Either the BACK or the FORWARD argument must be specified to indicate
the direction of the recall. For example:

<Key>o0sfUp:IdlRecallCommand (BACK) \n
IdIReset
Use Id1Reset to reset the IDL environment.
IdIRun
Use 1d1Run to execute the currently-activefile.
IdISearch

Use 1d1search to call the Find dialog for a search of the current Multiple
Document Panel. One of the optional arguments from the following table may be

used:
Argument Action
FIND Displays a search dialog (default).
FINDAGAIN Finds the next occurrence of the
specified string.

Table 5-6: Find Dialog Arguments

Using IDL Action Routines

146 Chapter 5: Customizing IDL on Motif Systems

Argument Action

FINDSELECTION Finds next occurrence of the current
selection.

ENTERSELECTION | Entersthe current selection asthe search
string in the Find dialog.

REPLACE Replaces the search string, with a
specified replacement string.

REPLACEFIND Finds the next occurrence of the search
string, and replaces it with the specified
replacement string.

Table 5-6: Find Dialog Arguments
IdIStatusHide

Use 1dlstatusHide to hide or expose the Status Bar. One of the following
arguments must be set: Show, Hide, or Toggle.

IdIStep

Use 1d1step to control statement execution for debugging. At least one of the
arguments from the following table must be set.

Argument Action

INTO Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are also executed in single-
statement mode.

OVER Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are run until completion,
whereupon interactive control returns.

ouT Continues execution until current routine
returns.

Table 5-7: Debugging Arguments

Action Routines Using IDL

Chapter 5: Customizing IDL on Motif Systems 147

Argument Action
SKIP Skips one statement and executes following
Statement.
CONTINUE Continues execution of an interrupted program.

TOCURSOR Executes file until encountering the cursor.

TORETURN Executesfile until encountering the return.

Table 5-7: Debugging Arguments
IdITrace
Use I1d1Trace to display adialog box to control program tracing.

IdIViewHide

Use 1d1viewHide to hide or expose the M ultiple Document Panel. One of the
following arguments must be set: Show, Hide, or Toggle.

[dIWindows

Use 1d1wWwindows to manipulate the state of the Editor windows. One of the
arguments from the following table must be set:

Argument Action

CASCADE Arrange open windowsin a
staggered, overlapping
fashion.

TILE Arrange all windows in a non-
overlapping fashion.

MULTI Open windows outside the
IDLDE interface.

SINGLE Display the most recent
window on the Multiple
Document Panel.

Table 5-8: Editor Window Display Arguments

Using IDL Action Routines

148 Chapter 5: Customizing IDL on Motif Systems

Action Routines Using IDL

Chapter 6

Importing and Writing
Data Into Variables

This chapter provides an introduction to accessing, reading and writing data using the dialogs, and

routines found in IDL.

Overview of DataAccessinIDL 150
Accessing FilesUsing Dialogs 151
ReadingASClIData 153
ReadingBinaryData 154

Accessing Files Programmatically

Using IDL

Accessing Image Data Programmatically 158

Accessing Non-Image Data Programmatically
162

UsingIDLMacros 164
File AccessRoutines 171
149

150 Chapter 6: Importing and Writing Data into Variables

Overview of Data Access in IDL

There are several ways to open files and access the data that they containin IDL.You
can open afile using interface elements, or using routines. In order of increasing
complexity and flexibility, your options are:

* Accessing datain iTools— use File — Open from an iTool, and browse to
select afile. This option automatically displays data (that is a supported type)
in the iTool. See Chapter 2, “Importing and Exporting Data” in the iTool
User’s Guide manual for details.

e Accessing filesusing dialogs— launch an IDL dialog and browse to select or
save afile. After accessing thefile, use an IDL routine to access the data
within thefile. You can then preform additional data processing task or create
adisplay. See “Accessing Files Using Dialogs’ on page 151 for details.

* Accessing files programmatically — you can access data without requiring
user interaction by using IDL statementsin a program or at the command line.
This give you the greatest control over the state of data at al times, but
requires slightly more programming than the previous option. See “Accessing
Files Programmatically” on page 156 for details.

There are advantages and disadvantages for each option. When you open afile using
File — Open in the iTools, there is no opportunity to do pre-processing on the data.
However, the display is created for you, and there are numerous interactive
operations available.

You can combine the flexibility of accessing data using routines with the power of an
iTool display by launching the iTool from the command line as described in
“Parameter Data and the Command Line” in Chapter 2 of theiTool User’'s Guide
manual. See “Accessing Image Data Programmatically” on page 158 and “Accessing
Non-Image Data Programmatically” on page 162 for examples.

When you access data from the command line or in an IDL program, you have the
greatest control over data modification. The iTools incorporate the functionality of
many of the common data processing and manipulation routines. However, if you
need greater control over data modification, want to create a custom display or object
class, or need to use functionality that is not exposed through and iTool, you can
import, export, and/or create your data programmatically.

Regardless of the method selected, it is important to note that only the options
involving iTools will automatically display datafor you. In other instances, you will
need to configure adisplay yourself.

Overview of Data Access in IDL Using IDL

Chapter 6: Importing and Writing Data into Variables 151

Accessing Files Using Dialogs

DIALOG_PICKFILE and DIALOG_READ_IMAGE are the two primary file access
diadogsinIDL. Use DIALOG_PICKFILE to select any type of file. You can select
multiple files, define the directory or define file filters using keywords. Use
DIALOG_READ_IMAGE to access supported image formats (listed in “Image File
Formats® in Chapter 1 of the Using IDL manual). This dialog offers preview
capabilities and basic image information. The corollary DIALOG_WRITE_IMAGE
allows you to write data to a select image file type.

See the following topics for more information:
e “Accessing Any File Type Using aDialog” below
¢ “Importing an Image File Using aDialog” on page 152
* “Saving an Image File Using aDialog” on page 152
You can use other dialogs to access ASCII, binary and HDF data as described in:
e “Reading ASCII Data’ on page 153
¢ “Reading Binary Data’ on page 154

Also, several pre-defined IDL macros are provided to help you import datainto the
IDLDE. Each returns a structure, which you access programmeatically in order to
retrieve data. See “Using IDL Macros’ on page 164 for details.

Note
Also see“CW_FILESEL” in the IDL Reference Guide manual for an example that
configures a compound widget to open image files.

Accessing Any File Type Using a Dialog

Using IDL

The DIALOG_PICKFILE function lets you interactively pick afile using the
platform’s own native graphical file selection dialog. This function returns a string or
an array of stringsthat contain the full path name of the selected file or files. The user
can a so enter the name of thefile. The following statement opens the selection dialog
and shows any .pro filesin the current working directory. If you select afile and
click Open, the fi1e variable contains the full file path.

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

Other keywords allow you to specify the initia directory, the dialog title, the filter
list, and whether multiple file selection is permitted. See “DIALOG_PICKFILE” in
the IDL Reference Guide manual for details.

Accessing Files Using Dialogs

152 Chapter 6: Importing and Writing Data into Variables

After you select afile using DIALOG_PICKFILE, you can then use one of thefile
I/0O routines to access the data within the file. See “Accessing Image Data
Programmatically” on page 158 or “Accessing Non-Image Data Programmatically”
on page 162 for more information.

Importing an Image File Using a Dialog

The DIALOG_READ_IMAGE function opens a graphical user interface which lets
you read image files. Thisinterface simplifies the use of IDL imagefile I/O. You can
preview images with a quick and simple browsing mechanism which also reports
important information about the image file. You can aso control the preview mode.

The following statement opens the dialog so that you can select among . gif, tiff,
.dem, .png and .jpg files.

result = DIALOG_READ_IMAGE (FILE=selectedFile, IMAGE=image)

See “Using the Select Image File Dialog Interface” under
“DIALOG_READ_IMAGE” inthe IDL Reference Guide manual for additional
information if desired. When you select afile and click Open, the file path is stored
in selectedFile variable and theimage datais stored in the image variable. Enter
the following line to display image datain an ilmage display.

IF result EQ 1 THEN iImage, image

Saving an Image File Using a Dialog

The DIALOG_WRITE_IMAGE function displays a graphical user interface that lets
you write and save image files. This interface simplifies the use of IDL image file
[/0. The following statements create and write asimpleimageto a..t i £ file name
myimage.tif:

myimage = DIST(100)

result = DIALOG WRITE IMAGE (myimage, FILENAME='myimage.tif')

When you select Save, it createsa . tif filein your current working directory or the
directory of your choice. See “DIALOG_WRITE_IMAGE” in the IDL Reference
Guide manual for acomplete list of keywords and a description of the dialog
interface.

Accessing Files Using Dialogs Using IDL

Chapter 6: Importing and Writing Data into Variables 153

Reading ASCII Data

IDL recognizestwo types of ASCII datafiles: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in thefile. An explicit format file distinguishes elements according to the commands
specified in aformat statement. Most ASCII files are free format files.

Note
If you prefer not to use an interactive dial og (described below), you can also use the

READ/READF, or READS proceduresto access ASCII data. The READ procedure
reads free format data from standard input, READF reads free format datafrom a
file, and READS reads free format datafrom a string variable.

Launching the ASCII Template Dialog

The ASCII_TEMPLATE function launches a dialog that you can use to configure the
structure of datain an ASCII file. Access this feature in one of the following ways:

¢ FromaniTool — select File — Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select atext file

e Fromthe I DLDE — select Macros — Import ASCII and select atext file

¢ Fromthe IDL command line — use the following syntax to call
ASCII_TEMPLATE and select atext file:

sTemplate = ASCII_ TEMPLATE ()

Note
If you specify a Filename argument to ASCII_TEMPLATE, the dialog

allowing you to browse to select afile will not appear. See
“ASCIl_TEMPLATE” in the IDL Reference Guide manual if you want
specify afile and other parameters programmatically.

See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” inthe IDL
Reference Guide manual for instructions on how to use the dialog to define the
structure of your ASCII data.

Using IDL Reading ASCII Data

154 Chapter 6: Importing and Writing Data into Variables

Reading Binary Data

Datais sometimes stored in files as arrays of bytesinstead of a known format like
JPEG or TIFF. Thesefiles are referred to as binary files. Binary data or binary data
files are more compact than ASCI| data files and are frequently used for large data
files. Binary datafiles are stored as one long stream of bytesin afile. You will need
to define the structure of the fields in the file in order to correctly read in the binary
data.

The BINARY_TEMPLATE and READ_BINARY functions are designed to define
and access binary data. The READ_BINARY function, which reads binary data, is
either invoked internally (when you open abinary file from the iTools or use the
Import Binary macro), or isexplicitly called from the command line. This function
isintended to read raw binary datathat requires no special processing (except
possibly byte-order swapping). This function is not designed to read commercial
spreadsheet or word processing files.

Note
If you prefer not to use an interactive Binary Template dialog (described below) to
define the structure of the data in the binary file, you can use the READU
procedure. To read binary datafiles, define the variables, open the file for reading,
and read the bytes into those variables. Each variable reads as many bytes out of the
file asrequired by the specified data type and organizational structure.

If you need to open asingle binary file, it may be easier to use READ_BINARY to
directly define data characteristics using keywords instead of creating atemplate
using the Binary Template dialog (described below). See “READ_BINARY” in the
IDL Reference Guide manual for an example.

Launching the Binary Template Dialog
The BINARY _TEMPLATE function launches a dialog that you can use to define the

structure of datain an binary file. Accessthis feature in one of the following ways:

e FromaniTool — select File — Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select abinary file

* Fromthe IDLDE — select Macros — Import Binary and select abinary file

¢ FromtheIDL command line — use the following syntax to call
BINARY_TEMPLATE and select atext file:

sTemplate = BINARY TEMPLATE ()

Reading Binary Data Using IDL

Chapter 6: Importing and Writing Data into Variables 155

Note
If you specify a Filename argument to BINARY _TEMPLATE, the dialog
allowing you to browse to select afile will not appear. See
“BINARY_TEMPLATE”" in the IDL Reference Guide manual if you want
specify afile and other parameters programmatically.

See “Using the BINARY_TEMPLATE Interface” under “BINARY_TEMPLATE”
in the IDL Reference Guide manual for instructions on how to use the dialog to define
the structure of your binary file.

Using IDL Reading Binary Data

156 Chapter 6: Importing and Writing Data into Variables

Accessing Files Programmatically

Regardless of the data type, there are several routines that are commonly used to
access files and data. To read datainto an IDL variable, you must identify thefile
containing the data, and then extract the datafrom the file. This section discussesfile
access. Following sections (discuss data access.

File Access

One of the most common file access routinesis FILEPATH. Usethisto select a
named file in a specified directory. For example, to select afilein the
examples/data directory of the existing working directory, use the statement:

file = FILEPATH('mr brain.dcm', SUBDIRECTORY=['examples', 'data'l)

To access afile outside the existing working directory, use the ROOT_DIR keyword.
The following statement opens afilenamed testImg.tif intheC: \tempImages
directory.

file = FILEPATH('testImg.tif', ROOT DIR='C:', $
SUBDIRECTORY="'tempImages"')

Cross-platform File Access

If your application requires a cross-platform path, one that is not specific to UNIX or
Windows, consider using the DIALOG_PICKFILE routine with the GET_PATH
keyword. Thislets you choose afile and store the operating system native path to the
filein avariable. In the following example, you choose an image file and the full
directory path to the selected image is stored in path:

sFile = DIALOG_PICKFILE (/MUST_EXIST, $

TITLE = 'Select an Image File',K $

FILTER = ['*.bmp', '*.jpg', '*.png', '*.ppm',6 '*.tif'], $

GET_PATH:path)
When you need to access afilein the directory stored in path, you can use the
PATH_SEP function to return the correct path separation character for the operating
system. Suppose you have afile called myTestFile. jpg that you want to delete
before a program ends. FILE_DELETE requires a string File argument that is in the
native syntax for the current operating system. To delete thisfile, you can use the
directory information stored in path, plusthe PATH_SEP function, plus the name of
the file to delete as follows (the + operator concatenates strings):

FILE_DELETE, path+PATH SEP()+'myTestFile.jpg', /ALLOW NONEXISTENT

Accessing Files Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 157

IDL also provides an extensive number of other file manipulation routines. See

“General File Access’ under the functional category “Input/Output” in the IDL Quick
Reference manual for alist.

FILEPATH isoften used in conjunction with routines that access the data from afile,
as shown in the following section.

Using IDL Accessing Files Programmatically

158 Chapter 6: Importing and Writing Data into Variables

Accessing Image Data Programmatically

You can access image data using routines designed for general image file access,
designed specifically for an image file format, or using unformatted data access
routines. Which option you choose depends on the file type and the level of control
you want over reading and writing the file. See the following topics for details:

* “Importing Formatted Image Data Programmatically” below

¢ “Importing Unformatted Image Files’ on page 159

e “Exporting Formatted Image Files Programmatically” on page 160
e “Exporting Unformatted Image Files’ on page 161

Note
These sections describe how to load datainto a variable and includes examples of

passing variable datato an iTool programmatically. See “Importing Data from the
IDL Session” in Chapter 2 of the iTool User’s Guide manual if you want
information on how you can access variable data from the iTools Data Manager.

Importing Formatted Image Data Programmatically

The majority of IDL image data access routine require a fil e specification, indicating
the file from which to access the data. The FILEPATH routine is often used within a
data access routine as shown in the following example.

Note
To validate that an image file can be accessed using READ_* routines, you can
guery the image first. See “Returning Image File Information” on page 175 for
details.

The following example opens a JPEG file from the examples/data directory,
performs feature extraction, and displays both images using IIMAGE.

; Open a file and access the data.

file = FILEPATH('n vasinfecta.jpg', $
SUBDIRECTORY = ['examples', 'data'l])

READ JPEG, file, image, /GRAYSCALE

; Mask out pixel values greater than 120

; and create a distance map.

binaryImg = image LT 120

distanceImg = MORPH DISTANCE (binaryImg, NEIGHBOR SAMPLING = 1)

Accessing Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 159

; Launch iImage, creating a 2 column, 1 row layout.

; Display the original and distanceImg in the two views.

IIMAGE, image, VIEW _GRID=[2,1]

IIMAGE, distancelImg, /VIEW_NEXT, /OVERPLOT
In the previous example, you could use the READ_IMAGE function instead of the
READ_JPEG function by replacing the following statement:

READ JPEG, file, image, /GRAYSCALE
with
image = READ IMAGE (file)
In this instance, you do not have control over the color table associated with the

image. It is often more useful to use a specific READ_* routine or object designed
for theimage file format to precisely control characteristics of the imported image.

For alist of available image access, import and export routines and objects, see
“Image Data Formats’ under the functional category “Input/Output” in the IDL
Quick Reference manual.

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TY PE keywords as follows:

e You must specify the size of the image within the file using the DATA_DIMS
keyword. Thisis required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

e You can set the DATA_TY PE keyword to the image's data type using the
associated IDL type code (see”IDL Type Codes and Names’ under the SIZE
function in the IDL Reference Guide for a complete list of type code). Most
images in binary files are of the byte data type, which is the default setting for
the DATA_TY PE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at dl. In this case, you should already

Using IDL Accessing Image Data Programmatically

160

Chapter 6: Importing and Writing Data into Variables

be familiar with the size and type parameters of any images you need to access within
binary files.

For example, theworldelv.dat fileisabinary file that contains an image. You can
only import thisimage by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access thisimage, you must first determine the path
to thefile:

file = FILEPATH('worldelv.dat',6 S
SUBDIRECTORY = ['examples', 'data'l)

Define the size parameters of the image with a vector:
imageSize = [360, 360]

An image type parameter is not required because we know that the data values of
image are byte, which is the default type for the READ_BINARY function.

The READ_BINARY function can now be used to import the image contained in the
worldelv.dat file

image = READ BINARY (file, DATA DIMS = imageSize)
IIMAGE, image

Exporting Formatted Image Files Programmatically

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file's
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the worldelv.dat binary file:

file = FILEPATH('worldelv.dat',6 $
SUBDIRECTORY = ['examples',6 'data'])
imageSize = [360, 360]
image = READ BINARY (file, DATA DIMS = imageSize)
You can export this image to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRITE_IMAGE, 'worldelv.dat',6 'JPEG', image

IDL also provides format-specific WRITE_* routines that are similar to the
WRITE_IMAGE procedure, but provide more flexibility when exporting a specific
image file type. See “Image Data Formats’ under the functional category
“Input/Output” in the IDL Quick Reference manual for alist of available image
access, import and export routines and objects.

Accessing Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 161

Note
IDL can aso export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Unformatted Image Files

Images can be exported to an unformatted binary file with the WRITEU procedure.
Before using the WRITEU procedure, you must open afile to which the data will be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_LUN or CLOSE procedure when you are done exporting the
image.

For example, you can import the image from the rose . jpg imagefile:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples',6 'data'])
image = READ IMAGE (file)

You can export this image to abinary file by first opening a new file:
OPENW, unit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:
WRITEU, unit, image

You must remember to close the file once the data has been written to it:

FREE LUN, unit

Note

For complete detail s about reading, writing and formatting unformatted data, see
Chapter 18, “Files and Input/Output” in the Building IDL Applications manual.

Using IDL Accessing Image Data Programmatically

162 Chapter 6: Importing and Writing Data into Variables

Accessing Non-Image Data Programmatically

There are a number of options available for reading non-image datainto IDL.
Depending upon the file type, consider using one of the following:

¢ Formatted data — use a data-type-specific routine (such as READ_ASCII or
READ_BINARY). See “Reading Binary Datain a Volume” below for more
information.

* Unformatted data— use a general data access routines (such as OPEN or
WRITE). For complete details about reading, writing and formatting
unformatted data, see Chapter 18, “Files and Input/Output” in the Building
IDL Applications manual.

» SAVE file data — use the RESTORE procedure to access variable datain a
SAVE file. See “Reading Contour Datafrom a SAVE File” on page 163 for an
example.

Note
These sections describe how to load data into a variable and includes examples of
passing variable data to an iTool programmatically. See “Importing Data from the
IDL Session” in Chapter 2 of the iTool User’s Guide manual if you want
information on how you can access variable data from the iTools Data Manager.

Reading Binary Data in a Volume

The following example uses READ_BINARY to access binary data (head . dat)
consisting of a stack of 57 images dlices of the human head. After reading the data,
create adisplay using IVOLUME. Enter the following at the IDL command prompt:

file = FILEPATH('head.dat',6 $

SUBDIRECTORY = ['examples', 'data'l])
dataSize = [80,100,57]
volume= READ BINARY (file, DATA DIMS = dataSize)
ivolume, volume, /AUTO_ RENDER

Note
You can also create atemplate for binary file access. See “ Reading Binary Data” on
page 154 for options.

Accessing Non-Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 163

Reading Contour Data from a SAVE File

You can also access information from a SAVE file. This example restores a SAVE
file containing variable data (marbells.dat), configures the data, and displays it
using ICONTOUR.

PRO maroonBellsContour_doc

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples', 'data'l])

; Create x and y vectors giving the position of each
column and row.

X = 326.850 + .030 * FINDGEN(72)

4318.500 + .030 * FINDGEN(92)

<
Il

; Set missing data points to a large value. Reduce to a
; 72 x 92 matrix.

elev (WHERE (elev EQ 0)) = 1lE6

new = REBIN(elev, 360/5, 460/5)

iContour, new, X, Y, C VALUE = 2750 + FINDGEN(6) * 250.,$
XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX VALUE = 5000, $

C_LINESTYLE = [1, 0], $
C_THICK = [1, 1, 1, 1, 1, 3], S
XTITLE = 'UTM Coordinates (KM)''
End
Note

See Chapter 4, “Creating SAVE Files of Programs and Data’ in the Building IDL
Applications manual for complete details on creating and restoring SAVE files.

Using IDL Accessing Non-Image Data Programmatically

164 Chapter 6: Importing and Writing Data into Variables

Using IDL Macros

When you are working in the IDLDE, you can use a pre-defined macro to help you
import image, ASCII, binary or HDF data. These macros call internal functions and
return structures containing data. From the IDL command line, you can access and
display data elements contained in the structures. These macros are available through
the M acr os menu and also through IDL toolbar buttons.

IR @B E e

Import Image / \ Import HDF
File File

Import ASCII File Import Binary File

Figure 6-1: Macro Toolbar Buttons

See the follow sections for more information:
e “Using Macrosto Import Image Files’ on page 165
e “Using Macrosto Import ASCII Files’ on page 167
e “Using Macrosto Import Binary Files’ on page 169
e “Using Macrosto Import HDF Files’ on page 170

Using IDL Macros Using IDL

Chapter 6: Importing and Writing Data into Variables 165

Using Macros to Import Image Files

Using IDL

To import an imagefile into IDL using a macro, complete the following steps:

1. Select the Import Image toolbar button. The Select Image Filedialogis

displayed.

Select afile to import. For example, select the
rsi-directory/examples/data/muscle.jpg filewhere
rsi-directory istheinstallation directory for IDL. See“Using the Select
Image File Dialog Interface” under “DIALOG_READ_IMAGE” inthe IDL
Reference Guide manual for additional information if desired.

3. Click Open.

Themuscle.jpg image data has been opened into a structure variable named
MUSCLE_IMAGE. The Import I mage macro opens and storesimage datain a
structure variable named filename IMAGE where filename is the name of thefile
you opened without the extension.

Note

IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If thefirst character of filenameis not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

The MUSCLE_IMAGE structure contains the following fields:

IMAGE — The actual image array.

R — Thered color table vectors.

G — The green color table vectors.

B — The blue color table vectors.

QUERY — Contains information about the image.

¢ CHANNELS— The number of channelsin theimage.

e HAS PALETTE — Specifiesif the palette is present. 1 if the paletteis
present, else 0. If your image is n-by-mthe palette is usually present and
the R, G, and B color table vectors mentioned above will contain values. I
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.

Using Macros to Import Image Files

166

Chapter 6: Importing and Writing Data into Variables

IMAGE_INDEX — The index of the image of thefile. The default is 0,
thefirst imagein the file. If there are multiple imagesin the file that you
read, this will be the number (or index) of the image.

NUM_IMAGES — The number of imagesin the origind file.

PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid
types are described in “IDL Type Codes and Names® under “SIZE” in the
IDL Reference Guide manual.

TYPE — The image format type.

The structure can be viewed in the Variable Watch Window.

Mame L} Type | Walue -
B | MUSCLE_IMAGE STRUCT { <Anonpmouss }
IMAGE EYTE Anap[E52, 444]
R EYTE Array[256]
G EYTE Array[256]
B EYTE Array[256]
B QUERY STRUCT { <Anonpmouss }
= | CH&NMELS LONG 1
DIMENSIONS LONG Aray[2]
= HaS_PALETTE INT a
IMAGE_INDEX LONG a
MUM_IMAGES LONG 1 e
PI<EL_TYPE INT 1
= TYPE STRING JPEG =
zl]\Locals {Paramsg Commong System | A4 | _DI—I

Figure 6-2: Variable Watch Window Showing MUSCLE_IMAGE Structure

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

IIMAGE, MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:

PRINT, MUSCLE_ IMAGE.QUERY.TYPE

IDL prints:

JPEG

Using Macros to Import Image Files

Using IDL

Chapter 6: Importing and Writing Data into Variables 167

Using Macros to Import ASCII Files

Using IDL

To import an ASCII fileinto IDL using amacro, complete the following steps:

1. Selectthemport ASCII toolbar button. The Select an ASCI| fileto read
dialog appears.

Select afile to import.

3. See“Using the ASCII Template Dialog” under “ASCII_TEMPLATE” in the
IDL Reference Guide manual for instructions on how to use the dialog to
define the structure of your ASCII data.

ASCII files opened with the Import ASCII macro are stored in structure variables
which are named filename_ASCII where filename is the name of the file you opened
without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If thefirst character of filenameisnot a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

For example, if you opened ascii.txt, thedataisnow in the structure variable
named ASCII_ASCII. Each field (named in the ASCII Template dialog) isan
element of the structure.

The structure can be viewed in the Variable Watch Window.

Mame Type | Walue ;I

Bl | ASCI_asCl STRUCT { <Anonpmouss }

LOMGITUDE FLOAT Anray[15]

LATITUDE FLOAT Anray[15]

ELEWATION LOMG Anray[15]

TEMPERATURE LOMG Anray[15]

DEWPOINT LOMG Anray[15]

WINDSPEED LOMG Anray[15]

WINDIR LOMG Anray[15]

zl]\Locals {Paramsg Commong System | 4 | | 3

Figure 6-3: Variable Watch Window Showing ASCII_ASCII Structure

Using Macros to Import ASCII Files

168 Chapter 6: Importing and Writing Data into Variables

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name
For example, if you want to view the Longitude field data, enter the following:
Print, ASCII ASCII.LONGITUDE
If you want to plot the Temperature data, enter the following:
IPLOT, ASCII_ASCII.TEMPERATURE

The following figure results.

85

80

75

70

65

60

55
2 4 B 8 10 12

=]
—
=

Figure 6-4: Plot of ASCII_ASCI.TEMPERATURE

Using Macros to Import ASCII Files Using IDL

Chapter 6: Importing and Writing Data into Variables 169

Using Macros to Import Binary Files

To import abinary fileinto IDL using a macro, complete the following steps:

1. Select the Import Binary toolbar button. The Select a binary fileto read
dialog appears.

2. Select afileto import. For example, select the surface.dat fromthe
examples/data directory inyour IDL installation directory. Click Open.

3. SeeUsing the BINARY_TEMPLATE Interface under
“BINARY_TEMPLATE”" in the IDL Reference Guide manual for instructions
on how to use the dialog to define the structure of your binary data.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of thefile
you opened without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameis not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (surface.dat) isnow in the structure variable named
SURFACE_BINARY. The variableis a structure, and contains elements that are the
field names defined in the Binary Template dialog. In this casethe singlefield is
named marbells. The structure can be viewed in the Variable Watch Window.

Mame | Type | Walue
B SURFACE_BINARY STRUCT { <Anonymous> }

[: MARBELLS INT Arrap[350, 450]

zl]\Locals {Paramsg Commong System | 1 | | _’I

Figure 6-5: Variable Watch Window Showing MARBELLS_BINARY Structure

Access data from the structure variable using the following syntax:
variable name.element_name

For example, display the surface by entering:

ISURFACE, SURFACE BINARY.marbells

Using IDL Using Macros to Import Binary Files

170 Chapter 6: Importing and Writing Data into Variables

Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF fileinto IDL,
complete the following steps:

1. Select the Import HDF File toolbar button. The Select a valid HDF,
NETCDF or HDF-EOSfile dialog is displayed.

Select afile to import. Click Open.

3. See“Using the HDF Browser Interface” under “HDF_BROWSER” for
instructions on how to use the dialog.

After selecting to import data and clicking OK, HDF, NETCDF, or HDF-EOS files
read with the Import HDF macro are stored in structure variables which are named
filename_DF where filename is the name of the file you opened without the
extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameis not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable name.data_name

For example, if you imported two data elements out of afile named hydrogen.hdf
and you named the elements TMAGE1 and IMAGE2, You could access each individual
data element using the following:

HYDROGEN_ DF.IMAGE1l
HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:
IIMAGE, HYDTROGEN DF.IMAGE1l

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formats manual.

For information on importing HDF5 files using the HDF5 Browser dialog, see
“H5 BROWSER” in the IDL Reference Guide manual

Using Macros to Import HDF Files Using IDL

Chapter 6: Importing and Writing Data into Variables 171

File Access Routines

Using IDL

See the following categories under “Input/Output” in the IDL Quick Reference
manual for alist of available file and data access routines:

“Image Data Formats’ — includes read and write routines for supported image
formats (such as JPEG, TIFF, DICOM, etc.), and routines that launch dialogs
for image file access.

“Scientific Data Formats’ — includes CDF, EOS, NCDF, HDF, and HDF5
routines.

“Other Data Formats’ — includes routines that access ASCII, BINARY,
XML, and other non-image data formats.

“General Input/Output” — includes READ, WRITE and other routines
commonly used when accessing unformatted data. Also see Chapter 18, “Files
and Input/Output” for information on using these routines and formatting your
data.

File Access Routines

172 Chapter 6: Importing and Writing Data into Variables

File Access Routines Using IDL

Chapter 7

Getting Information
About Files and Data

The following topics are covered in this chapter:

Investigating FilesandData 174 Getting Information About SAVE Files .. 181
Returning Image File Information 175 Returning Object Type and Validity 186
Returning Type and Size Information 179 Returning Information About aFile. 188

Using IDL 173

174 Chapter 7: Getting Information About Files and Data

Investigating Files and Data

There are anumber of routines and functionsin IDL that allow you to quickly access
information about your data. While it is always a good ideato know your data before
processing, the routinesin this chapter can help you uncover details of arrays,
expressions, SAVE files, objects, or specific images.

Accessing Information in iTools

When you are working in the i Tools, there are a number of ways to get information
about variable data, an object’s properties, an image's statistical information, and the
data hierarchy. For more information about these options, see the following topics:

* “About the Data Manager” in Chapter 2 of the iTool User’s Guide manual
provides information on data associated with a visualization

e “TheVisualization Browser” in Chapter 6 of the iTool User’s Guide manual
provides information on the properties of a visualization

e “Additional Operations’ in Chapter 7 of the iTool User’s Guide manual
describes the Histogram and Statistics windows available in iTools

Investigating Files and Data Using IDL

Chapter 7: Getting Information About Files and Data 175

Returning Image File Information

When accessing formatted image data (not contained in abinary file), there are a
number of ways to get information about the data characteristics. The most flexibleis
the QUERY _IMAGE routine, which returns a structure that includes the number of
image channels, pixel data type and palette information. If you need specific
information from a formatted image file, you can use the QUERY * routine
specifically designed for images of that format.

Note
You can also use the SIZE function to quickly return the size of animage array. See
“Using SIZE to Return Image Dimensions” on page 180 for details.

Using the QUERY _IMAGE Info Structure

Using IDL

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY _IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY _IMAGE function, you can return information about
themineral.png fileinthe examples/data directory. First, accessthefile. Then
use the QUERY _IMAGE function to return information about the file;

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples',6 'data'])
queryStatus = QUERY IMAGE (file, info)

To determine the success of the QUERY _IMAGE function, print the value of the
query variable:

PRINT, 'Status = ', queryStatus
IDL prints
queryStatus = 1

If queryStatusis zero, the file cannot be accessed with IDL. If queryStatusis one, the
file can be accessed. Because the query was successful, the info variable is now an
IDL structure containing image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HEL P command with the info variable as
its argument:

HELP, info, /STRUCTURE

Returning Image File Information

176 Chapter 7: Getting Information About Files and Data

IDL displays the following text in the Output Log:

** Structure <1407e70>, 7 tags, length=36, refs=1:

CHANNELS LONG 1
DIMENSIONS LONG Array[2]
HAS PALETTE INT 1
IMAGE INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_ TYPE INT 1
TYPE STRING 'PNG'

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:
e 1—two-dimensional array
e 3 -—three-dimensional array

Print the number of dimensions using:

PRINT, 'Number of Channels: ', info.channels
For themineral .png file, IDL prints:

Number of Channels: 1

DIMENSIONS Contains image array information including the width and
height. Print the image dimensions using:

PRINT, 'Size: ', info.dimensions
For themineral .png file, IDL prints:

Size: 288 216

HAS PALETTE Describes the presence or absence of a color palette:

* 1 (True) — the image has an associated pal ette

* 0 (False) —the image does not have an associated palette
Print whether a paletteis present or not using:

PRINT, 'Is Palette Available?: ', info.has palette
For themineral.png file, IDL prints:

Is Palette Available?: 1

Table 7-1: Image Structure Tag Information

Returning Image File Information Using IDL

Chapter 7: Getting Information About Files and Data 177

Tag Description

IMAGE INDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRINT, 'Image Index: ', info.image index
For themineral .png file, IDL prints:

Image Index: 0

NUM_IMAGES Provides the number of imagesin the file. Print the number of
imagesin the file using:

PRINT, 'Number of Images: ', info.num images
For themineral.png file, IDL prints.

Number of Images: 1
PIXEL TYPE Providesthe IDL type code for the image pixel data type:
* 0-Undefined
* 1-—Byte
* 2—Integer

* 3-—Longword integer

* 4 —Foating point

¢ 5—Double-precision floating

» 6—Complex floating

» 9 —Double-precision complex

* 12 —Unsigned Integer

e 13- Unsigned Longword Integer
e 14— 64-bit Integer

¢ 15-Unsigned 64-bit Integer

See “IDL Type Codes and Names’ under the SIZE functionin
the IDL Reference Guide for acomplete list of type codes.

Print the data type of the pixelsin the image using:

PRINT, 'Data Type: ', info.pixel type

For themineral.pngfile, IDL displaysthe following text in
the Output Log:

Data Type: 1

Table 7-1: Image Structure Tag Information (Continued)

Using IDL Returning Image File Information

178

Chapter 7: Getting Information About Files and Data

Tag Description

TYPE Identifies the image file format. Print the format of thefile
containing the image using:

PRINT, 'File Type: ' + info.type

For themineral .png file, IDL prints:

File Type: PNG

Table 7-1: Image Structure Tag Information (Continued)

From the contents of the info variable, it can be determined that the single image
withinthemineral . png fileis an indexed image because it has only one channel (is
atwo-dimensional array) and it has a color palette. The image a so has byte pixel
data.

Note
When working with RBG images (with a CHANNELS value of 3) it isimportant to
determine the interleaving (the arrangement of the red, green, and blue channels of
data) in order to properly display theseimage. See “RGB Image Interleaving” in
Chapter 8 of the Using IDL manual for an example that shows you how to
determine the arrangement of these channels.

Using Specific QUERY_* Routines

All of the QUERY _* routines return a status, which determinesif the file can be read
using the corresponding READ _ routine. All of these routines also return the Info
structure, (described in the previous section), which reports image dimensions,
number of samples per pixel, pixel type, paette info, and the number of imagesin the
file. However, some of the QUERY _* routines (such as QUERY_MRSID and
QUERY _TIFF) return more detailed information particular to that specific image
format. See“ Query Routines’ in the IDL Quick Reference manual for a complete list
of the available QUERY _* routines.

Returning Image File Information Using IDL

Chapter 7: Getting Information About Files and Data 179

Returning Type and Size Information

The SIZE function returns size and type information for a given expression. The
returned vector is always of longword type.

¢ Thefirst element is equal to the number of dimensions of the parameter and is
zero if the parameter isa scalar.

* The next elements contain the size of each dimension.

e After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively.

See"IDL Type Codes and Names’ under the SIZE function in the IDL Reference
Guide for acomplete list of type codes. See the following examples for more
information on the SIZE function:

» “Determining if a Variableisa Scalar or an Array” below
e “Using SIZE to Return Image Dimensions” on page 180

In addition to the examples listed above, also see the following SIZE function
examplesin the IDL Reference Guide:

e “Example: Returning Array Dimension Information”

e “Example: Returning the IDL Type Code of an Expression”
Determining if a Variable is a Scalar or an Array

The SIZE function can be used to determine whether a variable holds a scalar value
or an array. Setting the DIMENSIONS keyword causes the SIZE function to return a
0if thevariableis ascalar, or the dimensions if the variableis an array:

A=1
[1]
[1,2,3]

[01,21,103,4]11]

B
c
D

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0

3

Using IDL Returning Type and Size Information

180 Chapter 7: Getting Information About Files and Data

Using SIZE to Return Image Dimensions

The following example reads an image array and uses the SIZE function
DIMENSIONS keyword to access the number of rows and columnsin theimagefile.
In this ssmple example, the information is used to create a display window of the
correct size.

PRO ex displayImage

; Select and read the image file.
earth = READ PNG (FILEPATH ('avhrr.png', $
SUBDIRECTORY = ['examples', 'data'l), R, G, B)

; Load the color table and designate white to occupy the
; final position in the red, green and blue bands.
TVLCT, R, G, B

maxColor = !D.TABLE SIZE - 1

TVLCT, 255, 255, 255, maxColor

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSize = SIZE(earth, /DIMENSIONS)

; Prepare a window and display the new image.
WINDOW, 0, XSIZE = earthSize[0], YSIZE = earthSize[1]
TV, earth

END

Returning Type and Size Information Using IDL

Chapter 7: Getting Information About Files and Data 181

Getting Information About SAVE Files

The IDL_Savefile object provides an object-oriented interface that allows you to
guery a SAVE file for information and restore one or more individual items from the
file. Using IDL_Savefile, you can retrieve information about the user, machine, and
system that created the SAVE file, aswell asthe number and size of the variousitems
contained in the file (variables, common blocks, routines, etc). Individua items can
be selectively restored from the SAVE file.

Use IDL_Savefilein preference to the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAVE file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simpleinterface.

Note
The IDL_Savefile object does not provide methods that allow you to modify an
existing SAVE file. The only way to modify an existing SAVE fileisto restore its
contents into afresh IDL session, modify the contained routines or variables as
necessary, and use the SAVE procedure to create a new version of thefile.

To use the IDL_Savefile object to restore items from an existing SAVE file, do the
following:

¢ Create a Savefile Object

¢ Query the Savefile Object

¢ Restore Items from the Savefile Object
* Destroy the Savefile Object

The following sections describe each of these steps. For compl ete information on the
IDL_Savefile object and its methods, see“IDL_Savefile” in Chapter 9 of the IDL
Reference Guide manual.

Create a Savefile Object

Using IDL

When an IDL_Savefile object isinstantiated, it opens the actual SAVE file for
reading and creates an in-memory representation of its contents — without actually
restoring the file. The savefile object persists until it isexplicitly destroyed (or until
the IDL session ends); the SAVE fileitself is held open for reading as long as the
savefile object exists.

Getting Information About SAVE Files

182 Chapter 7: Getting Information About Files and Data

To create a savefile object from the draw_arrow. sav file created in “ Example: A
SAVE File of a Simple Routine” in Chapter 4 of the Building IDL Applications
manual, use the following command:

myRoutines = OBJ NEW('IDL Savefile',6 'draw arrow.sav')

Similarly, to create a savefile object from the saved image data, use the following
command:

myImage = OBJ NEW('IDL Savefile', 'imagefile.sav')
Query the Savefile Object

Once you have created a savefile abject, three methods allow you to retrieve
information about its contents:

¢ The Contents method provides information about the SAVE file including the
number and type of items contained therein.

¢ The Names method allows you to retrieve the names of routines and variables
stored in thefile.

e The Size method allows you to retrieve size and type information about the
variables stored in thefile.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its
contents. Theindividua fieldsin the returned structure are described in detail in
“IDL_Savefile::Contents’” in Chapter 9 of the IDL Reference Guide manual.

In addition to providing information about the system that created the SAVE file, the
Contents method allows you to determine the number of each type of saved item
(variable, procedure, function, etc.) in thefile. Thisinformation can be used to
programmeatically restore items from the SAVE file.

Assuming you have created the myRout ines savefile object, the datareturned by the
Contents method looks like this:

savefileInfo = myRoutines->Contents ()
HELP, savefileInfo, /STRUCTURE

IDL Prints:
** Structure IDL SAVEFILE CONTENTS, 17 tags, length=176, data leng
th=172:
FILENAME STRING '/rsi/test/draw_arrow.sav'
DESCRIPTION STRING '
FILETYPE STRING 'Portable (XDR)''

Getting Information About SAVE Files Using IDL

Chapter 7: Getting Information About Files and Data 183

Using IDL

USER STRING 'dquixote’

HOST STRING 'DULCINEA'

DATE STRING 'Thu May 08 12:04:46 2003
ARCH STRING 'x86"

0s STRING 'Win32'

RELEASE STRING '6.2"

N_COMMON LONG64 0
N_VAR LONG64 0
N_SYSVAR LONG64 0
N_PROCEDURE LONG64 2
N_FUNCTION LONG64 0
N_OBJECT_HEAPVAR LONG64 0
N_POINTER_ HEAPVAR LONG64 0
N_STRUCTDEF LONG64 0

From this you can determine the name of the SAVE file from which the information
was extracted, the names of the user and computer who created the file, the creation
date, and information about the IDL system that created thefile. You can also see that
the SAVE file contains definitions for two procedures and nothing else.

Names Method

The Names method returns a string array containing the names of the variables,
procedures, functions, or other items contained in the SAVE file. By default, the
method returns the names of variables; keywords alow you to specify that names of
other items should be retrieved. The available keyword options are described in
“IDL_Savefile::Names® in Chapter 9 of the IDL Reference Guide manual.

The names of items retrieved using the Names method can be supplied to the Size
method to retrieve size and type information about the specific items, or to the
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the
myRoutines Savefile object yields the names of the two procedures saved in thefile:

PRINT, myRoutines->Names (/PROCEDURE)
IDL Prints:
ARROW DRAW_ARROW

Similarly, to retrieve the name of the variable saved in imagefile.sav, whichis
referred to by the my Image savefile object:

PRINT, myImage->Names ()
IDL Prints:

IMAGE

Getting Information About SAVE Files

184 Chapter 7: Getting Information About Files and Data

Size Method

The Size method returns the same information about a variable stored in a SAVE file
asthe SIZE function does about aregular IDL variable. It accepts the same keywords
as the SIZE function, and returns the same information using the same formats. The
Size method differs only in that the argument is a string or integer identifier string
(returned by the Names method) that specifies an item within a SAVE file, rather
than an in-memory expression. See“IDL_Savefile::Size” in Chapter 9 of the IDL
Reference Guide manual for additional details.

For example, to determine the dimensions of the image stored in the
imagefile.sav file, do the following
imagesize = myImage->Size('image', /DIMENSIONS)

PRINT, 'Image X size:',6 imagesize[0]
PRINT, 'Image Y size:',6 imagesizel[1l]

IDL Prints:;

Image X size: 256
Image Y size: 256

Restore Items from the Savefile Object

The Restore method allows you to selectively restore one or more items from the
SAVE file associated with a savefile object. Items to be restored are specified using
the item name strings returned by the Names method. In addition to functions,
procedures, and variables, you can a so restore COMMON block definitions,
structure definitions, and heap variables. See“IDL_Savefile::Restore” in Chapter 9 of
the IDL Reference Guide manual for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the
ARROW procedure, do the following:

myRoutines->Restore, 'draw_arrow'
Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables.
When you restore aregular IDL variable that contains an object reference or a
pointer, the associated heap variable is restored automatically; there is no need to
restore the heap variables separately. It is, however, possible to restore the heap
variables independently of any regular IDL variables; see “ Restoring Heap Variables
Directly” in Chapter 9 of the IDL Reference Guide manual for complete details.

Getting Information About SAVE Files Using IDL

Chapter 7: Getting Information About Files and Data 185

Destroy the Savefile Object

To destroy a savefile object, use the OBJ DESTROY procedure:

OBJ_DESTROY, myRoutines
OBJ_DESTROY, myImage

Destroying the savefile object will close the SAVE file with which the object is
associated.

Using IDL Getting Information About SAVE Files

186 Chapter 7: Getting Information About Files and Data

Returning Object Type and Validity

Three IDL routines allow you to obtain information about an existing object:
OBJ CLASS, OBJ ISA, and OBJ VALID.

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct
struct

{classl, datal:0.0 }
{class2, data2a:0, data2b:0L, INHERITS classl }

We can now create an object and use OBJ_CLASS to determineits class and
superclass membership.

; Create an object.
A = OBJ NEW('class2')

; Print A’s class membership.
PRINT, OBJ CLASS(A)

IDL prints:
CLASS2
Or you can print as superclasses:

; Print A’s superclasses.
PRINT, OBJ CLASS(A, /SUPERCLASS)

IDL prints:
CLASS1

See“0OBJ CLASS’ inthe IDL Reference Guide manual for further details.

OBJ_ISA
Use the OBJ_I SA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ ISA(A, 'class2') THEN S
PRINT, 'A is an instance of class2.'

IDL prints:
A is an instance of class2.

See“0BJ ISA” inthe IDL Reference Guide manual for further details.

Returning Object Type and Validity Using IDL

Chapter 7: Getting Information About Files and Data 187

OBJ_VALID

Use the OBJ VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ _VALID returns TRUE (1) if the reference refersto a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FAL SE values
corresponding to the input array. For example:

; Create a class structure.
struct = {cname, data:0.0}

; Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:
A refers to a valid object.
If we destroy the object:

; Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:
A does not refer to a valid object.

See“OBJ VALID” inthe IDL Reference Guide manual for further details.

Using IDL Returning Object Type and Validity

188 Chapter 7: Getting Information About Files and Data

Returning Information About a File

You can use the FILE_INFO function to retrieve information about afile that is not
currently open. To get information about an open file (for which thereisan IDL
Logical Unit Number), use the HELP procedure or the FSTAT function. See
“Returning Information About a File Unit” in Chapter 18 of the Building IDL
Applications manual.

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, get information on dist .pro:

HELP, /STRUCTURE, FILE INFO(FILEPATH('dist.pro',
SUBDIRECTORY='1lib'))

The above command will produce output similar to:

** Structure FILE INFO, 21 tags, length=72:

NAME STRING '/usr/local/rsi/idl/1lib/dist.pro’
EXISTS BYTE 1
READ BYTE 1
WRITE BYTE 0
EXECUTE BYTE 0
REGULAR BYTE 1
DIRECTORY BYTE 0
BLOCK_SPECIAL BYTE 0

CHARACTER_ SPECIAL

BYTE 0
NAMED_ PIPE BYTE 0
SETGID BYTE 0
SETUID BYTE 0
SOCKET BYTE 0
STICKY_ BIT BYTE 0
SYMLINK BYTE 0
DANGLING_ SYMLINK
BYTE 0
MODE LONG 420
ATIME LONG64 970241431
CTIME LONG64 970241595
MTIME LONG64 969980845
SIZE LONG64 1717

Thefields of the FILE_INFO structure provide various information about thefile,
such asthe size of the file, and the dates of |ast access, creation, and |ast modification.
For more information on the fields of the FILE_INFO structure, see“FILE_INFO” in
the IDL Reference Guide manual. See “FILE_LINES’ in the IDL Reference Guide
manual for information on how to retrieve the number of lines of text in afile.

Returning Information About a File Using IDL

Chapter 8

Graphic Display

Essentials

The following topics are covered in this chapter:

IDL Visual Display Systems 190
IDL Coordinate Systems 193
Coordinates of 3-D Graphics........... 195
Coordinate Conversions. 198
InterpolationMethods 201
Polygon Shading Method 203
ColorSystems 204

Using IDL

Display Device Color Schemes 207
Colorsand IDL Graphic Systems. 209
Indexed and RGB Image Organization .. 213
Loading a Default Color Table 218
Using Fontsin Graphic Displays 221
Printing Graphics 222

189

190 Chapter 8: Graphic Display Essentials

IDL Visual Display Systems

When creating visualizationsin IDL, you can choose to create a visualization in an
IDL Intelligent Tool (iTooal), in an Object Graphics display, or in a Direct Graphics

display:

e iTools—introducedin IDL 6.0, the IDL Intelligent Tools (iTools) provide the
power and flexibility of Object Graphics with a pre-built visualization system
that offersagreat deal of interactivity. This set of interactive utilities combine
data analysis and visualization with the task of producing presentation quality
graphics. See “iTools Visualizations’ below for more information.

¢ Object Graphics— introduced in IDL 5.0, Object Graphics use an object-
oriented programmers' interface to create graphic objects, which must then be
drawn, explicitly, to a destination of the programmer’s choosing. See “1DL
Object Graphics’ on page 191 for more information.

« Direct Graphics— the oldest visualization system of the three, Direct
Graphicsrely on the concept of a current graphics device to quickly create
simple static visualizations using IDL commands like PLOT or SURFACE.
See “IDL Direct Graphics’ on page 192 for information.

This chapter introduces the IDL display systems and provides information on
common topics shared by the systems. Topics include a discussion on coordinates,
coordinate conversion, interpolation, color systems and color schemes, and fonts.

iITools Visualizations

The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine
data analysis and visualization with the task of producing presentation quality
graphics. Based on the IDL Object Graphics system, the iTools are designed to help
you get the most out of your data with minimal effort. They allow you to continue to
benefit from the control of a programming language, while enjoying the convenience
of a point-and-click environment.

The main enhancements the new i Tools provide are more mouse interactivity,

WY SIWY G (What-You-See-1s-What- You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the iTools integrate in a seamless manner with the
IDL Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL usersrely on for data

IDL Visual Display Systems Using IDL

Chapter 8: Graphic Display Essentials 191

exploration, algorithm design, and rapid application development. The following
manuals provide more information:

iTool User’s Guide — describes how to create visualization using i Tools

iTool Developer’s Guide — describes how to create and customize an iTool

IDL Object Graphics

Using IDL

The salient features of Object Graphics are:

Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to awindow on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing al of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As aresult, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

Object Graphics use a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programsthat are compiled and run. While
itisgtill possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.

IDL Visual Display Systems

192

Chapter 8: Graphic Display Essentials

For more information on creating Object Graphic visualizations see:

Object Programming — this manual introduces using IDL objects and also
describes how to create custom objectsin IDL.

“Object Class and Method Reference” in the IDL Reference Guide manual —
this section in the IDL Reference Guide provides complete reference material
describing IDL’s object classes

iTool User’s Guide and iTool Developer’s Guide — these manuals provide
compl ete details about using and creating object-based iTool displays

IDL Direct Graphics

IDL Direct Graphicsis the original graphics rendering system introduced in IDL.
Graphic displays creating using Direct Graphics are static — once created, no
changes can be made without recreating the visualization being displayed. If you
have used routines such as PLOT or SURFACE, you are aready familiar with this
graphics system. The salient features of Direct Graphics are:

Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. al draw their output directly
on the current graphics device.

Once adirect-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This meansthat if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

When you add a new item to an existing direct-mode graphic (using aroutine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

See “Direct Graphics’ in the IDL Quick Reference manual for alist of available
routines.

IDL Visual Display Systems Using IDL

Chapter 8: Graphic Display Essentials 193

IDL Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with arange identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.
The mechanisms of converting from one coordinate system to another are described
bel ow.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vi —1, V) —1) at the upper-right corner. V, and V,, are the number of columns and
rows addressed by the device. These numbers are stored in the system variable D as
ID.X_SIZE and !D.Y_SIZE. In awidget base, device coordinates are measures from
the upper-left corner

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parametersin any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used

by including one of the keyword parameters /DATA, /IDEVICE, or NORMAL in the
cal.

Understanding Windows and Related Device
Coordinates

Images are displayed within awindow (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedure is
used to initialize the coordinates system for the image display. In Object Graphics,

Using IDL IDL Coordinate Systems

194

Chapter 8: Graphic Display Essentials

the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinatesto IDL using one of the following coordinate
systems:

Data Coordinates — This system usually spans the window with arange
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(O, 0) at the bottom-left corner to (Vy -1, Vy, —1) at the upper-right corner of the
display. V, and Vi, are the number of columns and rows of the device (adisplay
window for example).

Note
For images, the data coordinates are the same as the device coordinates. The

device coordinates of an image are directly related to the pixel locations
within an image. Unless otherwise specified, IDL draws each image pixel per
each device pixel.

Normal Coordinates— The normalized coordinate system ranges from zero to
one over columns and rows of the device.

IDL Coordinate Systems Using IDL

Chapter 8: Graphic Display Essentials 195

Coordinates of 3-D Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are trandlated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (Foley, J.D., and A. Van Dam (1982),
Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing Co.).
The reader is urged to consult this book for a detailed description of homogeneous
coordinates and transformation matrices since this section presents only an overview.
Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ¥4/« 0. For example:

P(wx, wy, wz, w) = P(x/w, y/w, z/\w, 1) = (X, Y, 2)

One advantage of this approach is that tranglation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript isfirst, while in Foley and Van Dam (1982) the
row subscript isfirst. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, apositive rotation is counterclockwise. As usual, the x-axis runs across the
display, the y-axisis vertical, and the positive z-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axisto the y-axis.

Transformation Matrices
Transformation matrices, which post-multiply a point vector to produce a new point

vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to be

Using IDL Coordinates of 3-D Graphics

196

Chapter 8: Graphic Display Essentials

applied in order, and the matrix A isthe product of the three matrices, the following
applies.

(PeAj)eAy) e Az=Pe((AjeA)eAg)=PeA
In Object Graphics, IDL the model object that contains the displayed object storesthe

transformation matrix. In Direct Graphics, IDL stores the concatenated
transformation matrix in the system variablefield |PT.

Note
When displaying objects in a three-dimensional view, you can precisely configure
the object position using transformation matrices. See “ Trand ating, Rotating and
Scaling Objects’ in Chapter 3 of the Object Programming manual for details.

Note
For most Direct Graphic applications, it is not necessary to create, manipulate, or to
even understand transformation matrices. See the T3D procedure, which
implements most of the common transformations.

Each of the operations of trandlation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (D,, Dy, D) is shown below.

1 0 0 D]
01 0 D,
0 0 1 D,
00 0 1|

Scaling

Scaling by factors of S, Sy and S, about the x-, y-, and z-axes respectively, is
represented by the matrix below.

Coordinates of 3-D Graphics Using IDL

Chapter 8: Graphic Display Essentials 197

[#r)

o o o
o oM o
< ¥ o o
_ D O O

Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:

O O
cosB, —sinb,
sin BE cos0

0 0

i

e
L R R e R
== ==

cos sin By

O
1

- sinBy 0 ccmsﬁy
0

cO8 BZ —gin BZ

0 0

0

R = sinB, cosB, O
1

0 0 0

e B T

Using IDL Coordinates of 3-D Graphics

198 Chapter 8: Graphic Display Essentials

Coordinate Conversions

Depending upon the data and type of visualization, you may want to convert between
normalized, data or device coordinates (described in “IDL Coordinate Systems’ on
page 193). This section details two-dimensional and three-dimensional coordinate
system characteristics provides resources for various coordinate conversions. See the
following for details:

« “Two-Dimensiona Coordinate Conversion” on page 198
e “Three-Dimensional Coordinate Conversion” on page 199
e “Using Coordinate Conversions’ on page 199

Two-Dimensional Coordinate Conversion

This section describes the formulae for conversions to and from each coordinate
system. In the following discussion, D, is adata coordinate, N, is a normalized
coordinate, and R, is araw device coordinate. Let V, and V), represent the size of the
visible area of the currently selected display or drawing surface.

Thefield Sisatwo-element array of scaling factors used to convert X coordinates
from data units to normalized units. S contains the parameters of the linear equation,
converting data coordinates to normalized coordinates. S[Q] isthe intercept, and S[1]
isthe slope. Also, let D, be the data coordinate, N, the normalized coordinate, R the
device coordinate, V, the device X size (in device coordinates).

With the above variables defined, the linear two-dimensional coordinate conversions
for the x coordinate can be written as follows:

((Z:gr?\sgirg?gi Linear Logarithmic
Data to normal N, = Sy+S;D, N, = Sy+ S;logD,
Data to device R, = V,(S+S,D,) Ry = V,(Sy+ S;logD,)
Normal to device R, = NV, R, = N,V
Normal to data D, = (N,—Sy)/S; D, = 10(N=0/%
Device to data D, = (R,/V,—S,)/S; | Dy = 10R/Vx=%)/S
Device to normal N, = R/V, N, = R,/V,

Table 8-1: Equations for X-axis Coordinate Conversion

Coordinate Conversions Using IDL

Chapter 8: Graphic Display Essentials 199

They- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that logarithmic z-axes are not
permitted.

This coordinate conversion functionality is built into object graphics through the
XCOORD_CONVERT and YCOORD_CONVERT properties or each type of
visualization object. If you are working with a Direct Graphics display, you can use
the CONVERT_COORD function.

Three-Dimensional Coordinate Conversion

To convert from athree-dimensional coordinate to a two-dimensional coordinate,
IDL follows these steps:

+ Datacoordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formula N, = X + X, Dy. The same process is used to convert they and z
coordinatesusing 'Y.Sand !Z.S.

* Thethree-dimensional normalized coordinate, P = (N,, Ny, N,), whose
homogeneous representation is (Ny, Ny, N, 1), is multiplied by the
concatenated transformation matrix 'PT:

P=Peip.T
e Thevector P’ isscaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:
N’y =P /Py and N'y = P\ /P,

e Thenormalized xy coordinate is converted to device coordinates as described
in “ Two-Dimensional Coordinate Conversion” on page 198.

Using Coordinate Conversions

How coordinate conversions are defined depend upon the display type as follows:

e iTools—inaniTool display, the interactive nature of the tool makes
coordinate conversions transparent. There is no need to programmatically
configure the transformation matrices of the objects. See Chapter 4,
“Manipulating the Display” in theiTool User’'s Guide manual for information
on zooming, scaling and transl ation.

¢ Object Graphics— converting an object’s data coordinates into normalized
coordinates for display is a common task. See “Positioning Visualizationsin a
View” in Chapter 3 of the Object Programming manual for details on the

Using IDL Coordinate Conversions

200 Chapter 8: Graphic Display Essentials

elements involved in defining an object’s position. Chapter 3, “Positioning
ObjectsinaView” in the Object Programming manual also includes
information on how to use coordinate conversions (see “ Converting Data to
Normal Coordinates’) and information on programmatically defining the
object’s placement in aview (see“ Trandating, Rotating and Scaling Objects’).

e Direct Graphics— the IDL Direct Graphics system automatically positions
and sizes static visualizations so there is no need to set up atransformation
matrix. However, you can convert between the supported coordinate systems.
See“CONVERT_COORD” in the IDL Reference Guide manual for
information on this conversion in Direct Graphics.

Coordinate Conversions Using IDL

Chapter 8: Graphic Display Essentials 201

Interpolation Methods

When a visualization undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of a pixel location in the output
visualization as shown in the following figure.

+ |+ |+
++ |+ [+ [+ +[7+
+
+ |+ [+ [+]+ T
+ |+ |+ _|,++_,_-+
+
+ lp L
+ + N
+ |+ |+ |+ [+ |+ [+ 1.
x
+ - +
I + -
+ A
+ |+ A F +
+ +
+ + R
+ + +

Figure 8-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

When the transformed pixel center does not directly coincide with apixel in the
output visualization, the pixel value must be determined using some form of
interpolation. The appearance and quality of the output image is determined by the
amount of error created by the chosen interpolation method. Note the differencesin
the line edges between the following two interpolated images.

Original Image Nearest Neighbor Bilinear Interpolation

Figure 8-2: Simple Examples of Image Interpolation

Using IDL Interpolation Methods

202 Chapter 8: Graphic Display Essentials

There are avariety of possible interpolation methods available when using geometric
transformsin IDL. Interpolation methods include:

Nearest-neighbor inter polation — Assigns the value of the nearest pixel to
the pixel in the output visualization. Thisisthe fastest interpolation method but
the resulting image may contain jagged edges.

Linear interpolation — Surveysthe 2 closest pixels, drawing aline between
them and designating a value along that line as the output pixel value.

Bilinear interpolation — Surveys the 4 closest pixels, creates aweighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if ahigher degree of accuracy is needed. However, with
still images, the difference between images interpolated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the
X, Y, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution inter polation — Approximates a sinc interpolation by
using cubic polynomial waveformsinstead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sourcesis not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
reguires more processing time.

Note
The IDL Reference Guide details the interpolation options available for each
geometric transformation function.

Interpolation Methods Using IDL

Chapter 8: Graphic Display Essentials 203

Polygon Shading Method

Using IDL

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takeslesstime
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam, Chapter 19 (Foley,
J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Co.):

| =lq+dip(L e N)

where

Term due to ambient light. All visible objects have at least this
intensity, which is approximately 20 percent of the maximum
intensity.

Io(L o N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
lp is approximately 0.9.

la

d Term for depth cueing, causing surfaces further away from the
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.

In Direct Graphics, the SET_SHADING method modifies the light source shading
parameters. In Object Graphics similar OpenGL functionality is available through the
SHADING property of objects such as IDLgrPolygon, IDLgrPolyline, IDL Surface
and IDLgrContour.

Polygon Shading Method

204

Chapter 8: Graphic Display Essentials

Color Systems

Color can play acritical rolein the display and perception of digital imagery. This
section provides a basic overview of color systems, display devices, image types, and
the interaction of these elements within IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tables to highlight features, and apply
color annotations to images.

Color Schemes

Color can be encoded using a number of different schemes. Many of these schemes
utilize acolor triple to represent alocation within a three-dimensional color space.
Examples of these systemsinclude RGB (red, green, and blue), HSV (hue, saturation,
and value), HL S (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow). Algorithms exist to convert colors from one system to another.

Computer display devicestypically rely on the RGB color system. In IDL, the RGB
color space is represented as a three-dimensional Cartesian coordinate system, with
the axes corresponding to the red, green, and blue contributions, respectively. Each
axis rangesin value from 0 (no contribution) to 255 (full contribution). By design,
this range from 0 to 255 maps nicely to the full range of a byte data type.

Anindividual color isencoded as a coordinate within this RGB space. Thus, a color
consists of three elements: ared value, agreen value, and a blue value.

The following figure shows that each displayable color corresponds to a location
within athree-dimensional color cube. The origin, (O, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) is white, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades

Color Systems Using IDL

Chapter 8: Graphic Display Essentials 205

Using IDL

of gray. The color yellow is represented by the coordinate (255, 255, 0), or amixture
of 100% red, plus 100% green, and no blue.

Blue (0,0,255) Cyan (0,255,255)
~u 4

White (255,255,255)
s

N :
Magenita (255,0,2.55)

Black (0,0,0) 7

.
Red (253,0,0) Fellow (255,255,0)

Figure 8-3: RGB Color Cube (Note: grays are on the main diagonal.)

Typically, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0 to 2" —1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a palette containing 23" total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 22* or 16,777,216 colors.

A display with an m-bit pixel can represent 2™ colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all colors.
The more common case is adisplay with 8 bits per pixel which allows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bitsin a pixel to represent all colors, m< 23", acolor
trandlation tableis used to associate the value of a pixel with acolor triple. Thistable
isan array of color triples with an element for each possible pixel value. Given 8-bit
pixels, acolor table containing 28 = 256 elementsis required. The color table element
with an index of i specifiesthe color for pixels with avalue of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color trandation table, C, isa2™ long array of RGB triples:

Ci={r,gb}, 0<i<2
Osri,gi,bi <2n

Objects containing a value, or color index, of i are displayed with acolor of C;.

Color Systems

206

Chapter 8: Graphic Display Essentials

See “Color Table Manipulation” in the IDL Quick Reference manual for alist of
color-related routines including those that covert RGB color triplesto other color
schemes.

Converting to Other Color Systems

IDL defaultsto the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HLS (hue,
lightness, and saturation) system. The HSV or HL S system can be specified by
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color
routines.

IDL also contains routines to create color tables based on these color systems. The
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV)
color system. The HLS routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can also convert values of a color from any of
these systems to another with the COLOR_CONVERT routine. See
COLOR_CONVERT in the IDL Reference Guide for more information.

Color Systems Using IDL

Chapter 8: Graphic Display Essentials 207

Display Device Color Schemes

Most modern computer monitors use one of two basic schemesfor displaying color at
each pixel:

¢ Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table corresponds to an
individual color, and consists of ared value, a green value, and a blue value.
The size of the lookup table depends upon the hardware.

* RGB - A color is specified using an RGB triple: [red, green, blue]. The
number of bits used to represent each of the red, green, and blue components
depends upon the hardware.

The description of how color isto beinterpreted on a given display device isreferred
to asavisual. Each visual typically has a name that indicates how color isto be
represented. Two very common visua names are PseudoColor (which usesan
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual aso has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

PseudoColor visuals rely heavily upon the display device's hardware color table for
image display. If the color table is modified, al images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue
components are provided directly.

Note
You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for
displaying the TrueColor image and then maps the TrueColor image to the new
palette. See COLOR_QUAN in the IDL Reference Guide for more information.

Setting a Visual on Unix Platforms

Using IDL

On Unix platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation schemeis either

Display Device Color Schemes

208

Chapter 8: Graphic Display Essentials

indexed or RGB. The following table shows the supported visuals for agiven display,
which may include any combination:

Visual

Description

StaticGray

grayscale, read-only, indexed

GrayScale

grayscale, read-write, indexed

StaticColor

color, read-only, indexed

PseudoColor

color, read-write, indexed

TrueColor

color, read-only, RGB

DirectColor

color, read-write, RGB

Table 8-2: Visuals Supported in IDL on Unix Platforms

The most common of these is PseudoColor and TrueColor. Refer to the section
“Colorsand IDL Graphic Systems’ on page 209 to learn more about how IDL selects

avisual for image display.

To get the list of supported X visual classes on a given system, type the following
command at the Unix command line:

xdpyinfo

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected viathe system Control Panel. To open
the Control Panel, select the Settings — Control Panel item from the Start menu.
Click on the Display and then select the Settings tab. Alter the Color quality setting
to modify the visual before starting an IDL session. The following table shows three
visuals are supported (for the particular display configuration used in this example):

Visual

Equivalence to Unix Visuals

256 Colors

8-hit PseudoColor

High Color (16 bit)

16-bit TrueColor

True Color (32 bit)

32-bit TrueColor

Table 8-3: Visuals Supported in IDL on Windows Platforms

Display Device Color Schemes

Using IDL

Chapter 8: Graphic Display Essentials 209

Colors and IDL Graphic Systems

IDL supports two graphics systems: Object Graphics and Direct Graphics. This
section provides detailed descriptions of how color is represented and interpreted in
the Direct Graphics system.

Using Color in Object Graphics

For complete details regarding color and Object Graphics, see “Color in Object
Graphics’ in Chapter 2 of the Object Programming manual.

Using Color in Direct Graphics

More information on the following topicsis availablein “ X Windows Visuas® in
Appendix A of the IDL Reference Guide manual.

Visuals on UNIX Platforms

When IDL createsitsfirst Direct Graphics window, it must select avisual to be
associated with that window. By default, IDL selectsan X Visual Class by requesting
(in order) from the following table until a supported visua isfound, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

Order Visual Depth Related Keyword
First TrueColor 24-bit (then 16-bit, then | TRUE_COLOR
15-hit)

Second | PseudoColor | 8-hit, then 4-bit PSEUDO_COLOR
Third DirectColor 24-bit DIRECT_COLOR
Fourth | StaticColor 8-hit, then 4-hit STATIC_COLOR
Fifth GrayScale any depth GRAY_SCALE
Sixth StaticGray any depth STATIC_GRAY

Table 8-4: Order of Visuals and their Related DEVICE Keywords

To request an 8-bit PseudoColor visual, the syntax would be:

DEVICE, PSEUDO_COLOR=8

Using IDL Colors and IDL Graphic Systems

210

Chapter 8: Graphic Display Essentials

Another approach to setting the visual informationistoincludetheidl.gr visual
and idl.gr_ depth resourcesinyour .xdefaultsfile.

A visual is selected once per IDL session (when the first graphic window is created).
Once selected, the same visual will be used for al Direct Graphics windows in that
IDL session.

Private versus Shared Colormaps

On UNIX platforms, when awindow manager is started, it creates a default colormap
that can be shared among applications using the display. Thisis called the shared
colormap.

A given application may reguest to use its own colormap that is not shared with other
applications. Thisis called a private colormap.

IDL attempts, whenever possible, to get color table entries in the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyinfo), aprivate colormap is used.

If aprivate colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear as you would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior isto be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “ Setting a Visual on Windows Platforms’ on
page 208.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections
“Loading a Default Color Table” on page 218 and “Modifying and Converting Color
Tables’ on page 219. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such aslines,
text annotations, etc.) are represented in one of two ways.

Colors and IDL Graphic Systems Using IDL

Chapter 8: Graphic Display Essentials 211

Using IDL

* |ndexed - each color is an index into the current IDL color table

 RGB - each color isalong integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (25672)*blue
The RGB form is only supported on TrueColor display devices.

The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL
whether color isto be interpreted as an index or as a composite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
IPCOLOR system variable field (or by setting the COLOR keyword on the
individual graphic routine).

If acolor valueisto beinterpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routineto O:

DEVICE, DECOMPOSED = 0

The foreground color can then be specified by setting 'P.COLOR to an index into the
IDL color table. For example, if the foreground color isto be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

!P.COLOR = 25

If acolor valueisto be interpreted as a composite RGB value, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVICE, DECOMPOSED = 1

The foreground color can then be specified by setting 'PCOL OR to a composite
RGB vaue. For example, if the foreground color is to be set to the color yellow,
[255,255,0], then use the following IDL command:

!P.COLOR = 255 + (256*255)

Image Colors

Color for image datais handled in a fashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visual of the current display device.

If theimage is organized as a

e two-dimensiona array -

Colors and IDL Graphic Systems

212 Chapter 8: Graphic Display Essentials

« If the display deviceis PseudoColor, then each pixel isinterpreted as an
index into the IDL color table

e |f thedisplay deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel value isinterpreted as
an index into the IDL color table (thereby emulating a PseudoColor
display device).

e If thedisplay deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 1, then each pixel value isinterpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

* RGB array - (Supported only for TrueColor display devices)

* Each pixel isinterpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “ Converting Between Image
Types’ on page 217.

The TV command can be used to display theimage in IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.

Colors and IDL Graphic Systems Using IDL

Chapter 8: Graphic Display Essentials 213

Indexed and RGB Image Organization

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscal e images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with ilmage, Object Graphics, or Direct Graphics.

An image consists of atwo-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of thisform
are known as sampled or raster images, because they consist of adiscrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.

Numerous standards have been devel oped over the years to describe how an image
can be stored within afile. However, once the image is loaded into memory;, it
typically takes one of two forms: indexed or RGB. An indexed image is atwo-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BY TSCL function. See the BY TSCL description in the IDL
Reference Guide for more information.

Image Orientation

Using IDL

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize-1, ysize-1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of

512 x 512, although other sizes may be used.

The system variable |ORDER controls the order in which the image is written to the
screen. Images are normally output with thefirst row at the bottom, i.e., in bottom-to-
top order, unless|ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
worksin the same manner as! ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by 'ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Indexed and RGB Image Organization

214 Chapter 8: Graphic Display Essentials

Indexed Images

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
theseindicesto look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel valueis simply an index, in which case theimageis usually
intended to be associated with a specific LUT. In this case, the LUT istypically
stored with the image when it is saved to afile. For information on the LUTS
provided with IDL, see “Loading a Default Color Table” on page 218.

RGB Image Interleaving

An RGB (red, green, blue) image is athree-dimensional byte array that explicitly
stores a color value for each pixel. RGB image arrays are made up of width, height,
and three channels of color information. Scanned photographs are commonly stored
as RGB images. The color information is stored in three sections of athird dimension
of theimage. These sections are known as color channels, color bands, or color
layers. One channel represents the amount of red in the image (the red channel), one
channel represents the amount of green in the image (the green channel), and one
channel represents the amount of blue in the image (the blue channel).

Color interleaving is aterm used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are
supported by IDL. In Object Graphics, an RGB image is contained within an image
object where the INTERLEAVE property dictates the arrangement of the channels
within the imagefile.

« Pixd interleaving (3, w, h) — the color information is contained in the first
dimension, INTERLEAVE is set to 0.

e Lineinterleaving (w, 3, h) — the color information is contained in the second
dimension, INTERLEAVE is set to 1.

e Planar interleaving (w, h, 3) — the color information is contained in the third
dimension, INTERLEAVE is set to 2. Thisis also known as, image
interleaving.

Note
In Direct Graphics, set the TRUE keyword of TV or TV SCL to match the
interleaving of the image.

Indexed and RGB Image Organization Using IDL

Chapter 8: Graphic Display Essentials 215

Determining RGB Image Interleaving

Y ou can determine if an image file contains an RGB image by querying thefile. The
CHANNEL S tag of the resulting query structure will equal 3 if thefile'simageis
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the
rose.jpg imagefile. This RGB image is a close-up photograph of ared rose. It is
pixel interleaved. Complete the following steps for a detailed description of the
process.

Example Code
Sbedisplayrgbimage_object.prointheexamples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe path to the rose. jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples',6 'data'])

2. Use QUERY_IMAGE to query thefile to determine image parameters:
queryStatus = QUERY IMAGE (file, imageInfo)
3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, length=36, refs=1:
CHANNELS LONG 3
DIMENSIONS LONG Array [2]
HAS PALETTE INT 0
IMAGE INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'JPEG'

The CHANNEL Stag has avalue of 3. Thus, theimage is an RGB image.
4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

Using IDL Indexed and RGB Image Organization

RSI_PROCODE/examples/doc/image/displayrgbimage_object.pro

216 Chapter 8: Graphic Display Essentials

The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from thefile:
image = READ IMAGE (file)

6. Determine the size of each dimension within the image:
imageDims = SIZE (image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizesto the
image size parameter from the file query:

interleaving = WHERE ((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize([1]))

8. Output the results of the interleaving computation:
PRINT, 'Type of Interleaving = ', interleaving
The following text appears in the Output Log:
Type of Interleaving = 0

Theimageis pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.

9. Initializethe display objects:

oWindow = OBJ NEW ('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, TITLE = 'An RGB Image')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT = [0., 0., imageSize])

oModel = OBJ NEW ('IDLgrModel')
10. Initialize the image object:

oImage = OBJ NEW('IDLgrImage',6 image, $
INTERLEAVE = interleaving[0])

11. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, olImage
oView -> Add, oModel
oWindow -> Draw, oView

Indexed and RGB Image Organization Using IDL

Chapter 8: Graphic Display Essentials 217

The following figure shows the resulting RGB image display.

Figure 8-4. RGB Image in Object Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView
Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 210 for more information on grayscale, indexed, and
RGB images.

See the following routines sin the IDL Reference Guide for examples:

* RGB to grayscale— REFORM extracts the individual channels of data from
an RGB image so that it can be displayed as a grayscale image

e RGBtoindexed — COLOR_QUAN decomposes the millions of possible
colorsin an RGB image into the 256 used by an indexed image

¢ Indexed to RGB — TVLCT extracts the indexed image color table
information, which is then assigned to an RGB image

Using IDL Indexed and RGB Image Organization

218 Chapter 8: Graphic Display Essentials

Loading a Default Color Table

Although you can define your own color tables, IDL provides 41 pre-defined color
lookup tables (LUTS). Each color table contained within this routine is specified
through an index value ranging from 0 to 40, shown in the following table.

Tip
If you are running IDL on a TrueColor display, set DEVICE, DECOMPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 210 for more information.

Number Name Number Name
0 Black & White Linear 21 Hue Sat Value 1
1 Blue/White Linear 22 Hue Sat Value 2
2 Green-Red-Blue-White 23 Purple-Red +
Stripes
3 Red Temperature 24 Beach
4 Blue-Green-Red-Yellow 25 Mac Style
5 Standard Gammeax|1 26 EosA
6 Prism 27 EosB
7 Red-Purple 28 Hardcandy
8 Green/White Linear 29 Nature
9 Green/White Exponential 30 Ocean
10 Green-Pink 31 Peppermint
11 Blue-Red 32 Plasma
12 16 Level 33 Blue-Red 2
13 Rainbow 34 Rainbow 2
14 Steps 35 Blue Waves

Table 8-5: Pre-defined Color Tables

Loading a Default Color Table Using IDL

Chapter 8: Graphic Display Essentials 219

Number Name Number Name
15 Stern Specia 36 Volcano
16 Haze 37 Waves
17 Blue-Pastel-Red 38 Rainbow18
18 Pastels 39 Rainbow + white
19 Hue Sat Lightness 1 40 Rainbow + black
20 Hue Sat Lightness 2

Table 8-5: Pre-defined Color Tables (Continued)

You can load a default color tablein an ilmage display, an Object Graphics Display
or a Direct Graphics display as follows:

* ilmage — select the Edit Palette button on the image panel. See “Using the
Image Panel” in Chapter 10 of the iTool User’s Guide manual for details.

e Object Graphics — use the LoactCT method of an IDLgrPalette object to
define the color table (see “IDLgrPalette::LoadCT” in the IDL Reference
Guide manual for details). Associate the pal ette object with another object
using the Palette property (for example, see the PALETTE property of the
IDLgrImage object). Also see “Color in Object Graphics’ in Chapter 2 of the
Object Programming manual for information on using color with indexed and
RGB color models in Object Graphics.

¢ Direct Graphics — use the LOADCT routine or another color table related
routine to set the color table. Also see“Using Color in Direct Graphics’ on
page 209.

Note
See " Color Table Manipulation” in the IDL Quick Reference manual for alist of
related routines.

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE (. The MODIFY CT routine lets you create or modify

Using IDL Loading a Default Color Table

220

Chapter 8: Graphic Display Essentials

and store anew color table. See the following topicsin the IDL Reference Guide for
examples:

e XLOADCT — dlows you to preview and select among pre-defined color
tables

e XPALETTE — alowsyou to preview and adjust pre-defined color tables

¢ MODIFYCT — shows how to add modified color tablesto IDL’slist of pre-
defined color tables.

These examples are based on the default RGB (red, green, and blue) color system.
IDL aso contains routines that allow you to use other color systems including hue,
saturation, and value (HSV) and hue, lightness, and saturation (HLS). These routines
and color systems are explained in “ Converting to Other Color Systems’ on

page 206.

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color changein adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images aready contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You
should also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting
indexed image is an intensity representation of the original RGB image. See
COLOR_QUAN in the IDL Reference Guide for more information

See the following topicsin the IDL Reference Guide for examples:

« |IDLgrPaette provides an example that creates, defines and applies a palette
object to an image

e TVLCT creates, defines and applies acolor tablein a Direct Graphics display

e H_EQ CT applies histogram equalization to a color table to reveal previously
indistinguishable feature

Loading a Default Color Table Using IDL

Chapter 8: Graphic Display Essentials 221

Using Fonts in Graphic Displays

Using IDL

IDL usesthree font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in Appendix
H, “Fonts’ in the IDL Reference Guide manual.

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. Thismeansthat if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, thereis no need for platform-
dependent code.

In awidget application, specify afont using the FONT keyword. If you choose a
device font, you may need to write platform-dependent code. See “Fonts Used in
Widget Applications’ in Chapter 9 of the Building IDL Applications manual for
details.

To set the font in an Object Graphics display, create an IDLgrFont object and assign
this object to atext object using the IDLgrText object FONT property. See “Font
Objects’ in Chapter 9 of the Object Programming manual for more information.

Note
Within the IDLDE, you can specify what font is used in various areas (e.g., the
Editor window or the Output Log window). See “ Font Preferences’ in Chapter 3 of
the Using IDL manual for details.

Using Fonts in Graphic Displays

222 Chapter 8: Graphic Display Essentials
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
alow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
platforms, IDL uses the operating system'’s built-in printing facilities; on UNIX
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Usethe DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as hormal to create the graphics
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. You can also
create multiple pages before closing the document as well as being able to usetile
graphics with the 'PMULTI system command.

See “Printing Graphics Output Files’” in Appendix A of the IDL Reference Guide
manual for details and examples.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination
for your Draw operations. You can aso print multiple documents with the
IDLgrPrinter object. See “Printer Objects’ in Chapter 12 of the Object Programming
manualfor information about printer objects and examples of their use. Also see
“Bitmap and Vector Graphic Output” in Chapter 12 of the Object Programming
manual for information of when to output to bitmap or vector graphics based on
picture content.

Printing Graphics Using IDL

Chapter 9

Map Projections

The following topics are covered in this chapter:

Overview of Mapping 224
Graphics Techniques for Mapping 225
Map Projection Types 227
Azimuthal Projections 228

Using IDL

Cylindrical Projections............... 237
Pseudocylindrical Projections 242
High-Resolution Continent Outlines 246
References 248

223

224 Chapter 9: Map Projections

Overview of Mapping

This section introduces graphic map display considerations as well asinformation
about common map projections. This section does not describe how to create a map
display. See the following topic for these resources.

Creating a Map Display

IDL provides interactive and static map display functionality. You can usetheiMap
iTool to interactively configure amap display. If you prefer a static display, you can
use map routines. See the following for details:

e Interactive iMap display — see Chapter 15, “Working with Maps” in the i Tool
User’s Guide manual

e Map-related routines — see “Mapping” in the IDL Quick Reference manual
Examples of Creating Map Displays

See the following resources in the IDL Reference Guide for examples:

* IMAP — provides examples of displaying images and contours over a map
projection.

e MAP_PROJ FORWARD — creates alatitude and longitude grid with labels
for a Goodes Homol osine map projection in an Object Graphics display.
Typically MAP_PROJ_INIT isused with MAP_PROJ FORWARD and
MAP_PROJ INVERSE.

¢ MAP_SET — establishes the coordinate conversion mechanism for mapping
points on a globe's surface to points on a plane, according to the selected
projections type. You can then use MAP_GRID and MAP_CONTINENTS to
add grid lines and continents to the map display. See MAP_IMAGE for an
example of warping an image to a projection.

Overview of Mapping Using IDL

Chapter 9: Map Projections 225

Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on asphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The IMAP and MAP_SET procedures
automatically sets up the proper mapping technique to best fit the projection selected
by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of theinterior, of the polygons may befilled. Also, vectors
connecting the points spanning the singular line for cylindrical projections will be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of agreat circleline, islocated opposite the center of the
projection; points on this line appear on both edges of the map. The singular lineis
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping planein one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the

clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitudeis transformed to a
point on the mapping plane.

Using IDL Graphics Techniques for Mapping

226 Chapter 9: Map Projections

Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.

Graphics Techniques for Mapping Using IDL

Chapter 9: Map Projections 227

Map Projection Types

In the following sections, the available IDL projections are discussed in detail. The
projections are grouped within three categories:

e “Azimuthal Projections’ on page 228
e “Cylindrical Projections’ on page 237
e “Pseudocylindrical Projections’ on page 242

Note
The Genera Cartographic Transformation Package (GCTP) map projections are not
described here. Documentation for the GCTP package is available from the US
Geologic Survey at http://mapping.usgs.gov.

Note
In thistext, the plane of the projection is referred to as the UV plane with horizontal
axisu and vertical axisv.

Using IDL Map Projection Types

228

Azimuthal Projections

Chapter 9: Map Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
the points at the center of the map projection, respectively. Rotation is the angle
between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and grest
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:

“Orthographic Projection” on page 229

“ Stereographic Projection” on page 229
“Gnomonic Projection” on page 230
“Azimuthal Equidistant Projection” on page 231
“Aitoff Projection” on page 232

“Lambert’s Equal Area Projection” on page 233
“Hammer-Aitoff Projection” on page 234
“Satellite Projection” on page 235

Azimuthal Projections

Using IDL

Chapter 9: Map Projections 229

Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following figure shows an orthographic projection centered over Eastern Spain
at ascale of 70 millionto 1.

Oblique Orthographic

o

Figure 9-1: Orthographic Projection
Stereographic Projection

The stereographic projection is a true perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P mapsto infinity.

The stereographic projection is the only known perspective projection that is also
conformal. It is frequently used for polar maps. For example, a stereographic view of
the north pole has the south pole asits point of perspective.

Using IDL Azimuthal Projections

230 Chapter 9: Map Projections

The following figure shows an equatorial stereographic projection with the
hemisphere centered on the equator at longitude —105 degrees.

Equatcrial Stereagrophic

Figure 9-2: An Azimuthal Projection

Gnomonic Projection

The gnomonic projection (also called Central or Ghomic) projects al great circlesto
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, thereis great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is a circle with aradius of 60 degrees at the center of projection.

The projection in the following figure is centered around the point at latitude 40
degrees and longitude —105 degrees. The region on the globe that is mapped lies

Azimuthal Projections Using IDL

Chapter 9: Map Projections 231

between 20 degrees and 70 degrees of latitude and —130 degrees and —70 degrees of
longitude.

Ohlique Gnomanic

Figure 9-3: A Gnomonic Projection

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not atrue perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. Any line drawn through the tangent point reports distance correctly.
Therefore, this projection type is useful for determining flight distances. The point P
opposite the tangent point is mapped to a circle on the UV plane, and hence, the
whole globe is mapped to the plane. Thereis infinite distortion close to the outer rim
of the map, which isthe circular image of P.

Using IDL Azimuthal Projections

232 Chapter 9: Map Projections

The following Azimuthal projection is centered at the South Pole and shows the
entire globe.

Palar Azimuthal

Figure 9-4: An Azimuthal Equidistant Projection

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines parallél to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
as an ellipse with axesin a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.

Azimuthal Projections Using IDL

Chapter 9: Map Projections 233

An Aitoff projection centered on the international dateline is shown in the following
figure.

AiteTf Projection

Figure 9-5: An Aitoff Projection

Lambert’'s Equal Area Projection

Lambert’s equal area projection adjusts projected distancesin order to preserve area.
Hence, it is not atrue perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.

Using IDL Azimuthal Projections

234 Chapter 9: Map Projections

The following figure shows the Northern Hemisphere rotated counterclockwise 105
degrees, and filled continents.

Polar Lambert

Figure 9-6: A Lambert's Equal Area Projection

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it isincluded in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,
the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it isuseful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in away that accurately depicts the relative distribution of the starsin
different regions of the sky.

Azimuthal Projections Using IDL

Chapter 9: Map Projections 235

A Hammer-Aitoff projection centered on the international datelineis shown in the
following figure:

Hammer—Aitafl Prajection

Figure 9-7: The Hammer-Aitoff Projection

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camerain space. If the camerafaces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are specia cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection planeis perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the
projection planeis horizontally turned I" degrees clockwise from the north, then tilted
 degrees downward from horizontal.

Using IDL Azimuthal Projections

236 Chapter 9: Map Projections

The map in the accompanying figure shows the eastern seaboard of the United States
from an altitude of about 160km, above Newburgh, NY.

Satellite / Tilted Perspective

Figure 9-8: Satellite Projection

Azimuthal Projections Using IDL

Chapter 9: Map Projections 237

Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with agreat circle. The
parameters Pg 41, Pgion, @d Rot determine the great circle that passes through the
point C=(Pgat, Poion)- 1N the discussions below, this great circle is sometimes
referred to as EQ. Rot isthe angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically oppositeto C. It isthen
rolled out to form a plane.

The cylindrical projectionsin IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’'s equal-area
conic.

Mercator Projection

Mercator’s projection is partially devel oped by projecting the globe onto the cylinder
from the center of the globe. Thisis apartial explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. Therefore, uses include navigation maps and
equatorial maps. To properly use the projection, the user should be aware that the two
points on the globe 90 degrees from the central great circle (e.g., the North and South
Polesin the case that the selected great circle isthe equator) are mapped to infinite
distances. Limits are typically specified because of the great distortions around the
poles when the equator is selected.

Using IDL Cylindrical Projections

238 Chapter 9: Map Projections

A simple mercator projection with latitude ranges from —80 degrees to 80 degreesis
shown in the following figure.

Simple Mercator

Figure 9-9: Simple Mercator Projection

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is alwaysin contact with ameridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four linesare straight. All other meridians and parallels are complex curveswhich are
concave toward the central meridian. Shape is true only within small areas and the
areas increase in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/— 1 to +/— 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this

Cylindrical Projections Using IDL

Chapter 9: Map Projections 239
projection and its use of the meridian makesit useful for north-south regions. The

Clarke 1866 €llipsoid is used for the default.

The following Transverse Mercator map shows North and South America, with a
central meridian of —90 degrees West and centered on the Equator.

Transverse Mercator

Figure 9-10: Transverse Mercator Projection

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ isthe equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

—-180<u<180
and
-90<v<90

Using IDL Cylindrical Projections

240 Chapter 9: Map Projections

If EQ isthe equator, meridians and parallels will be equally spaced parallél lines.

Thefollowing figure shows asimple cylindrical equidistant projection and an oblique
cylindrical equidistant projection rotated by 45°.

Simple Cylindrical Equidistant Oblique Cylindricol Equidistant

Figure 9-11: Cylindrical Projections
Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallels intersect each other at right angles, with the poles shown as straight lines.
The Equator isthe only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallelsis constructed by
projecting the globe onto a cone passing through two paralels. Additional scaling
achieves conformity. The pole under the cone’s apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels can be specified and are projected onto circles and meridians onto
equally spaced straight lines. The following figure shows the map shown in the

Cylindrical Projections Using IDL

Chapter 9: Map Projections 241

accompanying figure, which features North America with standard parallels at 20
degrees and 60 degrees.

Lombert's Canic

Figure 9-12: Lambert's Conformal Conic with Standard Parallels at 20° and 60°

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally
spaced radii, parallels are concentric arcs of circles and scale is constant along any
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of
the scale factor along parallels, with the scale aong the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, aswell asin every direction.

The Albers projectionis particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Using IDL Cylindrical Projections

242 Chapter 9: Map Projections

Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for magjor continents, and simplicity.
It was designed to make the world look right. Since itsintroduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel isequally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses. The central meridian should aways be O degrees longitude to retain the
correct balance of shapes, sizes, and relative positions.

The following figure shows a Robinson projection.

Figure 9-13: Robinson Projection

Pseudocylindrical Projections Using IDL

Chapter 9: Map Projections 243

Sinusoidal Projection

With the sinusoidal projection, the central meridian isastraight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian aswell asaong all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude ¢ and longitude
A of apoint on the globe and its image on the UV plane.

U = ACOoS}

V=0

The following shows the sinusoidal map of the whole globe centered at longitude O
degrees and latitude O degrees.

Figure 9-14: Sinusoidal Projection

Mollweide Projection

Using IDL

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the
UV plane. The circular arcs encompass a hemisphere and the rest of the globeis
contained in the lunes on either side.

Pseudocylindrical Projections

244 Chapter 9: Map Projections

The following figure shows a Mollweide projection in oblique form.

Figure 9-15: Mollweide Projection

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homol osine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. Thisis accomplished by interrupting the projection and choosing several
central meridiansto coincide with large land masses. This projectionisafusion of the
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the
Mollweide projection between these parallels and the poles.

Pseudocylindrical Projections Using IDL

Chapter 9: Map Projections 245

The following figure shows an example of Goode’'s Homol osine projection.

Figure 9-16: Goode' s Homolosine Projection

Using IDL Pseudocylindrical Projections

246 Chapter 9: Map Projections

High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is alow-resolution
continental outline database that is automatically installed when you install IDL. The
high-resolution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTSn the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutionsin the
coastline or riverbed.

Data points in the low-resol ution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (thefile supmap.dat inthe
resource/maps Subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databasesis intended for high-precision work.

The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution
Coastlines, idands, and | Datain file supmap . dat. Entire CIA World Map
lakes (including
continental outlines)

Table 9-1: Comparison of Low- and High-resolution Map Databases

High-Resolution Continent Outlines Using IDL

Chapter 9: Map Projections 247

Feature Low-Resolution High-Resolution
Continental polygons Data extracted from Every 20th point of CIA
supmap.dat. World Map.
Rivers Every 250th point of the CIA | Entire CIA World Map.
World Map.
National boundaries Every 100th point of CIA Entire CIA World Map.
World Map.

Table 9-1: Comparison of Low- and High-resolution Map Databases

Using IDL High-Resolution Continent Outlines

248 Chapter 9: Map Projections
References
Greenwood, David (1964), Mapping, University of Chicago Press, Chicago.
Pearson, Frederick Il (1990), Map Projections. Theory and Applications, CRC Press,
Inc., Boca Raton.
Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington, D.C.
References Using IDL

Chapter 10

Signal Processing

The following topics are covered in this chapter:

Overview of Signal Processing 250
Digital Signals 251
Signal Analysis Transforms. 253
The Fourier Transform 254
Interpreting FFT Results 255
Displaying FFT Results 256
UsingWindows 260
Aliasing ..o 263
FFT Algorithm Details 264
TheHilbert Transform 265

Using IDL

TheWavelet Transform 267
Convolution 268
Correlation and Covariance 269
Digital Filtering 270

Finite Impulse Response (FIR) Filters ... 271

FIR Filter Implementation 273
Infinite Impulse Response Filters 275
Routines for Signal Processing 250
References 278

249

250 Chapter 10: Signal Processing

Overview of Signal Processing

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in adigital signal by looking at it initsraw form—that is, asa
sequence of real values at discrete pointsin time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Routines for Signal Processing

For alist of IDL signal processing routines, see the functional category of “Signal
Processing” in the IDL Quick Reference manual. There you will find a brief
introduction to the routines. More detailed information is available in the IDL
Reference Guide.

Running the Example Code

The examples in this chapter are written to take advantage of iTools. The example
codeis part of the IDL distribution. All of the files mentioned are located in the
examples/doc/signal subdirectory of the IDL distribution. By default, this
directory is part of IDL’s path; if you have not changed your path, you will be able to
run the examples as described here. See “!PATH” in Appendix D of the IDL
Reference Guide manual for information on IDL’s path.

Overview of Signal Processing Using IDL

Chapter 10: Signal Processing 251

Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties.

1. Thesignal isdefined only at discrete pointsin time as aresult of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the timeinterval between measurements is constant.

2. Thesignal can take on only discrete values.

In this discussion, we assume that the signal is sampled at atimeinterval. The
concepts and techniques presented here apply equally well to any type of signa—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval delt. Thissimulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interval
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5,
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024 ; number of samples
delt = 0.02 ; sampling interval

; Simulated signal.

u=-0.338

)) $
N)
N

) 8
))

+ + +
[

0 * SIN(2 * IPI * 2.8 * delt * FINDGEN (N
.0 * SIN(2 * IPI * 6.25 * delt * FINDGEN (
0 * SIN(2 * IPI * 11.0 * delt * FINDGEN (

Example Code
Alternately, type @sigprco1 at the IDL prompt to run the sigprcoibatch file that
creates the signal. See “Running the Example Code” on page 250 if IDL does not
find the batch file.

Using IDL Digital Signals

RSI_PROCODE/examples/doc/signal/sigprc01

252 Chapter 10: Signal Processing

Because the signdl is digitd, the conventional way to display it iswith a histogram (or
step) plot. To create ahistogram plot, set the PSYM keyword to the PLOT routine equal
to 10. A section of the example signal u(k) is plotted in the figure below.

amplitude

1 | 1 1 1 | 1 1 1 | 1 1
1.2 1.4 1.8 1.8
time in seconds

=] _|IIIIIIIII|IIIIIIIII|IIIIIII
na ‘||||||||||||||||||||||

—_

Figure 10-1: Histogram Plot of Sample Signal u(k)

Note
When the number of sampled data pointsislarge, the stepsin the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Example Code
Type @sigprco2 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc02, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Digital Signals Using IDL

RSI_PROCODE/examples/doc/signal/sigprc02

Chapter 10: Signal Processing 253

Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components. The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the

wavel et transform.

Using IDL Signal Analysis Transforms

254 Chapter 10: Signal Processing

The Fourier Transform

The Discrete Fourier Transform (DFT) isthe most widely used method for
determining the frequency spectra of digital signas. Thisis due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:
N-1
_ 1 ;
v(m) = N z u(k)exp[—j2rmk/N]

k=0

The inverse transform is defined as:
N-1
u(k) = Z v(m)exp[j2rnmk/N]
m=0
IDL implements the Fast Fourier Transform in the FFT function. You can find details

onusing IDL’s FFT function in the following sectionsand in “FFT” in the IDL
Reference Guide manual.

The Fourier Transform Using IDL

Chapter 10: Signal Processing 255

Interpreting FFT Results

Using IDL

Just as the sampled time data represents the value of asignal at discrete pointsin
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval

(5):
m

f(m) = N_8

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency binis /(N * 3).

Due to the complex exponentia in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

v(m+pN) = v(m)

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 to N-1, which isalso
avalid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency index mto be from — (N/2 — 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = —1:

V(= (N/2-1)) =v(N/2+ 1 —N) =v(N/2 + 1)

V(= (N/2 = 2)) = V(N/2 + 2 —N) = v(N/2 + 2)

V(-2)=V(N—-2—-N) =v(N-2)
V(1) =v(N-1-N)=v(N-1)

Thisindex shift is easily accomplished in IDL with the SHIFT function. See “Real
and Imaginary Components’ on page 256 for an example.

Interpreting FFT Results

256 Chapter 10: Signal Processing

Displaying FFT Results

Depending on the application, there are many waysto display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way isto plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from —«(N/2 — 1)/(N * &) to (N/2)/(N * 5) cycles
per second.

|
|

IIIIIII|IIIIIIIII|IIIIIIIII IIIIIIIII|IIIIIIIII|IIIIIIIII|IIII‘I‘

Real part of spectrum

IIIIIII|IIIIIIIII|IIIIIIIII IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIL

Frequency in cycles { second

(=]
&

=]
ha

Imaginary part of spectrum
=) =
ha =

=
=

Frequency in cycles / second

Figure 10-2: Real and Imaginary Parts of the Sample Signal

Displaying FFT Results Using IDL

Chapter 10: Signal Processing 257

Using IDL

Example Code
Type esigprc03 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc03, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of aforward FFT performed
on aone-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real values to represent. It would seem that there
istwice as much information in the spectral data asthereisin the time sequence data.
Thisis not the case. For areal valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

; 1 redundant value:
IMAGINARY (v (0)) = 0.0

; 1 redundant value:
IMAGINARY (v (N/2)) = 0.0

and

; for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ (v (m))

so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). Thisis aways the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of areal time sequence. That is, only the spectral values with frequency
indices from O to N/2, which correspond to frequencies from 0 to 1/(2 * §), the
Nyquist frequency. This vector of positive frequencies is generated in IDL with the
following command:

f = [0.0, 1.0/ (N*delt), ... , 1.0/(2.0%delt)]

F FINDGEN (N/2+1) / (N*delt)

Magnitude and Phase

It isaso common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information islost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the

Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc03

258

Chapter 10: Signal Processing

magnitudeis easily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on alogarithmic scale. The magnitude and phase of our
sample signal are plotted in the same data space, shown in the figure bel ow.

180

120

a
]

D
o

-120

1 1 ||||f||| 1

10
Frequency in cycles / second

Magnitude in dB / Phase in degrees
=

- IIIIIIIII|IIIIIIIII|I IIIIIlI|IIIIIIIII|IIIIIIIII|IIIIIIIII
!

-180

Figure 10-3: Magnitude (Solid LIne) and Phase (Dashed Line)
of the Sample Signal

Example Code
Type @sigprco4 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc04, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Using alogarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) islost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/second as peaksin the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is adirect result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of

Displaying FFT Results Using IDL

RSI_PROCODE/examples/doc/signal/sigprc04

Chapter 10: Signal Processing 259

the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which iswhy the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second isan
anomaly known as phase wrapping. It is aresult of resolving the phase from the real
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between —180 and +180 degrees.

Power Spectrum

Using IDL

Finally, for many applications, the phase information is not useful. For these, it is
often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Power Spectrum of u(k)

1 10
Frequency in cycles / second

Figure 10-4: Power Spectrum of the Sample Signal

Example Code
Type esigprcos at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprco0s, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc05

260 Chapter 10: Signal Processing

Using Windows

The smearing or leakage effect mentioned previoudly is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that a finite time sample
of asignal often does not include an integral number of some of the frequency
componentsin the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signa
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:
= 5{1-eos(F)
w(k) 5 1-cos N

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNING (N) *U)

The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).

L

Fower s pecirum

[T
"-'III|III

I R RV R
0 5 10 15 20
TIme (seeends) Fraquency In cye ks sacond

Figure 10-5: Time Series Multiplied by Hanning Window (Left)
and Power Spectrum (Right) with Hanning Window (Solid) and without (Dashed)

Using Windows Using IDL

Chapter 10: Signal Processing 261

Example Code
Type esigprcose at the IDL prompt to run the batch file that creates this display.

The source codeislocated in sigprco0s, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the

batch file.

Hamming Window

The Hamming window is defined as:

w(k) = 0.54- 0.46005(%()
The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNING (N, ALPHA=0.56) *U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).

S,
I

[=
i

= " ! ~]

Power Spectrum

=
|

2
&
/:

,,-H-

-\-\-"'\-\.
!
¢
¢
|

L[

0] 10 15 20 25
Frequency in cycles [second

Figure 10-6: Power Spectrum with Hamming Window (Solid)
and without (Dashed)

Using IDL Using Windows

RSI_PROCODE/examples/doc/signal/sigprc06

262 Chapter 10: Signal Processing

Example Code
Type esigprco7 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc07, inthe examples/doc/signal

directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Using Windows Using IDL

RSI_PROCODE/examples/doc/signal/sigprc07

Chapter 10: Signal Processing 263

Aliasing

Using IDL

Aliasing isawell known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sasmpling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at a frequency greater than the
Nyquist frequency looks exactly like some other periodic signal at afrequency less
than the Nyquist frequency. For example, suppose we add a 30 cycle per second
periodic component to our sampled data sequence u(t). The power spectrum of the
augmented signal appears below.

—
(=]

B

Power Spectrum
>

—_
(=]
[

1 1 1 1 1 1 11 | 1
1 10
Frequency in cycles / second

Figure 10-7: Power Spectrum of the Sample Signal
After Adding a 30 Cycles per Second Component

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2* delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second. To prevent aliasing, frequency
components of a signal above the Nyquist frequency must be removed before

sampling.

Example Code
Type esigprcos at the IDL prompt to run the batch file that creates this display.

The source codeislocated in sigprc08, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Aliasing

RSI_PROCODE/examples/doc/signal/sigprc08

264 Chapter 10: Signal Processing

FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of adiscrete time series with an even number of pointsis equal to
the sum of two DFTSs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the datainto
smaller setsto be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of pointsin the original time series does not contain
powersof 2, 3, or 5, the original data are still subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N operations instead of
NIog2(N).

This implementation means that the FFT function is fastest when the number of
pointsisrichin powersof 2, 3, or 5. The slowest case is when the number of samples
isalarge prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data pointsto a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.

FFT Algorithm Details Using IDL

Chapter 10: Signal Processing 265

The Hilbert Transform

Using IDL

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of asignal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by — 90 degrees.
Applying aHilbert transform to asignal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

r(t) = r(t)—jH(r(t))

where j isthe square root of —1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axisisthe original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

The Hilbert Transform

266 Chapter 10: Signal Processing

The following example plots the complex analytic signal of a periodic time signal
with aslowly varying amplitude.

Figure 10-8: Analytic Signal for r(t)

Example Code
Type esigprco09 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc09, inthe examples/doc/signal

directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

The Hilbert Transform Using IDL

RSI_PROCODE/examples/doc/signal/sigprc09

Chapter 10: Signal Processing 267

The Wavelet Transform

Using IDL

Like the discrete Fourier transform, the discrete wavel et transform (DWT) isalinear
operation that defines aforward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. Thisrelationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also like the DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavel et transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property is aresult of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See “WTN” in the
IDL Reference Guide manual for an example using the wavelet transform. Also see
“Wavelet Toolkit” in the IDL Quick Reference manual for a brief description of the
available wavel et routines.

The Wavelet Transform

268 Chapter 10: Signal Processing

Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL hastwo functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signalsisthe
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON isfaster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
examplein the “Finite Impulse Response (FIR) Filters’ on page 271.

Convolution Using IDL

Chapter 10: Signal Processing 269

Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful in
analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_ CORREL ATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See“ Time-Series
Analysis’ on page 316 for details.

Using IDL Correlation and Covariance

270 Chapter 10: Signal Processing

Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (11R) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described in the following sections:

* “Finite Impulse Response (FIR) Filters’ on page 271
» “Infinite Impulse Response Filters’ on page 275

Digital Filtering Using IDL

Chapter 10: Signal Processing 271

Finite Impulse Response (FIR) Filters

Digital filtersthat have an impul se response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving itsimpul se response (which
is often used to define an FIR filter) with the time data sequence it isfiltering. FIR
filters are somewhat simpler than Infinite Impulse Response (I1R) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL's DIGITAL_FILTER function computes the impul se response of an FIR filter
based on Kaiser's window, which in turn is based on the modified Bessel function.
The Kaiser filter is“nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filtersand
Sgnal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters. The figure below plots a bandstop filter which
suppresses frequencies between 7 cycles per second and 15 cycles per second for data
sampled every 0.02 seconds.

20 T T T T T T 17T T

-20

Magnitude in dB

-40

'60 1 1 1 1 I I I |
1 10

Frequency in cycles / second
Figure 10-9: Bandstop FIR Filter

Example Code
Typeesigprc10 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprc10, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Using IDL Finite Impulse Response (FIR) Filters

RSI_PROCODE/examples/doc/signal/sigprc10

272

Chapter 10: Signal Processing

Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows’ on page 260), or any other user-defined window function. The
design procedure issimple:

1. Compute the impulse response of an idea filter using the inverse FFT.

2. Apply awindow to the impulse response. The modified impul se response
defines the FIR filter.

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.

20
-40
-60

-80

Magnitude in dB

-100

-120

10
Frequency in cycles / second

-140

—
|III|III|III|III|III|III|III

Figure 10-10: Bandstop Filter Using Hanning Window

Example Code
Typeesigprcii at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprcii, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Finite Impulse Response (FIR) Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc11

Chapter 10: Signal Processing 273

FIR Filter Implementation

The simplest FIR (Finite Impul se Response) filter to apply to asignal isthe
rectangular or boxcar filter, which isimplemented with IDL’s SMOOTH function, or

the closely related MEDIAN function.

Applying other FIR filtersto signalsis straightforward since the filter is non-
recursive. Thefiltered signal is simply the convolution of the impul se response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve afilter
with asignal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

Power Spectrum

1 10
Freguency in cycles / second

Figure 10-11: Digital Signal Before and After Filtering

Example Code
Type@esigprci2 at the IDL prompt to run the batch file that creates this display.

The source codeislocated in sigprci2, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Using IDL FIR Filter Implementation

RSI_PROCODE/examples/doc/signal/sigprc12

274 Chapter 10: Signal Processing

The frequency response of the filtered signal shows that the frequency component at
11.0 cycles/ second has been filtered out, while the frequency components at 2.8 and
6.25 cycles/ second, as well as the DC component, have been passed by the filter.

FIR Filter Implementation Using IDL

Chapter 10: Signal Processing 275

Infinite Impulse Response Filters

Using IDL

Digital filters which must be implemented recursively are called Infinite Impulse
Response (I1R) filters because, theoretically, the response of these filtersto an
impulse never settles to zero. In practice, the impul se response of many IIR filters
approaches zero asymptotically, and may actually reach zero in afinite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f, cycles per second is:

v(s) - 5+9)

) (1 + 25(2—2) + sz>

where sisthe Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these isthe bilinear (Tustin) transform, where

(2/8) *(z-1) / (z+1)

is substituted for the Laplace transform variable s. In this expression, zis the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

2
1+cC

Y(2) :(2

u(z) (c®—2cz+7%)

—-2cz+

2
1+c 22)
2

wherec = (1 —n*fg*8) / (1 + n*fp*5).
Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

delt = 0.02

; Notch frequency in cycles per second:
fo = 6.5

¢ = (1.0-!PI*FO*delt) / (1.0+!PI*FO*delt)

Infinite Impulse Response Filters

276 Chapter 10: Signal Processing

[(1+c™2) /2, -2*c, (1+c™2)/2]
[c®2, -2*c, 1]

Example Code

Alternately, type @sigprci3 at the IDL prompt to run the sigprci3 batch file

and create the plot variables. See “ Running the Example Code” on page 250 if IDL
does not find the batch file.

lIR Filter Implementation
Since an Infinite Impulse Response filter contains feedback loops, its output at every

time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

by +bz+...+bZ"
y(z) = (S = n:]u(z)
Qtaz+t..+az

isimplemented with the difference equation

y(K) = (bgu(k—nb) +byu(k—nb+1) + ... + b, u(k) —agy(k—na)—a;y(k—na+1)—...—a . ,y(k-1))
®na

AnlIR filter is stableif the absolute values of the roots of the denominator of the
discrete transfer function a(z) are al less than one. The impulse response of a stable
IR filter approaches zero as the time index k approaches infinity. The frequency

response function of astable IR filter isthe Discrete Fourier Transform of thefilter's
impulse response.

Infinite Impulse Response Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc13

Chapter 10: Signal Processing 277

The figure below plots the impulse and frequency response functions of the notch
filter defined above using recursive difference equations.

da i) Za
=1 =1 =

Magnitude in dB

S
=

- IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII

|
10
Frequency in cycles / second

=
=]
(=]

Phase in degrees
(=]

L
=
=]

|
10
Frequency in cycles / second

"’IIIlIIIlIIIlIII

Figure 10-12: Impulse and Frequency Response of a Notch Filter

Example Code
Type esigprci4 at the IDL prompt to run the batch file that creates this display.
The source codeislocated in sigprci4, inthe examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Note
Because the impul se response approaches zero, IDL may warn of floating-point
underflow errors. Thisis an expected consequence of the digital implementation of
an Infinite Impulse Response filter.

The same code could be used to filter any input sequence u(k).

Using IDL Infinite Impulse Response Filters

RSI_PROCODE/examples/doc/signal/sigprc14

278 Chapter 10: Signal Processing

References

Bracewell, Ronald N., The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong, One-Dimensional Digital Sgnal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B., Digital Filtersand Sgnal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru, Digital Sgnal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari, Digital Sgnal Processing: Applicationsto
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W., Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede, Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G., Digital Sgnal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard, Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong, Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1

References Using IDL

Chapter 11

Mathematics

The following topics are covered in this chapter:

Overview of MathematicsinIDL 280
IDL's Numerical Recipes Functions 281
Correlation Analysis 282
Curveand Surface Fitting 286
Eigenvalues and Eigenvectors 288
Gridding and Interpolation 294
HypothesisTesting 295
Integration, 297

Using IDL

Linear Systems 302
Nonlinear Equations 309
Optimization....................... 311
SPArSEAITaYS ..o oo e e 313
Time-SeriesAnalysis 316
Multivariate Analysis 319
References 325

279

280 Chapter 11: Mathematics

Overview of Mathematics in IDL

This chapter documentsIDL’s mathematics and statistics procedures and functions.
These include Numerical Recipes™ algorithms published in Numerical Recipesin C:
The Art of Scientific Computing (Second Edition). For alist of IDL mathematical
routines, see the functional category of “Mathematics’ in the IDL Quick Reference
manual. There you will find a brief introduction to the routines. Detailed information
isavailablein the IDL Reference Guide. This chapter also includes introductory
discussions of the following topics and an overview of the way IDL handles the
particular problems involved:

e “Correlation Analysis’ on page 282

e “Curveand Surface Fitting” on page 286
« “Eigenvalues and Eigenvectors’ on page 288
e “Gridding and Interpolation” on page 294
e “Hypothesis Testing” on page 295

e “Integration” on page 297

e “Linear Systems’ on page 302

¢ “Nonlinear Equations’ on page 309

e “Optimization” on page 311

e “Sparse Arrays’ on page 313

e “Time-Series Analysis’ on page 316

e “Multivariate Analysis’ on page 319

References are provided at the end of each section for amore detailed description and
understanding of the topic.

Research Systems, Inc. is extremely interested in the accuracy of its algorithms. Bug
reports, documentation errors and suggestions for future mathematics and statistics
enhancements can be sent to RSl via:

Internet: support@RSInc.com
Fax: (303) 786-9909

Note
Floating-point numbers areinherently inaccurate. See “Accuracy and Floating Point
Operations’ on page 272 for details on roundoff and truncation errors.

Overview of Mathematics in IDL Using IDL

mailto:support@RSInc.com

Chapter 11: Mathematics 281

IDL’s Numerical Recipes Functions

Using IDL

IDL includes a number of routines based on algorithms published in Numerical
Recipesin C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guideandinthe DL
Online Help.

InIDL versionsup to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. Thisis
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arraysto bein
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as aresult of this changein IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.

IDL's Numerical Recipes Functions

282 Chapter 11: Mathematics

Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the
degree of fit to alinear model using the correlation coefficient. The correlation
coefficient, r, isascaar quantity in theinterval [-1.0, 1.0], and is defined as the ratio
of the covariance of the sample populations to the product of their standard
deviations.

r= covariance of X and Y
(standard deviation of X)(standard deviation of Y')

or

N-1 N-1 N-1
1 Xk Yk
— X_ — j— —
N-—lZ ! N Vi N
r = i=0 k=0 k=0
N-1 N-1 2 N-1 N-1 2
X
1 x.—| 2k |y o] 3 Yk
N-1 N N-1 N
i=0 k=0 i=0 k=0

The correlation coefficient is a direct measure of how well two sample populations
vary jointly. A value of r = +1 or r = —1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or —1 indicates a high degree of
correlation and agood fit to alinear model. A value of r close to O indicates a poor fit
to alinear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.

PRINT, CORRELATE (X, Y)

Correlation Analysis Using IDL

Chapter 11: Mathematics 283

IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X 1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:

PRINT, CORRELATE (X, Y)

IDL prints:
-0.979907
The following sample populations represent a poor linear correlation.

X [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y [i1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:

PRINT, CORRELATE (X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it isimportant to remember
the following two caveats:

1. Although ahigh degree of correlation (avalue close to +1 or —1) indicates a
good mathematical fit to alinear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to alinear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See* Curve and Surface Fitting” on page 286
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models
The fundamental principles of correlation that apply to the linear model of two

sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the

Using IDL Correlation Analysis

284

Chapter 11: Mathematics

multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may be
guantified using the partial correlation coefficient. Both of these coefficients are
scalar quantitiesin theinterval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value closeto +1 indicates a high degree of
linear relationship between populations; whereas a value close to 0 indicates a poor
linear relationship between populations. (Although avalue of 0 indicates no linear

relationship between populations, remember that there may be a nonlinear

relationship.)

Partial Correlation Example

Define the independent (X) and dependent () data.

X = [[0.477121,
[0.477121, 5.
[0.301030,
[0.000000,
[0.602060,
[0.698970,
[0.301030,
[0.477121,
[0.698970,
[0.000000,
[0.602060,
[0.301030,
[0.301030,
[0.698970,
[0.000000,
[0.698970,
[0.301030,
[0.602060,
[0.477121,
[0.000000,

Y = [97.682, 98.

NN WD WDNDUTNDDNDN WO,

ol

98.937, 100.617]

O O O O O O OO0 OO0 oo Oo oo o

2.0, 13.01],

o

.0,

6.0]1, $
.01, s
.51, $
.01, s
9.51, s
17.01, $
12.5], $
13.5], $
12.51, $
13.0], $
7.51, $
7.5], %
12.0], $
14.0], $
11.51, $
15.01, $
8.51, s
14.5]1, $
9.5]1]

<N oo

424, 101.43
99.481, 99.613,
98.750, 97.991,

96.901,
100.007,

$
5, 102.266,
100.152, 98.797,
98.615, 100.225,

97.067, 97.397,

100.796, s
98.388, S

Compute the multiple correlation of Y on the first column of X. The result should be

0.798816.

PRINT, M CORRELATE(X[0,*], Y)

IDL prints:

0.798816

Correlation Analysis

Using IDL

Chapter 11: Mathematics 285

Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRINT, M_CORRELATE(X[O:l,*], Y)
IDL prints:
0.875872

Compute the multiple correlation of Y on all columns of X. The result should be
0.877197.

PRINT, M CORRELATE (X, Y)
IDL prints:

0.877197
;Define the five sample populations.

X0 = [30, 26, 28, 33, 35, 29]

X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]

X2 = [65, 60, 65, 70, 70, 60]

X3 = [2700, 2850, 2800, 3100, 2750, 3050]

Y = [37, 33, 32, 37, 36, 33]
Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3
removed.

PRINT, P_CORRELATE(X1l, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS (X1)))
IDL prints:

0.996017

Routines for Computing Correlations
See “Correlation Analysis’ (in the functional category “Mathematics’ inthe IDL

Quick Reference manual) for abrief description of IDL routines for computing
correlations. Detailed information is available in the IDL Reference Guide.

Using IDL Correlation Analysis

286 Chapter 11: Mathematics

Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given atabulated set of data values{x;, y;} and the general form of a mathematical
model (afunction f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {X;, y;, z} and afunction f(x, y) of two spatial dimensions.

For example, we can use the CURV EFIT routine to determine the parameters A and B
of auser-supplied function f(x), such that the sums of the sgquares of the residuals
between the tabulated data {x;, y;} and function are minimized. We will use the
following function and data:

f(x)=a (-
x; = [0.25, 0.75, 1.25, 1.75, 2.25]
y; =[0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters ag and a;:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1l] * X))
; If the function is called with four parameters,
; calculate the partial derivatives:
IF N _PARAMS() GE 4 THEN BEGIN
; PDER’s column dimension is equal to the number of
; elements in xi and its row dimension is equal to
; the number of parameters in the function F:
pder = FLTARR(N ELEMENTS(X), 2)
; Compute the partial derivatives with respect to
; a0 and place in the first row of PDER:
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Compute the partial derivatives with respect to
; al and place in the second row of PDER:
pder([*, 1] = A[0] * x * EXP(-A[1l] * X)
ENDIF
END

Note
The function will not calculate the partial derivatives unlessit is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.

Next, we can use the following IDL commands to find the function’s parameters:

Curve and Surface Fitting Using IDL

Chapter 11: Mathematics 287

;Define the vectors of tabulated:

X = [0.25, 0.75, 1.25, 1.75, 2.25]

;data values:

Y = [0.28, 0.57, 0.68, 0.74, 0.79]

;Define a vector of weights:

W=1.0/Y

;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]

;Compute the parameters a0 and al:

yfit = CURVEFIT(X, Y, W, A, SIGMA A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602
Thus the nonlinear function that best fits the dataiis:

f (X) = 0.787386 (1 -—'1-71602x
Routines for Curve and Surface Fitting
See “Curve and Surface Fitting” (in the functional category “Mathematics’ in the

IDL Quick Reference manual) for a brief description of IDL routines for curve and
surfacefitting. Detailed information is available in the IDL Reference Guide.

Using IDL Curve and Surface Fitting

288 Chapter 11: Mathematics

Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = Ax,
where A is an n-by-n array, x is an n-element vector, and A isascalar. A scalar A and
nonzero vector X that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A isthen referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although thisis not always the case.

IDL computes the eigenvalues and eigenvectors of areal symmetric n-by-n array
using Householder transformations and the QL a gorithm with implicit shifts. The
eigenvalues of areal, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can a so be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A—Al), where | isthe identity matrix (an array with 1son the main
diagonal and Os elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenval ues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors by
algebraically manipulating the definition given above to read Ax —Ax = O; in this case
0 denotes an n-element vector, al elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

To compute eigenvalues and eigenvectors of areal, symmetric, n-by-n array, begin
with a symmetric array A.

Note
The eigenvalues and eigenvectors of areal, symmetric n-by-n array are red
numbers.
A= 1.0, -4.0]1, $

Eigenvalues and Eigenvectors Using IDL

Chapter 11: Mathematics 289

; Compute the tridiagonal form of A:

TRIRED, A, D, E

Compute the eigenvalues (returned in vector D) and

; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues:

PRINT, D

7

IDL prints:
2.00000 4.76837e-07 12.0000
The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are:

1//2 -1//2 0
-1/./3 -1//3 -1//3
-1/./6 -1//6 2//6

Nonsymmetric Array with n Distinct Real and
Complex Eigenvalues

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-

independent eigenvectors.

A= [[1.0, 0.0, 2.0], &
[0.0, 1.0, -1.01, S
[-1.0, 1.0, 1.0]]

; Reduce to upper Hessenberg format:
hes = ELMHES (A)

; Compute the eigenvalues:

evals = HQR (hes)

; Print the eigenvalues:

PRINT, evals

IDL prints:

Using IDL Eigenvalues and Eigenvectors

290 Chapter 11: Mathematics
(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)
Note

The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in

complex conjugate pairs.

; Initialize a variable to contain the residual:
residual = 1

i
evecs = EIGENVEC (A, evals,
; Print the eigenvectors,
; row vectors in evecs:
PRINT, evecs[*,0]

which are returned as

IDL prints:

(0.68168704, 0.18789033) (
(0.16271780, -0.59035830)

-0.34084352,

Compute the eigenvectors and the residual for each
eigenvalue/eigenvector pair, using double-precision arithmetic:
/DOUBLE, RESIDUAL=residual)

-0.093945164)

PRINT, evecs|[*,1]
IDL prints:
(0.18789033, 0.68168704) (-0.093945164, -0.34084352)
(-0.59035830, 0.16271780)
PRINT, evecs[*,2]
IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax — Ax = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of

this computation.

PRINT, residual

IDL prints:

-1.2021898e-07, 1.1893681e-07) (
1.0300230e-07, 1.0411269e-07)
1.1893681e-07, .2021898e-07) (
1.0411269e-07, 1.0300230e-07)

0.0000000, 0.0000000) (

6.0109490e-08,

-5.9468404e-08,

~ e~ o~~~

0.0000000,

Theresults are all zero to within machine precision.

Eigenvalues and Eigenvectors

-5.9468404e-08)
6.0109490e-08)

0.0000000)

Using IDL

Chapter 11: Mathematics 291

Repeated Eigenvalues

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. Inthis example, there are fewer than n distinct eigenval ues, but
n independent eigenvectors are available.

A= [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], &
[2.0, 0.0, 3.01]

; Reduce A to upper Hessenberg form and compute the eigenvalues.

; Note that both operations can be combined into a single command.
evals = HQR (ELMHES (7))

; Print the eigenvalues:

PRINT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual:
residual = 1

; Compute the eigenvectors and residual, using

; double-precision arithmetic:

evecs = EIGENVEC (A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors:

PRINT, evecs[*,0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRINT, evecs|[*,1]

IDL prints:

(-0.27907279, 0.0000000) (-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRINT, evecs|[*,2]

IDL prints:

(-0.27907279, 0.0000000) (-0.78140380, 0.0000000)
(0.55814557, 0.0000000)

Using IDL Eigenvalues and Eigenvectors

292 Chapter 11: Mathematics

We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it slightly, allowing the algorithm EIGENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual)
PRINT, evecs|[*,2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A= [[2.0, -1.0], S
[1.0, 0.0]]
; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES (A))
; Print the eigenvalues:
PRINT, evals

IDL prints:
(1.00000, 0.00000) (1.00000, 0.00000)
Note

The two eigenvalues are real, but not distinct.

; Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC (A, evals, /DOUBLE)

; Print the eigenvectors:

PRINT, evecs|[*,0]

IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRINT, evecs[*,1]

IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)

Eigenvalues and Eigenvectors Using IDL

Chapter 11: Mathematics

293

We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*,1] = EIGENVEC(A, evals[l]+1.0e-6, /DOUBLE)
PRINT, evecs[1, *]

IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and
Eigenvectors

Using IDL

See “Eigenvalues and Eigenvectors’ (in the functional category “Mathematics’ inthe
IDL Quick Reference manual) for abrief description of IDL routines for computing

eigenvalues and eigenvectors. Detailed information is available in the IDL Reference
Guide.

Eigenvalues and Eigenvectors

294 Chapter 11: Mathematics

Gridding and Interpolation

Given a set of tabulated datain n-dimensions with each dimension being described as
follows:

L {x,y=f(x)},
2. {% Yz =10y}, or
3. {X. ¥z, W =f (X, Y, z)}

it ispossible to calculate intermediate values of the function f using interpolation.
IDL includes a variety of routinesto solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabulated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, and nearest-neighbor
are among the interpolation methods used in IDL. Kriging is another interpolation
method, one which does not require an exact fit at each tabulated data point. Kriging
applies aweighting to each of the tabulated data points based on spatial variance and
trends among the points. Weights are computed by combining calculations of spatial
continuity and anistropy within either an exponential or spherical semivariogram
model.

Gridding, atopic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of IDL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation
See “Gridding and Interpolation” (in the functional category “Mathematics’ in the

IDL Quick Reference manual) for abrief description of IDL routinesfor gridding and
interpolation. Detailed information is available in the IDL Reference Guide.

Gridding and Interpolation Using IDL

Chapter 11: Mathematics 295

Hypothesis Testing

Hypothesistesting tests one or more sample popul ations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:
e Theformulation of ahypothesis.
e Theselection and collection of sample population data.
e Theapplication of an appropriate test.
e Theinterpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of anew drugin
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients' health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients' condition, the researchers conclude that the
drug will be effective in general.

It isimportant to remember that avalid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients' condition). A hypothesis designed to
test the improvement or ill-effect of thetrial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Using IDL

Tests of hypothesisare usualy classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based

ranking, rather than actual measurement data. In many casesit is possibleto replacea

Hypothesis Testing

296

Chapter 11: Mathematics

parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, S
305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, S

271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST (X, Y)
IDL prints:
5.52839 2.52455e-06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL's RS _TEST function, to test the
hypothesis that X and Y have the same mean of distribution.

PRINT, RS TEST (X, Y)
IDL prints:
-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functionsis based
upon awell-known and widely-accepted statistical test. Each of these functions
returns atwo-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.

Routines for Hypothesis Testing

See “Hypothesis Testing” (in the functional category “Mathematics’ in the IDL
Quick Reference manual) for abrief description of IDL routines for hypothesis
testing. More detailed information is available in the IDL Reference Guide.

Hypothesis Testing Using IDL

Chapter 11: Mathematics 297

Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For afunction of asingle variable, f (X), it is often the case that
the antiderivative F = [f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f(x,y) and f (x, Y, 2). Numerically approximating the integral operator provides the
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

e Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

| = jx bf(x)olx

X =

» Theproblem of integrating over atabulated set of data{ x;, y; = f (x;) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

* Integration of a bivariate function over aregular or irregular region in the x-y
planeis possible using an iterated Gaussian Quadrature routine.

X=b,y=

ax)
| = j j f(x, y)dydx
x=a"y=p(x)

* Integration of atrivariate function over aregular or irregular regionin x-y-z
spaceis possible using an iterated Gaussian Quadrature routine.

Xx=b,y=q(X).z=v(X,y
[

)
| = f(X, Yy, z)dzdydx

x=a’y=p(x)°z=u(xy)

Using IDL Integration

298 Chapter 11: Mathematics

Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

A Bivariate Function

Suppose that we wish to evaluate
y=4 x=

5
J'y ojx_ yy cos(x”)dxdy

The order of integration isinitially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

e

1y

Figure 11-1: The Bivariate Function

Theintegral is now of the form

5
jx_ojy X y- cos(x")dydx

The new expression can be evaluated using the INT_2D function.

Touse INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X"5)
END

Integration Using IDL

Chapter 11: Mathematics 299

Next, we write a function for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the functioniis;

FUNCTION pqg limits, X
RETURN, [0.0, X*2]
END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define avariable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, inthis case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab limits = [0.0, 2.0]
PRINT, INT 2D('fxy', ab limits, 'pg limits', 48)

IDL prints:
0.055142668

Thisisthe exact solution to 9 decimal accuracy.

A Trivariate Function

Using IDL

Suppose that we wish to evaluate

X=2 y=Ja—x? cz=.Ja-xP-y? 3/2
y X" pZ X" =y
j z(x2+y2+22) dzdydx
X=-2 y=-— 4_X2 z=0

Thisintegral can be evaluated using the INT_3D function. Aswith INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (X, Y, 2):

Integration

300

Integration

FUNCTION fxyz, X, Y, Z
RETURN, Z * (X*2 + Y*2 + 2%2)"*1.5
END

The limits of integration of thefirst inside integral:

FUNCTION pqg limits, X
RETURN, [-SQRT (4.0 - X*2), SQRT(4.0 -X"2)]
END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X*2 - Y*2)]
END

Chapter 11: Mathematics

We can use the following IDL commands to determine the value of the above integral

using 6, 10, 20 and 48 transformation points.
For 6 transformation points:

PRINT, INT 3D('fxyz', [-2.0, 2.0], $§
'pg_limits', 'uv_limits', 6)

IDL prints:
57.417720
For 10 transformation points:

PRINT, INT 3D('fxyz', [-2.0, 2.0], §
'pg_limits', 'uv_limits', 10)

IDL prints:
57.444248
20 transformation points:

PRINT, INT 3D('fxyz', [-2.0, 2.0], $
'pg limits', 'uv_limits', 20)

IDL prints:
57.446201
48 transformation points:

PRINT, INT 3D('fxyz', [-2.0, 2.0], $
'pg limits', 'uv_limits', 48)

IDL prints:
57.446265

The exact solution to 6-decimal accuracy is57.446267.

Using IDL

Chapter 11: Mathematics 301

Routines for Differentiation and Integration

See “ Differentiation and Integration” (in the functional category “Mathematics’ in
the IDL Quick Reference manual) for a brief description of IDL routines for
differentiation and integration. Detailed information is available in the IDL Reference
Guide.

Using IDL Integration

302

Chapter 11: Mathematics

Linear Systems

IDL offersavariety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A isinvertible. Using asimple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A™lb. Although this
relationship provides a concise mathematical representation of the solution, itis
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An dternate way of describing the existence of a solution isto say that the system
Ax=bissolvableif and only if the vector b may be expressed as alinear
combination of the columns of A. This definition isimportant when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of anumerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of alinear system is ameasure of
asolution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as|A[JA™| (where| |
denotes a Euclidean norm). A linear system whose condition number issmall is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number islarge is considered ill-conditioned and proneto
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when alinear system is over- or underdetermined.

Overdetermined Systems

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns

Linear Systems Using IDL

Chapter 11: Mathematics 303

of array A. (In other words, b lies outside of the subspace spanned by the columns of
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). This type of solution has the property of
minimizing the residual error E = b — Ax in aleast-squares sense.

Suppose that we wish to solve the following linear system:
1.0 20 4.0
Xol _
1.0 3.0 « - 150
0000 Y |60

The vector b does not lie in the two-dimensional subspace spanned by the columns of
A (thereisno linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

b I
/vcol umn2 .
>pn
mA

Figure 11-2: Overdetermined System Diagram

It is possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensiona subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)ATb, where A(ATA) AT is
known as the projection matrix, P.

Using IDL Linear Systems

304

Chapter 11: Mathematics

In this example, the array-vector product Pb yields:

4.0
5.0
0.0

and we wish to solve the linear system

1.0 2.0 4.0
1.0 3.0 *ol= 5.0/ Where Xo| = {20}

1.0
0.0 00U |00 X1

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumul ated round-off errors. For thisreason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

Thefollowing IDL commands use singular value decomposition to solve the system
in anumerically stable manner. Begin with the array A:

A= [[1.0, 2.0], S

[1.0, 3.0], S

[0.0, 0.0]]
; Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]

; Compute the singular value decomposition of A:
svDC, A, W, U, V

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.

N = N_ELEMENTS (W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $
IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for aderivation of thisformula.)

X = V ## WP ## TRANSPOSE (U) ## B
; Print the solution:
PRINT, X

Linear Systems Using IDL

Chapter 11: Mathematics 305

IDL Prints:;

2.00000
1.00000

Underdetermined Systems

Using IDL

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), a unique solution is not possible. Using IDL’s SYDC procedureit is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

XO

10 303020, 1.0

20 6.0 90 5.0 Xl = |5.0

-1.0 -3.0 3.0 0.0/ |2 5.0
X3

Using elementary row operationsit is possible to reduce the system to

Xo
1.0 3.0 3.0 2.0 x| 1.0
0.00.03010 o 3.0
0.0 0.0 0.0 0.0/ |2 0.0
X3

It is now possible to express the solution x in terms of X; and Xa:

—2—3x1—x3
X = X1
X3

The values of x; and x3 are completely arbitrary. Setting x; = 0 and x3 = O resultsin
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this system is:

Linear Systems

306 Chapter 11: Mathematics

-2.0
0.0
1.0
0.0

—-0.211009
—-0.633027
0.963303
0.110092

Note that this vector also satisfies the solution x as it is expressed in terms of x;
andX&

X =

The following IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A= [[.0, 3.0, 3.0, 2.01, s
[.0, 6.0, 9.0, 5.0], s

[-1.0, -3.0, 3.0, 0.0]]
; Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
; Compute the decomposition of A:
sSvDC, A, W, U, V

S

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.

N = N_ELEMENTS (W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $
IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for aderivation of thisformula.)) The solution is
expressed in terms of x; and xz with minimal norm.

X = V ## WP ## TRANSPOSE (U) ## B

;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027
0.963303

Linear Systems Using IDL

Chapter 11: Mathematics 307
0.110092
Complex Linear Systems

WecanuseIDL’'sLU_COMPLEX function to compute the solution to alinear system
with real and complex coefficients. Suppose we wish to solve thefollowing linear system:

—1+0i 1-3i 2+0i 3+3i[|% 15— 2i
—2+0i —1+3i 0+1i 3+1i||%] = | —-2-1i
3+0i O0+4i 0-1i 0-3i||z, —20 + 11i
2+0i 1+1i 2+1i 2+1i Zs —10+ 10i

;First we define the real part of the complex coefficient array:
re = [[-1, 1, 2, 3], $

[-2, -1, 0, 31, S

[3, o, 0o, ol, &

(2, 1, 2, 211
;Next, we define the imaginary part of the coefficient array:
im = [[0, -3, 0, 3], $

[o, 3, 1, 11, s

(o, 4, -1, -31, $
[0, 1, 1, 11]
; Combine the real and imaginary parts to form
; a single complex coefficient array:
A = COMPLEX(re, im)
; Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $
COMPLEX (-10,10)
; Compute the solution using double-precision complex arithmetic:
Z = LU _COMPLEX (A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = ' (f5.2, ",", f5.2, "im)'

IDL prints:

-4.00, 1.001
2.00, 2.001
0.00, 3.001

-0.00,-1.001

We can check the accuracy of the computed solution by computing the residual,
Azb:

PRINT, A##Z-B

Using IDL Linear Systems

308 Chapter 11: Mathematics

IDL prints:
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Routines for Solving Simultaneous Linear Equations
See “Linear Systems” (in the functional category “Mathematics’ in the IDL Quick

Reference manual) for a brief description of IDL routines for solving simultaneous
linear equations. Detailed information is available in the IDL Reference Guide.

Linear Systems Using IDL

Chapter 11: Mathematics 309

Nonlinear Equations

Using IDL

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: R" - R", find x- (an element of R™) such that F(x«) =0

For example:

X« =[0, 3] or x« =[3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton's method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

Thefirst step formulates an n-by-n linear system of equations (Js = —F) where the
coefficient array Jisthe Jacobian (the array of first partial derivatives of F), sisa
solution vector, and — F is the negative of the nonlinear system of equations. Both J
and — F are evaluated at the current value of the n-element vector x.

H) 5= —F(x)

The second step uses the solution s, of the linear system as adirectional update to the
current approximate solution x, of the nonlinear system of equations. The next
approximate solution X1 isalinear combination of the current approximate solution
Xy and the directional update s;.

Xer1 = X T S
The success of Newton's method relies primarily on providing an initial guess close

to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement aline search which
checks, and if necessary modifies, the course of the algorithm at each step ensuring

Nonlinear Equations

310 Chapter 11: Mathematics

progress toward a solution of the nonlinear system of equations. IDL's NEWTON
and BROY DEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often
considered aroot of that system. As aone-dimensional counterpart to NEWTON and
BROYDEN, IDL providesthe FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations
See “Nonlinear Equations’ (in the functional category “Mathematics’ in the IDL

Quick Reference manual) for abrief description of IDL routines for solving systems
of nonlinear equations. Detailed information is available in the IDL Reference Guide.

Nonlinear Equations Using IDL

Chapter 11: Mathematics 311

Optimization

Using IDL

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

givenf: R" - R, find x« (an element of R") such that f(x«) is aminimum of f.

For example:

(9= (6 =3)*+ (%, - 2)°
Xs = [3, 2]
In minimizing an n-dimensional function f, it is a necessary condition that the

gradient at the minimizer x«, Vf(x«), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

of(x)

0Xg

of(x)

0Xq

o)
aXn—l

Thisrelation might suggest that finding aminimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, thisisnot true. It is
just as likely that a solution, x, of Vf(xX)=0 be a maximizer or alocal minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of X.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL's POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routineis evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

Optimization

312 Chapter 11: Mathematics

Routines for Optimization
See “Optimization” (in the functional category “Mathematics’ in the IDL Quick

Reference manual) for a brief description of IDL routines for optimization. Detailed
information is available in the IDL Reference Guide.

Optimization Using IDL

Chapter 11: Mathematics 313

Sparse Arrays

The occurrence of zero elementsin alarge array is both a computational and storage
inconvenience. An array in which alarge percentage of elements are zerosisreferred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
sparse arrays, |DL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of data and a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plus the
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7,
“Sparse Linear Systems,” in Numerical Recipesin C: The Art of Scientific
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at |east partially
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Using IDL

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in agiven row is greater than the sum of the
absolute values of the non-diagonal elementsin that row.)

N 500L

A = RANDOMN (SEED, N, N)*10

; Set elements with absolute magnitude greater than or
; equal to eight to zero:

I = WHERE (ABS(A) GE 8)

A[I] = 0.0

; Set each diagonal element to the absolute sum of

Sparse Arrays

314 Chapter 11: Mathematics

; its row elements plus 1.0:

diag = TOTAL(ABS(A), 1)

A (INDGEN (N) * (N+1)) = diag + 1.0

Create a right-hand side vector, b, in which 40% of
; the elements are ones and 60% are twos.

B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

7

; Begin with an initial guess:

X = REPLICATE(1.0, N_ELEMENTS (B))

; Start the timer:

start = SYSTIME(1l) & $

; Solve the system:

resultl = LINBCG(SPRSIN(A), B, X) & S
; Stop the timer.

stop = SYSTIME (1)

Print the time taken, in seconds:

7

PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start
IDL prints:
Time for Iterative Biconjugate Gradient 1.1259040

Remember that your result will depend on your hardware configuration.
Next, we compute the solution using LU decomposition.

; Start the timer:

start = SYSTIME (1) & $

; Compute the LU decomposition of A:
LUDC, A, index & $

; Compute the solution:

result2 = LUSOL (A, index, B) & $

; Stop the timer:

stop = SYSTIME (1)

; Print the time taken, in seconds:

PRINT, 'Time for LU Decomposition:', stop-start
IDL prints:
Time for LU decomposition 14.871168

Finally, we can compare the absolute error between resultl and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0 x 10'5, or a—1if the two results are identical to within five

decimal places.

Sparse Arrays Using IDL

Chapter 11: Mathematics 315
error = ABS(resultl-result2)
PRINT, WHERE (error GT 1.0e-5)
IDL prints:
-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alphaworkstation running

OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays
See “ Sparse Arrays’ (in the functional category “Mathematics’ in the IDL Quick

Reference manual) for a brief description of IDL routines for handling sparse arrays.
More detailed information is available in the IDL Reference Guide.

Using IDL Sparse Arrays

316 Chapter 11: Mathematics

Time-Series Analysis

A time-seriesis a sequential collection of data observations indexed over time. In
most cases, the observed datais continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-seriesis denoted as x = (Xg, X1, Xo, ... ,
Xn_1), Where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that atime-series is comprised of four components:
e A trend or long term movement.
¢ A cyclicd fluctuation about the trend.
e A pronounced seasonal effect.
e Aresidud, irregular, or random effect.

Coallectively, these components make the analysis of atime-series afar more
challenging task than just fitting alinear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one ancther. Clusters of observations
are frequently correlated with increasing strength as the time interval s between them
become shorter. Often the analysis is a multi-step process involving graphical and
numerical methods.

Thefirst step in the analysis of atime-seriesisthe transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function isacommonly used tool in determining the stationarity of atime-series. The
autocorrelation of a time-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of atime-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, S
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]

Time-Series Analysis Using IDL

Chapter 11: Mathematics 317

Using IDL

The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.

; Set the plotting window to hold two plots and plot the data:
IPLOT, X, VIEW GRID=[1,2]

Compute the sample autocorrelation function for time lagged values 0 — 20 and plot.

lag = INDGEN (21)

result = A CORRELATE (X, lag)
IPLOT, lag, result, /VIEW NEXT
; Add a reference line at zero:
IpLOT, [0,20], [0,0], /OVERPLOT

The following figure shows the resulting graphs.

65

@
o

wn wn
o w

=
wn
D|||||||||||

-I|IIII|III|IIII|IIIIr

l\JIIIlIII II|III|III|III|III

=

Figure 11-3: Time-series data (Top) and Autocorrelation of that Data
Versus the Lag (Bottom)

The top graph plots time-series data. The bottom graph plots the autocorrelation of
that data versus the lag. Because the time-series has a significant autocorrelation up
to alag of seven, it must be considered non-stationary.

Nonstationary components of atime-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in atime-series

Time-Series Analysis

318

Chapter 11: Mathematics

by taking successive averages of groups of observations. Each successive
overlapping sequence of k observationsin the series is replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once atime-series has been transformed to stationarity, it may be modeled using an

autoregressive process. An autoregressive process expresses the current observation,
X;, & a combination of past time-series values and residual white noise. The simplest
case is known as afirst order autoregressive model and is expressed as

X = X + oo
The coefficient ¢ is estimated using the time-series data. The general autoregressive
model of order pis expressed as

X = O1Xe1 thoXe o .+ pXep + Oy

Modeling a stationary time-series as a p-th order autoregressive process allows the
extrapolation of datafor future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

See " Time-Series Analysis’ (in the functional category “Mathematics’ in the IDL
Quick Reference manual) for a brief description of IDL routines for time-series
analysis. Detailed information is available in the IDL Reference Guide.

Time-Series Analysis Using IDL

Chapter 11: Mathematics 319

Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Using IDL

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n
clusters, respectively. Conceivably, some clusters will contain multiple samples
while other clusters will contain none. The choice of clustersis arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rowsin the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samplesis not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE WTS keyword to the CLUST_WTS function. The default behavior isto
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTS and CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[99, 79, 63, 87, 249
[67, 41, 36, 51, 114
[67, 41, 36, 51, 114
[94, 191, 160, 173, 124
[42, 108, 37, 51, 41

W
vy Ur Ur vr v

Multivariate Analysis

320

Chapter 11: Mathematics

67, 41, 36, 51, 114]
94, 191, 160, 173, 124]
99, 79, 63, 87, 249 1]
67, 41, 36, 51, 114]]
; Compute the cluster weights with four cluster centers:
weights = CLUST _WTS(array, N_CLUSTERS = 4)
; Compute the cluster assignments, for each sample,
; into one of four clusters:
result = CLUSTER(array, weights, N CLUSTERS = 4)
; Display the cluster assignment and corresponding sample (row) :
FOR k = 0, 8 DO $

PRINT, resultl[k], array[*, Kkl

wr Ur

’
’
’

— — .

IDL prints:
1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical dataand are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assighed to
cluster #2.

If this exampleisrun several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is amathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance

Multivariate Analysis Using IDL

Chapter 11: Mathematics 321

Using IDL

matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; thisis the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
all equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

Var 1 Var 2 Var 3
Sample 1 20 10 3.0
Sample 2 4.0 20 3.0
Sample 3 4.0 10 0.0
Sample 4 20 3.0 3.0
Sample 5 5.0 10 9.0

Table 11-1: Data for Principal Component Analysis

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

0.87 -0.70 0.69
0.01 -0.64 —0.66
049 0.32 -0.30

The derived variables {z;, z,, z3} are then computed as follows:

Multivariate Analysis

322

z1 = (0.87)
z2 = (0.01)
z3 = (0.49)

2.0 1.0 3.0
4.0 2.0 3.0
4.0 *(=0.70)| 10| +(0.69)|00
2.0 3.0 3.0
15.0) 1.0 9.0
2.0 1.0 3.0
4.0 2.0 3.0
4.0 *(=0.64)|1 0| +(-0.66)|0.0
2.0 3.0 3.0
5.0) 1.0 9.0
2.0 1.0 3.0
4.0 2.0 3.0
4,0 *(032)110 +(-0.30) |00
2.0 3.0 3.0
5.0] 1.0] 9.0]

Chapter 11: Mathematics

In this example, analysis shows that the derived variable z; accounts for 57.3% of the
total variance of the original data, the derived variable z, accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

Thefollowing example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of

twenty samples.

; Define an

data = [[19.
[24.
[30.
[29.
[19.

Multivariate Analysis

array
43.
49.
51.
54.
42.

S C IEENEREN |

with 4 variables and 20 samples:
1, 29.1, 11.9], $
8, 28.2, 22.8], $
9, 37.0, 18.71, $
3, 31.1, 20.11, s
2, 30.9, 12.9]1, s

Using IDL

Chapter 11: Mathematics 323

[25.6, 53.9, 23.7, 21.71, &
[31.4, 58.5, 27.6, 27.1]1, $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2]1, &
[18.7, 46.5, 23.0, 11.7]1, $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]11]

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be
initialized as nonzero values prior to calling PCOMP,

coef =1 & eval =1 & var = 1

; Compute the derived variables based upon

; the principal components.

result = PCOMP (data, COEFFICIENTS = coef, $
EIGENVALUES = eval, VARIANCES = var)

; Display the array of derived variables:

PRINT, result, FORMAT = '(4(f5.1, 2x))'
IDL prints:

81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6

81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6

97.0 6.4 -4 .4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6

81.5 8.8 -6.3 0.6

88.0 13.4 -3.9 0.6

74 .3 7.5 -4.8 0.6
113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6

91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6

Using IDL Multivariate Analysis

324

Chapter 11: Mathematics

Display the percentage of total variance for each derived variable:
PRINT, var
IDL prints:

0.712422
0.250319
.0370950
0.000164269

o

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRINT, TOTAL(var[0:1])
IDL prints:
0.962741

This indicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

See “Multivariate Analysis’ (in the functional category “Mathematics’ in the IDL
Quick Reference manual) for abrief description of IDL routines for multivariate
analysis. Detailed information is available in the IDL Reference Guide.

Multivariate Analysis Using IDL

Chapter 11: Mathematics 325

References

Correlation Analysis
Harnet, Donald L. Introduction to Statistical Methods. Reading, M assachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore. Applied Satistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
Curve and Surface Fitting
Bevington, Philip R. Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.
Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0
Eigenvalues and Eigenvectors
Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3
Gridding and Interpolation
Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0
Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H. Introduction to Satistical Methods. Reading, M assachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Using IDL References

326 Chapter 11: Mathematics

Kraft, Charles H. and Constance Van Eeden. A Nonparametric Introduction to
Satistics. New York: Macmillan, 1968.

Sprent, Peter. Applied Nonparametric Statistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration
Chapra, Steven C. and Raymond P. Canale. Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9
Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems
Golub, Gene H. and Van Loan, Charles F. Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3
Nonlinear Equations

Dennis, J.E. J. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
Optimization

Dennis, J.E. J. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

References Using IDL

Chapter 11: Mathematics 327

Sparse Arrays

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C. The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore. Applied Satistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

Using IDL

Jackson, Barbara Bund. Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash. Multivariate Satistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6

References

328 Chapter 11: Mathematics

References Using IDL

Index

Symbols
IORDER system variable, 213

A

accuracy
numerical agorithms, 280
action routines, 141
Aitoff map projection, 232
Albers equal-area conic projection, 241
aliasing, 263
analytic signa, 265
ARMA filter, 275
arrays
datatype, determining type
SIZE function, 179
rotating, 197

Using IDL

sparse, 313

stored in structure form, 313
ASCII files

IDLDE import macro, 167

reading, 153
autoregressive moving average filters, 275
azimuthal equidistant map projection, 231
azimuthal map projections, 228

B

backing store
bitmap buffered, 105
graphics, 105
system buffered, 105
bandpass
filters, 271

329

330

bandstop filters, 271
batch files
startup preference, 111
bilinear
interpolation, 202
transform, 275
binary files
IDLDE import macro, 169
reading, 154
bitmap buffered backing store, 105
boxcar filter, 273
Bristol Technology
printer manager, 81
printing graphics, 222

C

central map projection, 230
CIA World Map database, 246
clipboard support
graphics windows, 56
cluster analysis
routines, 324
CMY color system, 204
color
channels, 214
Direct Graphics, 211
images
Direct Graphics, 211
systems
CMY, 204
converting, 206
HLS, 204
HSV, 204
RGB, 204
tables. See color tables
visuals
Unix, 207
Windows, 208
color tables
highlighting image features, 220

Index

indexed image (LUT), 214

modifying, 219
colormaps, 210

flashing, 134

sharing (Motif), 134
colors

reserving for IDL, 134
Command Line

IDLDE, 57
command line options

Motif platform, 136
command line switches, 23
compiling

from memory preference, 108

preferences, 107, 108
conformal conic map projection, 240
Control Panel Buttons

modifying in Motif, 138

Motif platform, 58
converting

color systems, 206

color tables, 219

image types, 217
Cooley-Tukey algorithm, 264
coordinate systems

device, 194

normalized, 194

window, 193
coordinates

converting

three-dimensional coordinates, 199
converting two-dimensional coordinates, 198

data, 193
device, 193
homogeneous, 195
normal, 193
correlation
analysis, 282
coefficient, 282, 283
routines, 285
cubic convolution interpolation, 202

Using IDL

curve fitting

discussion, 286

routines, 287
customizing IDL, preferences, 95
cyclica fluctuation, 316

cylindrical equidistant map projection, 239

cylindrical map projections, 237

D

data coordinates, 193
data formats
supported, 12
datatype
type code, 179
data types
determining array size, 179
IDL indices, 177
type codes, 177
Delaunay triangulation, 294
deleting
linesin Output Log, 98
derived variables, 320
device
coordinates, 193
independent graphics, 191
DFT, 254
differentiation routines, 301
digita filters, 270
digital signal processing, 251
DIGITAL_FILTER function, 271
Direct Graphics, 192
color
indexed, 211
RGB, 211
printing, 222
visuals
Unix, 209
Windows, 210
window coordinates, 194
direct graphics

Using IDL

clipboard support, 56
discrete Fourier transform, 254
discrete wavelet transform, 267
DISPLAY environment variable, 20
displayrgbimage_object.pro, 215
DWT, 267

E
editing
resource files, 133
Editor window
compiling and saving, 107
multiple, 102
preferences, 107
Editor windows
defined, 55
editors, external (Matif), 127
eigenvalues
complex, 289
real, 288
repeated, 291, 292
routines for computing, 293
eigenvectors
complex, 289
real, 288
repeated, 292
routines for computing, 293
environment variables
CLASSPATH, 20
DISPLAY, 20, 20
HOME, 20
IDLJAVAB_CONFIG, 21
IDLJAVAB_LIB_LOCATION, 21
LM_LICENSE_FILE, 21
PATH, 16, 21
TERM, 21
egual-area map projection, 241
examples
batch files
sigprc01, 251

331

Index

332

sigprc02, 252
sigprc03, 257
sigprc04, 258
sigprc05, 259
sigprc06, 261
sigprc07, 262
sigprc08, 263
sigprc09, 266
sigprci0, 271
sigprcll, 272
sigprcl2, 273
sigprcl3, 276
sigprcl4, 277
image

displayrgbimage object.pro, 215

exiting IDL

confirm exit, 97

options, 46
exporting

formatted image files, 160

unformatted image files, 161
expressions

determining data type

SIZE function, 179

externa

editors (Motif), 127

F

Fast Fourier transform
Cooley-Tukey algorithm, 264
defined, 254
discrete, 254
implementation, 264
using windowing algorithms, 260

file
See alsofiles.
access, 149
search path, 115
supported formats, 12

file access

Index

See also reading.
about, 150
routines, 171
file formats
about supported, 12
general data, 13
image, 12
scientific data, 13
file information
returning, 174
file selection
using dialogs, 151
file types, supported, 12
FILE_INFO function
using, 188
files
Seealsofile.
accessing, 149
exporting
See also writing.
formatted, 160
unformatted, 161
importing
See also reading.
formatted, 158
unformatted, 159
querying, 174
returning
fileinformation, 174
specifying search path, 115
filtering

autoregressive moving average, 275

bandpass, 271
bandstop, 271
boxcar, 273
digital, 270
FIR, 271
highpass, 271
lowpass, 271
rectangular, 273
filters

Using IDL

IR filter, 275
Kaiser' swindow, 271
moving average, 271
notch, 275
finding
text, IDLDE search features, 65
finite impul se response filters, 271
FIR filter, 271
flashing colormaps, 134
fonts
preferences, 112
specifying
Motif platform, 113
Windows platform, 112
frequency plot leakage, 258
frequency plot smearing, 258
frequency response function, 276

G

Gaussian
iterated quadrature, 297
Gauss-Krueger map projection, 238

general perspective map projection, 235

geometric transformations
interpolation methods, 201
glyph. See TrueType fonts
gnomic map projection, 230
gnomonic map projection, 230
Gouraud shading, 203
graphics
clipboard support, 56
coordinate systems, 195
device independent graphics, 191
devices
direct graphics, 192
image file formats
supported, 12
modes, 190
object-oriented, 191
windows

Using IDL

backing store, 105
layout preferences, 104
OS clipboard support, 56
sizing, 104
gridding
data extrapolation, 294
Delaunay triangulation, 294
routines, 294

uniformly-spaced planar data, 294

H

Hammer-Aitoff map projection, 234

Hamming window
defined, 261

Hanning window
defined, 260

333

hardware rendering, setting preference, 106

HDF files

IDLDE import macros, 170
HDF-EOS

IDLDE import macro, 170
help

PDF files

overview, 43

hiding

toolbars, 103
highlighting

image features, 220
highpassfilters, 271

high-resolution continent outlines, 246

Hilbert transform, 265
histogram
plot, 252
HLS color system
color schemes, 204
HOME environment variable, 20
homogeneous coordinates, 195
HSV color system
color schemes, 204
hypothesis testing

Index

334

routines, 296
statistics, 295

IDL
direct graphics, 192
iTools, 190
object graphics, 191
IDL GUIBuilder
access, 56
generating
files, menu option, 61
IDLDE
about, 52
preferences, 93
IR filter
digital filtering, 275
using, 275
image files, 165
image interleaving, 214
image objects
displaying
RGB, 215
interleaving, 214
pixel interleaving, 214
images
dialog for reading, 151
dialog for saving, 152
exporting files, 160, 161
file selection
using adialog, 151
highlighting features, 220
import macro, 165
importing files, 159
info structure, 175
orientation, 213
QUERY_IMAGE, 178
querying, 175
raster, 213
RGB interleaving, 215

Index

import macro, IDLDE

ASCII files, 167

binary files, 169

image files, 165

scientific data formats, 170
importing

data, 149, 149

unformatted image files, 159

indexed images
color tables, 214

infinite impulse response filters, 275

integration
bivariate functions, 298
discussion, 297
numerical, 297
routines, 301
trivariate functions, 299
interleaving
determining, 215
image, 214
image objects, 214
ling, 214
pixel, 214
planar, 214
interpolation
bilinear, 202
cubic convolution, 202
image quality, 201
linear, 202
methods, 202
nearest-neighbor, 202
routines, 294
tabulated data points, 294
trilinear, 202
iTools
introduction, 17

K

Kaiser filter, 271
keyboard

Using IDL

shortcuts, 33
using accelerators, Macintosh, 33

L

Lambert’ s conformal conic map projection,
240
Lambert’s equal area map projection, 233
launching IDL, 15
layout, graphics window preferences, 104
leakage, 258
light source
shading, 203
line interleaving, 214
linear
algebra, 282
correlation, 282
systems
condition number, 302
overdetermined, 302
solving simultaneous equations, 302
underdetermined, 305
linear equations, simultaneous, 308
linear interpolation, 202
linear systems, routines, 308
lines
Output Log, 98
saved in recall buffer, 98
LM_LICENSE FILE variable, 21
Look-Up Table (LUT), 214
lowpassfilters, 271

M

Macintosh
one-button mouse, 32
macros
IDLDE
creating in UNIX, 121
creating in Windows, 124

Using IDL

pre-defined, 164
working with, 119
magnitude
signal spectra, 257
map projections
Aitoff, 232
Albers equal-area conic, 241
azimuthal, 228
azimuthal equidistant, 231
central gnomic, 230
cylindrical, 237
cylindrical equidistant, 239
general perspective, 235
gnomonic, 230
Hammer-Aitoff, 234
high-resolution outlines, 246
Lambert’s conformal conic, 240
Lambert’s equal area, 233
Mercator, 237
Miller cylindrical, 240
Mollweide, 243
orthographic, 229
overview, 224
pseudocylindrical, 242
Robinson, 242
satellite, 235
sinusoidal, 243
stereographic, 229
Transverse Mercator, 238
mathematics
routines, 280
memory
object graphics system, 191
optimizing Windows performance, 98
Menu Editor
opening, 64
menus
IDLDE keyboard shortcuts, 33
Mercator map projection, 237
Microsoft Windows
mouse differences, 32

335

Index

336

Miller cylindrical map projection, 240
minimization, 311

See also optimization
modifying color tables, 219
Mollweide map projection, 243
Motif widgets, 141
mouse

emulating three-button, 32
moving average filter, 271
multiple correlation coefficient, 284
Multiple Document Panel, 55
multivariate analysis

routines, 324

N

nearest-neighbor interpolation, 202
NETCDF files

IDLDE import macro, 170
Newton’'s method, 309
nonlinear equations

discussion, 309

routines, 310
nonparametric hypothesis tests, 295
normal

coordinates, 193
notch filter, 275
numerical integration, 297
Numerical Recipesin C, 281
Nyquist frequency, 263

O

OBJ _CLASS function
using, 186

OBJ ISA function
using, 186

OBJ VALID function
using, 187

object graphics

Index

about, 191
choosing a renderer, 106
clipboard support, 56
printing, 222
objects
information about, 186
object graphics
clipboard support, 56
object-oriented
graphics, 191
Oetli, Thomas, 246
one-tailed hypothesis tests, 295
optimization
discussion, 311
routines, 312
origin
image data, 213
orthographic map projection, 229
Output Log
overview, 57
preferences, 98

P

parametric hypothesis tests, 295
partial correlation coefficient, 284
path

IDLDE, 115
PATH environment variable, 16
PDF, 43
performance

improvement, 105

optimizing memory, 98
phase

signal spectra, 257
pixels

data

information (QUERY IMAGE), 177

interleaving, 214

two-dimensional image arrays, 213
planar interleaving, 214

Using IDL

plotting
frequency smearing, 258
step plots, 252
Portable Document Format, 43
power spectrum, 259
preferences
change directories, 99
changing, 93
read-only files, 99
startup, 97
principal components analysis, 320
print manager, 81, 222
printing
direct graphics
overview, 222
from IDLDE, 62
graphics, 222
in UNIX, 81
in Windows, 80
private colormaps, 210
project
interface, 55
projections
Aitoff, 232
Albers equal-area conic, 241
azimuthal, 228
azimuthal equidistant, 231
central gnomic, 230
cylindrical, 237
cylindrical equidistant, 239
general perspective, 235
gnhomonic, 230
Hammer-Aitoff, 234
high-resolution continent outlines, 246
Lambert’s conformal conic, 240
Lambert’s equal area, 233
Mercator, 237
Miller cylindrical, 240
Mollweide, 243
orthographic, 229
projection matrix, 303

Using IDL

pseudocylindrical, 242

Robinson, 242

satellite, 235

sinusoidal, 243

stereographic, 229

Transverse Mercator, 238
Properties dialog

opening, 64
PseudoColor visuals, 207
pseudocylindrical map projections, 242

Q

quadrature function, 265
querying

images, 175

structure tags, 175

R

raster images, 213
reading
ASCII data, 153, 167
binary data, 154, 169
HDF files, 170
HDF-EOSfiles, 170
image files, 151, 165
netCDF files, 170
scientific format data, 170
recall buffer
persistence, 99
preferences, 98
recent
fileslist, 62
projects, 62
rectangular filter, 273
rendering
hardware versus software, 106
replacing text, 66
resampling images

337

Index

338

see also interpolation
reserving colors, 134
resolution of map databases, 246
resource files, 133
resources for an X Window, 132
RGB color system, 204
RGB images
displaying
Object Graphics
images

Object Graphic RGB image,

215

right-handed coordinate system, 195
Robinson map projection, 242
rotating

arrays, 197

images, 197
routines

cluster analysis, 324

correlation, 285

curve and surface fitting, 287

differentiation/integration, 301

eigenvalueseigenvectors, 293

gridding/interpolation, 294

hypothesis testing, 296

linear systems, 308

mathematical, 280

multivariate analysis, 324

nonlinear equations, 310

optimization, 312

signal processing, 250

sparse arrays, 315

time-series analysis, 318
row-indexed sparse storage method, 313

S

sampled
dataanalysis, 263
images, 213
sampling

Index

aliasing data, 263
satellite map projection, 235
saving

files, 61

image files, 152
scaling

matrices, 196
scientific data format

IDLDE import macro, 170
search path

specifying with preferences, 115
seasonal effect, 316
shading

Gouraud interpolation, 203

light source, 203
shared colormaps, 210
shared colormaps (Motif), 134
reading

See also file access.
signal

analysis transforms, 253

processing, 251
signal processing

routines, 250
sigprcOl batch file, 251
sigprc02 batch file, 252
sigprc03 batch file, 257
sigprc04 batch file, 258
sigprcO5 batch file, 259
sigprc06 batch file, 261
sigprc07 batch file, 262
sigprc08 batch file, 263
sigprc09 batch file, 266
sigprc10 batch file, 271
sigprcll batch file, 272
sigprc12 batch file, 273
sigprcl3 batch file, 276
sigprcl4 batch file, 277
simultaneous linear equations, 302
singular value decomposition, 302
sinusoidal map projection, 243

Using IDL

339

sizing graphics windows, 104 IORDER, 213
smearing frequency plots, 258
SMOQOTH function, 273
software rendering T
setting preference for, 106

sparse arays, 313 TERM environment variable, 21

. text
routines, 315 .
' replacing, 66
;p;nai;r Sareen preference, 97 searching in IDLDE, 65

three-dimensiona

datafile formats, 13 coordinate conversion, 199

image file formats, 12

scientific data formats, 13 grapsrfncs, 195
standardized variables, 321 transformation
Sarti ! matrices, 195
?rDICg 15 time-series anaysis, 316
startup; routines, 318
. . toolbars
st""tork'f’.‘ﬁ directory, 110 IDLDE, 54, 55, 55, 57
?)ra::Jc‘:)h 11ilee execution, 111 Motif platform, 58, 138
overview. 30 ’ show/hide preference, 103
g \t/ v ef’ specifying layout, 103
?)r l:%r?; 1e1rgnces transformation matrices, 195
pu ") 97 transforms
speC| Yl ng,_ Fourier, 254
stationary series, 316 :
Satistics Hilbert, 265
hvpothesis testing. 295 Tustin bilinear, 275
ypt‘? °ﬂ§80 'ng, wavelet, 267
St;(t)uslg? IDLDE, 58 transiation, 196
u ! ! Transverse Mercator map projection, 238
step plot, 252 .
; I trend analysis, 316
stereographic map projection, 229 tri lati
structure tags rlanguiation
image query, 175 drawing fonts, 106
structures TrueType fonts, 106

trilinear interpolation, 202
TrueColor visuals, 207, 211
TrueType fonts

graphic preferences, 106
Tustin transform, 275
two-tailed hypothesis tests, 295
typographical conventions, 45

arrays stored in structure form, 313
supported file formats, 12
surface fitting

discussion, 286

routines, 287
switches, command line, 23
system buffered backing store, 105
system variables

Using IDL Index

340

U

unconstrained minimizer, 311
UTM (Transverse Mercator) map projection,
238

Vv

Variable Watch Window
IDLDE, 58
variables
datatype, determining
SIZE function, 179
derived, 320
standardized, 320

w

wavelet transform, 267
windowing
Hamming windowed signal, 261

Index

windowing algorithm
HANNING function, 260
windows
arranging layout, 104
clipboard support for graphics, 56
separating the IDLDE, 103
show/hide preference
Microsoft Windows platform, 102
Motif platform, 102
working directory, changing on startup, 110
writing
image files, 152

X

X resources
using, 132
Xprinter
defined, 81
printing graphics, 222

Using IDL

	Online Manuals
	IDL Documentation
	What's New in IDL 6.2
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Using IDL
	Contents
	Introducing IDL
	Overview of IDL
	Supported File Formats
	Launching IDL
	Startup Options
	Troubleshooting

	Launching the iTools
	Starting an iTool
	Loading Data into an iTool
	The iTools Data Manager

	Environment Variables Used by IDL
	Preferences
	Non-Preference Environment Variables
	Setting Environment Variables

	Command Line Options for IDL Startup
	Command-Line Switches
	Specifying Preferences at the Command Line
	Using Switches Under Windows

	Startup Files
	Message of the Day Files
	Using Your Mouse with IDL
	Using a Two-Button Mouse
	Using a Macintosh (One-Button) Mouse

	Using Keyboard Accelerators
	Enabling Alt Key Accelerators on Macintosh

	Getting Help with IDL
	Using the IDL Online Help Viewer
	Using the PDF Documentation Set

	Typographical Conventions
	Quitting IDL
	Reporting Problems

	The IDL Development Environment
	Components of the IDLDE
	Menu Bar
	Toolbars
	Project Window
	Multiple Document Panel
	Command Line
	Output Log
	Variable Watch Window
	Status Bar
	Docking/Undocking
	Control Panel Buttons

	File Menu
	Edit Menu
	Search Menu
	Run Menu
	Project Menu
	Macros Menu
	Window Menu
	Help Menu
	Printing in IDL
	IDL Printer Setup in Windows

	IDL Printer Setup in UNIX or Mac OS X
	The Xprinter Setup Dialog
	Configuring Printer Setup Options
	Adding a New Printer to the List of Printer Choices

	Setting IDL Preferences
	About IDL Preferences
	Unavailable Preferences

	Customizing IDL
	Platform Differences

	General Preferences
	Layout Preferences
	Graphics Preferences
	Editor Preferences
	Startup Preferences
	Font Preferences
	Microsoft Windows
	UNIX

	Path Preferences

	Creating Development Environment Macros
	What Are Macros?
	Predefined IDL Macros

	Creating UNIX Macros
	Using the Edit Macros Dialog
	Manually Editing the Resource File

	Creating Windows Macros
	Command Stream Substitutions
	Building IDL Example Macros
	Creating a Macro to Call a Text Editor in IDL for UNIX
	Creating a Macro to Change the Working Directory

	Customizing IDL on Motif Systems
	Using X Resources to Customize IDL
	X Resources and IDL Preferences
	X Resources in Brief
	Resource Files
	Format of IDL Resources
	X Resources Used by IDL
	Reserving Colors

	X Resources at the Command Line
	X Resource Command Line Switches

	Modifying the Control Panel
	Adding Macros Toolbar Buttons
	Adding Macros Menu Entries
	Examples

	Action Routines

	Importing and Writing Data into Variables
	Overview of Data Access in IDL
	Accessing Files Using Dialogs
	Accessing Any File Type Using a Dialog
	Importing an Image File Using a Dialog
	Saving an Image File Using a Dialog

	Reading ASCII Data
	Launching the ASCII Template Dialog

	Reading Binary Data
	Launching the Binary Template Dialog

	Accessing Files Programmatically
	File Access

	Accessing Image Data Programmatically
	Importing Formatted Image Data Programmatically
	Importing Unformatted Image Files
	Exporting Formatted Image Files Programmatically
	Exporting Unformatted Image Files

	Accessing Non-Image Data Programmatically
	Reading Binary Data in a Volume
	Reading Contour Data from a SAVE File

	Using IDL Macros
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	File Access Routines

	Getting Information About Files and Data
	Investigating Files and Data
	Accessing Information in iTools

	Returning Image File Information
	Using the QUERY_IMAGE Info Structure
	Using Specific QUERY_* Routines

	Returning Type and Size Information
	Determining if a Variable is a Scalar or an Array
	Using SIZE to Return Image Dimensions

	Getting Information About SAVE Files
	Create a Savefile Object
	Query the Savefile Object
	Restore Items from the Savefile Object
	Destroy the Savefile Object

	Returning Object Type and Validity
	Returning Information About a File

	Graphic Display Essentials
	IDL Visual Display Systems
	iTools Visualizations
	IDL Object Graphics
	IDL Direct Graphics

	IDL Coordinate Systems
	DATA Coordinates
	DEVICE Coordinates
	NORMAL Coordinates
	Understanding Windows and Related Device Coordinates

	Coordinates of 3-D Graphics
	Homogeneous Coordinates
	Right-Handed Coordinate System
	Transformation Matrices
	Translation
	Scaling
	Rotation

	Coordinate Conversions
	Two-Dimensional Coordinate Conversion
	Three-Dimensional Coordinate Conversion
	Using Coordinate Conversions

	Interpolation Methods
	Polygon Shading Method
	Color Systems
	Color Schemes
	Converting to Other Color Systems

	Display Device Color Schemes
	Colors and IDL Graphic Systems
	Using Color in Object Graphics
	Using Color in Direct Graphics

	Indexed and RGB Image Organization
	Image Orientation
	Indexed Images
	RGB Image Interleaving
	Converting Between Image Types

	Loading a Default Color Table
	Modifying and Converting Color Tables
	Highlighting Features with a Color Table

	Using Fonts in Graphic Displays
	Printing Graphics
	Printing IDL Direct Graphics
	Printing IDL Object Graphics

	Map Projections
	Overview of Mapping
	Creating a Map Display

	Graphics Techniques for Mapping
	Splitting
	3D Clipping
	Projection
	Rectangular Clipping

	Map Projection Types
	Azimuthal Projections
	Orthographic Projection
	Stereographic Projection
	Gnomonic Projection
	Azimuthal Equidistant Projection
	Aitoff Projection
	Lambert’s Equal Area Projection
	Hammer-Aitoff Projection
	Satellite Projection

	Cylindrical Projections
	Mercator Projection
	Transverse Mercator Projection
	Cylindrical Equidistant Projection
	Miller Cylindrical Projection
	Conic Projection
	Albers Equal-Area Conic Projection

	Pseudocylindrical Projections
	Robinson Cylindrical
	Sinusoidal Projection
	Mollweide Projection
	Goode’s Homolosine Projection

	High-Resolution Continent Outlines
	Resolution of Map Databases

	References

	Signal Processing
	Overview of Signal Processing
	Routines for Signal Processing
	Running the Example Code

	Digital Signals
	Signal Analysis Transforms
	The Fourier Transform
	Interpreting FFT Results
	Displaying FFT Results
	Using Windows
	Hanning Window
	Hamming Window

	Aliasing
	FFT Algorithm Details
	The Hilbert Transform
	The Wavelet Transform
	Convolution
	Correlation and Covariance
	Digital Filtering
	Finite Impulse Response (FIR) Filters
	FIR Filter Implementation
	Infinite Impulse Response Filters
	References

	Mathematics
	Overview of Mathematics in IDL
	IDL’s Numerical Recipes Functions
	Correlation Analysis
	Correlation Example
	Notes on Interpreting the Correlation Coefficient
	Multiple Linear Models
	Routines for Computing Correlations

	Curve and Surface Fitting
	Routines for Curve and Surface Fitting

	Eigenvalues and Eigenvectors
	Symmetric Array with n Distinct Real Eigenvalues
	Nonsymmetric Array with n Distinct Real and Complex Eigenvalues
	Repeated Eigenvalues
	The So-called Defective Case
	Routines for Computing Eigenvalues and Eigenvectors

	Gridding and Interpolation
	Routines for Gridding and Interpolation

	Hypothesis Testing
	One- and Two-sided Tests
	Parametric and Nonparametric Tests
	Routines for Hypothesis Testing

	Integration
	A Bivariate Function
	A Trivariate Function
	Routines for Differentiation and Integration

	Linear Systems
	Overdetermined Systems
	Underdetermined Systems
	Complex Linear Systems
	Routines for Solving Simultaneous Linear Equations

	Nonlinear Equations
	Routines for Solving Nonlinear Equations

	Optimization
	Routines for Optimization

	Sparse Arrays
	Diagonally-Dominant Array
	Routines for Handling Sparse Arrays

	Time-Series Analysis
	Routines for Time-Series Analysis

	Multivariate Analysis
	Cluster Analysis
	Principal Components Analysis
	Routines for Multivariate Analysis

	References
	Correlation Analysis
	Curve and Surface Fitting
	Eigenvalues and Eigenvectors
	Gridding and Interpolation
	Hypothesis Testing
	Integration
	Linear Systems
	Nonlinear Equations
	Optimization
	Sparse Arrays
	Time-Series Analysis
	Multivariate Analysis

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

