UCID-19310, Rev. 2

ORION: An interactive color post-processor for two dimensional finite element codes

John O. Hallquist JoAnne L. Levatin

January, 1982 Rev. 1, July, 1983 Rev. 2, August, 1985

ACKNOWLEDGMENT:

Acknowledgment is given to the prior ORION developers.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name-trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

> Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Price	Page
Code	Range
A01	Microfiche
Papercopy Prices	
A02	001-050
A03	051-100
A04	101-200
A05	201-300
A06	301 - 400
A07	401-500
A08	501-600
A09	601

ORION: An interactive color post-processor for two dimensional finite element codes

John O. Hallquist JoAnne L. Levatin

Methods Development Group Mechanical Engineering Department

August, 1985

CONTENTS

ABSTRACT	•••••1
INTRODUCTION	1
BACKGROUND	1
CAPABILITIES	2
EXECUTION	2
DATABASE	3
COMMAND DEFINITIONS	5
Commands common to phases I and II	5
PHASE I COMMANDS	13
PHASE II COMMANDS	21
EXAMPLE	27
ACKNOWLEDGEMENTS	43
REFERENCES	45
APPENDIX A	47
EFFECTIVE STRESS AND STRAIN	47
APPENDIX B	49
NORMAL AND SHEAR COMPONENTS	49
APPENDIX C	51
STRAIN CALCULATIONS	51
APPENDIX D	53
EXPERIMENTAL DATA FILE	53

•

.

-

.

•

ORION: An interactive color post-processor for two dimensional finite element codes

ABSTRACT

This report is a user's manual for the post-processor, ORION. ORION reads the binary plot files generated by the two-dimensional finite element codes currently used at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION runs on the CRAY-1 and VAX computers.

INTRODUCTION

BACKGROUND

ORION [1] is the interactive post-processor for NIKE2D [2], DYNA2D [3], TACO2D [4], TOPAZ [5], and GEM2D [6]. ORION remains under continuous development by the authors, and frequent users, therefore, are encouraged to make suggestions concerning new features they would like implemented.

CAPABILITIES

ORION has the capability to plot:

- o color fringes,
- o contour lines,
- o vector plots,
- o principal stress lines,
- o deformed meshes and material outlines,
- o time histories,
- o reaction forces along constrained boundaries,
- o interface pressures along slidelines,
- o user specified labels.

Most strain measures are computed internally in ORION for display.

EXECUTION

ORION is in public on all CRAY machines in Livermore and may be executed by typing

ORION C=cfile G=pfile S=sfile

where

cfile = input file containing commands
pfile = first binary plot file
sfile = all commands are saved in sfile

After exhausting the commands in cfile, ORION returns control to the terminal for interactive input. The sfile, whose default name is ORNSAV, may be used as the cfile in subsequent runs. When used interactively, the execution line is

ORION G=pfile S=sfile

ORION G=pfile

On VAX/VMS computers ORION will prompt for the input line. File names should be kept to under 8 characters and the file type designation should not be typed, i.e., the user should enter:

G = pfile

even though the file name is **pfile.DAT;1.** Instead of the monitor number, the user enters the number for the device desired. A list of terminals and associated numbers is printed to the terminal before the "TMDS:" prompt. TMDS is an acronym for Television Monitor Display System.

DATABASE

Presently, THOR [7] and POSTACO [8] binary databases are read by ORION. Others are also implemented and read. New databases can be trivally added by anyone who has a complete understanding of ORION's undocumented organizational structure. We will not attempt to describe the structure here since it is too complicated, but for those who do not have an understanding but wish to add a new database, we have included comment cards in the source.

-3-

-4-

COMMAND DEFINITIONS

Commands common to phases I and II

.

٠

•

HELP	Enter HELP and display all available commands. Description of each command is available in the HELP package.
TV n	Use TMDS with monitor number n. If n is the red channel of a color TMDS, ORION will automatically grab the green and blue channel. (The authors must be aware of the TMDS channel numbers for this to occur, however.)
TV -n ₁ n ₂ n ₃	Use color TMDS with monitor numbers n_1 , n_2 , and n_3 for the red, green, and blue channels, respectively.
T or END	Terminate.
Zrz Al	Zoom in at point (r,z) with window $\Delta \ell$.
UZ a b se	Zoom in at point (a,b) with window $\Delta \ell$ where a, b, and $\Delta \ell$ are numbers between 0 and 1. The picture is assumed to lie in a unit square.
UZG	Cover currently displayed picture with a 10 by 10 square grid to aid in zooming with the unity zoom, "UZ", command.

FIX	Set TMDS picture to its current window. This window is set until it is reset by the "GSET, "FSET," or "SETF" commands or released by the "UNFIX" command.
UNFIX	Release current TMDS window set by the "FIX," "GSET," "FSET" or "SETF" commands.
GSET r z ∆l	Center TMDS pictures at point (r,z) with square window of width Δℓ. This window is set until it is reset or the "UNFIX" command is typed.
FSET n Ar Az	Center TMDS pictures at node n with a rectangular <u>Ar x Az</u> window. This window is set until it is reset with or the "UNFIX" command is typed.
SETF r z Ar Az	Center TMDS pictures at point (r,z) with a rectangular <u>Ar x Az</u> window. This window is set until it is reset or the "UNFIX" command is typed.
FR80 filmtype	Select FR80 camera. FR80 default filmtype is FICHE48. Other options include: FICH48D, FICHE24, FICH24D, 35mm, COLOR35, DICO35, P16mm, COLOR16, DICO16, CSLIDE35, HARDCOPY, REPORT, VUGRAPH, and VUGRAF11. This command, if used, must precede the "PLOTS" command.

CLASS level	Set classification level of FR80 output. The default is UNCLASS. Other levels include: PROGLEV, PARD, ADP, CONFIDNT, SRD, and SYSTEM. This command, if used, must precede the "PLOTS" command.
GIVE	Give the FR80 file to the system for plotting upon termination. This command, if used, must precede the "PLOTS" command.
PLOTS	Create FR8Ø plotfile containing a record of the TMDS display.
LTS	List each state number and time word contained in the database on the computer terminal.
DTS n & m ₁ & m _n	Delete states ℓ _i to m _i for i=1,2,,n from the database. These states are recovered when ORION is terminated.
C	Comment - proceed to next card.
ТТҮ	Return control to the terminal. This command may be placed anywhere in an ORION command file.
CFILE	Return control to the command file specified on the execute line. This command is used from the terminal.
GRID	Overlay TMDS displays with a grid of orthogonal lines.

-7-

NOGRID	Do not overlay TMDS displays with a grid of orthogonal lines (default).
TIME t .	Read state corresponding to time t into memory. If t does not correspond to a particular state in the database, ORION will interpolate between two states to time t. If t exceeds the maximum time in the database, ORION will extrapolate to time t using the last two states.
STATE n	Read state n into memory.
G	View mesh.
UDG	Display nodal points of the undeformed mesh as dots on the mesh plots. Retyping "UDG" turns this option off.
RPVA	Reflect mesh, contour, fringe, etc., plots about vertical axis. Retyping "RPVA" turns this option off.
RPHA	Reflect mesh, contour, fringe, etc., plots about horizontal axis. Retyping "RPHA" turns this option off.
Mn	Plot material n with any of the next three commands.
V	View mesh of material n.
NDPLT	Plot node numbers on mesh of material n.

-8-

•

ELPLT	Plot element number on mesh of material n.
HEAD	Define heading to appear on all plots. Desired heading is expected on the next line in the input deck. If typed interactively, ORION will prompt for the heading.
HDSZ m	The heading is plotted m characters to a line.
TSCL tscl	Scale time by tscl.
GSCL gscl	Scale length by gscl.
SSCL sscl	Scale stress by sscl.
TMOD scl shf	Modify TOPAZ (TACO) temperature state by scaling it by scl and shifting it by shf.
FRAME	Frame plots with a reference grid (default).
NOFRAME	Do not plot a reference grid.
RJET n i	<pre>Send a copy of the FR8Ø file to rjet n using plot format i where i=1 gives a 5" plot i=2 gives a 8" plot i=3 gives a 10.5" plot i=4 gives the largest possible plot. If i is negative, the plot is sideways, rotated 90 degrees clockwise on the paper. Plots may be sent to either the 11 or 22 inch plotters.</pre>

•

.

-9-

PHSØ filename	Return to initialization phase and use the plotfile sequence beginning with file, filename.
RESO n _x n _y	Set the x and y resolutions of ORION plots to n_{χ} and n_{y} , respectively. We default both n_{χ} and n_{y} to 1024.
TEXT nstma	Define text line n at location (s,t). Characters are plotted m to a line at an angle a. Coordinates s and t lie between O and l inclusive and refer to the area within the frame. The "UZG" command may be used as an aid in setting s and t. The desired text is expected on the next line in the input deck. If typed interactively, ORION will prompt for the text. Text will not be plotted until the "USETXT" command is typed.
USETXT	Display all text defined with the TEXT command.
DELTXT	Do not display text defined with the TEXT command.
DTXT m n	Delete text lines m to n.
The following commands apply to time	history plots, interface plots, etc.
ASET amin amax '	Set minimum and maximum values on abscissa to amin and amax, respectively. If amin=amax=0.0 (default) ORION determines the minimum and maximum values.

-10-

ΑΤΧΤ	Replace default label on abscissa. The desired text is expected on the next line of the input deck. If typed interactively, ORION will prompt for the text.
ΟΤΧΤ	Replace default label on ordinate. The desired text is expected on the next line of the input deck. If typed interactively, ORION will prompt for the text.
DATXT	Restore default label on abscissa.
DOTXT	Restore default label on ordinate.
OSET omin omax	Set minimum and maximum values on ordinate to omin and omax, respectively. If omin=omax=0.0 (default) ORION determines the minimum and maximum values.
ASCL f _a	Scale all abscissa data by f _a . The default is f _a = 1.
OSCL f _o	Scale all ordinate data by f _o . The default is f _o = 1.
SMOOTH n	Smooth a data curve by replacing each data point by the average of the 2n adjacent points. The default is n=0.
LOGO	Put LLNL logo on all plots (default). Retyping this command removes the logo.

-

.

.

•

•

•

Addendum:

ORION Commands Implemented Since August 1985

Commands Common to Phase I and Phase II

dmo	dmo { on off }	Enable/disable drawing of material outlines
file	file <i>file_name</i>	Specify <i>file_name</i> for associated commands "print", "etime" (and related commands)
lamina	lamina <i>file_name</i>	Specify material data <i>file_name</i> containing lamination information
lcnn	lcnn	Enable/disable assignment of side numbers from lowest numbered node of an element; command "lcnn" toggles between each setting
norefresh	norefresh	Disable graphics refreshing
npdata	npdata	Output nodal coordinates to "ornout"
nplp	nplp <i>n</i>	Adjust number <i>n</i> of points in a line
pale	palette <i>n c₁ c_n</i>	Set user-defined color palette of n colors using color indices c_1 through c_n
ply	ply <i>n p</i> ₁ <i>p</i> _n	Set lamina plies of <i>n</i> plies using ply indices p_1 through p_n

		NOTE: lamina must be called before ply
plys	plys <i>p₁ p_n stride</i>	Set lamina ply indices p₁ through p _n using <i>stride</i>
		NOTE: lamina must be called before plys
refresh	refresh	Enable graphics refreshing
speckles	speckles <i>level</i>	Enable correction procedure for "speckled" fringe plots wherein elements whose nodal values fluctuate about 0.0 will be correctly plotted
thick	thick <i>frame</i> thick <i>head</i> thick <i>mesh</i>	Set line and stroked character text for "thicker" plot headings, frames (axes and legends), and mesh grids
thin	thin <i>frame</i> thin <i>head</i> thin <i>mesh</i>	Set line and stroked character text for "thinner" plot headings, frames (axes and legends), and mesh grids
traction	traction <i>n m₁ m_n</i>	Compute traction force(s) and moment(s) of n materials m_1 through m_n
ztol	ztol tolerance	Obtain z-tolerance value for fringe, contour, et cetera, interval levels

PHASE I COMMANDS

4

-

.

•

DE e ₁ e ₂	Delete elements e ₁ to e ₂ .
DM n m ₁ m ₂ m _n	Delete n materials including m ₁ , m ₂ ,, and m _n .
CMN e ₁ e ₂ m	Change material number of elements e _l to e ₂ to m.
0	Plot outlines of all material.
UDO	Display nodal points of the undeformed outline as dots on the outline plots. Retyping "UDO" turns this command off.
мО	Plot material outline of material n where n is defined with the "M" command.
В	Determine boundary nodes of material n and display boundary with nodes on TMDS. The material number, n, is defined with the "M" command.
FSON	Plot only free surfaces and slideline interfaces with "O" command. [Must be used before "O" command.]
FSOFF	Turn off the "FSON" command.
GO	View mesh right of centerline and outline left of centerline.

Switch geometry plots to a left-handed coordinate system with the radial coordinate along the positive vertical axis, and the axial coordinates plotted along the horizontal axis. To turn this command off, simply retype it. If this option is active, interface pressures are not computed correctly.

Do not plot material numbers with the "O", "G", and "GO" commands (default).

Plot material numbers with "O", "G", and "GO" commands.

Displacements are scaled by s. The default is 1.

Contour component number c on n materials including materials m_1, m_2, \dots, m_n . If n is zero, only the outline of material m_1 with contours is plotted. Component numbers are given in Table 1.

Plot lines of principal stress and strain in the yz plane on n materials including materials m_1, m_2, \ldots, m_n . If n is zero, only the outline of material m_1 is plotted. The lines are plotted in the principal stress and strain directions. Permissible component numbers in Table 1 include 0, 5, 6, 100, 105, 106,...,etc. Orthogonal lines of both maximum and minimum stress are plotted if components 0, 100, 200, etc. are specified.

-14-

CONTOUR c n m₁ m₂ ··· m_n

PRIN c n m_1 $m_2 \cdots m_n$

MNON

MNOFF

DSF s

FRINGE c n m ₁ m ₂ m _n	Fringe component number c on n materials including m ₁ , m ₂ ,,m _n . If n is zero, only the outline of material m ₁ with contours is plotted. Component numbers are given in Table 1.
NCOL n	Number of colors in fringe plots is n. The default value for n is 6 which includes colors white, blue, cyan, green, yellow, and red. An alternative value for n is 5 which eliminates the minimum value white.
PROFILE c n m ₁ m ₂ m _n	Plot component c versus element number for n materials including materials m_1 , m_2, \ldots, m_n . If n is \emptyset , then component c is plotted for all elements. Component numbers are given in Table 1.
VECTOR c n m ₁ m ₂ m _n	Make a vector plot of component c on n materials including materials m_1 , m_2, \ldots, m_n . If n is zero, only the outline of material m_1 with vectors is plotted. Component c may be set to "D" "V" or "F" for vector plots of displacement velocity, or heat flux respectively.
LINE c n m ₁ m ₂ m _n	Plot variation of component c along line defined with the "NLDF", "PLDF", "NSDF", or the "NSSDF" commands given below. In determining variation, consider n materials including material number m ₁ , m ₂ ,m _n .

•

٠

.

•

-15-

NLDF n n ₁ n ₂ n ₃	Define line for "LINE" command using n nodes including node numbers n _l , n ₂ ,n _n . This line moves with the nodes.
PLDF n r ₁ z ₁ r _n z _n	Define line for "LINE" command using n coordinate pairs (r ₁ ,z ₁), (r ₂ ,z ₂),(r _n ,z _n). This line is fixed in space.
NSDF m	Define line for "LINE" command as side m. Side m is defined for material n by the "B" command.
NSSDF & m	Define line for "LINE" command and that includes boundary nodes & to m (counterclockwise) in the interface definitions. This command must follow the "B" command.
RANGE r ₁ r ₂ .	Set the range of levels to be between r ₁ and r ₂ instead of in the range chosen automatically by ORION. To deactivate this command, type RANGE 0. 0.
MOLP	Overlay the mesh on the contour, fringe, principal stress, and principal strain plots. Retyping "MOLP" turns this option off.
NUMCON n	Plot n contour levels. The default is 9.
PLOC	Plot letters on contour lines to identify their levels (default).

NLOC	Do not plot letters on contour lines.
IFD n	Begin definition of interface n. If interface n has been previously defined, this command has the effect of destroying the old definition.
IFS m	Include side m in the interface definition. Side m is defined for material n by the "B" command.
IFN e m	Include boundary nodes & to m (counterclockwise) in the interface definition. This command must follow the "B" command.
IFP c m	Plot component c of interface m. Component numbers are given in Table 2.
IFMS c m n i ₁ i ₂ ··· i _n	Plot multiple states. Component c of interface m is plotted for n states including states i ₁ ,i ₂ ,, and i _n .
IFVA r _c z _c	Plot the angular location of the interface based on the center point (r _c ,z _c) along the abcissa. Positive angles are measured counterclockwise from the y axis.
IFVS	Plot the distance along the interface from the first interface node along the abcissa (default).
LOSER i	Write a LOSER file for interface i.

÷

No.	Component	No.	Component
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Y z hoop yz maximum principal minimum principal von Mises (Appendix A) pressure or average strain maximum principal-minimum principal y minus hoop maximum shear ij and kl normal (Appendix B) jk and li normal ij and kl shear jk and li shear y-deviatoric z-deviatoric hoop-deviatoric	No. 21* 22* 23* 25* 26* 27* 28 29 30 31 32 33 34 35* 36* 37* 38;	Component In (V/Vo) (volumetric strain) y-displacement z-displacement maximum displacement y-velocity, y-heat flux z-velocity, z-heat flux maximum velocity, max. heat flu ij normal jk normal kl normal li normal ij shear jk shear kl shear li shear relative volume V/Vo Vo/V-1 bulk viscosity, Q
19 [°] 20 [*]	effective plastic strain temperature	39 ^ 40*	P + Q density

Table 1. Component numbers for element variables. By adding 100, 200 300, 400, and 500 to the component numbers not superscripted by an asterisk, components numbers for infinitesimal strains, Green-St. Venant strains, Almansi strains, strain rates, and extensions are obtained, respectively. Maximum and minimum principal stresses and strains are in the yz plane. The corresponding hoop quantities must be examined to determine the overall extremum. Strain calculations are described in Appendix C.

 No.	Component
1	pressure
2	shear stress
3	normal force
4	tangential force
5	y-force
6	z-force

Table 2. Component numbers for interface variables. In axisymmetric geometries the force is per unit radian.

R n m k	Repeat command. ORION will repeat the command that immediately follows for states n to m incrementing by k. This command applies to the "G", "GO", "O", "MO", "CONTOUR", "IFP", and "IFMS" commands.
RMC n m k £	Repeat multiple commands. ORION will repeat the commands that immediately follow, including the next & lines of input for states n to m incrementing by k. This command is generally preferred over repetitious use of the I/O intensive "R" command.
MOVIE tø t _k k e	Repeat multiple commands. ORION will repeat the commands that immediately follow, including the next ℓ lines of input, starting at time t_{β} and ending at time t_k in k equal increments.

PHS2

.

.

•

٠

Proceed to Phase II.

.

•

PHASE II COMMANDS

.

٠

-

٠

-

PHS1	Return to Phase I.
ELEMENTS $n e_1 e_2 \cdots e_n$	Select the n elements for time history plots with element numbers e ₁ ,e ₂ ,,e _n .
COMP n c ₁ c ₂ c _n	Select the n stress and strain components for element time history plots with numbers c_1, c_2, \ldots, c_n . Components are listed in Table 1.
NODES n n ₁ n ₂ ··· n _n	Select for time history plots the n nodes with numbers n_1, n_2, \dots, n_n .
MATLS n m ₁ m ₂ ••• m _n	Select the n materials for time history plots with material numbers m ₁ ,m ₂ , ,m _n .
IFNDS n n ₁ n ₂ n _n	Select the n interface nodes with node numbers n ₁ ,n ₂ ,,n _n for time history plots.
IFFP	Pack total interface forces for all interfaces.
GATHER	Read through the plot files and store the time histories for all the variables specified in the "ELEMENTS", "COMP", "NODES", "MATLS", and "IFNDS" commands. This command must be typed before any time histories can be plotted.

EXPDATA filename	Plot experimental data in file filename on next plot generated by any of the commands "NTIME", "ETIME",, etc. which follow. The data structure of filename is described in Appendix D.
CENTER r _c z _c	Set center for radial time history plots at (r _c ,z _c) [Must then use NTIME command.]
ETIME c n e _l e ₂ e _n	Plot component c for n elements with numbers e ₁ ,e ₂ ,,e _n over time. The component and element numbers must be defined with the "COMP" and "ELEMENTS" commands, respectively.
NTIME c n n _l n ₂ n _n	Plot component c for n nodes with numbers n ₁ ,n ₂ ,,n _n over time. Component numbers are defined in Table 3. The node numbers must be defined in the "NODES" command.
MTIME c n m _l m ₂ m _n	Plot component c for n materials with numbers m _l ,m ₂ ,m _n over time. Component numbers are defined in Table 4. The material numbers must be defined in the "MATLS" command.
NRTIME c n ₁ n ₂	Plot over time the difference in component c by subtracting the value of c at node n_2 from the value at node n_1 . Component numbers are defined in Table 3. The node numbers must be defined in the "NODES" command.

-22-

ITIME c n n ₁ n ₂ ··· n _n	Plot over time component c for n interface nodes with numbers n ₁ ,n ₂ ,,n _n . Component numbers are defined in Table 2. The interface node numbers must be defined in the "IFNDS" command.
FTIME cn i ₁ i ₂ ··· i _n	Plot over time component c for n interfaces with numbers i ₁ ,i ₂ ,,i _n . Component numbers are defined in Table 5.
GTIME c	Plot over time global variable c. Component numbers are defined in Table 6.
SSPLT e c ₁ c ₂	Plot component c ₁ versus c ₂ for element e. The component and element numbers must be defined with the "COMP" and "ELEMENTS" commands, respectively.
PALL	Plot all data packed by the GATHER command.
PRINT	Print plotted time history data in file ORNOUT. Only data plotted after this command is printed.
COLUMN	Printed data is written with the format 2E20.11.

•

.

.

No.	Component
1	y-displacement
2	z-displacement
3	y-velocity, y-heat flux
4	z-velocity, z-heat flux
5	y-acceleration
6	z-acceleration
7	temperature
8	r-coordinate
9	z-coordinate
10	radius

Table 3. Component numbers for nodal time history plots. The radius is relative to point (r_c, z_c) defined in the "CENTER" command.

No.	Component	No.	Component
1	y-momentum	10	y-negative velocity
2	y-positive momentum	11	z-rigid body velocity
3	y-negative momentum	12	z-positive velocity
4	z-momentum	13	z-negative velocity
5	z-positive momentum	14	kinetic energy per unit mass
6	z-negative momentum	15	internal energy
7	kinetic energy	16	y rigid body acceleration
8	y-rigid body velocity	17	z rigid body acceleration
9	y-positive velocity		

Table 4. Component numbers for material time history plots.

No.	Component
1	total y-force
2	total z-force

Table 5. Component numbers for total interface force time history plots.

No.	Component
1	total kinetic energy
2	total internal energy
3	kinetic + internal energy
4	y-momentum
5	z-momentum
6	y-rigid body velocity
7	z-rigid body velocity

.

Table 6. Component numbers for global variable time history plots.

•

-26-

-

.

•

EXAMPLE

Use of ORION is demonstrated in the example which follows. The input file which correlates the command and figure number is shown below.

COMMAND	TMDS FIGURE
BOX S14	
1625 PLOTS	C FIGURE 1
GO	C FIGURE 2
STATE 51 GO	C FIGURE 3
STATE 6 CONTOUR 8 1 2	C FIGURE 4
IFD 1 M 1 B	
IFS 1	
IFD 2 M 2 B	C FIGURE 5
IFS 2	
IFVA O O	
IFMS 1 1 5 7 8 9 10 11	C FIGURE 6
IFMS 1 2 5 7 8 9 10 11	C FIGURE 7
PHS2 IFFP IFNDS 2 5 106 GATHER	
ASET 0 50.	
ITIME 1 1 106	C FIGURE 8
FTIME 2 2 1 2	C FIGURE 9
PHS1 DE 77 600	
MOVIE 0 200 5 0 GO	C FIGURE 10-15
RJET 10 -1	
END	

Fig. 1.

•

Fig. 2.

¢

100P0515E 13 54 1101/02/82 F P 6

Fig. 3.

•

.

-

NOPOSISE 13 54 1101/02/82 F P 8

NOP0515E 13 54 1101/02/82 F P 10

Fig. 5.

R0P0515E 13 54 1101/02/82 F P 12

Fig. 6.

HCP0515E 13 54 1101/02/82 F P 14

Fig. 7.

ı.

.

.

-

RCP0515E 13 54 1101/02/82 F P 18

Fig. 8.

HOP0515E 13 54 1101/02/82 F P 20

F

.

,

Fig. 10.

Fig. 11.

.

.

*

107-05151 13 54 1101/02/82 F P 28

.

Fig. 12.

KOP0515E 13 54 1101/02/82 F P 30

Fig. 13.

1

.

.

.

#270515E 13 54 1101/02/82 F P 32

.

Fig. 14.

10000515E 13 54 1101/02/82 F P 34

٦

Fig. 15.

ACKNOWLEDGEMENTS

Special thanks is due to Nikki Falco who skillfully typed this manual.

÷

.

.

.

•

•

-44-

.

.

•

•

REFERENCES

- J. O. Hallquist, "ORION: An Interactive Post-Processor for the Analysis Codes NIKE2D, DYNA2D, and TACO2D," University of California, Lawrence Livermore National Laboratory, Rept. UCID-19310, (1982), Rev. 1 (1983).
- J. O. Hallquist, "NIKE2D: An Implicit, Finite-Deformation, Finite-Element Code for Analyzing the Static and Dynamic Response of Two-Dimensional Solids," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52678 (1979).
- J. O. Hallquist, "DYNA2D An Explicit Finite Element and Finite Difference Code for Axisymmetric and Plane Strain Calculations, (User's Guide)," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52429 (1978).
- P. J. Burns, "TACO2D A Finite Element Heat Transfer Code," (A Modified and Extended Version of the TACO Code by W. E. Mason, Jr.), University of California, Lawrence Livermore National Laboratory, Rept. UCID-17980, Rev. 2 (1982).
- A. B. Shapiro, "TOPAZ A Finite Element Heat Transfer Code," (A Modified and Extended Version of the TACO Code by W. E. Mason, Jr.), University of California, Lawrence Livermore National Laboratory, Rept. UCID-20045 (1984).
- John Peterson, "GEM2D The Galerkin Electromagnetics Code," University of California, Lawrence Livermore National Laboratory, Rept. UCID pending (1984).
- J. O Hallquist, "THOR: A Post-Processor for Two-Dimensional Analysis Codes," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52852 (1980).

 W. E. Mason, Jr., "POSTACO - A Post-Processor for Scalar Finite Element Codes," University of California, Lawrence Livermore National Laboratory, Rept. UCID-17979, Rev. 1 (1980).

APPENDIX A

EFFECTIVE STRESS AND STRAIN

The effective stress and strain, component 7, and the effective plastic strain, component 19, are defined here to avoid confusion:

effective stress σ

$$\sigma = \left(\frac{3}{2} s_{ij} s_{ij}\right)^{1/2}$$

effective strain ε , E, ...

$$\bar{\varepsilon} = \left(\begin{array}{c} \frac{2}{3} \varepsilon_{ij}^{d} & \varepsilon_{ij}^{d} \end{array}\right)^{1/2}$$

effective plastic strain ε_{n}

$$\bar{\varepsilon}_{p} = \int_{0}^{t} \frac{2}{3} D_{ij}^{p} D_{ij}^{p} dt.$$

The terms $s_{\mbox{ij}}$ and $\varepsilon^d{}_{\mbox{ij}}$ are the deviatoric components of the stress and strain tensors

$$s_{ij} = \sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij} ,$$

$$\varepsilon_{ij}^{d} = \varepsilon_{ij} - \frac{1}{3} \varepsilon_{kk} \delta_{ij} ,$$

and D^p_{ij} is the plastic component of the rate of deformation tensor. The effective plastic strain is written into the plot file with the stress state.

٠

APPENDIX B

NORMAL AND SHEAR COMPONENTS

The normal and shear stress and strain components can be readily defined as shown in Figure F.1 below.

ij& k] jk &]i

$$\theta = \tan^{-1} \frac{z_j^{+z_k} - z_i^{-z_1}}{y_j^{+y_k} - y_i^{-y_1}} \quad \theta = \tan^{-1} \frac{z_k^{+z_1} - z_i^{-z_1} - z_j^{-z_1}}{y_k^{+y_1} - y_i^{-y_1} - y_j^{-y_1}}$$

.

Figure F.1. Definition of normal and shear components for Q4 and Q8 elements.

.

•

APPENDIX C

STRAIN CALCULATIONS

Assume that particles in a body have coordinates y and z that map to positions Y and Z at time zero. These coordinates are related through the displacements v and w by

$$y = Y + v(Y,Z,t),$$

$$z = Z + w(Y,Z,t).$$

Velocities are given by the time derivatives of the displacements

9

,

$$\overset{\circ}{v} = \overset{\circ}{y} = \frac{\partial y}{\partial t} = \frac{\partial v}{\partial t}$$
,

.

.

$$\widetilde{W} = \widetilde{Z} = \frac{\partial Z}{\partial t} = \frac{\partial W}{\partial t}$$

The deformation gradient matrix

Ŷ

$$\frac{\partial y}{\partial Y} \quad \frac{\partial y}{\partial Z} \quad 0$$

$$F_{-} = \quad \frac{\partial z}{\partial Y} \quad \frac{\partial z}{\partial Z} \quad 0$$

$$0 \quad 0 \quad \frac{y}{V}$$

and the velocity gradient matrix

$$\frac{\partial \hat{v}}{\partial y} \quad \frac{\partial \hat{v}}{\partial z} \quad 0$$

$$L = \frac{\partial \hat{w}}{\partial y} \quad \frac{\partial \hat{w}}{\partial z} \quad 0$$

$$0 \quad 0 \quad \frac{\hat{y}}{\hat{y}}$$

are useful for defining the strain measures:

infinitesimal strain matrix

$$\varepsilon = \frac{1}{2} (F + F^{t}) - I ,$$

Green-St. Venant strain matrix

$$E_{\tilde{z}} = \frac{1}{2} (F_{\tilde{z}}^{t} F - I) ,$$

Almansi strain matrix

$$e_{z} = \frac{1}{2} (I - f^{t} f) ,$$

rate of deformation matrix

$$D_{\tilde{u}} = \frac{1}{2} \left(L_{\tilde{u}} + L^{t} \right)$$

extensions

$$E_{(N)} = [N^{t} (F^{t}F) N]^{1/2} - I$$
,

,

where I is the identity matrix and $f = F^{-1}$. The extensions correspond to strain gage data in that they measure the extension of a line of unit length whose direction before deformation is N. In plane strain problems, $F_{33} = 1$ and $L_{33} = 0$.

APPENDIX D

EXPERIMENTAL DATA FILE

The time history options of ORION allows experimental data to be plotted. The data is contained in the data file named with the "EXPDATA" command.

More than one data record may be contained in the file. Points of each record will be plotted with a different character. The first number of the data record gives the number of points, N, in the record and is specified as an integer in columns 1-5; i.e., a I5 field. The N lines that follow define the data points such that in columns 1-20 a time value is specified and in columns 21-40, the corresponding function value is defined. Here 2E20.0 field is assumed. ORION ceases to plot data points when the end-of-file is detected, that is, after all data records contained in the file are plotted.

Technical Information Department · Lawrence Livermore Laboratory University of California · Livermore, California 94550

ų

