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Abstract 

We have investigafed the efiecf of uneven dufa spacing on the computation of uz(r). Evenly 
spaced simulated data sets were generated for noise processes ranging from white PM to random 
walk FM. uz(r) was then &&fed for each noise type. Dcrtcr were subsequently removed from 
each simulcrted data set using fypical TWSTFT data patterns to create two unevenly spaced sets 
with average intervals of 2.8 and 3.6 days. cz(r) was then calculated for euch sparse data set 
using two dinerent approaches. First, the missing data points were replaced by linear interpolation 
and u,(T) &lafed from this now fuU data set. The second appraach ignored the fad that the 
data were unevenly spaced and calculated uz(r)  as i f  the data were equally spaced with average 
spacing of 2.8 or 3.6 days. Bdh approaches have advantages and disadvanhges, and techniques 
are presented for correcting errors caused by uneven data spacing in typical TWSTFT data sets. 

INTRODUCTION 

Data points obtained from an experiment are often not evenly spaced. In this paper, we 
examine the application of u,(T) = 3-'/*~(mo&,(~))[1] to the unevenly spaced time-series 
data obtained from two-way satellite time and frequency transfer (TWSTF"). We do so by 
using u,(T) with both evenly and unevenly spaced simulated data of known power-law noise 
type and magnitude. The noise types examined are white phase modulation (WHPM), flicker 
phase modulation (FLPM), white frequency modulation (WHFM), flicker frequency modulation 
(FLFM), and random walk frequency modulation (RWFM)[zl. 

Vemotte et aZ.[3] studied the analysis of noise and drift in unevenly spaced pulsar data. However, 
the data obtained from pulsar studies are much more sparse in time, with only about 2% of 
the possible data available. In TWSTR, the task is less daunting: time transfers are typically 
measured on Monday, Wednesday, and Friday, so, in a perfect world, we would have a data 
density of 3 data points present out of a possible 7. 

This paper is not intended to be a rigorous treatment of how to calculate o,(T) in all possible 
cases of unevenly spaced data. Rather, our purpose is to suggest methods and corrections 
which may be applied to data such as those produced by TWSTFT in order to obtain a more 
accurate assessment of the underlying time stability and noise type. 
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The National Institute of Standards and Technology (NIST) regularly performs time transfers 
With several laboratories in North America and Europe. WO of these laboratories are the United 
States Naval Observatory (USNO) in Washington, D.C. and the Van Swinden Laboratories (VSL) 
in Delft, the Netherlands. 'zspical data sets covering a 384-day period were chosen from the 
NET-USNO and NIST-VSL time transfers to be used as templates. 

METHOD OF EVALUATION 

We evaluated the use of o,(T) with unevenly spaced data having the five different power-law 
noise types: WHPM, FLPM, WHFM, FLFM, and RWFM. Ten independent data files were 
generated for each noise type. The WHPM, W M ,  and RWFM files were generated using 
a random-number generator and integration. The FLPM and FLFM files were generated 
according to the algorithm of Kasdin and Walter[*]. All 10 data files of each noise type had 
3f4 evenly spaced data points spaced one day apart. In the next step, we removed data points 
from each file so that the remaining data points aligned with the data points obtained from 
NIST-USNO or NIST-VSL TWSTFT This produced files containing 137 or 108 unevenly spaced 
data points, respectively. The missing data points were then filled in by linear interpolation 
between the remaining data points. After this last step, there are once again 384 evenly spaced 
data points. Therefore, for each simulated data file of each noise type, we finally had five data 
files: 
File Type 1: the originally generated 384 evenly spaced data points with known noise 

type and magnitude. 
File Type 2: a data file of 137 data points spaced as in the NIST-USNO time transfers. 

This file is obtained by removing the appropriate data points from File 
1. The average spacing (see below) is 2.816 days. 

File l j p e  3: File 2 with the missing data points filled in via linear interpolation. 
File Type 4: a data file of 108 data points spaced as in the NIST-VSL time transfers. 

This file, like File 2, is obtained by removing points from File 1. The 
average spacing (see below) is 3579 days. 

File Qpe  5: File 4 with the missing data points filled in by linear interpolation. 

Having created all 50 files for a given noise type, we then performed a o,(T) analysis of each 
file. For the data files With even spacing (File 'Qpes 1,3,  and 5 above) we computed O ~ ( ~ T O , - )  

in the usual fashiontll, where m = 1, 2, 4, 8, 16, 32, 64, 128 and q,- = 1 day. For the files 
with unevenly spaced data (File ?Spes 2 and 4) we computed ~ ~ ( 7 )  by treating the adjacent 
data points as if they were evenly spaced, with calculated as follows: 

where A4JDfird and M J D I ~  are the time tags for the first and last data points, and N is the 
number of data points. For File Vpe  2, To,crvg = 2.816 days, and for File Q p e  4, mPvg = 3.579 
days. In both of these latter cases, we computed u , ( n ~ ~ ~ ~ )  for n = 1, 2, 4, 8, 16, and 32. 
Having obtained o,(T) vs T for all 50 files, we then computed the average values of o,(T) for 
each file type. Therefore, for each power-law noise type, we finally have five plots of o,(T) vs 
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1. Average o,(T) = 1, 2, 4, 8, 16, 32, 64, and 128 days) for File q p e  1, that k, the files 
with known noise type. This plot shows the “correct” values for ~ ~ ( 7 ) .  

2. Average a=(.) = 2.816, 5.632, 11.264, 22.528, 45.056, and 90.112 days) for File q p e  2. 
This represents the results we obtain by using unevenly spaced data with the NIST-USNO 
distribution. 

3. Average o,(T) = 1, 2, 4, 8, 16, 32, 64, and 128 days) for File Q p e  3. This represents 
the results we obtain by taking unevenly spaced data with the NIST-USNO distribution, 
performing linear interpolation to make an evenly spaced data file, and then performing 
the o,(T) analysis. 

4. Average o ~ ( T )  = 3.579, 7.158, 14.316, 28.632, 57264, and 114.528 days) for File ?Lpe 4. 
This represents the results we obtain by using unevenly spaced data with the NIST-VSL 
distribution. 

5. Average o,(T) = 1, 2, 4, 8, 16, 32, 64, and 128 days) for File m e  5. This represents 
the results we obtain by taking unevenly spaced data with the NIST-VSL distribution, 
performing linear interpolation to ‘make an evenly spaced data file, and then performing 
the o,(T) analysis. 

Finally, for each average value of o,(T) for File Vpes 2-5, we computed a “correction factor.” 
The correction factor is defined as 

In other words, multiplying the o,(T) values obtained using File ?Lpe j by the correction factors 
for File Qpe  j produces the correct value for u,(T) as given by File q p e  1. Because the T 

values for File v p e s  2 and 4 do not match the T values for File q p e  1, various types of 
interpolation were used to obtain the correction factors for these two file types. The details of 
obtaining the correction factors for the different noise types and file types are discussed in the 
next section. 

RESULTS 
Figures 1-5 show the results obtained for the noise types WHPM, FLPM, WHFM, FLFM, 
and RWFM. Each of the points shown corresponds to the mean of ten values. The standard 
deviation of each set of ten values was also computed, but, for visual clarity, error bars indicating 
11 standard deviation are shown only on the File ’Qpe 1 (i.e., correct) values. Approximately 
the same size error bars should be applied to each of the file type curves. 

Figure 1 shows the results obtained for white PM noise. There are several important points 
here. First of all, File Vpes 3 and 5 (interpolating unevenly spaced data to form evenly spaced 
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data) yield values of o,(T) which are much too small when 7 is less than the 7 0 , ~ ~ ~  of the 
corresponding unevenly spaced data set. On the other hand, File Vpes 2 and 4 (the unevenly 
spaced data) yield o,(T) values which have the -1/2 slope appropriate to white PM[ll, but which 
are consistently too high. In fact, for T 2 8 days, both of the methods used converge to yield 
approximately the same too-large values for CT,(T). For File Types 2 and 4, the white PM 
correction factor is in theory constant for all values of 7 and can be expressed as: 

correction factor (WHPM) = - (;:) ' 
(3) 

This occurs because with WHPM noise each data point in the time series is independent of all 
others. 

Figure 2 shows the flicker PM results. Once again, File Types 3 and 5 yield values of aZ(7) 
which are too small at short averaging times. Also, the lower-.r values of ~ ~ ( 7 )  for File 'Qpes 
2 and 4 are again too high. However, the results obtained from all file types converge toward 
the correct value as T increases. Similar results are obtained for white FM (Figure 3) and 
fiicker FM (Figure 4). 

Figure 5 shows the RWFM results. Here, the use of interpolated data (File W e s  3 and 5) 
provides virtually the same results as the originally generated data file (File ?)Ppe 1) and the use 
of unevenly spaced data (File 'Qpes 2 and 4) provides values of o ~ ( T )  which are too large at 
small 7. In fact, as we progress from the WHPM process to the low-frequency-dominated noise 
processes (e.g., RWFM)[21, the use of linear interpolation to fill in missing data points becomes 
an increasingly better approximation of the truth. For lower values of T, using the unevenly 
spaced data becomes an increasingly worse approximation of the truth. As we progress from 
FLPM to RWFM, the results obtained using all methods converge on the correct value as T 

increases. 

>From the results shown in Figures 1-5 we have computed correction factors. Table 1 shows 
the correction factors obtained from the file types (3 and 5 )  which have evenly spaced data. 
These correction factors were obtained by simply taking the ratio 

Oz(m~0,m)FileTypel 

OZ( m 7 O , e v n ) F i I e T ~ 5  ' 

Tables 2-3 show the correction factors obtained for the file types (2 and 4) with unevenly spaced 
data. Because the averaging times for the unevenly spaced files (e+ 2.816, 5.632, ..., etc. days 
for File 'Qpe 2) do not match the averaging times for File Type 1 (1, 2, 4, ..., etc. days), we 
cannot simply take a ratio of two values to get the correction factor. Generally, interpolation 
of some sort is required. Note that the correction factors for WHPM in Tables 2 and 3 all fall 
within 10% of the values calculated from Equation (3). 
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DISCUSSION 

There is, unfortunately, no way to apply these results blindly. The user will need to have an 
idea of what sort of noise types make sense in the context of his measurement. Initially, one 
should construct one log o,(T) vs log ( T )  plot using the original set of unevenly spaced data 
and one log (az(.)) vs. log (T )  plot using a full data set formed by linear interpolation. 

At medium-to-large averaging times (in our analysis, T 2 8 days), almost all methods, in their 
uncorrected state, provide the correct slope for the log o,(T) vs log ( T )  plot. For WHPM, the 
unevenly spaced data give the correct slope at all values of T .  Thus, the user can determine 
which power-law noise process dominates at medium-to-long averaging times. (The exception 
to this rule occurs when RWFM predominates, and the unevenly spaced data are used to make 
the log u,(T) vs. log (T )  plot. In this case, the slope of the plot is slow in converging to the 
correct +3/2 value.) The more difficult part arises when the value of m in T =  TO is small. 
It is here that we see the largest effects of not having an evenly spaced data set. In addition, 
in this regime the noise process which dominates a measurement often changes from one type 
to another. 

If data are recorded on Monday, Wednesday, and Friday, it will be impossible to get a reliable 
estimate of O,(T = 1 day) - that information simply is not available. We can, however, make a 
fair estimate of O,(T = 2 days) in this case because Monday-Wednesday and Wednesday-Friday 
are each two-day intervals. To be completely safe, one could avoid stating values of u,(T) for 
T < ~ 0 , ~ ~ ~ .  Finally, in this analysis, the ratio of the data length (384 days) to ~ 0 , ~ ~ ~  (2.816 and 
3.579 days) was always greater than 100; therefore, it may not be appropriate to use these 
results with short, sparse data sets. 

If there is only one, known, noise type present, then the correction factors shown in Tables 
1-3 can be applied. Unless one has exactly the same average data spacing as we did, some 
interpolation may be needed in order to use the correction factors. Fortunately, the values 
of most of the correction factors are not strongly dependent on the average spacing for the 
range of spacing that was examined. If the noise type is not known, one could begin by 
deciding whether their results contain only measurement noise, or if there is a mixture of 
measurement noise and clock noise. Examples of the former are common-clock or closure 
TWSTFT experiments. An example of the latter is performing TWSTFT between two remotely 
located clocks. We examine each of these situations below. 

MEASUREMENT NOISE 

If the results contain only measurement noise, then the noise type will most likely be white 
PM or flicker PM. Fortunately, as Figure 1 shows, if WHPM is the dominant noise type, the 
log u,(T) vs log (T) plot for the unevenly spaced data will have a clear -1/2 slope and it will be 
obvious that the WHPM corrections should be applied. This method was used in Reference 
5.  Similarly, if the log u,(T) vs log ( T )  plot has zero slope at large T (Figure 2), then apply 
the FLPM corrections. In this case it is important to be certain that the noise type at large 
T has been correctly ascertained because, if the noise type is FLPM, the corrections which 
are applied at large T are fairly small. If the noise type is WHPM, the corrections which are 
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applied at large r are relatively large. 

COMBINATION OF CLOCK NOISE AND MEASUREMENT NOISE 

If the experiment measures clock behavior (or some other quantity which is characterized by a 
low-frequency-dominated noise type), then the situation becomes more complicated because the 
results will contain a mixture of noise types - the noise type associated with the measurement 
and the noise type(s) associated with the behavior of the clocks under study. We have evaluated 
various analysis techniques and have amved at the following recommendations which combine 
ease of use with acceptable accuracy. 

First, examine the a,(r) plots for evidence of measurement noise (WHPM, FLPM). The simplest 
way to see if there is any measurement noise is to look at the ~ ~ ( 7 )  plot of the interpolated 
data set in the region where T is small to medium. As Figures 1-3 show, for W M ,  FLPM, 
and WHFM, the a,(r) plot of the interpolated data will curve down as r decreases to approach 
r = 1 day. In the case of FLFM, the a=(.) plot of the interpolated data makes a straight 
line as T decreases. In the case of RWFM, the c,(T) plot curves up slightly as T decreases. 
Therefore, if the curve is downward at small T and if there is evidence of a flat transition area 
at medium r, there is probably significant measurement noise present. 

If there indeed is measurement noise mixed in with the long-term noise, we suggest the following 
procedure (hereafter called the “hybrid method”): compute ~ 0 , ~ ~ ~  from the unevenly spaced 
data and then simply use the a2(.) values obtained from the interpolated data for r > ropUg. 
Then, estimate o, (~To , - ) ,  where  TO,, is the largest integral multiple of ~ 0 , ~ ~  that is less 
than Topvg, as follows: 

1. Using the values of log oz(r = 7oPvg) and log C,(T = 2 7 0 , ~ ~ )  obtained from the unevenly 
spaced data, perform a linear extrapolation to smaller r to obtain an estimate for log 
u,(r = mq-) for the unevenly spaced data set. 

2. Compute the average of log a,(r =  TO,-) obtained from Step 1 and log U,(T = m ~ ~ , - )  
obtained from the interpolated data set. 

3. Use this average value as an estimate of the correct value of log O,(T = TWO,-). 

For example, the NIST-USNO data have ~ 0 , ~ ~ ~  = 2.816 days. Therefore, to obtain values of 
a,(4 days T 128 days we would use the o,(T) values obtained from the interpolated data. 
To get an estimate of U,(T = 2 days) we would use the three steps outlined above. Further 
examples of this process are presented below. 

This technique works because, for typical clock noise types (WHFM, FLFM, RWFM), the 
uncorrected values obtained from the interpolated data set are a pretty good estimate of the 
true values for medium to long averaging times. For measurement noise types WHPM, FLPM, 
and WHFM, at small values of T, taking the average of the logarithm of o,(T) associated with 
the interpolated and the unevenly spaced data sets yields an acceptable estimate of the true 
value of o,(T). If inspection of the 02(r) plots reveals no hint of measurement noise (ie., it 
appears that clock noise dominates even at small r, then determine the noise type from the 
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large-.r values of o,(T) and then apply the appropriate correction factors from Table 1 to the 
a,(~) values obtained from the interpolated data set. 

We now show three examples of the analysis of mixed noise types, ranging from situations in 
which the measurement noise dominates out to medium 7 to situations jn which the measurement 
noise is quickly overwhelmed by clock behavior. In Combination 1 (Figures 6a-6b), we see 
a case in which inspection of the initial ~ ~ ( 7 )  plots (Figure 6a) reveals obvious signs of the 
presence of both measurement and clock noise. The average data spacing is 2.816 days. As 
Figure 6b shows, using the hybrid method provides very good estimates of the correct values 
of o,(T): the largest error is only 10% of the true a,(~). In addition, we do not need to know 
precisely what types of noise are present (in this case, WHPM and WHFM) in order to amve 
at the final estimates for u,(T). Finally, we do not attempt to obtain a value for T = 1 day. 

In Combination 2, we again see signs of both measurement noise and clock noise in the initial 
o,(T) plots (Figure 7a). The average data spacing for Combinations 2 and 3 (see below) is 
3.008 days. As Figure 7b shows, the hybrid method again provides a good estimate of the 
correct values for this combination of WHPM and FLFM. 

In Combination 3, it is difficult to tell if there is any measurement noise present. The ~ ~ ( 7 )  

plot of the interpolated data set exhibits a very faint downward curve as T decreases toward 
1 day, but other than that, it looks like FLFM (Figure sa). We have used both the hybrid 
technique and the simple application of the FLFM corrections (Table 1). As Figure 8b shows, 
the FLFM corrections work marginally better. As it turns out, the true o,(T) curve shows clear 
evidence of measurement noise ("M) only at 7 = 1 day - a time interval about which we 
can gain no information from the sparse ( ~ i ~ ~ ~  = 3.008 days) data set. 

CONCLUSIONS 

We have used two typical TWSTFT time series data sets to investigate the impact of unevenly 
spaced data on the calculation of o,(T). We have analyzed simulated data sets that have had 
points removed to match the TWSTm data patterns. o,(T) was calculated from these sparse 
data sets using two techniques. One involves analyzing the sparse data as if they were evenly 
spaced with an average time interval, and the second uses interpolated data to recreate an 
evenly spaced data set. Correction factors for both approaches have been calculated for noise 
processes ranging from WHPM to RWFM. For all of the noise processes except WHPM, the 
values of a,(~) calculated with either of the two approaches converge on the correct values 
at large T. However, significant errors may be introduced for small 7. Finally, we suggest 
techniques for estimating correct values of ~ ~ ( 7 )  in situations where the type of noise is unknown 
or where more than one noise type is present. 
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Figure 2. 

The average values of uX(7) obtained from simulated FLPM data. 
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Figure 3. 

The avcrage values of crx(7) obtained from simulated WHFM data. 
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The average valua of u,(T) obtained from simulated FLFM data. The average values of uX(t) obtained from simulated RWFM data 
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Figure 6a. 

Uncomcted CJ#) values obtained from a sparse data set with a 
mixture of WHPM and WHFM noise types. 
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C o m d  values of u ~ ( T )  obtained using the 'hybrid" method and 

the valua obtained from the original. evenly spaced data set 
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Uncorrected u,(T) values obtained from a sparse dua set with a 
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Uncomcted u,(T) values obtained from a sparse data set with a 

different mi- of WHPM and FLFM noise types. 

Comctcd values of u,(z) obtained using the "hybrid" method, 

FLFM comctions only, and the values obtained from the original, 

evenly spaced data sei. 
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