

DRAFT REPORT CONCERNING SPACE
DATA SYSTEM STANDARDS

CCSDS FILE DELIVERY PROTOCOL (CFDP)—

Part 2
Implementers Guide

CCSDS 720.2-G-0.9

DRAFT GREEN BOOK

July 2001

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page i July 2001

AUTHORITY

 Issue: Draft Green Book, Issue 0.9

 Date: July 2001

 Location: N/A

(WHEN THIS RECOMMENDATION IS FINALIZED, IT WILL CONTAIN THE
FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of
technical panel experts from CCSDS Member Agencies. The procedure for review and
authorization of CCSDS Reports is detailed in reference [2].

This document is published and maintained by:

CCSDS Secretariat
Program Integration Division (Code MT)
National Aeronautics and Space Administration
Washington, DC 20546 USA

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page ii July 2001

FOREWORD

This document is a CCSDS Report, which contains background and explanatory material to
support the CCSDS Recommendation, CCSDS File Delivery Protocol (reference [1]).

Through the process of normal evolution, it is expected that expansion, deletion, or
modification to this Report may occur. This Report is therefore subject to CCSDS document
management and change control procedures, which are defined in reference [2]. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this report should be addressed to the CCSDS
Secretariat at the address on page i.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page iii July 2001

At time of publication, the active Member and Observer Agencies of the CCSDS were

Member Agencies

� Agenzia Spaziale Italiana (ASI)/Italy.
� British National Space Centre (BNSC)/United Kingdom.
� Canadian Space Agency (CSA)/Canada.
� Centre National d�Etudes Spatiales (CNES)/France.
� Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
� European Space Agency (ESA)/Europe.
� Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
� National Aeronautics and Space Administration (NASA)/USA.
� National Space Development Agency of Japan (NASDA)/Japan.
� Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

� Austrian Space Agency (ASA)/Austria.
� Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
� Centro Tecnico Aeroespacial (CTA)/Brazil.
� Chinese Academy of Space Technology (CAST)/China.
� Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
� Communications Research Centre (CRC)/Canada.
� Communications Research Laboratory (CRL)/Japan.
� Danish Space Research Institute (DSRI)/Denmark.
� European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
� European Telecommunications Satellite Organization (EUTELSAT)/Europe.
� Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.
� Hellenic National Space Committee (HNSC)/Greece.
� Indian Space Research Organization (ISRO)/India.
� Institute of Space and Astronautical Science (ISAS)/Japan.
� Institute of Space Research (IKI)/Russian Federation.
� KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
� MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
� Korea Aerospace Research Institute (KARI)/Korea.
� Ministry of Communications (MOC)/Israel.
� National Oceanic & Atmospheric Administration (NOAA)/USA.
� National Space Program Office (NSPO)/Taipei.
� Swedish Space Corporation (SSC)/Sweden.
� United States Geological Survey (USGS)/USA.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page iv July 2001

DOCUMENT CONTROL

Document Title Date Status

CCSDS
720.7-G-0.3

CCSDS File Delivery
Protocol (CFDP)�
Summary of Concept and
Rationale

August
1998

Superseded.

CCSDS
720.7-G-0.4

CCSDS File Delivery
Protocol (CFDP)�
Summary of Concept and
Rationale

April
1999

Superseded.

CCSDS
720.2-G-0.5

CCSDS File Delivery
Protocol (CFDP)�Part 2:
Implementers Guide

July
1999

Original draft Green Book divided
into two documents (parts 1 and
2); superseded.

CCSDS
720.2-G-0.6

CCSDS File Delivery
Protocol (CFDP)�Part 2:
Implementers Guide

May
2000

Current draft. Draft Green Book
part 2 divided into two documents
(parts 2 and 3); superseded.

CCSDS
720.2-G-0.7

CCSDS File Delivery
Protocol (CFDP)�Part 2:
Implementers Guide

August
2000

Superseded.

CCSDS
720.2-G-0.8

CCSDS File Delivery
Protocol (CFDP)�Part 2:
Implementers Guide

February
2001

Superseded.

CCSDS
720.2-G-0.9

CCSDS File Delivery
Protocol (CFDP)�Part 2:
Implementers Guide

July
2001

Current draft.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page v July 2001

CONTENTS

Section Page

1 INTRODUCTION..1-1

1.1 PURPOSE ... 1-1
1.2 SCOPE .. 1-1
1.3 ORGANIZATION OF THIS REPORT .. 1-1
1.4 CONVENTIONS AND DEFINITIONS ... 1-1
1.5 REFERENCES.. 1-4

2 CFDP PROTOCOL DATA UNITS..2-1

2.1 GENERAL .. 2-1
2.2 FIXED PDU HEADER... 2-5
2.3 OPERATION PDUS... 2-6
2.4 MONITOR AND CONTROL PDUS ... 2-8
2.5 TERMINATION PDUS.. 2-8

3 USER OPERATIONS MESSAGE FORMATS ..3-1

3.1 USER OPERATIONS... 3-1
3.2 PROXY OPERATIONS ... 3-3
3.3 DIRECTORY OPERATIONS .. 3-5
3.4 REMOTE STATUS REPORT OPERATIONS .. 3-6
3.5 REMOTE SUSPEND OPERATIONS.. 3-7
3.6 REMOTE RESUME OPERATIONS ... 3-7

4 PROTOCOL OPTIONS, TIMERS, AND COUNTERS ..4-1

4.1 GENERAL .. 4-1
4.2 OPTIONS.. 4-1
4.3 TIMERS .. 4-2
4.4 COUNTERS.. 4-3

5 STATE TABLES NOTES ...5-1

5.1 GENERAL .. 5-1
5.2 CFDP KERNEL.. 5-1

6 IMPLEMENTATION CONSIDERATIONS ..6-1

6.1 GENERAL .. 6-1
6.2 TRANSFERRING SUPPORTING INFORMATION .. 6-1

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page vi July 2001

6.3 EXAMPLE FILE CHECKSUM CALCULATION .. 6-2
6.4 JPL NOTES ON CFDP IMPLEMENTATION .. 6-3
6.5 SIMPLE ANALYSIS OF NAK RETRANSMISSION....................................... 6-11

7 IMPLEMENTATION REPORTS..7-1

7.1 CNES CFDP IMPLEMENTATION REPORT... 7-1
7.2 ESA CFDP IMPLEMENTATION REPORT ... 7-20

8 IMPLEMENTATION CAPABILITIES SURVEY...8-1

8.1 DERA/BNSC .. 8-1
8.2 EUROPEAN SPACE AGENCY (ESA)/EUROPEAN SPACE RESEARCH AND

TECHNOLOGY CENTRE (ESTEC) ... 8-4
8.3 NASA/JPL... 8-7
8.4 NASDA/NEC CORPORATION .. 8-10

9 INTER-AGENCY TESTS ...9-1

9.1 PURPOSE OF INTER-AGENCY TEST PROGRAM ... 9-1
9.2 OVERVIEW OF TEST PROGRAM .. 9-1
9.3 TEST REPORT SUMMARIES .. 9-2

10 REQUIREMENTS...10-1

10.1 GENERAL .. 10-1
10.2 CONFIGURATION SCENARIOS... 10-1
10.3 PROTOCOL REQUIREMENTS.. 10-4
10.4 IMPLEMENTATION REQUIREMENTS ... 10-11

ANNEX A ACRONYMS AND ABBREVIATIONS .. A-1
ANNEX B CFDP EXTENDED PROCEDURES.. B-1
ANNEX C REQUIREMENTS FOR CFDP EXTENDED PROCEDURES C-1

Figure

1-1 Bit Numbering Convention ...1-2
1-2 Octet Convention ..1-2
2-1 Operations View..2-4
10-1 Scenario 1..10-2
C-1 Scenario 2... C-1
C-2 Scenario 3... C-3
C-3 Scenario 4... C-5
C-4 Scenario 5... C-7

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page vii July 2001

Table

2-1 PDU Type Code ..2-1
2-2 File Directive Codes..2-2
2-3 Condition Codes..2-3
2-4 Fixed PDU Header Fields ...2-5
2-5 Metadata Segmentation Control Field Contents ...2-6
2-6 Metadata Type-Length-Value Field Codes ...2-6
2-7 Segment Request Form ...2-7
2-8 Prompt PDU NAK/Keepalive Field Contents...2-8
2-9 Finished PDU Field Codes..2-9
3-1 User Operations Message Types ...3-2
4-1 Options ..4-1
10-1 Requirements Related to Communications...10-6
10-2 Requirements Related to Underlying Layers...10-7
10-3 Requirements Related to Structure..10-7
10-4 Requirements Related to Capabilities ...10-8
10-5 Requirements Related to Records, Files, and File Management...............................10-10
10-6 Implementation Requirements ..10-11
B-1 Finished PDU Field Codes... B-1
B-2 Extended Procedures Transaction Waypoint Options.. B-1
C-1 Requirements Related to Structure... C-8
C-2 Requirements Related to Capabilities .. C-9

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 1-1 July 2001

1 INTRODUCTION

1.1 PURPOSE

This report is an adjunct document to the Consultative Committee for Space Data Systems
(CCSDS) Recommendation for File Delivery Protocol (reference [1]). It contains material
which will be helpful in understanding the primary document, and which will assist decision
makers and implementers in evaluating the applicability of the protocol to mission needs and
in making implementation, option selection, and configuration decisions related to the
protocol.

1.2 SCOPE

This report provides supporting descriptive and tutorial material. This document is not part
of the Recommendation. In the event of conflicts between this report and the
Recommendation, the Recommendation shall prevail.

1.3 ORGANIZATION OF THIS REPORT

This report is divided into two parts. Part 1 (reference [3]) provides an introduction to the
concepts, features and characteristics of the CCSDS File Delivery Protocol (CFDP). It is
intended for an audience of persons unfamiliar with the CFDP or related protocols. The
second part of this report (this document) is an implementers guide. It provides information to
assist implementers in understanding the details of the protocol and in the selection of
appropriate options, and contains suggestions and recommendations about implementation-
specific subjects. This document also contains implementation reports from various member
Agencies, reports on testing of the implementations and protocol, and the requirements upon
which the CFDP is based.

1.4 CONVENTIONS AND DEFINITIONS

1.4.1 BIT NUMBERING CONVENTION AND NOMENCLATURE

In this document, the following convention is used to identify each bit in an N-bit field. The
first bit in the field to be transmitted (i.e., the most left-justified when drawing a figure) is
defined to be �Bit 0�; the following bit is defined to be �Bit 1�, and so on up to �Bit N-1�.
When the field is used to express a binary value (such as a counter), the Most Significant Bit
(MSB) shall be the first transmitted bit of the field, i.e., �Bit 0�, as shown in figure 1-1.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 1-2 July 2001

N-BIT DATA FIELD

BIT 0 BIT N-1

FIRST BIT TRANSMITTED = MSB

Figure 1-1: Bit Numbering Convention

In accordance with modern data communications practice, spacecraft data fields are often
grouped into 8-bit �words� which conform to the above convention. Throughout this Report,
the nomenclature shown in figure 1-2 is used to describe this grouping.

8-BIT WORD = ‘OCTET’

Figure 1-2: Octet Convention

By CCSDS convention, all �spare� bits shall be permanently set to value �zero�.

1.4.2 DEFINITIONS

Within the context of this document the following definitions apply:

A file is a bounded or unbounded named string of octets that resides on a storage medium.

A filestore is a system used to store files; CFDP defines a standard virtual filestore interface
through which CFDP accesses a filestore and its contents.

A CFDP protocol entity (or CFDP entity) is a functioning instance of an implementation of
the CFDP protocol, roughly analogous to an Internet protocol �host�. Each CFDP entity has
access to exactly one filestore. (It is recognized that the single [logical] filestore of a CFDP
entity might encompass multiple physical storage partitions, but any specific reference to
such a partition in identifying the location or destination of a file is expected to be encoded as
part of the file's name [e.g., �pathname�]. Each entity also maintains a Management
Information Base (MIB), which contains such information as default values for user
communications requirements (e.g., for address mapping, and for communication timer
settings).

The functional concatenation of a file and related metadata is termed a File Delivery Unit
(FDU); in this context the term �metadata� is used to refer to any data exchanged between
CFDP protocol entities in addition to file content, typically either additional application data

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 1-3 July 2001

(such as a �message to user�) or data that aid the recipient entity in effectively utilizing the
file (such as file name).

NOTES

1 An FDU may consist of metadata only.

2 The term �file� is frequently used in this specification as an abbreviation for �file
delivery unit�; only when the context clearly indicates that actual files are being
discussed should the term �file� not be read as �file delivery unit.� For example, in the
explanation of the record type parameter or the source and destination file name
parameters of the CFDP Service Definition, the term �file� should not be read as �file
delivery unit�.

The individual, bounded, self-identifying items of CFDP data transmitted between CFDP
entities are termed CFDP Protocol Data Units (PDU), or CFDP PDUs. Unless otherwise
noted, in this document the term �PDU� always means �CFDP PDU�. CFDP PDUs are of two
general types: File Data PDUs, which convey the contents of the files being delivered, and
File Directive PDUs, which convey only metadata and other non-file information that
advances the operation of the protocol.

A transaction is the end-to-end transmission of a single FDU between two CFDP entities. A
single transaction normally entails the transmission and reception of multiple PDUs. Each
transaction is identified by a unique transaction ID; all elements of any single FDU, both file
content and metadata, are tagged with the same CFDP transaction ID.

Any single end-to-end file transmission task has two associated entities: the source and the
destination. The source is the entity that has the file at the beginning of the task. The
destination is the entity that has a copy of the file when the task is completed.

Each end-to-end file transmission task comprises a point-to-point file copy operation. Any
single point-to-point file copy operation has two associated entities: the sender and the
receiver. The sender is the entity that has a copy of the file at the beginning of the operation.
The receiver is the entity that has a copy of the file when the operation is completed. (In the
current CFDP, the only sender of the file is the source and the only receiver is the destination.
However, in more complex cases such as those discussed in annex B of this document and in
annex D of reference [1], there are additional �waypoint� entities that receive and send copies
of the file. The source is the first sender, and the destination is the last receiver. The
terminology of both source/destination and sender/receiver pairs is retained, since the more
complex case is for further study.)

The term CFDP user refers to the software task that causes the local entity to initiate a
transaction, or the software task that is notified by the local entity of the progress or
completion of a transaction. The CFDP user local to the source entity is referred to as the
source CFDP user. The CFDP user local to the destination entity is referred to as the

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 1-4 July 2001

destination CFDP user. The CFDP user may be operated by a human or by another software
process. Unless otherwise noted, the term user always refers to the CFDP user.

A message to user (or user message) allows delivery of information related to a transaction to
the destination user in synchronization with the transaction.

A filestore request is a request to the remote filestore for service (such as creating a directory,
deleting a file, etc.) at the successful completion of a transaction.

Service primitives form the software interface between the CFDP user and its local entity.
The user issues request service primitives to the local entity to request protocol services, and
the local entity issues indication service primitives to the user to notify it of the occurrence of
significant protocol events.

1.5 REFERENCES

The following documents are referenced in the text of this Report. At the time of publication,
the editions indicated were valid. All documents are subject to revision, and users of this
Report are encouraged to investigate the possibility of applying the most recent editions of
the documents indicated below. The CCSDS Secretariat maintains a register of currently
valid CCSDS Recommendations.

[1] CCSDS File Delivery Protocol (CFDP). Draft Recommendation for Space Data
System Standards, CCSDS 727.0-R-4. Red Book. Issue 5. Washington, D.C.:
CCSDS, July 2001.

[2] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-7. Yellow Book. Issue 7. Washington, D.C.: CCSDS, November 1996.

[3] CCSDS File Delivery Protocol�Part 1: Introduction and Overview. Draft Report
Concerning Space Data Systems Standards, CCSDS 720.1-G-0.8. Draft Green Book.
Issue 0.8. Washington, D.C.: CCSDS, July 2001.

[4] CCSDS File Delivery Protocol�Part 2: Implementers Guide. Draft Report
Concerning Space Data Systems Standards, CCSDS 720.2-G-0.9. Draft Green Book.
Issue 0.9. Washington, D.C.: CCSDS, July 2001.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-1 July 2001

2 CFDP PROTOCOL DATA UNITS

2.1 GENERAL

This section presents the formats of the CFDP Protocol Data Units (PDU), as well as the
relationships between the PDUs and the CFDP primitives. PDUs are exchanged between
CFDP entities and, therefore, both their contents and their formats are defined. Primitives are
not exchanged between protocol entities and, therefore, their contents are defined but their
formats are not.

The information in this section is provided as an aid to visualizing and understanding the
primitives and PDUs, and their relationships. In all cases more detail, and the protocol
specifications and procedures, are found in reference [1]. As always, reference [1] is the
defining document and in case of any disagreements between it and this Report, reference [1]
is the authoritative document.

All PDUs consist of two components: the Fixed PDU Header and the PDU Data Field.

Two PDU types are defined: File Directive and File Data. The PDU type is signaled in the
PDU Type field of the Fixed PDU Header, as shown in table 2-1 and subsection 2.2.

Table 2-1: PDU Type Code

Field Values

PDU type ‘0’ - File Directive
‘1’ - File Data

The format of the data field of File Data PDUs, which are the PDUs used to deliver the actual
file data, is shown in 2.3.2.

The data field of File Directive PDUs consists of a Directive Code octet followed by a
Directive Parameter field. The File Directive Codes are shown in table 2-2. The formats of
each of the different file directive PDUs are shown in subsections 2.3 through 2.5.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-2 July 2001

Table 2-2: File Directive Codes

Directive Code (hexadecimal) Action

00 Reserved

01 Reserved

02 Reserved

03 Reserved

04 EOF PDU

05 Finished PDU

06 ACK PDU

07 Metadata PDU

08 NAK PDU

09 Prompt (NAK) PDU

0C Keep Alive PDU

0A, 0B, and 0D - FF Reserved

The relationships between primitives and PDUs are shown in figure 2-1. The figure also
shows the relationships of the primitives and PDUs to the operational process from initiation
through termination. The MIB is shown on the diagram since its (minimum) contents are
defined in the CFDP, and some of those contents are necessary to complete the Metadata
PDU initiated by the Put Request. The format of each of the PDUs is presented in the
remainder of this section.

In several cases, the Directive Parameter field of a File Directive includes a four-bit
Condition Code. The Condition Code shall in each case indicate one of the conditions shown
in table 2-3.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-3 July 2001

Table 2-3: Condition Codes

Condition Code
(binary)

Condition

0000 No error

0001 Positive ACK limit reached

0010 Keep alive limit reached

0011 Invalid transmission mode

0100 Filestore rejection

0101 File checksum failure

0110 File size error

0111 NAK limit reached

1000 Inactivity detected

1001 Invalid file structure

1010 – 1101 (reserved)

1110 Suspend.request received

1111 Cancel.request received

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-4 July 2001

PDUs

Monitor and
Control

Indication Primitives

Optional =

Operation

File Data PDU

NAK PDU

Metadata PDU

Transaction.indication

Metadata-receive.indication

EOF PDU Finished PDU

ACK PDU

Cancel.request

Transaction-Finished.indication

Abandoned.indication

EOF-Sent.indication

Termination

File-segment-recv.indication

Suspended.indicationReport.indication

Resumed.indication

Prompt PDU

Prompt
(NAK)

Prompt
(Keep Alive)

Suspend.request

Report.request Resume.request

Keep Alive PDU

Fault.indication

Request
Primitives

Management
Information
Base (MIB)

Put.request

source file
name

segmentation
control

destination
file name

destination
CFDP entity ID

Initiation

Flow Label

Transmission
Mode

Fault Handler
Override

Msg to
User

Remote Put
Order

Remote Segment-
ation Control

Remote Flow
Label

Remote Message
to User

Remote Put
Cancel

Remote Filestore
Request

Remote Fault
Handler Override

Remote Filestore
Response

Remote Put
Finished

Remote
Transmission Mode

Proxy
Operations

Remote Status
Report Response

Remote Status
Report Request

Remote Status
Report Operations

File Store
Requests

remove directory

create file

delete file

rename file

append file

replace file

create directory

deny file

Fault
Handler

Remote Suspend
Response

Remote Suspend
Request

Remote Suspend
Operations

Remote Resume
Response

Remote Resume
Request

Remote Resume
Operations

Directory
Listing Request

Directory
Listing Response

Directory
Operations

Figure 2-1: Operations View

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-5 July 2001

2.2 FIXED PDU HEADER

V
e
r
s
i
o
n

P
D
U

T
y
p
e

D
i
r
e
c
t
i
o
n

M
o
d
e

T
r
a
n
s
m
i
s
s
i
o
n

C
R
C

F
l
a
g

R
e
s
e
r
v
e
d

PDU Data
Field Length

CRC
R
e
s
e
r
v
e
d

e
n
t
i
t
y

I
D
s

l
e
n
g
t
h

o
f

R
e
s
e
r
v
e
d

n
m
b
r

l
n
g
t
h

T
r
a
n
s
.

s
e
q

Source
entity ID

Transaction
Seq. nmbr

Deswtination
entity ID

3 1 1 111 1 1 3316 16 var. var.var.

PDU

Data

Field

Table 2-4: Fixed PDU Header Fields

Field Length (bits) Values Comment
Version 3 �000� For the first version
PDU type 1 �0� � File Directive

�1� � File Data

Direction 1 �0� � toward file receiver
�1� � toward file sender

Used to perform PDU forwarding

Transmission Mode 1 �0� � acknowledged
�1� � unacknowledged

CRC Flag 1 �0� � CRC not present
�1� � CRC present

Reserved for future use 1 set to �0�
PDU Data field length 16 In octets
CRC 16 Optional
Reserved for future use 1 set to �0�
Length of entity IDs 3 Number of octets in entity ID less one;

i.e., �0� means that entity ID is one octet.
Applies to all entity IDs in the PDU
header.

Reserved for future use 1 set to �0�
Length of Transaction sequence
number

 3 Number of octets in sequence number
less one; i.e., �0� means that sequence
number is one octet.

Source entity ID variable Uniquely identifies the entity that
originated the transaction.

Transaction sequence number variable Uniquely identifies the transaction, among
all transactions originated by this entity.

Destination entity ID variable Uniquely identifies the entity that is the
final destination of the transaction�s
metadata and file data.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-6 July 2001

2.3 OPERATION PDUs

2.3.1 METADATA PDU

Length

*

8
8X

Length

(Value)

Destination File
Name

8X
Length

Length

(zero if no
Parameter)

(Value)

8

Type

8

(See Table
below)

More TLVs as required(See Table
below)

1 7

t
i
o
n

C
o
n
t
r

S
e
g
m
e
n
t
a
-

Reserved

32

File Size (in octets)
Set to all zeroes for
a file of unbounded size

8

File Directive
Code

07 Hex
Fixed PDU

Header

8X
Length

Length

*

(Value)

8

Source File Name

* LV Length field indicates zero length and LV value field omitted when
there is no associated file, e.g. messages used for Proxy operations

Table 2-5: Metadata Segmentation Control Field Contents

Segmentation Control

‘0’ - Record boundaries
respected

‘1’ - Record boundaries not
respected

Table 2-6: Metadata Type-Length-Value (TLV) Field Codes

Type Field Code Contents of Value Field
00 Hex Filestore Request

02 Hex Message to User

04 Hex Fault Handler Overrides

05 Hex Flow Label

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-7 July 2001

2.3.2 FILE DATA PDU

Fixed PDU
Header

Segment Offset
(in octets)

00000000-FFFFFFFF Hex

32 Variable

File Data

2.3.3 NEGATIVE ACKNOWLEDGMENT (NAK) PDU
64 X ’N’8

File Directive
Code

08 Hex
Fixed PDU

Header

’N’ Segment
Requests

Start Offset
in Octets

(32)

End Offset
in Octets

(32)

Start of Scope End of scope

32 32

Table 2-7: Segment Request Form

Parameter Length (bits) Values Comments

Start offset 32 Data — Offset of start of requested
segment

Metadata — 00000000 (hex)

In octets

End Offset 32 Data — Offset of first octet after end
of requested segment

Metadata — 00000000 (hex)

In octets

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-8 July 2001

2.4 MONITOR AND CONTROL PDUs

2.4.1 PROMPT PDU

N
A
K
/
K
e
e
p
A
l
i
v
e

Spare

1 78

File Directive
Code

09 Hex
Fixed PDU

Header

Table 2-8: Prompt PDU NAK/Keep Alive Field Contents

NAK/Keep Alive Code

‘0’ - NAK

‘1’ - Keep Alive

2.4.2 KEEP ALIVE PDU
8

File Directive
Code

0C Hex
Fixed PDU

Header

Progress
(in octets)

00000000-FFFFFFFF Hex

32

2.5 TERMINATION PDUs

2.5.1 END OF FILE (EOF) PDU
4 4 3232

spare file size in octetesFile Checksum *

8

File Directive
Code

04 Hex

Fixed PDU
Header

Condition
Code

* Modulo 232 octet-wide addition of all file segment data, aligned with reference to the start of file.
For method, see 4.1.5.1.1.8.

If the condition code is not zero then the checksum value shall be all zeroes

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-9 July 2001

NOTES

1 File Checksum: Modulo 232 word-wide addition (where �word� is defined as 4 octets)
of all file segment data transmitted by the sender (regardless of the condition code,
i.e., even if the condition code is other than �No error�), aligned with reference to the
start of file.

2 File Size: Expressed in octets. This value shall be the total number of file data octets
transmitted by the sender, regardless of the condition code (i.e., it shall be supplied
even if the condition code is other than �No error�).

3 Unacknowledged-mode transactions always terminate on receipt of the EOF (No
error) PDU; therefore, any Metadata or file data PDU received after the EOF (No
error) PDU for the same transaction may be ignored.

2.5.2 FINISHED PDU

14 1
8X

Length

S
t
a
t
u
s

E
n
d

S
y
s
t
e
m

C
o
d
e

D
e
l
i
v
e
r
y

Spare

2

Type Length (Value)

8 8

More Filestore
Responses as
required

Filestore Response*

8

File Directive
Code

05 Hex
Fixed PDU

Header
01 Hex

Condition
Code

*A filestore response TLV must be included for
each filestore request TLV of the Metadata PDU

Table 2-9: Finished PDU Field Codes

Parameter Values

Delivery Code ‘0’ - Data Complete

‘1’ - Data Incomplete

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 2-10 July 2001

2.5.3 POSITIVE ACKNOWLEDGMENT (ACK) PDU

Delivery
Code***

4 48

File Directive
Code

06 Hex
Fixed PDU

Header

Directive
Code*

Directive
Subtype
Code**

Condition
Code

Transaction
Status****

4 2 2

* Directive code of the acknowledged PDU

** Values depend on file directive code. For Finished PDU: binary 0000 if generated by waypoint,
binary 0001 if generated by end system. Binary 0000 for all other file directive codes.

***For ACK of EOF PDU: binary 10 if Data Complete, binary 11 if Data Incomplete.
Binary 00 for ACKs of all other file directives.

****Status shall be undefined if the transaction is not active and transactions are
not tracked after termination.

NOTE

 Transaction Status parameter:

 00 � Undefined: The transaction to which the acknowledged PDU belongs is not
currently active at this entity, and the CFDP implementation does not retain
transaction history. The transaction might be one that was formerly active and has
been terminated, or it might be one that has never been active at this entity.

 01 � Active: The transaction to which the acknowledged PDU belongs is currently
active at this entity.

 10 � Terminated: The transaction to which the acknowledged PDU belongs is not
currently active at this entity; the CFDP implementation does retain transaction
history, and the transaction is thereby known to be one that was formerly active and
has been terminated.

 11 � Unrecognized: The transaction to which the acknowledged PDU belongs is not
currently active at this entity; the CFDP implementation does retain transaction
history, and the transaction is thereby known to be one that has never been active at
this entity.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-1 July 2001

3 USER OPERATIONS MESSAGE FORMATS

3.1 USER OPERATIONS

3.1.1 METADATA PDU

User Operations Messages are contained in a metadata PDU, as pictured below:
1 7

t
i
o
n

C
o
n
t
r

S
e
g
m
e
n
t
a
-

Reserved

32

File Size (in octets)
All zeroes

8

File Directive
Code

07 Hex
Fixed PDU

Header

Length*

0

8

* LV value
field
omitted for
Proxy
operations

8

Length*

0

* LV value
field
omitted for
Proxy
operations

3.1.2 RESERVED CFDP MESSAGE

Each individual User Operations Message in the metadata PDU is preceded by the Reserved
Message Header field, pictured below. User Operations Message types are contained in table
3-1.

Length

8
8X

Length

(Value)

cfdp
(in ASCII)

8

Msg
Type

02 Hex

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-2 July 2001

Table 3-1: User Operations Message Types

Msg Type
(hex)

Interpretation

00 Remote Put Order
01 Remote Message to User
02 Remote Filestore Request
03 Remote Fault Handler Override
04 Remote Transmission Mode
05 Remote Flow Label
06 Remote Segmentation Control
07 Remote Put Finished
08 Remote Filestore Response
09 Remote Put Cancel
10 Directory Listing Request
11 Directory Listing Response
20 Remote Status Report Request
21 Remote Status Report Response
30 Remote Suspend Request
31 Remote Suspend Response
38 Remote Resume Request
39 Remote Resume Response

3.1.3 ORIGINATING TRANSACTION ID MESSAGE

The Originating Transaction ID message is common to all categories of User Operations
messages, and its format, below, is the same when used in any of the categories.

8

Msg
Type

0A Hex

1 3

R
e
s
e
r
v
e
d

L
e
n
g
t
h

e
n
t
i
t
y

I
D

"0"

1 3

R
e
s
e
r
v
e
d

L
e
n
g
t
h

S
e
q
.
N
u
m

T
r
a
n
s
a
c
t
i
o
n"0"

Variable Variable

Source entity ID Transaction
sequence
number

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-3 July 2001

3.2 PROXY OPERATIONS

3.2.1 REMOTE PUT ORDER

Length

8
8X

Length

(Value)

Destination
entity

ID

8

Msg
Type

00 Hex

Length*

8
8X

Length

(Value)

Source
file

name

Length*

8
8X

Length

(Value)

Destination
file

name

* Length is zero if parameter is omitted

3.2.2 REMOTE MESSAGE TO USER

Length

8
8X

Length

(Value)

8

Msg
Type

01 Hex

3.2.3 REMOTE FILESTORE REQUEST

Length

8
8X

Length

(Value)

(A single
CFDP

File Store
Request)

8

Msg
Type

02 Hex

3.2.4 REMOTE FAULT HANDLER OVERRIDE

Length

8
8X

Length

(Value)

(A single
CFDP

File Store
Ressponse)

8

Msg
Type

08 Hex

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-4 July 2001

3.2.5 REMOTE TRANSMISSION MODE
8

Msg
Type

04 Hex

7 1

m
o
d
e

T
r
a
n
s
m
s
n

Spare

3.2.6 REMOTE FLOW LABEL

Length

8
8X

Length

(Value)

(format not
defined)

8

Msg
Type

05 Hex

3.2.7 REMOTE SEGMENTATION CONTROL
8

Msg
Type

06 Hex

7 1

C
o
n
t
r
o
l

S
e
g
m
e
n
t
a
t
n

Spare

3.2.8 REMOTE PUT FINISHED
8

Msg
Type

07 Hex

4 4

c
o
d
e

C
o
n
d
i
t
i
o
n

S
p
a
r
e

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-5 July 2001

3.2.9 REMOTE FILESTORE RESPONSE

Length

8
8X

Length

(Value)

(A single
CFDP

File Store
Ressponse)

8

Msg
Type

08 Hex

3.2.10 REMOTE PUT CANCEL
8

Msg
Type

09 Hex

3.3 DIRECTORY OPERATIONS

3.3.1 DIRECTORY LISTING REQUEST

Length

8
8X

Length

(Value)

Directory
Name

8

Msg
Type

10 Hex

Length

8
8X

Length

(Value)

Directory
File

Name*

* The file name and path at the filestore local to
the requesting CFDP user in which the responding
CFDP user should put the directory listing

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-6 July 2001

3.3.2 DIRECTORY LISTING RESPONSE

Length

8
8X

Length

(Value)

Directory
Name*

8

Msg
Type

11 Hex

Length

8
8X

Length

(Value)

Directory
File Name**

Listing
Response

Code
00-7F-

Successful
80-FF-

Unsuccess-
ful

8

*The name of the directory
being listed, taken from the
directory listing request

**The file name and path at the
filestore local to the requesting
CFDP in which the listing has
 been put, taken from the
directory listing request

3.4 REMOTE STATUS REPORT OPERATIONS

3.4.1 REMOTE STATUS REPORT REQUEST

Length

8
8X

Length

(Value)

8

Msg
Type

20 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

Report File
Name

3.4.2 REMOTE STATUS REPORT RESPONSE

Length

8
8X

Length

(Value)

8

Msg
Type

21 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

Report File
Name

2 6

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 3-7 July 2001

3.5 REMOTE SUSPEND OPERATIONS

3.5.1 REMOTE SUSPEND REQUEST
8

Msg
Type

30 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

3.5.2 REMOTE SUSPEND RESPONSE
8

Msg
Type

31 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable2 5

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

1

S
u
s
p

I
n
d

3.6 REMOTE RESUME OPERATIONS

3.6.1 REMOTE RESUME REQUEST
8

Msg
Type

38 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable

3.6.2 REMOTE RESUME RESPONSE
8

Msg
Type

39 Hex

1 3

l
e
n
g
t
h

e
n
t
i
t
y

I
D

R
e
s
e
r
v
e
d

1 3

N
u
m

l
n
g
t
h

T
r
n
s
a
c
t

S
e
q

R
e
s
e
r
v
e
d

Source entity ID Transaction
Sequence Number

variable variable2 5

S
t
a
t
u
s

T
r
n
s
a
c
t
i
o
n

R
e
s
e
r
v
e
d

1

S
u
s
p

I
n
d

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 4-1 July 2001

4 PROTOCOL OPTIONS, TIMERS, AND COUNTERS

4.1 GENERAL

This section contains subsections for implementation options, timers, and counters.

4.2 OPTIONS

Table 4-1: Options

Put Modes Effect
UnACK Selects Unreliable mode of operation.

NAK Selects Reliable mode of operation.

Put NAK Modes Effect
Immediate NAKs are sent as soon as missing data is detected.

Deferred NAK is sent when EOF is received.

Prompted NAK is sent when a Prompt (NAK) is received.

Asynchronous NAK is sent upon a local (implementation-specific) trigger at
the receiving entity.

Put PDU CRC Effect
True Requires that a CRC be calculated and inserted into each File

Data PDU.

False No CRC is inserted in File Data PDUs.

Put File Types Effect
Bounded Sends a normal file, i.e., one in which the file is completely

known before transmission.

Unbounded Sends a file the length of which is not known when
transmission is initiated (intended primarily for real-time data).

Segmentation Control
(Record Boundaries
Respected)

Effect

Yes Causes each File Data PDU to begin at a record boundary.

No Ignores record structure when building PDUs.

Put Primitives
(Receiving End)

Effect

EOF-sent.ind Indicates to User at source entity that the EOF for the
identified transaction was sent.

Transaction-finished.ind Mandatory at source entity, optional at destination entity.

File-segment-receive.ind Indicates to the user at destination entity that a File Data PDU
has been received.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 4-2 July 2001

Action on Detection of a
Fault

Effect

Cancel Cancels subject transaction.

Suspend Suspends subject transaction.

Ignore Ignores error (but sends Fault.indication to local user).

Abandon Abandons transaction with no further action.

Action on Cancel
At Receiving End

Effect

Discard data Discards all data received in the transaction.

Forward incomplete Forwards all data received to the local destination.

Put Report Modes
(Sending End)

Effect

Prompted Rpt Returns report on Prompt from local user.

Periodic Returns report to local user at specified intervals.

Release of
Retransmission Buffers

Effect

Incremental and Immediate Releases local retransmission buffer as soon as sent.

In total When ‘Finished’
Received

Releases local retransmission buffer only when Finished PDU
is received.

4.3 TIMERS

The following should be considered relative to the use of timers:

a) At the sender, the timer for a given EOF or Finished PDU should not be started until
the moment that the PDU is delivered to the link layer for transmission. All outbound
queuing delay for the PDU has already been incurred at that point.

b) At the receiver, acknowledgment PDUs should always be inserted at the front of the
priority First-In-First-Out (FIFO) list to ensure that they are transmitted as soon as
possible after reception of the PDUs to which they respond. (Acknowledgment PDUs
are small and are sent infrequently, so the effect on the delivery of any emergency
traffic is insignificant.)

c) To account for any additional delays introduced by loss of connectivity, the
implementer must rely on external link state cues. Whenever loss of connectivity is
signaled by a link state queue, the timers for all PDUs destined for the corresponding
remote entity should be suspended; reacquiring the link to the entity should cause
those timers to be resumed. By using this method, there is no need to try to estimate
connectivity loss delays in advance, and there is no need for CFDP itself to be aware

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 4-3 July 2001

of either the ephemerides or the tracking schedules of the local entity or of any remote
entity.

Table 4-2: Timers

TIMER
NAME

 TYPE TIMER
LOCATION

STARTS ON RESETS ON TERMINATES
ON

ACTIONS ON
EXPIRY

NAK
Retry
Timer

Mandatory for
all
acknowledged
modes

FDU
Receiving
entity

Issuance of a
NAK

Issuance of a
NAK

Reception of
all requested
data

Issue a new NAK
for all unreceived
data

ACK
Retry
Timer

Mandatory for
all
acknowledged
modes

Entity issuing
PDU to be
acknowledge
d

Issuance of a
PDU requiring
positive
acknowledgment

Re- issuance of
the PDU

Reception of
expected
response

Re-issue the original
PDU

Prompt
(NAK)
Timer

Implementation
option

FDU Sending
entity

Implementation-
specific

Implementation
-specific

Implementation
-specific

Issue a Prompt
(NAK) PDU

Async
NAK
Timer

Implementation
option

FDU
Receiving
entity

Implementation-
specific

Implementation
-specific

Implementation
-specific

Issue a single NAK
for all unreceived
data

Keep
Alive
Timer

Optional in all
acknowledged
modes

FDU
Receiving
entity

Implementation-
specific

Implementation
-specific

Implementation
-specific

Issue a Keep Alive
PDU

Prompt
(Keep
Alive)
Timer

Optional in all
acknowledged
modes

FDU Sending
entity

Implementation-
specific

Implementation
-specific

Implementation
-specific

Issue a Prompt
(Keep Alive) PDU

Inactivity
Timer

Mandatory
except sending
entity in
unacknowledged
mode

Each Source
and
Destination
entity

Reception of
any PDU

Reception of
any PDU

Implementation
-specific

Issue an
Inactivity.indication

4.4 COUNTERS

Table 4-3: Counters
COUNTER NAME TYPE COUNTER

LOCATION
COUNTER
LIMIT

ACTION ON
REACHING
LIMIT

NAK Timer Expiration
Limit

Mandatory for all
acknowledged
modes

FDU Receiving
entity

Implementation
-specific

Invoke Fault
procedures

ACK Timer Expiration
Limit

Mandatory for all
acknowledged
modes

Entity issuing PDU
to be acknowledged

Implementation
-specific

Invoke Fault
procedures

Keep Alive Discrepancy
Limit

Optional

Implementation
-specific

Invoke Fault
procedures

.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 5-1 July 2001

5 STATE TABLES NOTES

5.1 GENERAL

This section contains adjunct material to the State Transition Diagrams and State Tables
contained in reference [1].
5.2 CFDP KERNEL

The State Tables contained in reference [1] assume that some other part of the CFDP
implementation:

a) starts up all required State Machines;

b) establishes the lower communications layer connection(s);

c) receives all incoming PDUs via the lower communications layer and delivers them to
the appropriate State Machine(s) by triggering the appropriate event(s);

d) receives all User Requests and delivers them to the appropriate State Machine(s) by
triggering the appropriate event(s).

The standard does not specify how these needs are met. One possible solution is to
implement a CFDP Kernel. The following logic is a summary of one possible kernel
implementation. The logic shows the action to be taken by the kernel in response to all
possible events:

/* A new Sender State Machine is created for each User Put Request */

E11 - Received a Put Request

 If ("the Put Request is for Unacknowledged Mode)

 Establish lower-communications-layer path to/towards the destination.

 Start a new Unacknowledged Mode Sender State Machine and trigger E11.

 Else /* Acknowledged Mode */

 Establish lower-communications-layer path to/towards the destination.

 Start a new Acknowledged Mode Sender State Machine and trigger E11.

/* A new Receiver State Machine is created for each MD/FD/EOF PDU containing a
new transaction-id. MD/FD/EOF PDUs are delivered to the appropriate State Machine.
*/

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 5-2 July 2001

E12 - Received a Metadata PDU

E13 - Received a File-data PDU

E14 - Received an EOF PDU

 If ("this is a PDU from the Sender to the Receiver")

 If ("no State Machine is assigned to the referenced transaction")

 /* Start state machine(s) to handle this new transaction */

 {

 If ("the PDU Transmission Mode is 'Unacknowledged'")

 Start a new Unacknowledged Mode Receiver State Machine.

 Else /* Acknowledged Mode */

 Start a new Acknowledged Mode Receiver State Machine.

 }

 /* Any required state machine(s) are running; trigger the appropriate event(s) */

 Trigger the same event for the Receiver State Machine (E12, E13, or E14)

 Else /* PDU from Receiver to Sender */

 /* The protocol never requires sending MD, FD, or EOF back to the Sender */

 Throw it away.

E15 Received an Ack-EOF PDU

E17 Received an Ack-Finished PDU

E18 Received a NAK PDU

 If ("this is a PDU from the Sender to the Receiver")

 If ("a Receiver State Machine is assigned to the referenced transaction")

 Trigger the same event in that Receiver State Machine (E15, E17, or E18).

 Else /* from Receiver to Sender */

 If ("a Sender State Machine is assigned to the referenced transaction")

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 5-3 July 2001

 Trigger the same event in that Sender State Machine (E15, E17, or E18).

E16 Received a Finished-final PDU

E26 Received an EOF-Cancel PDU

E28 Received a Finished-Cancel PDU

If ("this is a PDU from the Sender to the Receiver")

 If ("a Receiver State Machine is assigned to the referenced transaction")

 {

 Trigger the same event in that Receiver State Machine.

 }

 Else /* from Receiver to Sender */

 If ("a Sender State Machine is assigned to the referenced transaction")

 {

 Trigger the same event in that Sender State Machine (E16a, E22, E23, E25, or E28).

 }

/* Most User Requests are delivered to all State Machines assigned to their transaction;
this ensures that Cancel reaches all entities involved in the transaction. */

E29 Received a Cancel Request

E31 Received a Suspend Request

E34 Received a Resume Request

E36 Report Request

 If ("a Sender State Machine is assigned to the referenced transaction")

 Trigger the same event in that Sender State Machine (E29, E31, E34, or E36).

 If ("a Receiver State Machine is assigned to the referenced transaction")

 Trigger the same event in that Receiver State Machine (E29, E31, E34, or E36).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-1 July 2001

6 IMPLEMENTATION CONSIDERATIONS

6.1 GENERAL

The CFDP protocol was designed to provide file delivery services in a wide category of space
missions which were derived from a series of representative, but generic, scenarios.

In the context of a specific mission, many considerations can impact on the way that CFDP
services will be requested and solicited. For example:

a) Mission analysis;

b) System requirements (reliable/unreliable transfers, autonomy, transfer initiative
management, �);

c) Spacecraft orbit and visibility (Low Earth Orbit [LEO], Geosynchronous Earth Orbit
[GEO], Geosynchronous Transfer Orbit [GTO], Deep Space, �);

d) Onboard data handling capabilities;

e) Ground stations density (disjoint/overlapping passes, �);

f) Ground segment connectivity (bandwidth limitation, �);

g) Ground segment topology and interfaces (functional distribution, reusability of
existing components, compatibility issues, �);

h) Operational requirements (pass management, ground station availability, �);

i)

Such considerations may lead to the selection of specific classes or subsets of the CFDP (e.g.,
reliable or unreliable modes of data transmission). In order that the protocol may
successfully operate in any particular mission environment, it must be complimented by
implementation-specific information and enabling mechanisms.

6.2 TRANSFERRING SUPPORTING INFORMATION

During the CFDP design phase, considerable effort was deployed to avoid an exponential
expansion of the number of optional parameters carried by CFDP PDUs. To reduce
complexity, CFDP is intentionally restricted to a minimum set of primitives sufficient to
achieve its primary objective of transferring files.

In situations where it is necessary to convey CFDP-related information to a remote system,
the information is propagated outside of the CFDP protocol.

Basically, three alternative �bypass� solutions are suggested:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-2 July 2001

a) CFDP may be used to transfer a �message to user� using a metadata PDU for an FDU
that does not contain file data. The message will be passed to the CFDP user and
from there it may be conveyed to a local application using implementation-specific
mechanisms. This �user to user� pass-through interface can be used to deliver a
mission-specific directive or option. For example: �suspend transaction number X in
6 minutes then auto resume this transaction in 7 hours and 35 minutes� is the kind of
macro directive not supported by CFDP, but which can be carried by CFDP to an
appropriate application via the CFDP �message to user�.

b) CFDP may be used to transfer a file with an associated message to user. For example,
�here is a file containing pass schedules for next 10 days�.

c) CFDP is not the only way to communicate with the remote system, and any
alternative interface (Telecommand [TC] or Telemetry [TM] packet) can be used to
carry unsupported CFDP features. For example, �this packet means that remote
CFDP is momentarily off, due to an onboard reconfiguration�.

Bypass and proprietary solutions should only be used when basic CFDP services are not able
to provide the required function.

6.3 EXAMPLE FILE CHECKSUM CALCULATION

6.3.1 SPECIFICATIONS

As specified in reference [1]:

The checksum shall be 32 bits in length and calculated by the following method:

1) it shall initially be set to all �zeroes�;

2) it shall be calculated by modulo 232 addition of all 4-octet words, aligned from the
start of the file;

3) each 4-octet word shall be constructed by copying into the first (high-order) octet of
the word, some octet of file data whose offset within the file is an integral multiple of
4, and copying the next three octets of file data into the next three octets of the word;

4) the results of the addition shall be carried into each available octet of the checksum
unless the addition overflows the checksum length, in which case carry shall be
discarded.

6.3.2 EXAMPLE

An example of creating the checksum, developed by the National Space Development
Agency (NASDA) of Japan, comprises the remainder of this subsection.

The checksum is calculated by modulo 232 addition of 4-octet integers. The integers are
constructed from 4-octet sets aligned from the start of the file. Each set is converted to an

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-3 July 2001

integer by placing its first octet in the leftmost octet of the integer, and so on, up to the fourth
octet which is placed in the rightmost octet. The integer is then added to the 4-octet running
total, ignoring addition overflow.

Octets may omitted, either due to file segments arriving out of order or the file size being an
inexact multiple of 4, i.e., 32 bits. Missing octets may be substituted with zeroes for the
purposes of checksum calculation, as addition is commutative.

Worked example:

a. Consider a 10-byte file

0x8a 0x1b 0x37 0x44 0x78 0x91 0xab 0x03 0x46 0x12

b. The checksum calculation is:

0x8a1b374
4

Bytes 0-3

+ 0x7891ab0
3

Bytes 4-7

0x102ace2
47

& 0xfffffff
f

Modulo 232, clear carry flag

0x02ace24
7

+ 0x4612000
0

Bytes 8-9, padded with trailing zeroes

0x48bee24
7

Final checksum, carry flag not set

6.4 JPL NOTES ON CFDP IMPLEMENTATION

6.4.1 OVERVIEW

(Contributed by Scott Burleigh, NASA/JPL)

The Jet Propulsion Laboratory�s (JPL) implementation of CFDP has been aimed at reducing
the need for active management of the protocol to the lowest level possible, in the
expectation that maximizing protocol agent autonomy will help minimize the cost of
operating complex deep space missions (the Mars program, for example). Here is a

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-4 July 2001

discussion of several design approaches embodied in that implementation which other
implementers might (or might not) find useful.

6.4.2 DEFERRED TRANSMISSION

Deferred transmission can offer a degree of convenience to applications: it simplifies
applications by relieving them of the need to know when communication links are active.

Deferred transmission makes CFDP responsible for scheduling file delivery to various other
CFDP entities. Two implementation measures support this:

a) First, the function of responding to application requests for file delivery is partitioned
from the function of handing data to the link layer for transmission; the former is
handled by the fdpd (FDP daemon) task, the latter by a separate fdpo (FDP output)
task (fdpd is always running, but fdpo runs only while the communication link to a
specific CFDP entity is active). In response to application requests, fdpd constructs
CFDP PDUs and enqueues them in persistent FIFOs (linked lists) of data destined
for the designated entities; separately, fdpo dequeues PDUs from those FIFOs and
passes them on to the underlying communication system for immediate radiation.
The FIFOs grow while links are inactive, and shrink while they are active, but this is
transparent to applications.

b) Second, the implementation fully supports the �link state change� procedures by
starting and stopping fdpo. CFDP itself is just a communication protocol, not an
operating system; in order for the host of the CFDP entity (spacecraft, ground station,
whatever) to be able to use CFDP for communication, the host itself must establish
the communication links that CFDP will use. Some mechanism�e.g., scheduled
tracking passes, beacon response, or some combination of both�must therefore exist
for commanding the host to establish and break those links. This implies that
knowledge of link state already exists outside of CFDP, so delivery of that knowledge
to CFDP can be used to drive the starting and stopping of fdpo tasks. In the case of a
single entity that can communicate with multiple remote entities, those external link
state cues also tell fdpo which entity is currently �in view� and, therefore, from which
FIFOs to dequeue PDUs .

By relying on link state cues to control the operation of fdpo, we can accommodate
occultation and other interruptions in connectivity simply and efficiently: when the link is
lost, CFDP simply stops transmission and reception of data between the two endpoints of the
link. This implementation of deferred transmission incurs far less overhead than using the
Remote Suspend and Resume user operations to control suspension and resumption of
communication:

a) Suspend and Resume operations entail protocol activity, requiring a cooperative
interchange of data between entities. Deferred transmission is entirely local; no PDUs
are issued or received to affect it.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-5 July 2001

b) Because deferred transmission is an entirely local mechanism, it is unaffected by
delay due to the distance between the participating entities. Moreover, there is no
chance of incomplete remote suspension/resumption due to loss of a PDU.

c) Remote Suspend and Resume are transaction-specific. This means that suspending all
transmission between any pair of entities would require the reliable transmission of
PDUs for every transaction currently in progress between them, as would resumption
of transmission. In contrast, the deferred transmission mechanism is atomic and
comprehensive.

6.4.3 FLOW LABELS

Flow label processing is identified in reference [1], but is left undefined. The JPL
implementation of CFDP incorporates a flow label algorithm that is intended to provide
highly flexible bandwidth allocation without requiring active management.

A JPL flow label is an integer in the range 0 through N inclusive, where N is some small
value. In testing to date we have used N = 3, with 0 as the default flow label, for transactions
that omit the flow label TLV from transaction metadata.

For each remote CFDP entity, fdpd enqueues the PDUs of each file destined for that entity
onto one of N+1 FIFOs, depending on the flow label associated with the transaction. FIFO
�N� is designated the �priority� queue for that entity Each of the other queues is assigned a
�service level�, a number that indicates that queue�s allocation of total transmission
bandwidth in the absence of priority traffic.

Fdpo loops endlessly through the following algorithm to obtain from these N+1 FIFOs the
PDUs it sends to the remote entity that is currently in view:

a) If there are any PDUs currently in the priority FIFO, remove the first PDU from that
FIFO and transmit it.

b) Otherwise, if any of the non-priority FIFOs are non-empty:

1) Compute �service provided� for each non-empty non-priority FIFO. For a given
FIFO, service provided is calculated as the FIFO�s service total (the total number
of bytes of data dequeued so far from this FIFO) divided by the service level
assigned to the FIFO.

2) Remove the first PDU from the FIFO for which the least service has been
provided, transmit it, and add its length to that FIFO�s service total.

c) Otherwise, wait until fdpd signals that PDUs have been placed in one or more of the
FIFOs.

The service levels assigned to non-priority FIFOs can be any numeric values, but the service
level assignment scheme we have used in testing enables a small optimization. If the service
level assigned to FIFO n (where 0 <= n < N) is 2**n, then you can compute service provided

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-6 July 2001

for any FIFO by simply shifting its service total n bits to the right. If N = 3, the FIFOs are
configured as follows:

FIFO number Service level

0 2**0 = 1

1 2**1 = 2

2 2**2 = 4

3 (priority FIFO, service level n/a)

Assigning a given file the flow label N causes it to be appended to the priority FIFO, so that it
is transmitted after all previously enqueued priority transmissions (if any), but before all non-
priority transmissions. Assigning a given file a flow label less than N causes it to be
appended to the corresponding FIFO; it will be transmitted after all previously enqueued
transmissions with the same flow label, but possibly before previously enqueued
transmissions with different flow labels, depending on the lengths of the various FIFOs and
the service levels assigned to them. For example, if all non-priority traffic is assigned either
flow label 0 (with service level 1) or flow label 2 (with service level 4), and FIFOs 0 and 2
are both kept non-empty at all times, then transmissions assigned to flow 2 will be delivered
four times as rapidly as those assigned to flow 0; flow 2 will occupy 80% of the transmission
bandwidth, while flow 0 occupies the remaining 20%.

The effect of this scheme is to apportion transmission resources automatically to various
classes of traffic, without ever starving any class of traffic altogether, while still enabling an
emergency transmission to take temporary precedence over all other traffic when necessary.
No management is necessary, aside from the assignment of service levels to flows.

NOTE � When an unused FIFO begins to be used, the algorithm described above may
enable it to monopolize the transmission link for some time. (Its service total is
initially zero, so its computed service provided may remain less than that of all
other flows for a while, even if has a lower service level.) For this reason, an
additional computation is performed each time a PDU is dequeued from a non-
priority channel: if the difference between lowest and highest calculated values
of service provided is greater than some constant K times the current data
transmission rate (in bytes per second), then the service totals of all FIFOs are
reset to zero to resynchronize the algorithm automatically. K, a management
parameter, represents the maximum number of seconds the mission operator is
willing to risk letting one flow monopolize the transmission link.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-7 July 2001

6.4.4 TIMERS

Successful transmission of a PDU can be signified by an acknowledgment, but the only
reliable way to detect a possible failure in transmission is to wait for a timeout period to
expire prior to acknowledgment. Computation of these timeout periods in CFDP is
complicated by the fact that connectivity is discontinuous; reception of an acknowledgment
may be arbitrarily delayed, not only by planetary occultation but also by resource scheduling
decisions at both ends of the link. The effect of using an inaccurate timeout period to control
retransmission can be either unnecessary delay in data delivery (if the timeout period is too
long), or unnecessary retransmission traffic (if the timeout period is too short).

The JPL implementation of CFDP uses the following mechanism to detect timeout expiration
for EOF and Finished PDUs:

a) The total time consumed in a �round trip� (transmission and reception of the original
PDU, followed by transmission and reception of the acknowledgment) has the
following components:

1) Protocol processing time at sender and receiver.

2) Inbound queuing: delay at the receiver while the original PDU is in a reception
queue, and delay at the sender while the acknowledgment is in a reception queue.

3) Outbound queuing: delay at the sender while the original PDU is in a FIFO
waiting for transmission, and delay at the receiver while the acknowledgment is in
a FIFO waiting for transmission.

4) Round-trip light time: propagation delay at the speed of light, in both directions.

5) Delay due to loss of connectivity.

b) Processing time at each end is assumed to be negligible.

c) Inbound queuing delay is also assumed to be negligible, because processing speeds
are high compared to data transmission rates, even on small spacecraft.

d) Two mechanisms are used to make outbound queuing delay negligible:

1) At the sender, the timer for a given EOF or Finished PDU is not started until the
moment that fdpo delivers the PDU to the link layer for transmission. All
outbound queuing delay for the PDU has already been incurred at that point.

2) At the receiver, acknowledgment PDUs are always inserted at the front of the
priority FIFO to ensure that they are transmitted as soon as possible after reception
of the PDUs to which they respond. (Acknowledgment PDUs are small and are
sent infrequently, so the effect on the delivery of emergency traffic is
insignificant.)

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-8 July 2001

e) We assume that one-way light time to the nearest second can always be known (e.g.,
provided by the MIB). So the initial value for each timer is simply twice the one-way
light time plus 1 second of margin to account for processing and queuing delays.

f) This leaves only one unknown, the additional round trip time introduced by loss of
connectivity. To account for this, we again rely on external link state cues.
Whenever loss of connectivity is signaled by a link state queue, we not only stop
fdpo, but also suspend the timers for all PDUs destined for the corresponding remote
entity; reacquiring link to the entity causes those timers to be resumed. There is no
need to try to estimate connectivity loss delays in advance, nor is there is a need for
CFDP itself to be aware of either the ephemerides or the tracking schedules of the
local entity, or of any remote entity.

In testing performed to date, this mechanism seems to trigger timeout-driven retransmission
without imposing either excessive retransmission traffic or excessive file delivery delay.

6.4.5 IGNORING LATE DATA

Unacknowledged-mode transactions always terminate on receipt of the EOF (No error) PDU.
Therefore any Metadata or file data PDU received after the EOF (No error) PDU for the same
transaction may be ignored.

6.4.6 PDU QUEUING WITHIN THE CFDP ENTITY

Under some circumstances, CFDP PDUs should be physically transmitted (radiated) in an
order that differs from the order in which they were generated.

Operational considerations or other user constraints may require that access to transmission
bandwidth be allocated among multiple �flows� according to a user-visible management
algorithm. Typically, it may be necessary to prevent the transmission of a single large but
non-critical file from delaying the delivery of small but critical files whose transmission is
requested later. The CFDP �flow label� mechanism is intended to address this sort of
requirement. The various �flows� are typically implemented as logically distinct transmission
channels within CFDP that must be multiplexed on output.

Additionally, though, some PDUs that serve only CFDP internal control purposes may need
to be radiated on an urgent basis, possibly ahead of a large number of file data PDUs that are
currently queued for transmission. A single CFDP service request or protocol procedure may
result in the transmission of multiple PDUs. Since any single transmission medium can only
send one value at a time, a CFDP implementation must provide some mechanism for
imposing a rational order of transmission on those PDUs. Typically queues (or FIFOs) are
the basis for this mechanism. However, PDU queuing must be done carefully in order to
avert various kinds of trouble. In particular, if a single queue is used and new PDUs are
always added to the back of this queue, then:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-9 July 2001

a) The File Data PDUs for an urgently needed file can never be transmitted until the
previously queued PDUs of less important files, bound for the same destination entity,
have been transmitted.

b) An ACK PDU will never be transmitted until all previously queued PDUs have been
transmitted. This makes the arrival time of the ACK heavily dependent on the size of the
backlog of PDUs pending transmission at the ACK�s sending entity. Since this size is
difficult or impossible to estimate accurately, the sender of the PDU to which the ACK is
responding cannot accurately anticipate the ACK�s arrival time; it therefore cannot know
with any accuracy when to presume data delivery failure and retransmit the PDU.

One alternative approach is to use a single queue but manage it intensively, inserting new
PDUs not just at the back but at various points throughout the queue, and possibly
rearranging items within the queue as necessary.

Another approach, which seems structurally more complex but may be procedurally simpler,
is to use multiple queues and merge them at the point of access to the Unitdata Transfer (UT)
layer. A possible implementation is discussed in 6.4.3.

A further note on the effect of queuing on ACK arrival time: selection of accurate
retransmission timer intervals in CFDP is difficult, but it need not be impossible. Nearly all
of the uncertainty in computing these values can be removed if the CFDP implementation
observes these principles (refer to 6.4.4 for a fuller discussion):

a) A positive acknowledgment timer should not be started until the affected PDU can be
assumed to have been physically radiated. A service indication from the UT layer
may be required for this purpose.

b) Positive acknowledgment timers should be temporarily stopped during any time
interval in which the responding entity is unable to transmit (i.e., between tracking
passes) and restarted when the responding entity�s ability to transmit is restored (i.e.,
the next tracking pass starts). This activity is entailed in the �link state change�
procedures.

c) ACKs should be delivered to the UT layer immediately, as soon as they are created.
This might mean inserting them at the front (rather than the back) of the single
outbound PDU queue, or alternatively inserting them at the back of a separate, top-
priority queue reserved for ACK transmission.

6.4.7 ADDITIONAL COMMUNICATIONS CHANNEL

The separate queue for ACK transmission alluded to in 6.4.6 might also be considered an
�additional communications channel�, a mechanism for immediate transmission of urgent
protocol control information.

It has been speculated that such a mechanism might be used for transmission of several types
of file directive PDUs. ACK PDUs are clearly urgent enough to warrant top-priority
transmission: significant delay in transmitting an ACK can result in premature timer

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-10 July 2001

expiration and unnecessary retransmission, consuming scarce bandwidth. It is not yet clear
that any other file directive PDUs are similarly critical, so no consensus on this topic has
been reached within CCSDS Panel 1F.

6.4.8 TRANSACTION INDICATIONS

The Transaction.indication primitive that is issued to the user application upon initiation of a
transaction indicates the ID assigned to the new transaction. However, CFDP is not
constrained to block the submission of a Put.request primitive until a Transaction.indication
has been issued in response to the prior Put.request; nothing in the standard prevents the
submission of multiple Put.requests in quick succession without intervening reception of any
resulting Transaction.indications. In order for the user application to be able to associate a
transaction ID with the corresponding Put.request (and, implicitly, with the corresponding
file), an implementation-specific mechanism must be supplied.

One option is flow control, the single-threading of Put.request activity described in 6.4.3.
While the CFDP standard does not require this behavior, neither does it prohibit it.

Another option would be an implementation-specific transaction tag system, such as might be
provided in an application programming interface. For example, the function used to submit
a Put.request might return a �request ID� number, which could subsequently be inserted into
the data object that is sent to the user application when the resulting Transaction.indication is
produced; the user application could link the Transaction.indication to the corresponding
Put.request by request ID.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-11 July 2001

6.5 SIMPLE ANALYSIS OF NAK RETRANSMISSION

(Contributed by Rob Smith, Defence Evaluation and Research Agency [DERA]/British
National Space Centre [BNSC].)

The performance for CFDP can be gauged by making a few simple approximations using the
method outlined in this subsection. The most important measure is the probability of a PDU
being received.

It has been assumed that the link has a long delay, whereby the data rate is high relative to the
link delay, i.e., all data is transmitted and then, at some later time, all data is received. In this
case, there is no time overlap between transmission and reception, which is not unreasonable,
as data rates will increase and the speed of light will not.

The probability of PDU loss, qpl, is dependent on the number of bytes in the PDU, np, and the
probability of a bit error, pbe.

This confirms that risk of PDU loss increases with PDU length.

In a single transaction, most of the traffic consists of File Data PDUs, which are typically
significantly larger than other PDUs involved. The majority of non-File Data PDUs are
small, i.e., 20-200 bytes, and so are less prone to corruption. The only exception is the NAK
PDU, which may be large if there is a lot of data corruption, and it is the trigger for File Data
PDU retransmission.

Hence, the transaction simplifies to:

a) Send all File Data PDUs.

b) Return NAK PDU.

How big should File Data PDUs be? If they are too big, they are easy prey to bit errors,
meaning the whole PDU must be resent. If they are too small, then their headers become an
unacceptably large overhead. In this example, 1024 bytes has been taken as a reasonable
compromise.

How big are NAK PDUs? Their size is dependent on the File Data PDU length, nfd,
probability of bit error, pbe, and the file size, nfl.

The number of File Data PDUs, Nfd, is:

The probability that a File Data PDU is lost, qfd, is:

So an estimate of the number of NAKs, nn, is:

And the probability of a NAK PDU loss, qn, is:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 6-12 July 2001

How likely is a bit error? This depends on the mission and its environment. For the purposes
of this example, a typical link is assumed to lose 1 bit in 1010 (pbe=10-10), and a poorly-
designed link will drop 1 bit in 106 (pbe=10-6). These figures are based on current space
communications links with and without error correction.

Consider a 1Gb file (Nfd = 106):

pbe 10-10 10-8 10-6 10-5

qfe 8x10-7 8x10-5 8x10-3 8x10-2

nn ~1 80 8000 80000

qn 8x10-10 6x10-6 6x10-2 (1:16) 0.998 (~1)

Bit error probabilities of 10-8 and 10-5 have been added for context, as the trends are far from
linear, especially around 10-6. As the link quality decreases, the number of NAKs rises
sharply, and the probability of NAKs failing becomes almost certain (~1).

The example presented here provides a rough guide to performance for a typical transaction.
However, the analysis method has also been outlined to allow users to evaluate CFDP
performance with their own mission parameters.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-1 July 2001

7 IMPLEMENTATION REPORTS

NOTE � The implementation reports in this section describe implementations created in
the process of developing the CFDP specifications. The next issue of this Report
will include reports on implementations conforming to the CFDP specifications
contained in the next approved version of reference [1].

7.1 CNES CFDP IMPLEMENTATION REPORT

7.1.1 INTRODUCTION

Centre National d�Etudes Spatiales (CNES) has selected CFDP as a candidate protocol for
future space missions. In support of this selection, CNES has performed detailed analysis of
the CFDP, including data flow chart generation, the creation of state transition diagrams, and
identification of timeout values. Further, utilizing the analysis and synthesis results, an
implementation of the CFDP has been coded and the implementation has been thoroughly
tested. In order to perform such testing CNES developed the space link simulator (LinkSim),
and used the simulator in the testing and validation of the Core Procedures of the CFDP
protocol.

7.1.2 CFDP VALIDATION PLAN

According to the CNES CFDP validation plan, the implementation validation will proceed
through the following steps:

a) operational test and validation of the implemented protocol;

b) protocol test and validation in a simulated space mission;

c) validation by interoperation with the National Aeronautics and Space Administration
(NASA), the European Space Agency (ESA) and, eventually, with other national
space Agencies;

d) flight test and validation using a test spacecraft.

Currently, CNES has completed the first two steps, and the implementation of the CFDP has
been proven to work as specified. In each set of tests, all user commands were executed.

The third step of validation, interagency operations, awaits implementation by other agencies
in addition to NASA and ESA.

To accomplish the fourth step, CNES will implement CFDP on three different flight tests:

a) the Stratospheric Balloon system;

b) the Multi-mission Microsatellite Project, whose first launch is expected in mid-2001;

c) the Onboard Autonomy Evaluation Project, in which the CFDP is proposed as a
means of space link connection automation.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-2 July 2001

These projects face more sophisticated space-ground connection geometry than in the past,
and thus their need for a reliable file transfer or telemetry transfer protocol is increased.

Unfortunately, the first launch of the above projects (either a balloon or a spacecraft) is not
expected before 2000. For the time being, the CFDP implementation will be enhanced and
ported to the target processor.

7.1.3 IMPLEMENTATION

7.1.3.1 Implementation Objectives

The CNES implementation of the CFDP fulfills the following objectives:

a) verification of the new specification;

b) demonstration of the protocol within CNES as a candidate for its future space
missions;

c) active participation of CNES in CCSDS to support and influence the emerging
international standard.

7.1.3.2 Implementation Scope

The CNES implementation of CFDP has two phases:

a) implementation of the Core Procedures of the CFDP, plus some extended features of
transparent waypoint (relay) functionality;

b) complementary addition of the Extended Procedures, which support the store-and-
forward function.

The store-and-forward waypoint functionality has been excluded in the first implementation
phase because there is no immediate need in CNES to have that functionality, and also
because the direct link connectivity (Core CFDP) must be verified before going on to the
Extended Procedures phase.

As the first implementation phase, the current implementation provides the following file
transfer capabilities (see figure 7-1):

a) direct link (point-to-point) transactions;

b) one or more transparent hops (via �relays� as opposed to CFDP �waypoints�);

c) proxy initiated transaction (both proxy put and proxy get);

d) one or more transparent hops between proxy initiator and file sender (or file receiver);

e) any combination of cases (a) through (d).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-3 July 2001

File ReceiverFile Sender
(a) Direct Link:

File ReceiverFile Sender Transparent
WayPoint

(b) Link via a Transparent WayPoint

File ReceiverFile Sender

Proxy Initiator

(c) Proxy Initiated Direct Link

File ReceiverFile Sender

Proxy Initiator

Transparent
WayPoint

Transparent
WayPoint

Transparent
WayPoint

(d) Transparent WayPoint for Proxy

Figure 7-1: The Functionality of the CFDP Implementation

Although the current CNES CFDP implementation does not provide store-and-forward
waypoint functionality, it can be simulated by adding an application program. The
application program resides on the waypoint and manipulates the incoming file transfer data
to forward the file to the final destination (file receiver) when the link to the file receiver is
available. Figure 7-2 illustrates this application aided store-and-forward file transfer. In this
case, two separate CFDP Core Procedures connections exist.

File ReceiverFile Sender File ReceiverFile Sender

Higher level Store & Forward

Figure 7-2: Store-and-Forward File Transfer by an Application Simulation

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-4 July 2001

Figure 7-3 shows the test bed used for the CFDP protocol validation. Figure 7-3 (a) shows
the configuration used for operational test and validation of the implemented protocol, and
Figure 7-3 (b) shows the introduction of the space link simulator (LinkSim) between the two
file transfer entities. Note that:

a) the ground mission control center and a spacecraft are simulated by two separate
computers;

b) when required, the LinkSim is inserted into a separate computer between the mission
control center and the spacecraft;

c) all computers are IBM PC compatibles running Windows NT as their operating
system;

d) the programming language is C++.

MCC
IP: 132.149.9.82
Port: 5000

Satellite
IP: 132.149.9.3
Port: 5000

Operator
Command: Put, Get, Proxy

Hop
IP: 132.149.9.56
Port: 5000

(a) Direct link CFDP test and validation

GCC
IP: 132.149.9.82
Port: 5000

Satellite
IP: 132.149.9.3
Port: 5000

Space Link Simulator

Hop
IP: 132.149.9.56
Port: 5000

(b) Simulated space link CFDP test and validation

Figure 7-3: CFDP Implementation Test Configurations

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-5 July 2001

The LinkSim program introduces the following perturbations on the link:

a) packet losses according to a specified bit error rate (for example, BER = 10-7);

b) packet losses according to a specified burst of errors rate;

c) packets out of order according to a specified error rate;

d) link delay according to a specified link distance;

e) specified visibility (connectivity) time(s) for the link (file transfer is possible only
during the visible period).

In this simulated space link environment, the CFDP has overcome all the introduced
perturbations and anomalies and successfully completed the file transfers. In addition, when
visibility (connectivity) is lost during a transaction, the CFDP implementation detects the
event through its timers and waits until it again detects visibility (i.e., connectivity is re-
established) and then resumes the suspended transaction.

The following operational scenarios were simulated on the test bed:

a) Mission Control Center (MCC) initiated spacecraft telemetry file downloading
(CFDP Service Class 3, Scenario 1C);

b) spacecraft initiated onboard telemetry file downloading (CFDP Service Class 2,
Scenario 1B);

c) MCC initiated telecommand file uploading (CFDP Service Class 4, Scenario 1D);

d) MCC initiated file transfer between two spacecraft or between one spacecraft and one
ground terminal (CFDP Service Class 5, Scenario 2A).

This CFDP implementation has shown that the CFDP specification for the Core Procedures is
adequate, and that the implementation operates correctly on a simulated space link.

7.1.3.3 Coding

The protocol has been implemented as a Windows NT application, named �CFDP server�.
The CFDP server provides all the necessary functions implemented for the CFDP, and also
provides the client interface via the Windows Pipe mechanism.

For user communication with the CFDP server, a �CFDP client� was implemented, which
issues the CFDP user's commands to the CFDP server.

As shown in figure 7-4, the connection between the CFDP server and client (user) is realized
using Windows Pipe. The underlying network is User Datagram Protocol (UDP)/Internet
Protocol (IP) of Windows NT.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-6 July 2001

Windows Pipe

CFDP Client

CFDP Server

Windows Socket
UDP/IP

WinSock 2.0—UDP/IP on Windows NT

CFDP Client

CFDP Server CFDP Server

Figure 7-4: CFDP Program Organization

The CFDP server program incorporates a bit rate control mechanism in its UDP packet
sending routine. This mechanism, when enabled, limits the maximum UDP packet flow on
the network and allows determination of bandwidth efficiency through measurement of the
total bandwidth and transaction time.

Figure 7-5 shows the CFDP server and CFDP client displays on Windows NT.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-7 July 2001

(a) CFDP Server

(b) CFDP Client

Figure 7-5: CFDP Server and Client Implementation on Windows NT

7.1.3.4 Timeout Mechanisms

In the CNES implementation of the CFDP, four different timeout values and one timeout
counter were identified as necessary. These timers and counter are defined below. The
relationship (if any) of each of these timers and counter to the timers and counters defined in
reference [1] is noted in parenthesis at the end of each description.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-8 July 2001

a) RT_Timer: Round Trip Timer: Defined as a global variable, the timer can be
changed for each transaction or, by an additional mechanism (such as TCP's RTT
calculation), the value of RT_Timer can be changed dynamically. This timeout value
is used to detect packet loss. (NAK Retry Timer and Positive ACK Retry Timer.)

b) Retry_Counter: Retry Limit Exceed Counter: Each time the RT_Timer expires, it
increases the Retry_Counter and resends the previous PDU. The Retry_Counter has a
certain predefined limit, and when it passes this limit, it alerts the CFDP protocol
machine that a Protocol Error has occurred. (NAK Retry Counter and ACK Retry
Counter.)

c) NoData_Timer: No Data Timer: This timeout value is used for two purposes, one at
the file sender and one at the file receiver.

1) File Receiver: Enabled in file receiving or data receiving cases. NoData_Timer is
reset for each PDU received from the file sender. When NoData_Timer expires,
the file receiver considers that the connection is lost. Normally the file receiver
then puts the transaction into the suspended state. (Implementation specific
method.)

2) File Sender: When used in the file transmitting side, it can be enabled for the
Prompted NAK mode, so that at each timeout of NoData_Timer, the sending
entity issues a Prompt PDU. At the reception of the Prompt PDU, the receiving
entity generates either a Keep_Alive PDU or, if a file gap has been detected, a
NAK PDU. (Prompt (NAK) Timer.)

d) KeepAlive_Timer: Keep Alive Timer: Used to maintain the transaction activity at
both the file sender and the file receiver.

1) File Receiver: At the file receiver, on each timeout of the KeepAlive Timer a
KeepAlive PDU is sent, or, if a packet loss has been detected, a NAK. (KeepAlive
Timer and/or an implementation of the Async NAK Timer.)

2) File Sender: In the suspended state, when triggered by this timer, the file sender
sends a Metadata PDU. When the file receiver�in a suspended state�receives
this Metadata PDU, it sends back a Resume PDU to wake up the file sender.
(Implementation-specific method.)

e) Trx_Timer: Transaction Timer: Initiated at the start of a transaction, when it expires
the transaction is terminated, whatever its current state. This avoids any blocking
conditions which might persist indefinitely because of an undefined protocol error.
(Part of an implementation specific Protocol Error Procedure.)

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-9 July 2001

7.1.4 CFDP PERFORMANCE

7.1.4.1 Theoretical Evaluation of the CFDP Retransmission Strategies

The performance of the CFDP can be described by the throughput of the data transfer for a
given constant bit rate communication link. Unfortunately the dynamic routing capability
and the suspend/resume scheme make it impossible, or at least very difficult, to formulate the
overall link throughput. In addition, no other protocols can be compared with CFDP in such
an environment, as they do not support dynamic routing or suspend/resume capability.
However, a useful throughput comparison can be made with other protocols by using the
direct line-of-sight CFDP throughput (no intermediate waypoint).

The CFDP throughput can be evaluated for three different cases:

a) No Acknowledgements (simplex);

b) Immediate Negative Acknowledgments (NAK); and

c) Deferred NAKs.

The two other cases are considered for evaluation of their theoretical throughput. Figure 7-6
shows an example schema for these two retransmission strategies.

In the No Acknowledgement (simplex link) case, the CFDP does not assure the integrity of
the file at the other end, and the transfer time does not vary according to the different
configurations and environmental conditions.

time

time

(a) CFDP Immediate Negative Acknowledgements

….

….1 2 3 4 5 2

1 3 4 5 2

10

10

fin

fin

2

nak

time

time

….

….1 2 3 4 5 2

1 3 4 5 2

10

10

fin

fin

2

nak

(b) CFDP Deferred Negative Acknowledgements

Figure 7-6: CFDP Example Data Flow Charts for Different NAK Strategies

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-10 July 2001

For the Immediate NAK case, the total number of packets Ntotal which are transmitted by the
file sender is given as

 Ntotal = N + N × PER + N × PER2 + N × PER3 + � (1)

 = N / (1 � PER)

where

 PER : Packet Error Rate induced from the link Bit Error Rate (BER) = 1 � (1 �
 BER)8L

 N : Total number of packets =
HL

FS
−

 FS : File Size (in bytes)

 H : Packet Header Length (in bytes)

 L : Packet Length (in bytes)

Ntotal takes into account the repeating retransmissions of the packets.

To send this number of packets to the file receiver, the maximum value of the total
transmission time TTx,max of a file is calculated as

 TTx,max = Ntotal × Tpacket + RTT =
N x Tpacket

1 − PER() + RTT (2)

where

 TTx,max : Maximum value of the total transmission time

 Tpacket : Packet time for a packet to arrive at the receiver = L / LBR

 LBR : Link Bit Rate

 RTT : Round Trip Time between file file sender and the file receiver (sec)

The term RTT is inserted in Equation (2), because if the last packet of the file transfer is lost,
RTT seconds will be taken for the receiver to send a NAK packet and receive back the
corresponding packet, which is the last one of the whole transfer. In this equation, the
processing time of both file sender and file receiver's CPU is ignored.

Consequently, the total transmission time of a file transfer TTx would be smaller than TTx,max
but greater than (Ntotal × Tpacket).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-11 July 2001

On the other hand, for the Deferred NAK case, the file receiver waits for the end of file
transfer from the file sender before it issues the set of NAKs for all the lost packets during the
transfer. In this case, the total transmission time TTx becomes

 TTx = (N × Tpacket) + (RTT + N × Tpacket × PER) + (RTT + N × Tpacket × PER2) + (RTT + � (3)

In Equation (3), the first term in () represents the first time transfer of the given file data, and
if there are errors, a round trip time (RTT) will be passed before starting to receive another set
of the missing packets. Recursively calculated, the resulting equation becomes

 TTx =
N xTpacket

1 − PER() + k RTT (4)

where

 k : number of retransmissions, determined from N and PER

The number of retransmissions k varies according to N and PER. Repeating the
transmissions for the erroneous packets will decrease the number of packets by PER, so kth
retransmission consists of (N × PERk) packets. If this value (N × PERm) is smaller than 1,
then there will be no more packets to send. From N and PER, k is obtained.

PER

Nk
log

log
−= (5)

For example, to send 10,000 packets with PER equal to 0.01, the retransmission time k is
equal to 2. Of course, that is a theoretical estimation.

In summary, the total CFDP transmission time for the two different retransmission strategies
can be described as

a) Immediate NAK case: () o
packet

Tx 1
x

TRTT
PER
TN

T ++
−

=

b) Deferred NAK case: () oTx log
log

1
x

TRTT
PER

N
PER
TN

T packet +−
−

= (6)

where To is the overall link overhead which consists of the initial connection establishment
time and the final closing time. In the CFDP, a Put request PDU does not need to await the
response from the file receiver, and the file sender starts immediately to send the file data.
On the other hand, for the Get request PDU, which is issued by the file receiver, there is a
wait of a single link time (half the RTT) before the file sender starts to send data packets. At
the end of file transfer, both file sender and file receiver can issue the [Finished] PDU, and in
the normal case, it is the file receiver which issues this [Finished] PDU. In this case, to close
the connection ([Finished] PDU and then [ACK(Finished)] PDU), a round trip time (RTT) is
needed for both ends.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-12 July 2001

The theoretical throughput of the CFDP is obtained in both cases:

 Throughput of CFDP = File Size / TTx

7.1.4.2 Direct Link Performance Measurements

To measure the direct link throughput of the CFDP, different configuration parameters and
link environments have been used, as described in table 7-1. Several sets of tests have been
performed:

a) Test 1: Fixed File Size (1 MB), Different Packet Size, No Link Delay, No Link
Errors;

b) Test 2: Different File Size, Fixed Packet Size (1024 bytes), No Link Delay, No Link
Errors;

c) Test 3: Fixed File Size (1 MB), Fixed Packet Size (1024 bytes), Different Link
Delay, No Link Errors;

d) Test 4: Fixed File Size (1 MB), Fixed Packet Size (1024 bytes), Different Link
Delay, Fixed BER (1e-5), No Link Diversity, No Burst Errors;

e) Test 5: Fixed File Size (1 MB), Fixed Packet Size (1024 bytes), Fixed Link Delay
(50 ms), Different BERs, No Link Diversity, No Burst Errors;

f) Test 6: Fixed File Size (1 MB), Fixed Packet Size (1024 bytes), Fixed Link Delay
(50 ms), Fixed BERs (1e-5), Link Diversity (Packet Duplication = 1e-2, Packet Out-
of-Order = 1e-2), No Burst Errors;

g) Test 7: Fixed File Size (1 MB), Fixed Packet Size (1024 bytes), Fixed Link Delay
(50 ms), Fixed BERs (1e-5), Link Diversity (Packet Duplication = 1e-2, Packet Out-
of-Order = 1e-2), Burst Error (BEOP = 0.001, Burst mean duration = 0.1 sec.).

Table 7-1: CFDP Performance Measurement Configuration Parameters

Variable Parameters Unit Parameter Values (default values in bold)
Target File Size Kbytes 10 100 1000 10000
Transmission Packet Size bytes 128 256 512 1024
Link Delay ms 50 100 200 400
Bit Error Rate (BER) 0 1e-9 1e-8 1e-7 1e-6 1e-5
Packet duplication rate 0 1e-2
Packet out-of-order rate 0 1e-2
BEOP 0 0.001
Burst Error Mean duration sec 0 0.1
Transmission bit rate kbps 100

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-13 July 2001

Each of these tests also had 3 different modes of retransmission strategies: No
Acknowledgements (Simplex), Immediate NAKs , and Deferred NAKs.

For these tests, the test files had the following sizes:

a) Kbytes File: 11,078 bytes;

b) Kbytes File : 100,618 bytes;

c) MB File: 1,001,078 bytes;

d) MB file: 9,986,678 bytes.

In all tests, each packet had 9 bytes of overhead for its header. Refer to tables 7-2 through
7-8 for summary information from the CFDP performance tests.

Table 7-2: CFDP Performance Test 1: Packet Length Variation

Test 1. Different Packet Size
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP RT Timeout (sec) 0.1 0.1 0.1
parameters Retry Timeout 10 10 10

 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Link delay (ms) 0 0 0
parameters Bit Error Rate 0 0 0

 Packet duplication rate 0 0 0
 Packet out-of-order rate 0 0 0
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables Packet Length (bytes)
Resulting 128 107.184 107.765 108.176
Transfer 256 97.941 97.991 97.951
Time (sec) 512 87.976 88.057 88.007
 1024 83.240 83.249 83.250

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-14 July 2001

Table 7-3: CFDP Performance Test 2: File Size Variation

Test 2. Different File Size to transfer
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Link delay (ms) 0 0 0
parameters Bit Error Rate 0 0 0

 Packet duplication rate 0 0 0
 Packet out-of-order rate 0 0 0
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables File size to transfer (bytes)
Resulting 11,078 0.941 0.931 0.941
Transfer 100,618 8.382 8.382 8.382
Time (sec) 1,001,078 83.240 83.240 83.189
 9,986,678 832.016 833.288 834.390

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-15 July 2001

Test 1. Different Packet Size

128
256 512 1024

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

0 200 400 600 800 1000 1200

Packet Length

To
ta

l T
ra

ns
fe

r T
im

e

No ACK
Imm. NACKs
Deferred NACKs
Theoretical values

Figure 7-7: CFDP Performance Test 1: Packet Length Variation

Table 7-4: CFDP Performance Test 3: Link Delay Variation

Test 3. Different Link Delay
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Bit Error Rate 0 0 0
parameters Packet duplication rate 0 0 0

 Packet out-of-order rate 0 0 0
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables Link Delay (ms)
Resulting 50 83.230 83.240 83.329
Transfer 100 83.230 83.450 83.440
Time (sec) 200 83.239 83.480 83.440
 400 83.230 83.450 83.450

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-16 July 2001

Table 7-5: CFDP Performance Test 4: Link Delay Variation with Non-Zero BER

Test 4. Different Link Delay with non-zero BER
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Bit Error Rate 1e-5 1e-5 1e-5
parameters Packet duplication rate 0 0 0

 Packet out-of-order rate 0 0 0
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables Link Delay (ms)
Resulting 50 83.230 95.968 93.604
Transfer 100 83.230 96.178 99.403
Time (sec) 200 83.239 94.095 98.642
 400 83.230 95.637 96.729

Test 4. Link delay variation with non-zero BER

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

Link Delay (ms)

To
ta

l T
ra

ns
fe

r T
im

e
(s

ec
.)

Measured No ACKs
Theoretical No ACKs
Measured Imm. NACKs
Theoretical Imm. NACKs
Measured Deferred NACKs
Theoretical Deferred NACKs

Figure 7-8: CFDP Performance Test 4: Link Delay Variation with Non-Zero BER

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-17 July 2001

Table 7-6: CFDP Performance Test 5: BER Variation

Test 5. Different Bit Error Rates
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Link Delay (ms) 50 50 50
parameters Packet duplication rate 0 0 0

 Packet out-of-order rate 0 0 0
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables Bit Error Rate
Resulting 1e-9 83.350 / 0 83.330 / 0
Transfer 1e-8 83.329 / 0 83.701 / 2
Time (sec) / 1e-7 83.500 / 1 83.520 / 1

Lost packets 1e-6 84.532 / 5 85.503 / 7
due to BER 1e-5 98.151 / 107 93.745 / 74

Test 5. BER variation

0

20

40

60

80

100

120

1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05

Link Bit Error Rate

To
ta

l T
ra

ns
fe

r T
im

e
(s

ec
.)

Measured Imm. NACKs

Theoretical Imm. NACKs

Measured Deferred NACKs

Theoretical Deferred NACKs

Figure 7-9: CFDP Performance Test 5: BER Variation

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-18 July 2001

Table 7-7: CFDP Performance Test 6: Link Diversity Introduction

Test 6. Link Diversity Introduction
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Link Delay (ms) 50 50 50
parameters Bit Error Rate 1e-5 1e-5 1e-5
 Burst mean arrival time 0 0 0
 Burst mean duration 0 0 0
Variables Link Diversity
 Dup. = 1e-3 / OoO = 0 TTx

Forward
Backward

96.099
90 / 0 / 12 / 0

1 / 0 / 0 / 0

90.560
92 / 0 / 14 / 0

0 / 0 / 0 / 0
Resulting
Transfer
Time (sec)

Dup. = 0 / OoO = 1e-3 TTx
Forward

Backward

95.287
80 / 0 / 0 / 9

0 / 0 / 0 / 2

93.774
80 / 0 / 0 / 9

0 / 0 / 0 / 1
 Dup. = 1e-3 / OoO = 1e-3 TTx

Forward
Backward

96.429
84 / 0 / 10 / 10

0 / 0 / 0 / 4

94.136
86 / 0 / 13 / 12

0 / 0 / 0 / 1

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-19 July 2001

Table 7-8: CFDP Performance Test 7: Burst Error Introduction

Test 7. Burst Error Introduction
 Retransmission strategy No ACKs Imm. NAKs Deferred NAKs
File File size (bytes) 1,001,078 1,001,078 1,001,078
Constants

CFDP Packet Length (bytes) 1024 1024 1024
parameters RT Timeout (sec) 0.1 0.1 0.1

 Retry Timeout 10 10 10
 No Data Timeout (sec) 10 10 10
 Keep Alive Timeout (sec) 10 10 10
 Forward Link bit rate (kbps) 100 100 100
 Backward Link bit rate (kbps) 100 100 100

LinkSim Link Delay (ms) 50 50 50
parameters Bit Error Rate 1e-5 1e-5 1e-5
 Packet duplication rate 1e-2 1e-2 1e-2
 Packet out-of-order rate 1e-2 1e-2 1e-2
Variables Burst Error
Resulting
Transfer
Time (sec)

BEOP = 0.001
Mean Duration = 0.1 sec

Mean Arrival Time = 0.01 /sec

 96.068
95 / 1/ / 6 / 11

0 / 1 / 4 / 3

96.379
121 / 1 / 7 / 8

0 / 1 / 2 / 3

In Test 1 there are no link errors, and all packets are received correctly, so there is no
difference between the acknowledged mode and the non-acknowledged mode except for the
final confirmation phase.

Table 7-2 shows the measured results for Test 1, and figure 7-7 displays these results
graphically together with the theoretical limit of the non-acknowledged mode. To provide
higher credibility, five measurements are averaged to give each value.

As the packet length becomes smaller, the difference between the theoretical value and the
measured results becomes larger. This is probably caused by the protocol processing
overhead in the CFDP program, because using smaller packets increases the number of
packets to be processed, and thus the number of file accesses and other mechanisms needed
for the transport function also increases.

For the largest packet size (=1024 bytes for the data field), the theoretical value limits the
total transmission time at 80.79 seconds. The measured values are more or less the same,
around 83.35 seconds, so that the difference is 2.56 seconds. The throughput in theory can
reach up to 99.13 kbps in the 100 kbps channel, equal to 99.13 % of the bandwidth usage.
The measured throughput becomes 96.08 kbps (96.08 % bandwidth usage), with a 3 %
overhead on the system.

The Test 2 results show that, without link errors, the total transfer time increases
proportionally with the file size.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-20 July 2001

Tests 3 and 4 show that link delay without link errors has little effect on the throughput but,
once link errors are introduced, the total transfer time increases significantly due to the
number of retransmission packets. In Test 4, the �No ACKs� transmission did not finish the
file transfer due to the errors on the link (table 7-5 and figure 7-8). With 10-5 of BER, the
Packet Error Rate (PER) becomes 0.08 (8 packets per 100 are lost due to the BER).

7.1.5 CONCLUSION

CFDP, by its design, would improve the connectivity of a space network. It permits the
application layer to be automated and facilitates operations.

The CNES implementation of CFDP is not a final version, but a pioneering implementation.
It has demonstrated the advantages and appealing features of this protocol.

7.2 ESA CFDP IMPLEMENTATION REPORT

7.2.1 INTRODUCTION

The implementation report presented in this subsection describes the validation status (within
the European Space Research & Technology Centre [ESTEC]) of the CCSDS File Delivery
Protocol (CFDP) through a software implementation and a document review of the CFDP
Red Book (reference [1]) and its accompanying Green Books (references [3] and [4]).

This report provides information on:

a) CFDP implementation status;

b) Implementation environment and software architecture;

c) CFDP performance test results;

d) Specification document (reference [1]) validation report.

7.2.2 IMPLEMENTATION STATUS

The CFDP software coverage so far entails the implementation of the entire Core file
delivery capability, in both Reliable and Unreliable service types, as well as the
implementation of part of the Extended procedures. That requires the capability to perform a
single Point-to-Point file copy operation between two CFDP entities, a Proxy file copy
operation via one waypoint (Get Request), and a file transfer via Store and Forward
waypoints between the file sender and the file receiver.

According to reference [1], the implemented classes are as follows:

a) Class 1: Unreliable Single Point-to-Point File Transfer;

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-21 July 2001

b) Class 2 Reliable Single Point-to-Point File Transfer;

c) Class 3: Unreliable End-toEnd File Transfer via One Waypoint Entity;

d) Class 4: Reliable End-toEnd File Transfer via One Waypoint Entity;

e) Class 5: Reliable File Transfer by a Proxy Entity.

The Extended protocol classes (3 and 4) are basically functioning but not completely
implemented and tested (i.e., Cancel, Suspend and Resume propagation procedures are
missing).

7.2.3 CFDP IMPLEMENTATION ENVIRONMENT AND CODING

The test bed used for the CFDP implementation in ESTEC is an application developed under
the Delphi 4 Integrated Development Environment (IDE) using the Object Pascal
programming language.

All computers used were International Business Machines (IBM) Personal Computer (PC)
compatibles running Windows 95/NT OS.

The implementation can be subdivided in two different phases:

a) Core procedure development (currently implemented);

b) Extended procedures development (to be completed).

Two separate computers simulate the ground station and a virtual satellite.

From now on, the terms �Client� and �Server� will be used as they apply to the Distributed
Common Object Model (DCOM) technology concept explained later in this subsection.

So far, the ESTEC prototype implements the CFDP Entity (Server) as a Delphi Component.

This component can be easily dragged and dropped inside a Graphical User Interface (GUI).
Then, such a GUI (Client) will �stimulate� the linked CFDP component with protocol
Requests and will receive protocol Indications from it. It is clear that a Delphi component
can be used only inside a Delphi IDE. For this reason, it is anticipated that in the future an
Active X version of this component will be distributed.

The Active X standard is built on top of COM technology (COM-based) and allows the
component to be �Language Independent�. That is, an Active X component can potentially be
used in any kind of development environment (e.g., Visual C++, Visual Basic, etc.).

COM technology defines an API and a binary standard for communication between objects
(i.e., a CFDP Entity) that is independent of any particular programming language or (in
theory) platform. A COM object consists of one or more �interfaces�, which are essentially

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-22 July 2001

tables of functions associated with that object. Such an object can be implemented from any
EXE or DLL.

In this way, a COM mechanism handles all the intricacies of calling functions across process
and even machine boundaries. This makes it possible to access an object (CFDP Entity)
located on machine A from an application (user software) running on machine B.

This intermachine communication method is called DCOM.

Therefore, the DCOM technology discussed in this subsection is strictly used to point out the
possibility of using the CFDP component across machine boundaries (see figure 7-13).

7.2.4 OBJECT-ORIENTED PROGRAMMING (OOP) INTRODUCTION

The goal of this introduction to Object-Oriented Programming (OOP) is to provide the
fundamental principle on which Delphi�s Object Pascal Language is based.

OOP is a programming paradigm that uses discrete objects (an instance of a Class),
containing both data and code, as application building blocks. Although the OOP paradigm
does not necessarily lend itself to easier-to-write code, the result of using OOP traditionally
has been easy-to-maintain code. Keeping an object�s data and code together simplifies the
process of hunting down bugs, fixing them with minimal effect on other objects, and
improving the program one part at time. Traditionally, an OOP language contains
implementations of at least three OOP concepts:

a) Encapsulation: Deals with combining related data fields and hiding the
implementation details. The advantages of encapsulation include modularity and
isolation of code from other code.

b) Inheritance: The capability to create new objects that maintain the properties and
behavior of ancestor objects. This concept enables the creation of object hierarchies
such as VCL (first creating generic objects and then creating more specific
descendants of those objects that have more narrow functionality). The advantage of
inheritance is the sharing of common code.

c) Polymorphism: Literally, polymorphism means �many shapes�. Calls to methods of
an object variable will call code appropriate to whatever instance is actually in the
variable.

An Object is made of:

a) Fields: Are data variables contained within objects.

b) Methods: The name of procedures and functions belonging to an object. Methods are
those things that give an object behavior, rather than just data.

c) Properties: A property is an entity that acts as an accessory to the data and code
contained within an object. Properties insulate the end user from the implementation
details of an object.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-23 July 2001

7.2.5 CFDP vs. OPEN SYSTEMS INTERCONNECTION (OSI) MODEL
LAYERING CONTEXT

CFDP can be viewed as a high-level protocol service designed to take advantage of the
lower-level protocols, relying on a minimal underlying data communication service (i.e.,
UDP/IP, CCSDS, etc.).

CFDP correspondent layer is the Application Service. It includes portions of the OSI Session
Layer, Presentation Layer and the Application Layer, as well as extending into the space
above the OSI stack itself traditionally considered to be system application space. Therefore,
CFDP can work over several different Packet Transfer Layers, including UDP/IP and CCSDS
Standards.

The ESTEC version so far works only over the UDP/IP underlying protocol (see figure 7-10).

UDP was designed to provide a low network-overhead mechanism for transmitting data over
the lower layers. Although it still provides packet handling and sequencing services, UDP
lacks a number of TCP�s more powerful connection-oriented services, such as
acknowledgment, flow control and packet reordering (provided by CFDP). The main
services offered by UDP can be summarised as follow:

a) Segmenting of data streams (CFDP PDUs) into packets;

b) Reconstruction of data streams from packets;

c) Socket services (Winsock 2.0 creation and manipulation) for providing multiple
connections to ports on remote hosts.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-24 July 2001

Figure 7-10: Correspondence between CFDP and OSI Layers

The UDP Host-to-Host Communication Layer (shown in figure 7-10) handles the services
needed to provide reliable communications functionality between network hosts, and
corresponds roughly to the Transport Layer and part of the Session Layer from the OSI
model, but it also includes part of the Application and Presentation Layers.

7.2.6 THE DELPHI CFDP PACKET SERVICE COMPONENT

The Delphi CFDP Packet Service Component is a software module specially made to support
the interface between the CFDP Entity (another Delphi component) and the underlying
Communication System.

The Packet Service Component is connected to both the GUI and the CFDP Component, in a
way that can be fully configured by the user software to operate over a set of various
underlying communication systems (UDP, CCSDS, etc.), relaying CFDP packets from and to
the underlying communication system (see figures 7-11 and 7-12).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-25 July 2001

Figure 7-11: Packet Service Component Functional Diagram

In other words, it is in charge of handling all the procedures related to CFDP PDUs sending
and receiving over the underlying protocol Layer (currently UDP/IP Host-to-Host
Communication Layer for the ESTEC Version).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-26 July 2001

Figure 7-12: Sender-Receiver CFDP Packet Flow

Hence, the CFDP Unit Data (UT) Transfer Layer Interface can be associated with the CFDP
Packet Service software component linked to the CFDP Entity Component.

Obviously, the error handling method for such an interface is the one related to the selected
underlying layer (i.e., the error handling rates for UDP delivery and duplicate protection are
not guaranteed).

So far, no Flow Congestion Control is performed within the UT interface, but it is anticipated
that it will be implemented soon as possible (surely before any interoperability test) as a �bit
rate control mechanism� inside the CFDP Packet Service component�s sending routine. This
mechanism will permit a limit on the maximum number of packets flowed on the network,
and will be used to measure the CFDP bandwidth efficiency through measurements of the
total bandwidth and transaction time.

NOTE � A project for integration of CFDP over a Telecommand (TC) Packet Simulator is
currently being implemented in the European Space Operations Centre (ESOC).

7.2.7 THE DELPHI CFDP COMPONENT

7.2.7.1 Component Description

The CFDP component is a stand-alone software module representing the CFDP behavior
(Core and Extended Procedures), with a well-defined interface to the outside world.

Using a component implies the creation of an Object instance. It is obtained by calling the
constructor method (TCFDP.Create) of the Class (TCFDP) representing the object.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-27 July 2001

The Public/Published methods and properties of the TCFDP Class represent such an
interface.

Public and Published are visibility specifiers. The Public methods and properties can be
accessed only at run-time, while the Published properties (no methods) are also accessible
from inside the IDE at design-time. This means that is possible to set the component�s
published values before running the application in order to make use of an object (i.e., User
Interface software).

A Delphi component can only be used in a Delphi IDE.

In order to work properly, the CFDP component needs to be �used� within an application (i.e.,
the User Interface software). In other words, it receives stimulus from user software in order
to perform actions, and it raises events when a certain state is reached. Thus, according to the
CFDP world, stimulus can be associated to all the CFDP Request Service Primitives and
events can be associated to all the CFDP Indication Service Primitives (see figure 7-13).
When an event is raised from the CFDP Component, the connected User Software shall be
able to handle it and to undertake actions according to the event type (i.e., an info display on
the user interface). This can be done by assigning to each Component�s event an event
handler procedure belonging to the User Software. When doing so, the CFDP�s User should
be aware that, during the processing time of the event handler procedure, the component
itself is �waiting� to return to continue its normal flow of execution. Considering this time-
constraint, the code executed inside an event handler has to be built in order to minimize its
execution time and, in turn, to reduce as much as possible its impact on the CFDP�s
performance.

7.2.7.2 Instructions for Use of the Component

7.2.7.2.1 Initialization

Once the User Software owns a CFDP Component object (i.e., a CFDP Component has been
dragged and dropped on the User Interface form at design-time) an instance of the TCFDP
Class has to be created at run-time, using the TCFDP.Create method. This method will
perform all the initialization procedures of a CFDP Entity. From now on the CFDP
Component is ready to be set, to receive stimulus and to raise events according to its public
Properties and Methods.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-28 July 2001

Figure 7-13: CFDP Software Elements (Components) Diagram and Packets Flow

7.2.7.2.2 The CFDP Log Window

During the initialization phase, the CFDP Component automatically creates a Log Window to
display its status and all the run-time information for all of the file delivery Transactions
handled by the current CFDP Entity (types of PDUs sent and received, error log, etc.). See
figure 7-14.

The CFDP Log window is divided in three parts:

a) General Log (upper part).

b) Receiving Transactions Log (left side).

c) Sending Transaction Log (right side).

The General Log part displays all of the entity-oriented messages such as entity status,
capabilities, and settings values, as well as messages on transaction start and end,
acknowledgment timers, etc.

The other two parts are more Transaction-oriented, displaying details on each received or sent
packet for both the file Sending and file Receiving transactions. Figure 7-15 shows the
Server Log at run-time.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-29 July 2001

Figure 7-14: CFDP Components Log Window

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-30 July 2001

Figure 7-15: CFDP Server Log at Run-Time

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-31 July 2001

7.2.7.2.3 CFDP Public Properties

7.2.7.2.3.1 List

a) property EntityLogForm: TCFDPLogForm read FLogForm;

b) property CurrentNumOfTrans: LongWord read FCurrentTransNum;

c) property CurrentNumOfRCVTrans: LongWord read FCurrentRCVTransNum;

d) property ActiveTranIDsList: TList read GetActiveTranIDs;

e) property RecvTranIDsList: TList read GetRecvTranIDs;

f) property SourceFilePath: String read FSourceFilePath write FSourceFilePath;

g) property DestFilePath: String read FDestFilePath write FDestFilePath;

h) property MIBFileString: String read FMIBString;

i) property RunMultipleTran: Boolean read FRunMultipleTran write
FRunMultipleTran.

7.2.7.2.3.2 Properties Related To Transmission Mode Information

a) property ApplyCRC: boolean read FApplyCRC write FApplyCRC;

b) property ApplyAckModeIN: boolean read FApplyAckModeIN write
FApplyAckModeIN;

c) property ApplyAckModeOUT: boolean read FApplyAckModeOUT write
FApplyAckModeOUT;

d) property NAKType: TNAKType read FNAKType write FNAKType;

e) property NAKReissueTO: LongWord read FNAKReissueTO write
FNAKReissueTO;//In Seconds;

f) property NAKMaxNum: LongWord read FNAKMaxNum write FNAKMaxNum;

g) property KAlivePeriod: LongWord read FKAlivePeriod write FKAlivePeriod;//In
Seconds;

h) property KAliveMaxOffset: LongWord read FKAliveMaxOffset write
FKAliveMaxOffset;//In Bytes;

i) property PosAckReissueTO: LongWord read FposAckReissueTO write
FPosAckReissueTO;//In Sec;

j) property PosAckMaxRetries: LongWord read FposAckMaxRetries write
FPosAckMaxRetries.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-32 July 2001

7.2.7.2.3.3 Properties Related To CFDP TLV Options

a) property MsgsToUserStream: TStream read GetMsgsToUserStream;

b) property MsgsToUserTxtNum: Byte read FMsgsToUserTxtNum;

c) property ProxyMsgsNum: LongWord read FProxyMsgsNum;

d) property RemoteValid: Boolean read GetRemoteValid;

e) property RemotePutOrder: TRemotePutOrder read FRemotePutOrder;

f) property RemoteMsgsToUserTxtNum: Byte read FRemoteMsgsToUserTxtNum;

g) property RemoteFileStReqsNum: Byte read FRemoteFileStReqsNum;

h) property RemoteFaultHndOvsNum: Byte read FRemoteFaultHndOvsNum;

i) property RemoteSegmCtrlPresent: Boolean read FRemoteSegmCtrlPresent;

j) property RemoteTranModePresent: Boolean read FRemoteTranModePresent;

k) property RemoteSegmCtrlValue: Byte read FRemoteSegmCtrlValue;

l) property RemoteTranModeValue: Byte read FRemoteTranModeValue;

m) property DirListRequestsNum: Byte read FDirListRequestsNum;

n) property DirListFilesDirectory: String read FDirListFilesDirectory;

o) {*** END OF NORMAL & PROXY MESSAGES TO USER'S PROPERTIES ***}

p) property FileStReqsNum: Byte read FFileStReqsNum;

q) property FaultHndOvsNum: Byte read FFaultHndOvsNum;

r) property FlowLabelTLV: String read FFlowLabelTLV write
FFlowLabelTLV.

7.2.7.2.4 CFDP Published Properties List

a) {***** PUBLISHED PROPERTIES ******}

b) property CFDPPacketLength: Word read FCFDPPacketLength

c) write SetCFDPPacketLength;

d) property InBufferSize: Cardinal read GetInBufferSize write SetInBufferSize;

e) property OutBufferSize: Cardinal read GetOutBufferSize

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-33 July 2001

f) write SetOutBufferSize;

g) property RCVInBufferSize: Cardinal read GetRCVInBufferSize

h) write SetRCVInBufferSize;

i) property RCVOutBufferSize: Cardinal read GetRCVOutBufferSize

j) write SetRCVOutBufferSize;

k) property CFDPEntityID: integer read FCFDPEntityID write FCFDPEntityID;

l) property SourceEntityID: LongWord read FSourceEntityID write FSourceEntityID;

m) property DestinationEntityID: LongWord read FDestEntityID

n) write FDestEntityID;

o) {To Be retrieved from the MIB}

p) property LocalIPAddress: String read FLocalIPAddress;

q) property LocalMachineName: String read FLocalMachineName;

r) property LocalPort: integer read GetLocalPort write SetLocalPort;

s) property FaultAction: TProtocolFaultAction read FFaultAction

t) write FFaultAction;

u) property CancelAction: TCancelAction read FCancelAction write FCancelAction;

v) property TranLifetime: LongWord read FTranLifetime write FTranLifetime.

7.2.7.2.5 CFDP Public Methods List (TBS)

7.2.7.2.5.1 Methods Related To CFDP TLV Options (TBS)

7.2.7.2.6 CFDP Events List

a) OnSendNetworkPacket: TsendNetPacketEvent

b) Events related to the CFDP Indications

1) OnTransactionStart: TTranStartEvent;

2) OnMetadataReceived: TMetadataReceivedEvent;

3) OnFileSegmentReceived: TFileSegmentRecvEvent;

4) OnTransactionSuspended: TTranSuspendedEvent;

5) OnTransactionResumed: TTranResumedEvent;

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-34 July 2001

6) OnTransactionFinished: TtranFinishedEvent;

7) OnTransactionReport: TNotifyEvent.

8) OnTransferConsigned: TNotifyEvent;

The OnFailure event is raised when a CFDP method failed to be executed. If the Handled

variable is set to True from the user event handler, then an error is not raised from the
CFDP entity.

 - OnFailure: TFailureEvent;

The OnError event is raised when an error occurs during a FDU transmission or a CFDP

Entity initialization. The error severity level is passed back from the CFDP entity
together with the error code number and a Message string to define the error.

- OnError: TErrorEvent .

7.2.7.3 Software Architectural Design (SAD)

7.2.7.3.1 General

The Software Architectural Design (SAD) described in this subsection is focused on the
CFDP Component software description (Core procedures only).

The SAD reflects what is inside the CFDP black box (Component) from the point of view of
the implementer, rather than the user. In the future, the SAD will allow implementers to
easily maintain the code, as well as to locate where to add new features to the component�s
capability.

In order to perform an object-oriented analysis of a software module, class diagrams have
been created for the Main Protocol�s class (TCFDP) and all its nested classes, which are only
available for use within the scope of the main class and are hidden from the user
(encapsulation).

This type of diagram provides a means of representing a Class Logical View; explaining its
functionality and its relationship with other classes.

Moreover, since the entire CFDP �classes set� is existing in a Multithread contest, further
diagrams representing threads function and interaction, as well as the CFDP packets In/Out
flow, are present.

7.2.7.3.2 CFDP�s Classes

A class is a set of objects that share a common structure and a common behavior (the same
attributes, operations, relationship and semantics). It is an abstraction of real-world items.
When these items exist in the real world, they are instances of the class (with single or
multiple cardinality) and are referred to as objects. Thus, the class representing a CFDP

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-35 July 2001

Entity has a single cardinality, while the class representing an FDU Transaction within the
CFDP Entity itself has multiple cardinality.

Considering the Object-Oriented nature of the code used for the CFDP Software Module
implementation, the component�s interface can be seen as the �public view� of the main class
defining it (TCFDP).

This means that all the CFDP Requests primitives are associated to class Methods, all the
CFDP Notifications to class Events, and all the CFDP Settings values to class Properties.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-36 July 2001

7.2.7.3.3 TCFDP Class Diagram (Main)

TMessage
(from Messages)

<<Record>>

TTransactionID

EID_Value : LongWord
SN_Value : LongWord (from CFDPTypes) <<Record>>

TStream
(from Classes)

TTransactionType
trtPut
trtRCVPut
trtProxy
trtRCVProxy
trtReport
trtCancel
trtSuspend
trtResume
trtMetadataOnly
trtRCVMetadataOnly
trtUnKnown

(from CFDPTypes) <<Enum>>

TErrorLevel

errSevere
errRecoverable
errIgnored (from CFDPTypes) <<Enum>>

TTerminateStruct
Is_Rcv : Boolean
IsProxy : Boolean
ProxyOrig_Entity : LongWord
ProxyOriginTranNum : LongWord
ReasonCode : Byte
TranListIdx : LongWord
Entity_ID : LongWord
SeqNum : LongWord
Terminate_Msg : String
FileStoreResps : String
NackRespPacks_Cnt : LongWord
Tran_Duration : Comp

(from CFDPTypes) <<Record>>

TProxyRespStruct
ProxyOriginEntity : LongWord
ProxyOriginTranNum : LongWord
TerminationCode : Byte (from CFDPTypes) <<Record>>

TRunningTranInfo

Present : Boolean (from CFDPTypes) <<Record>>

TRunTimeInfo
RecvdPacketsNum : LongWord
RecvdDataPacketsNum : LongWord
LastRecvdDataOffset : LongWord
RecvdSuspendPacks : LongWord
RecvdResumePacks : LongWord
MetadataRecvd : Boolean
EOFRecvd : Boolean
SentPacketsNum : LongWord
SentDataPacketsNum : LongWord
LastSentDataOffset : LongWord
SentSuspendPacks : LongWord
SentResumePacks : LongWord
NackCount : LongWord
NackRespPacksCnt : LongWord
PosAckCount : LongWord
EOFSent : Boolean
FinishedSent : Boolean

(from CFDPTypes) <<Record>>
TErrorStruct

IsFilestore : Boolean
TranListIndex : LongWord
Error_Msg : String
IsRCV : Boolean
DoTerminate : Boolean
Entity_ID : LongWord
SeqNum : LongWord

(from CFDPTypes) <<Record>>

TObject
(from System)

TMemo
(from TObject)

TStatusBar
(from TObject) TCFDPMessageEvent

signature()

(from CFDPTypes) <<ProcType>>

TMessage
(from Messages) <<Record>> TNMUDP

(from TObject)
TzcTimer

(from TObject)
TCFDPErrorMessageEvent

signature() (from CFDPTypes) <<ProcType>>

HWND
(from Windows)

<<NewTypeId>>

PTNetPacketStruct
(from CFDPTypes) <<Pointer>>

TCFDPForm
FCFDPEntityID : LongWord

NMUDP1DataReceived()
NMUDP1InvalidHost()
CFDPErrorMessage()
CFDPSendNTPacketHandler()
<<Property>> OnCFDPErrorMessage()
<<Property>> CFDPEntityID()
<<Property>> PacketRCVWndHandle()
<<Property>> LogWndHandle()

(from CFDPFormUnit)
+NacksTimer
+PosAckTimer +NMUDP1
+LifetimeTimer

-FOnCFDPErrorMessage
-FPaketRCVWndHandle -FLogWndHandle

-FPNtPacket

TForm
(from Forms) TCFDPLogForm

CFDPMessage()
<<Property>> OnCFDPMessage()

(from TCFDPUnit)
+Memo1

+StatusBar1

#FOnCFDPMessage

TCFDPTransactionManager
GetTransaction()
GetRcvTransaction()
Create()
Destroy()
OpenNewTransaction()
OpenNewRcvTran()
DiscardTran()
TransactionTerminatedHandler()
TransactionFaultHandler()
DoOutOfMemory()
DoError()
<<Property>> OnOutOfMemory()
<<Property>> OnError()
<<Property>> Transaction()
<<Property>> ReceivingTran()
<<Property>> LastTransactionIndex()
<<Property>> CurrentNumOfTrans()
<<Property>> CurrentNumOfRcvTrans()
<<Property>> InitialListCapacity()
<<Property>> InitialRcvListCapacity()
<<Property>> CFDPEntityID()

(from TCFDPTransactionUnit)

TProtocolFaultAction

actAbandon
actCancel
actSuspend
actIgnore
(from CFDPTypes) <<Enum>>

TFileStream
(from Classes)

TAckModes
IsAcknowledged : boolean
NackTimeout : LongWord
NackMaxNumber : LongWord
PDUReissueTimeOut : LongWord
MaxReissueNum : LongWord
KeepAlivePeriod : LongWord
MaxOffsetDiscrep : LongWord

(from CFDPTypes) <<Record>>

TNackType

nackNone
nackImmediate
nackDeferred
nackPrompted
nackAsynchronous
(from CFDPTypes) <<Enum>>

TCancelAction
actNone
actDiscard
actRetain (from CFDPTypes)

<<Enum>>

TFileStoreRequest
(from CFDPTypes)

<<Record>>

TProxyStruct
Present : Boolean
ProxyOriginEntity : LongWord
ProxyOriginTranNum : LongWord
Dest_ID : LongWord
SRC_FilePathName : String
DST_FilePathName : String
MsgsToUser_Text : String
Tran_Mode : Byte
Fault_Handler : Byte
Segm_Ctrl : Byte
FileStore_ReqNum : Word
Flow_Label : String

(from CFDPTypes) <<Record>>

TRemotePutOrder
Beneficiary_ID : LongWord
SRCFilePathName : String
DSTFilePathName : String

(from CFDPTypes) <<Record>>

TTransactionStream
FValueLength : Word
FValueType : Word
FCrcBuffer : Array of Byte
Create()
Destroy()
WriteType()
WriteType()
WriteType()
WriteLV()
WriteLV()
WriteTLV()
WriteTLV()
WriteProxyTLV()
WriteProxyTLV()
WriteProxyTLV()
PerformCRC()

(from TTransactionStreamUnit)

TSendNetPacketEvent
(from CFDPTypes) <<ProcType>>

TErrorEvent
(from CFDPTypes) <<ProcType>>

TTranStartEvent

signature() (from CFDPTypes) <<ProcType>>

TTranFinishedEvent
signature() (from CFDPTypes) <<ProcType>>

TMetadataReceivedEvent
(from CFDPTypes)

<<ProcType>>

TFileSegmentRecvEvent
(from CFDPTypes)

<<ProcType>>

TTranSuspendedEvent
(from CFDPTypes) <<ProcType>>

TTranResumedEvent
(from CFDPTypes) <<ProcType>>

TNotifyEvent
(from Classes) <<ProcType>>

TFailureEvent
(from CFDPTypes) <<ProcType>>

TCFDP
CreateLogWnd()
CreateCFDPWnd()
CreatePacketRecvWnd()
OpenMIBFile()
CreateMIB()
IsOpenTran()
SetCFDPPacketLength()
SetInBufferSize()
SetOutBufferSize()
SetRCVInBufferSize()
SetRCVOutBufferSize()
SetLocalPort()
SetMsgToUserTXT()
GetInBufferSize()
GetOutBufferSize()
GetRCVInBufferSize()
GetRCVOutBufferSize()
GetActiveTranIDs()
GetRecvTranIDs()
GetLocalPort()
GetFileStRequest()
SetFileStRequest()
SetFileStReqNum()
CFDPMessageHandler()
SetRMTMsgToUserTXT()
SetRMTPutOrder()
GetRemoteValid()
CheckIfDiscarded()
ProxyMsgsToUserValid()
DoSendNetworkPacket()
DoFailure()
DoError()
DoTransactionStart()
DoTransactionSuspended()
DoTransactionResumed()
DoTransactionFinished()
DoFileSegmentRcvd()
DoMetadataRcvd()
Create()
Destroy()
PutRequest()
PutRequest()
PutRequest()
ReportRequest()
CancelRequest()
SuspendRequest()
ResumeRequest()
Prompt()
ClearMsgsToUser()
GetRunningTranInfo()
GetRunTimeTranInfo()
ReceiveNetworkPacket()
CFDPErrorMessageHandler()
NacksTimerHandler()
PosAckTimerHandler()
LifetimeTimerHandler()
TrManagerOutOfMemoryHandler()
SchedulerTerminateHandler()
EntityLogForm()
CurrentNumOfTrans()
CurrentNumOfRCVTrans()
ActiveTranIDsList()
RecvTranIDsList()
SourceFilePath()
DestFilePath()
MIBFileString()
ApplyCRC()
ApplyAckModeIN()
ApplyAckModeOUT()
NackType()
NackReissueTO()
NackMaxNum()
KAlivePeriod()
KAliveMaxOffset()
PosAckReissueTO()
PosAckMaxRetries()
FileStReqNum()
FileStReq()
FaultHandlerOvTLV()
FlowLabelTLV()
MsgToUserText()
RemoteValid()
RMTMsgToUserTxt()
RMTPutOrder()
OnSendNetworkPacket()
OnTransactionStart()
OnMetadataReceived()
OnFileSegmentReceived()
OnTransactionSuspended()
OnTransactionResumed()
OnTransactionFinished()
OnTransactionReport()
OnTransferConsigned()
OnFailure()
OnError()
CFDPPacketLength()
InBufferSize()
OutBufferSize()
RCVInBufferSize()
RCVOutBufferSize()
CFDPEntityID()
SourceEntityID()
DestinationEntityID()
LocalIPAddress()
LocalMachineName()
LocalPort()
FaultAction()
CancelAction()
TranLifetime()

(from TCFDPUnit)

-FLogForm

-FCFDPTransactionManager

-FFaultAction

-FMIBFile

-FAckModeInfo

-FNackType

-FCancelAction

0..*
-FFileStRequest

0..* -FProxyParams

-FRemotePutOrder

-FMsgsToUserStream

-FOnSendNetworkPacket

-FOnError

-FOnTransactionStart

-FOnTransactionFinished

-FOnMetadataReceived

-FOnFileSegmentReceived

-FOnTranSuspended

-FOnTranResumed

-FOnTransactionReport -FOnTransferConsigned

TList
(from Classes)

-FInBuffer
-FOutBuffer
-FRCVInBuffer
-FRCVOutBuffer
-FRecvTranIDsList

-FActiveTranIDsList

TComponent
(from Classes)

-FOwner

* Diagram 2 *

* Diagram 3 *

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-37 July 2001

7.2.7.3.4 TCFDPTransactionManager & TCFDPTransaction Classes Diagram (2)

 TErrorLevel
errSevere
errRecoverable
errIgnored (from CFDPTypes)

<<Enum>>

PTCFDPTransaction
(from TCFDPTransactionUnit) <<Pointer>>

TObject
(from System)

TRcvdPacket
IsData : Boolean
TranNum : LongWord
EntityID : LongWord
PacketNum : LongWord
Start_Offs : LongWord
Segment_Len : LongWord
Header_Len : word

(from CFDPTypes) <<Record>>

TStream
(from Classes)

TMemoryStream
FCapacity : Longint
SetCapacity()
Realloc()
Destroy()
Clear()
LoadFromStream()
LoadFromFile()
SetSize()
Write()
<<Property>> Capacity()

(from Classes)

PFileReqArray
(from CFDPTypes)

<<Pointer>>
TFaultStruct

Code : LongWord
IsRCV : Boolean
Fault_Msg : String
Trans_ID : String
Trans_Index : LongWord

(from CFDPTypes) <<Record>>

PTransactionID
(from CFDPTypes) <<Pointer>>

TOutOfMemoryEvent

signature() (from TCFDPTransactionUnit)

<<ProcType>>

TManagerErrorEvent
signature()

(from TCFDPTransactionUnit) <<ProcType>>
TCFDPTransactionManager

GetTransaction()
GetRcvTransaction()
Create()
Destroy()
OpenNewTransaction()
OpenNewRcvTran()
DiscardTran()
TransactionTerminatedHandler()
TransactionFaultHandler()
DoOutOfMemory()
DoError()
<<Property>> OnOutOfMemory()
<<Property>> OnError()
<<Property>> Transaction()
<<Property>> ReceivingTran()
<<Property>> LastTransactionIndex()
<<Property>> CurrentNumOfTrans()
<<Property>> CurrentNumOfRcvTrans()
<<Property>> InitialListCapacity()
<<Property>> InitialRcvListCapacity()
<<Property>> CFDPEntityID()

(from TCFDPTransactionUnit)

-FPRcvdTranID -FOnOutOfMemory

-FOnError

TTransactionStream
FValueLength : Word
FValueType : Word
FCrcBuffer : Array of Byte
Create()
Destroy()
WriteType()
WriteType()
WriteType()
WriteLV()
WriteLV()
WriteTLV()
WriteTLV()
WriteProxyTLV()
WriteProxyTLV()
WriteProxyTLV()
PerformCRC()

(from TTransactionStreamUnit)
TFileStream
Create()
Destroy() (from Classes)

TTransactionType
trtPut
trtRCVPut
trtProxy
trtRCVProxy
trtReport
trtCancel
trtSuspend
trtResume
trtMetadataOnly
trtRCVMetadataOnly
trtUnKnown

(from CFDPTypes) <<Enum>>

TTransactionState
trsIdle
trsReadyToSend
trsSuspended
trsWForResume
trsCancelled
trsWForEOF_Cancel_Ack
trsACKBuilt
trsEOFAckRcvd
trsWForEOFAck
trsWForCopyPacket
trsWForFinished
trsWForFinishedAck
trsFinishedBuilt
trsWForFinished_Cancel_Ack
trsFinishedRcvd
trsResumed
trsSendSingleMetadata
trsWForSingleMetadataEOF
trsWForSingleMetadata
trsSingleMetadataRcvd
trsFinished_Cancel_Built
trsReissueEOF
trsReissueNack
trsReissueKAlive
trsError
trsTerminated

(from CFDPTypes)

<<Enum>>
TAckModes

IsAcknowledged : boolean
NackTimeout : LongWord
NackMaxNumber : LongWord
PDUReissueTimeOut : LongWord
MaxReissueNum : LongWord
KeepAlivePeriod : LongWord
MaxOffsetDiscrep : LongWord

(from CFDPTypes) <<Record>>

TCCITT_CRC
check()
create()
CheckBuffer()
FCS()

(from CCITT_CRC)

TErrorStruct
IsFilestore : Boolean
TranListIndex : LongWord
Error_Msg : String
IsRCV : Boolean
DoTerminate : Boolean
Entity_ID : LongWord
SeqNum : LongWord

(from CFDPTypes) <<Record>>

TTranIOMessage
Packet_Sent : Boolean
IsActiveTran : Boolean
SendNotification : Boolean
EID_Value : LongWord
SN_Value : LongWord
Reason : Byte

(from CFDPTypes) <<Record>>

TCancelAction

actNone
actDiscard
actRetain (from CFDPTypes) <<Enum>>

TTransactionID
EID_Value : LongWord
SN_Value : LongWord (from CFDPTypes) <<Record>> ofType

PInDataSegment
(from CFDPTypes) <<Pointer>>

TRcvdProxyMsgToUser
(from CFDPTypes)

<<Record>>

TFileStoreRequest

ReqCode : Byte
FileName1 : String[250]
FileName2 : String[250]

(from CFDPTypes)

<<Record>>

TProxyStruct
Present : Boolean
ProxyOriginEntity : LongWord
ProxyOriginTranNum : LongWord
Dest_ID : LongWord
SRC_FilePathName : String
DST_FilePathName : String
MsgsToUser_Text : String
Tran_Mode : Byte
Fault_Handler : Byte
Segm_Ctrl : Byte
FileStore_ReqNum : Word
Flow_Label : String

(from CFDPTypes) <<Record>>

TTerminateEvent
signature() (from TCFDPTransactionUnit) <<ProcType>>

TTerminateStruct
Is_Rcv : Boolean
IsProxy : Boolean
ProxyOrig_Entity : LongWord
ProxyOriginTranNum : LongWord
ReasonCode : Byte
TranListIdx : LongWord
Entity_ID : LongWord
SeqNum : LongWord
Terminate_Msg : String
FileStoreResps : String
NackRespPacks_Cnt : LongWord
Tran_Duration : Comp

(from CFDPTypes) <<Record>>

TProtocolFaultAction

actAbandon
actCancel
actSuspend
actIgnore

(from CFDPTypes) <<Enum>>

HWND
(from Windows)

<<NewTypeId>> -FLogWindowHndl

TFaultEvent
signature() (from TCFDPTransactionUnit) <<ProcType>>

TCFDPTransaction
RepeatedData()
GetFileStoreReq()
SetFileStoreReq()
SetFileStoreReqNum()
BuildHdrControlByte()
BuildIdsCtrlByte()
BuildNackPDU()
BuildPromptPDU()
BuildSuspendPDU()
BuildResumePDU()
RenameTempFDUFile()
Create()
Create()
Destroy()
AssembleDataPackets()
CreateNacks()
BuildMetadataPDU()
BuildEOFPDU()
BuildFinishedCtrlByte()
BuildFinishedPDU()
BuildAckPDU()
BuildKeepAlivePDU()
BuildNextPDUHeader()
BuildNextPDUDataField()
RipFromInBuffer()
ExecuteFileStoreReq()
CheckForNacks()
Terminate()
Prompt()
ProcessNack()
ProcessInPacket()
<<Property>> OnTerminate()
<<Property>> TranIDString()
<<Property>> LogWindowHndl()
<<Property>> CFDPPackLen()
<<Property>> TransactionType()
<<Property>> RCV()
<<Property>> IsInError()
<<Property>> State()
<<Property>> OldState()
<<Property>> NewState()
<<Property>> TransactionNumber()
<<Property>> SourceEntityID()
<<Property>> DestinationEntityID()
<<Property>> SourceFilePathName()
<<Property>> SourceFileStream()
<<Property>> DestFilePathName()
<<Property>> DestFileStream()
<<Property>> AckMode()
<<Property>> MsgToUserString()
<<Property>> BeneficiaryEntityID()
<<Property>> ProxyOriginEntity()
<<Property>> ProxyOriginTranNum()
<<Property>> MetadataPDU()
<<Property>> EOFPDU()
<<Property>> FinishedPDU()
<<Property>> NextPDUHeader()
<<Property>> PDUHeaderLen()
<<Property>> PDUDataLen()
<<Property>> NextPDUDataFld()
<<Property>> FinishedCtrlByte()
<<Property>> DataPacketsAssembled()
<<Property>> FileStoreReqNum()
<<Property>> FileStoreReq()
<<Property>> FaultHandlerOvTLV()
<<Property>> FlowLabelTLV()
<<Property>> ProxyInfo()
<<Property>> MsgsToUserStrm()
<<Property>> FaultAction()
<<Property>> ErrorStruct()
<<Property>> IOMessage()
<<Property>> RespHostIPAddress()
<<Property>> RespHostPort()
<<Property>> TerminateStruct()
<<Property>> ApplyCRC()
<<Property>> ApplyAckModeIN()
<<Property>> ApplyAckModeOUT()
<<Property>> CurrentDataOffset()
<<Property>> LastRcvdDataOffset()
<<Property>> SentPacketNum()
<<Property>> RcvdPacketNum()
<<Property>> OldRcvdPacketNum()
<<Property>> SuspendPacketCnt()
<<Property>> ResumePacketCnt()
<<Property>> EOFTermCode()
<<Property>> KeepAliveTimerCount()
<<Property>> PosAckTimerCount()
<<Property>> PosAckCount()
<<Property>> LifetimeCnt()
<<Property>> PromptNackBuilt()
<<Property>> PromptKeepAliveBuilt()
<<Property>> KeepAliveReceived()
<<Property>> FinishedSent()
<<Property>> RcvdDataPacketsNum()
<<Property>> NackTimerCount()
<<Property>> NackCount()
<<Property>> RCVTransactionID()
<<Property>> MetadataReceived()
<<Property>> EOFReceived()
<<Property>> SuspendPDUReceived()
<<Property>> Suspended()
<<Property>> SuspendingEntityID()
<<Property>> PromptNackReceived()
<<Property>> ReadyToSendNack()
<<Property>> CancelAction()

(from TCFDPTransactionUnit)

ofTypeofType

-FNextPDUHdr
-FNextPDUDataFld

-FMetadataPDU
-FEOFPDU -FFinishedPDU -FAckPDU

-FNackPDU -FPromptPDU

-FKeepAlivePDU
-FSuspendPDU

-FResumePDU

-FMsgsToUserStrm

-FSourceFileStream
-FTempFDUFile

-FTrType

-FState
-FOldState -FNewState -FAckMode

-FCRC

-FCFDPErrorStruct

-FIOMessage

-FCancelAction
-FRCVTrID

-FPInDataSegment

-FRecvdProxyMesage

0..*

-FFileStoreReq 0..*

-FProxyMessage

-FOnTerminate

-FTerminateStruct

-FFaultAction

-FLogWndHndl

TList
(from Classes)

+FTransactionsList

+FDiscardedTranList

-FDataGapsList

-FRecvFilestReqList

-FInDataSegmentsList

+FRcvTransList

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-38 July 2001

7.2.7.3.5 TTransactionStream Class Diagram (3)

TMemoryStream
FCapacity : Longint

SetCapacity()
Realloc()
Destroy()
Clear()
LoadFromStream()
LoadFromFile()
SetSize()
Write()
<<Property>> Capacity()

(from Classes)
TFileStoreRequest

ReqCode : Byte
FileName1 : String[250]
FileName2 : String[250]

(from CFDPTypes)
<<Record>>

TFileStoreResponse
RequestCode : Byte
StatusCode : Byte
FirstFileName : String
SecondFileName : String
FilestoreMsg : String

(from CFDPTypes)
<<Record>>

TRemotePutOrder
Beneficiary_ID : LongWord
SRCFilePathName : String
DSTFilePathName : String

(from CFDPTypes)

<<Record>>

TProxyRespStruct

ProxyOriginEntity : LongWord
ProxyOriginTranNum : LongWord
TerminationCode : Byte

(from CFDPTypes)
<<Record>>

TTransactionStream
FValueLength : Word
FValueType : Word
FCrcBuffer : Array of Byte
Create()
Destroy()
WriteType()
WriteType()
WriteType()
WriteLV()
WriteLV()
WriteTLV()
WriteTLV()
WriteProxyTLV()
WriteProxyTLV()
WriteProxyTLV()
PerformCRC()

7.2.7.3.6 TSchedulerThread Class Diagram

 TThread
FTerminated : Boolean
FSuspended : Boolean
FFreeOnTerminate : Boolean
FFinished : Boolean
FReturnValue : Integer
CallOnTerminate()
GetPriority()
SetPriority()
SetSuspended()
DoTerminate()
Execute()
Synchronize()
Create()
Destroy()
Resume()
Suspend()
Terminate()
WaitFor()
<<Property>> ReturnValue()
<<Property>> Terminated()
<<Property>> FreeOnTerminate()
<<Property>> Handle()
<<Property>> Priority()
<<Property>> Suspended()
<<Property>> ThreadID()
<<Property>> OnTerminate()

(from Classes)

TStream
GetPosition()
SetPosition()
GetSize()
SetSize()
Read()
Write()
Seek()
ReadBuffer()
WriteBuffer()
CopyFrom()
ReadComponent()
ReadComponentRes()
WriteComponent()
WriteComponentRes()
WriteDescendent()
WriteDescendentRes()
ReadResHeader()
<<Property>> Position()
<<Property>> Size()

(from Classes)TErrorStruct
IsFilestore : Boolean
TranListIndex : LongWord
Error_Msg : String
IsRCV : Boolean
DoTerminate : Boolean
Entity_ID : LongWord
SeqNum : LongWord

(from CFDPTypes)
<<Record>>

TList
FCount : Integer
FCapacity : Integer
Get()
Grow()
Put()
SetCapacity()
SetCount()
Destroy()
Add()
Clear()
Delete()
Error()
Exchange()
Expand()
First()
IndexOf()
Insert()
Last()
Move()
Remove()
Pack()
Sort()
<<Property>> Capacity()
<<Property>> Count()
<<Property>> Items()
<<Property>> List()

(from Classes) HWND
(from Windows)

<<NewTypeId>>

TSchedulerThread

Execute()
CheckInBufferForAck()
CheckInBufferFor()
IsPDUofAckType()
IsPDUofType()
<<Property>> TransList()
<<Property>> CFDPInBuffer()
<<Property>> CFDPOutBuffer()
<<Property>> EntityWindowHndl()

-FActiveError

#FTransList
#FCFDPInBuffer

#FCFDPOutBuffer

#FLogWindowHndl

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-39 July 2001

7.2.7.3.7 TRCVSchedulerThread Class Diagram

TSchedulerThread

Execute()
CheckInBufferForAck()
CheckInBufferFor()
IsPDUofAckType()
IsPDUofType()
<<Property>> TransList()
<<Property>> CFDPInBuffer()
<<Property>> CFDPOutBuffer()
<<Property>> EntityWindowHndl()

(from SchedulerThreadUnit)

TRCVSchedulerThread

Execute()

7.2.7.3.8 TReceiverThread Class Diagram

 TList

FCount : Integer
FCapacity : Integer

Get()
Grow()
Put()
SetCapacity()
SetCount()
Destroy()
Add()
Clear()
Delete()
Error()
Exchange()
Expand()
First()
IndexOf()
Insert()
Last()
Move()
Remove()
Pack()
Sort()
<<Property>> Capacity()
<<Property>> Count()
<<Property>> Items()
<<Property>> List()

(from Classes)
TStream

GetPosition()
SetPosition()
GetSize()
SetSize()
Read()
Write()
Seek()
ReadBuffer()
WriteBuffer()
CopyFrom()
ReadComponent()
ReadComponentRes()
WriteComponent()
WriteComponentRes()
WriteDescendent()
WriteDescendentRes()
ReadResHeader()
<<Property>> Position()
<<Property>> Size()

(from Classes)

TThread
FTerminated : Boolean
FSuspended : Boolean
FFreeOnTerminate : Boolean
FFinished : Boolean
FReturnValue : Integer
CallOnTerminate()
GetPriority()
SetPriority()
SetSuspended()
DoTerminate()
Execute()
Synchronize()
Create()
Destroy()
Resume()
Suspend()
Terminate()
WaitFor()
<<Property>> ReturnValue()
<<Property>> Terminated()
<<Property>> FreeOnTerminate()
<<Property>> Handle()
<<Property>> Priority()
<<Property>> Suspended()
<<Property>> ThreadID()
<<Property>> OnTerminate()

(from Classes)

TMsg
(from Windows)
<<TypeId>>

HWND
(from Windows)

<<NewTypeId>>

TReceivingPacketsProc
signature()

<<ProcType>>

TReceiverThread
FRcvdPacketsNum : LongWord

WMMsgPacketReceived()
Execute()
Create()
Destroy()
<<Property>> UserWindowHandle()
<<Property>> PointerToRCVProc()
<<Property>> PacksList()
<<Property>> RcvdPacketsNum()

-PeekMsg -FUserWHandle

-FPToRCVProc

#FPacksList

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-40 July 2001

7.2.7.3.9 CFDP Timer Class Diagram

 TzcTimerThread
fTerminate : Boolean

Execute()
Create()

TComponent
FTag : Longint
FDesignInfo : Longint
FVCLComObject : Pointer
GetComObject()
GetComponent()
GetComponentCount()
GetComponentIndex()
Insert()
ReadLeft()
ReadTop()
Remove()
SetComponentIndex()
SetReference()
WriteLeft()
WriteTop()
ChangeName()
DefineProperties()
GetChildren()
GetChildOwner()
GetChildParent()
GetOwner()
Loaded()
Notification()
ReadState()
SetAncestor()
SetDesigning()
SetName()
SetChildOrder()
SetParentComponent()
Updating()
Updated()
UpdateRegistry()
ValidateRename()
ValidateContainer()
ValidateInsert()
WriteState()
QueryInterface()
_AddRef()
_Release()
GetTypeInfoCount()
GetTypeInfo()
GetIDsOfNames()
Invoke()
Create()
Destroy()
DestroyComponents()
Destroying()
ExecuteAction()
FindComponent()
FreeNotification()
FreeOnRelease()
GetParentComponent()
GetNamePath()
HasParent()
InsertComponent()
RemoveComponent()
SafeCallException()
UpdateAction()
<<Property>> ComObject()
<<Property>> Components()
<<Property>> ComponentCount()
<<Property>> ComponentIndex()
<<Property>> ComponentState()
<<Property>> ComponentStyle()
<<Property>> DesignInfo()
<<Property>> Owner()
<<Property>> VCLComObject()
<<Property>> Name()
<<Property>> Tag()

(from Classes)

-FOwner

TThreadPriority
(from Classes)
<<Enum>>

TThread
FTerminated : Boolean
FSuspended : Boolean
FFreeOnTerminate : Boolean
FFinished : Boolean
FReturnValue : Integer
CallOnTerminate()
GetPriority()
SetPriority()
SetSuspended()
DoTerminate()
Execute()
Synchronize()
Create()
Destroy()
Resume()
Suspend()
Terminate()
WaitFor()
<<Property>> ReturnValue()
<<Property>> Terminated()
<<Property>> FreeOnTerminate()
<<Property>> Handle()

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-41 July 2001

7.2.7.3.10 CFDP Threads Interaction and Input Packets Flow Diagram

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-42 July 2001

7.2.7.3.11 CFDP Packets Output Flow

7.2.7.3.11.1 Diagram

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-43 July 2001

To fully understand the output flow of CFDP packets inside the CFDP software component, a
brief description on how such a component handles all the internal messages is necessary.

7.2.7.3.11.2 The CFDP Component�s Internal Window

In order to perform proper actions upon the occurrence of a certain event, and due to the
multi-threading nature of the CFDP component, user-defined Windows messages are sent
from all the secondary threads to a component�s internal window. In this way, the message
can be processed within the component�s main thread, avoiding violation of shared resources.
Hence, the CFDP internal window can be seen as a non-visible �housekeeping� window,
performing all the component�s message-handling procedures.

The message types handled by this form are as follows:

a) CFDP_ExtendedMESSAGE;

b) CFDP_SendPacketMESSAGE;

c) CFDP_ErrorMESSAGE;

d) CFDP_TimerMESSAGE.

7.2.7.3.11.3 An Outgoing PDU Through CFDP

The CFDP_SendPacketMESSAGE contains general information about the outgoing packet
and is sent from within the two schedulers threads (for Sending and Receiving transactions)
any time a CFDP packet is ready to be sent over the underlying communication system.
Upon receipt of such message, the internal form raises an OnCFDPSendPacketMessage
event. Then, the connected event handler procedure
(TCFDPCore.CFDPSendPacketMessageHandler) is called within the main thread in order to:

a) Retrieve the receiving host�s network address;

b) Extract the outgoing CFDP packet from the Transaction object;

c) Store everything in a memory structure together with other information (Transaction
ID, Destination ID, Packet number, etc.);

d) Post a WM_Msg_SendPacket message containing the address of the packet memory
structure to the Sender thread messages queue and return.

All the messages posted to a thread message queue are buffered before the thread itself
processes them. The Sender thread main code is a loop that is continuously polling for
WM_Msg_SendPacket messages.

When such a message has arrived, if the packet Destination ID is currently �In View�, the
packet is released right away on the underlying communication layer, and the next pending
message is processed. If the Destination CFDP entity is not in view, then the packet is

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-44 July 2001

buffered in output queues made by persistent First In First Out (FIFO) linked lists and will
wait for the next link acquisition. The FIFOs grow while links are inactive and shrink while
they are active, but this is transparent to applications using the CFDP Component.

An Output Buffer is created for each CFDP destination entity involved in a file delivery
transaction.

It contains outgoing packets belonging to both Sending and Receiving transactions handled by
the local CFDP entity.

However, the use of output buffers can be disabled (both during design and run time) in case
the CFDP component is running on a storage-constrained entity.

The CFDP component is also responsible for keeping track of all the new established, lost,
acquired or dismissed links towards different destinations. This task is carried on partly by
the CFDP component itself (in case of new and dismissed links upon file delivery transaction
opening/closing), and partly in conjunction with the User Software (for lost and acquired
links during transactions lifetime).

In the latter case, knowledge of the Link State is delivered to CFDP by mean of two
functions:

a) LinkLost (Remote_CFDP_ID);

b) LinkAcquired (Remote_CFDP_ID).

Obviously, this implies that such knowledge already exists outside of CFDP.

Both Core and Extended procedures (i.e., store and forward functionality, especially with
parallel waypoints) will benefit such a Deferred Transmission mechanism, giving the CFDP a
way to �drive� the starting and stopping of PDUs transmission and schedule the file delivery
transactions according to an arbitrary priority scheme.

Furthermore, the use of output buffers can also be enabled and disabled by the user also at
run-time. Unfortunately, this implies the loss of all the packets currently stored in the
outgoing FIFOs (see figure 7-16).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-45 July 2001

Figure 7-16: Output Buffers Enable

7.2.7.3.11.4 Advantages of Output Buffers

The same approach for buffering outgoing PDUs is adopted in the Jet Propulsion Laboratory
(JPL) implementation. The following is a comprehensive recap of advantages listed in Notes
on CFDP Implementation (from Scott Burleigh, JPL 24 July 2000).

By relying on link state cues to control the operation of File Delivery Protocol Output, we can
accommodate occultation and other interruptions in connectivity simply and efficiently:
when the link is lost, CFDP simply stops transmission and reception of data between the two
endpoints of the link.

This implementation of deferred transmission incurs far less protocol overhead than using the
Suspend and Resume PDUs to control suspension and resumption of communication:

a) Suspend and Resume procedures are protocol elements, requiring a co-operative
interchange of data between entities. Deferred transmission is entirely local; no PDUs
are issued or received to affect it.

b) Because deferred transmission is an entirely local mechanism, it is unaffected by
delay due to the distance between the participating entities. Moreover, there is no
chance of incomplete suspension/resumption due to loss of a PDU.

c) Suspend and Resume procedures are transaction-specific. This means that a link cut
between any pair of CFDP entities would require the reliable transmission of Suspend

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-46 July 2001

PDUs for every transaction currently in progress between them, and resumption of
transmission would require the reverse. In contrast, the deferred transmission
mechanism is atomic and comprehensive.

7.2.7.3.11.5 Flow Control Integration in CFDP

By using these new CFDP features for driving packet flow towards selected destinations, an
efficient Flow Control mechanism in which the receiver provides feedback to the sender can
easily be implemented, in order to throttle the sender into sending no faster than the receiver
can handle the traffic.

Assuming that the communication channel is error free, and if the used link has an uneven
data throughput (i.e., Packet Telecommand link), a good solution could be to implement a
Stop-and-wait flow control protocol. In such a mechanism the sender sends one frame and
then waits for an acknowledgement before proceeding. It can be accomplished by using the
LinkLost() and LinkAcquired() procedures available in the CFDP component.

These capabilities would spare the CFDP component the use of an �embedded� Flow Control
algorithm. In other words, the packets received by the CFDP component would still be
CFDP packets, since the flow control header has been read and filtered by an �external�
software module in charge of driving the CFDP packet flow via the LinkLost and
LinkAcquired functions.

In this way the Flow Control will remain transparent to the CFDP component itself.

7.2.7.3.11.6 Transactions Priority Considerations

The PDUs pending in the sender thread's message queue are already stored in a PRIORITY
order, which has been assigned from the Receiving or Sending Transactions SCHEDULERS.
If such PDUs are extracted and buffered because of a link visibility cut, then the previously
assigned priority is lost.

This happens because the ordering key for buffered PDUs is no longer their Transaction ID
but, instead, their Destination ID. Therefore, all the PDUs stored in an Output Buffer will
belong to transactions of different natures and IDs.

In other words, a new kind of priority is established between buffered outgoing PDUs:

The Output Buffer CREATION ORDER.

In practice, PDUs destined to a Transaction ID that was out-of-view in a moment �X� will be
released (as soon the link is acquired again) before the PDUs destined to a Destination ID
that was out-of-view in a moment �X+Y�.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-47 July 2001

7.2.8 GRAPHICAL USER INTERFACE DESCRIPTION

7.2.8.1 General

The CFDP User Interface is a Windows Application composed of 8 different sub-windows:

a) Front End (Main);

b) Extended;

c) ACK/NAK/Timing/MIB Settings;

d) Directory Listing;

e) Notifications Log;

f) Running Transaction Info;

g) Test;

h) Packet Service.

7.2.8.2 Front End Tab Window

This window (figure 7-17) can be defined as the �main entrance� of the CFDP User Software
Interface.

It allows for specification of all the basic parameters for a FDU transaction (Source and
Destination ID, Source and Destination File Name, creation of Metadata TLV Options, etc.).

Moreover, it provides information about the CFDP network address (IP and Port) of the
selected Destination ID according to the loaded MIB File�s settings, as well as general
information on the local machine system.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-48 July 2001

Figure 7-17: Front End Tab Window

7.2.8.3 Fault Handlers Overrides

From the CFDP User software it is possible to set up three different types of Fault Handlers
Overrides:

a) TLV;

b) Remote TLV;

c) Local.

The TLV Fault Handler Override Options are contained in the Metadata PDU, and are fault
actions specified by the Source CFDP entity in order to override the local fault actions
undertaken by the Destination CFDP entity in case a protocol error occurs.

The Remote TLV Fault Handler Override Options, also contained in the Metadata PDU, are
similar to the normal TLV Options but they are created by the Originator of a Proxy
transaction (Remote Put) in order to be sent from the Proxy Source CFDP entity to the Proxy
Destination CFDP entity.

These first two types of Fault Handler Override Options can be created from the Front End
Tab Window of the CFDP User Software (see figure 7-18).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-49 July 2001

Figure 7-18: TLV and Remote Fault Handler Overrides Selection

The Local Fault Handler Override Options is not contained in the Metadata PDU but it is
just �local� to the CFDP entity related to the User Software.

This option is used to override the default Fault Handler loaded from the MIB file in case a
protocol error occurs. This type of Fault Handler Override Option can be created from the
�ACK/NAK/Timing/MIB Settings� tab window of the CFDP User Software (see figure 7-19).

Figure 7-19: Local Fault Handlers Override Set-Up

In all of the cases discussed in this subsection, the creation of a Fault Handlers Override
scheme is made possible by the use of a dedicated Table that is fully user-configurable (see
figure 7-20).

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-50 July 2001

Figure 7-20: Local Fault Handlers Override Configuration Table

7.2.8.4 Extended Tab Window

The Extended Tab Window is used to set up the behavior of the local CFDP Entity related to
the User Software, in case it has to act as a Waypoint performing a Store & Forward
procedure during a file transfer between CFDP entities having a non-direct link. See figure
7-21.

From this window the user can:

a) Retrieve, if the local CFDP entity connected to the User Software is capable of
Extended procedures;

b) Select the Forwarding Mode as:

1) Immediate Incremental during the file reception;

2) Deferred once the local CFDP entity acquired a complete custody of the file being
transferred.;

3) Prompted by the user for the selected file delivery transaction.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-51 July 2001

Figure 7-21: Extended Tab Window

7.2.8.5 ACK/NAK/Timing/MIB Settings Tab Window

The ACK/NAK/Timing/MIB Settings Tab Window (figure 7-22) contains all of the setting
values parameters loaded from the CFDP MIB File during the Entity�s initialization phase
and related to:

a) Positive and Negative Acknowledged modes for Incoming/Outgoing FDU
transmissions, as well as the local CFDP entity�s acknowledgment capability;

b) Keep Alive parameters;

c) Local default and override Protocol Fault Actions;

d) File Delivery transaction Timing values.

Once loaded from the MIB, all of these parameters can be fully configured by the user for
each sending or receiving FDU Transaction.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-52 July 2001

Figure 7-22: Acknowledgement Modes Tab Window

This window also allows the user to:

a) Load or create a new MIB file;

b) Enable/Disable the use of output buffers.

7.2.8.6 Directory Listing Tab Window

The Directory Listing Tab Window (figure 7-23) is used once a Directory-listing file has been
received to the local filestore. The user is then able to easily load and display the files from
this interface.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-53 July 2001

Figure 7-23: Directory Listing Tab Window

7.2.8.7 Notifications Log Tab Window

The Notifications Log Tab Window (figure 7-24) contains all of the notifications deriving
from Indication Primitives delivered by the local CFDP entity during each FDU Transaction.

Additional information (like File Data Offset, Resulting Transfer Time, NAK PDUs details,
etc.) are also shown in this window.

Note that the logs are cleaned every 350 lines. A procedure to dump all logs in a file before
they are canceled is under implementation.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-54 July 2001

Figure 7-24: Notifications Log Tab Window

7.2.8.8 Running Transaction Info Tab Window

The Running Transaction Info Tab Window (figure 7-25) allows the user to select a Running
FDU Transaction (both Sending and Receiving) and display all its parameters as well as run-
time information on its status. See figure 7-26

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-55 July 2001

Figure 7-25: Running Transaction Info Tab Window

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-56 July 2001

Figure 7-26: Run-time Info Window

7.2.8.9 Test Tab Window

The Test Tab Window (figure 7-27) can be used to run pre-configured Test Scenarios.

In this way, each Test Scenario can correspond to a given FDU Transaction that is believed to
be representative for testing a certain CFDP behavior.

Once an FDU Transaction is loaded (both from File and from the User Interface Front End),
it can be run by selecting a customized CFDP Packet Size and Simultaneous
TransactionNnumber.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-57 July 2001

Figure 7-27: Test Tab Window

7.2.8.10 Packet Service Tab Window

The Packet Service Tab Window (figure 7-28) represents the user interface to the Packet
Service component connected to the local CFDP entity.

This component is in charge of receiving CFDP packets and handing them over using the
user-selected underlying communication protocol. On the other side, it also receives packets
from the underlying communication protocol, extracts the CFDP PDUs, and provides them to
the connected CFDP entity.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-58 July 2001

Figure 7-28: Packet Service Tab Window

7.2.9 CFDP OPERATIONAL TEST AND VALIDATION PLAN

7.2.9.1 Introduction

This subsection defines the ESTEC CFDP test and validation plan in a simulated space
mission link. It also provides a detailed description of all test parameters to be taken into
account during a CFDP operational test, as well as an explanation of how these parameters
can affect an FDU transfer. This subsection also contains a description of the environment in
which this test would take place.

In order to perform a full evaluation of the CFDP performance, most of the operational
modes need to be represented. To achieve that, several Test Sets must be built, covering as
much as possible the entire range of Use Cases. The first step to performing a complete
CFDP performance measurement is to define a procedure for a theoretical evaluation.
Therefore, once all the planned tests have been conducted, the resulting values defining the
CFDP throughput (File Size/ Transmission Time) can be analyzed and compared to the
expected ones.

The primary test phase focuses on the Core CFDP procedures verification using different Test
Configuration parameters within different Link configurations.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-59 July 2001

7.2.9.2 Relay Testing Module (RTM)

As the CFDP deals with the space communication link and a real-world test is obviously not
feasible unless a flying test is performed on a satellite, the need for a tailored space link
simulation tool is born.

For this purpose, the Relay Testing Module (RTM) software has been designed and
implemented.

This module is a UDP packet-based space link simulator, which provides a simulated space
environment in which the CFDP can be run. It is especially suitable for testing the CFDP
ability to overcome all the perturbations and the anomalies (due to a noisy space link) and
complete the file transfer. It is understood that even the performance evaluation phase will
benefit from such a tool.

The RTM can be enabled for listening on two different Local Ports for UDP packets and
forward them to a third destination (Remote Host) within the CFDP Network, introducing
several types of perturbations on the link.

The following are the types of Link Perturbation that can be injected on the link by RTM
during a test phase. They can be classified by nature as follows:

a) Delay.

b) Diversity:

1) Packet Duplication Rate;

2) Packet Out-Of-Order Rate.

c) Error (Packets Losses):

1) Bit Error Rate (BER);

2) Burst Error Occurrence Probability (BEOP) or Burst Intensity.

d) Typed Packets Dropping (Metadata, EOF, Data, ACK, etc.)

Furthermore, the previously mentioned Test Window can be used in order to create, save and
load different Test Scenarios. Once a test scenario is present, multiple FDU Transactions of
a certain User-Defined type can run simultaneously together with different selected CFDP
packet sizes.

The RTM is a stand-alone software module able to receive all the PDUs concerning an FDU
Transaction and Forward, Delay or Drop them toward the final destination according to the
Error Injection Algorithm represented by the given user-settings. A brief explanation on the
possible Link Perturbations injected by this module will follow, but for a complete coverage
of the RTM please refer to the Users Manual available on the CFDP Web site:
http://cfdp.jpl.nasa.gov. Figure 7-29 shows the RTM GUI.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-60 July 2001

Figure 7-29: Relay Testing Module GUI

7.2.9.3 Throughput Theoretical Evaluation

The performance of the CFDP can be described by the throughput of the data transfer for a
given constant bit-rate communication link. Unfortunately, the dynamic routing capability
and the suspend/resume scheme make it impossible, or at least very difficult, to formulate the
overall link throughput. In addition, no other protocols can be compared with CFDP in such
an environment, as they do not support dynamic routing or suspend/resume capability. In the
bid of the throughput comparison with the other protocols, the direct line-of-sight CFDP
throughput (no intermediate waypoints) is evaluated.

The throughput of the CFDP could be evaluated by three different cases:

a) No Acknowledgement: Simplex link;

b) Immediate Negative Acknowledgment;

c) Deferred Negative Acknowledgment.

In the simplex link case, the CFDP does not assure the integrity of the file at the other end,
and the transfer time would not vary according to the different configuration and the
environmental conditions.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-61 July 2001

In this subsection, two other retransmission strategies are considered to evaluate the
theoretical throughput.

For the Immediate NAK case, the total number of packets Ntotal which are transmitted by the
file sender is given as:

 Ntotal = N + N × PER + N × PER2 + N × PER3 + � (1)

 = N / (1 � PER)

where

 N : Total number of packets = File Size / Packet Length

 PER : Packet Error Rate induced from the link bit error rate (BER) = 1 � (1 � BER)8L

 L : Packet Length (in bytes)

Ntotal takes into account the repeating retransmissions of the packets.

To send this number of packets to the file receiver, the maximum value of the total
transmission time TTx,max of a file is calculated as:

 TTx,max = Ntotal × Tpacket + RTT = () RTT
PER
TN

+
−

×

1
packet (2)

where

 TTx,max : Maximum value of the total transmission time

 TTx : Total transmission time for a given file

 Tpacket : Packet time for a packet to arrive at the receiver = Packet Length /
Transmission Bit Rate

 Round Trip Time (RTT) between file file sender and the file receiver (sec)

The term RTT is inserted in Equation (2), because if the last packet of the file transfer is lost,
RTT seconds will be taken for the receiver to send a NAK packet and receive back the
corresponding packet, which is the last one of the whole transfer. In this equation, the
processing time of both file sender and receiver's CPU is ignored.

Consequently, the total retransmission time of a file transfer TTx would be smaller than TTx,max
but greater than (Ntotal × Tpacket).

On the other hand, for the Deferred NAK case, the file receiver waits for the end of file
transfer from the file sender before it issues the set of NAKs for all the lost packets during the
transfer. In this case, the total transmission time TTx becomes

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-62 July 2001

 TTx = (N × Tpacket) + (RTT + N × Tpacket × PER) + (RTT + N × Tpacket × PER2) + (RTT + � (3)

In Equation (3), the first term in () represents the first time transfer of the given file data, and
if there are errors, an RTT will be passed before starting to receive another set of the missing
packets. Recursively calculated, the resulting equation becomes

 () RTTk
PER
TN

T +
−

×
=

1
packet

Tx (4)

where

 k : number of retransmissions. determined from N and PER

The number of retransmission k varies according to N and PER. Repeating the transmissions
for the erroneous packets will decrease the number of packets by PER, so kth retransmission
consists of (N × PERk) packets. If this value (N × PERm) is smaller than 1, then there will be
no more packets to send. From N and PER, k is obtained:

PER

Nk
log

log
−= (5)

For example, to send 10000 packets with PER equal to 0.01, the retransmission time k is
equal to 2. Of course, it is a theoretical estimation.

In summary, the total transmission time of the CFDP for the two different retransmission
strategies can be described as:

c) Immediate NAK case: () o
packet

Tx 1
TRTT

PER
TN

T ++
−
×

=

d) Deferred NAK case: () o
packet

Tx log
log

1
TRTT

PER
N

PER
TN

T +−
−
×

= (5)

Where To is the overall link overhead, which consists of the initial connection establishment
time and the final closing time. In CFDP, Put request PDU does not need to wait for the
response from the file receiver, and the file sender starts immediately to send the file data.
On the other hand, for the Get request PDU, which is issued by the file receiver, the file
receiver need to wait single link time (half the RTT) before the file sender starts to send data
packets. At the end of file transfer, both file sender and file receiver can issue the [Finished]
PDU, and in a normal case, it is the file receiver who issues this [Finished] PDU. In this
case, to close the connection ([Finished] PDU and then [ACK (Finished)] PDU), an RTT is
needed for both ends.

The theoretical throughput of the CFDP is obtained in both cases:

 Throughput of CFDP = File Size / TTx (6)

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-63 July 2001

7.2.9.4 CFDP Link Configurations

The CFDP Service Classes refer to the following types of Link Configurations (figure 7-30):

a) Direct-Link (point-to-point) transactions (Class 1, Class 2);

b) One transparent Waypoint (Relay Testing Module) for test purpose only (via �relays�
as opposed to CFDP �waypoints�);

c) Link via CFDP Waypoint (Class 3, Class 4);

d) Proxy transactions either as Get or Remote Put (Class 5).

Figure 7-30: Test Link Configurations Diagram

The ESTEC Relay Testing Module can be added to any of the above links in order to test the
related CFDP entity�s behavior over a simulated noisy space link.

7.2.9.5 Test Parameters

7.2.9.5.1 General

A test parameter is a parameter that can affect the resulting performances of an FDU. Test
parameters can be of two types:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-64 July 2001

a) CFDP related.

b) Link Simulation Related (Relay Testing Module).

In both cases, certain types of parameters can vary their value from test to test.

7.2.9.5.2 CFDP Parameters

a) FIXED:

1) Positive Ack Reissue Time Out (on sender side);

2) Positive Ack Max Reissue Number (on sender side);

3) Negative Ack Reissue Time Out (on receiver side);

4) Negative Ack Max Reissue Number (on receiver side);

5) Keep Alive Period;

6) Keep Alive Max Discrepancy offset (Bytes);

7) Forward Link bit rate (Kbps).

b) VARIABLES:

1) File Size;

2) Packet Length.

c) Retransmission Strategy Modes:

1) No Acknowledgments (Unreliable File Transfer);

2) Immediate NAKs (negative Acknowledgments);

3) Deferred NAKs.

7.2.9.5.3 Simulated Space Link Parameters

a) Delay.

b) Diversity:

1) Packet Duplication Rate;

2) Packet Out-Of-Order Rate.

c) Error (Packets Losses):

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-65 July 2001

1) BER;

2) BEOP or Burst Intensity.

d) Number of simultaneous Transactions.

Refer to table 7-9 for the CFDP test parameters values range.

Table 7-9: CFDP Test Parameters Value Range

Variable Parameters Unit Values Range (default values in bold)
File Size Kbytes 20 100 1000 10000
Packet Size bytes 128 256 512 1024
Link Delay msec 0 100 200 400
Bit Error Rate (BER) 0 1e-5 1e-4 1e-3
Packet duplication rate 0 1e-2
Packet out-of-order rate 0 1e-2
Burst Generation rate 0 0.03
Burst Error Average duration Sec 0 0.1
Simultaneous Transactions 0 5 10
Fixed Parameters Unit Value
Transmission bit rate Kbps 100
Pos Ack Reissue Time Out

Sec
30

Pos Ack Max Reissue number 5
Neg Ack Reissue Time Out Sec 20
Neg Ack Max Reissue number 10
Keep Alive Period Sec 0
Keep Alive Max Discrepancy bytes 0
Transaction Lifetime Sec 1000

7.2.9.6 Results Parameters

Resulting Transfer Time (and related CFDP Throughput).

7.2.9.7 Test Sets Definition

7.2.9.7.1 General

To obtain the most representative Test results, different categories of �Testing Sets� have
been defined assuming the previous mentioned �Test Configuration Parameters�.

For each Set of Tests there is a variable Link Simulation parameter ranging between different
pre-defined values, while the remaining Test Configuration Parameters are left fixed.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-66 July 2001

Furthermore, each Set will be performed in any of the three CFDP acknowledgment modes.

For the entire test duration, fixed Positive Acknowledgement, Negative Acknowledgement and
Keep Alive setting values will be assumed (according to table 7-9).

7.2.9.7.2 Size Test Sets

7.2.9.7.2.1 Size Set 1

a) Fixed parameters:

1) File Size (1 MB);

2) No Link Delay;

3) No Link Diversity;

4) No Link Errors;

5) No Simultaneous Transactions.

b) Variable parameter: Packet Size.

7.2.9.7.2.2 Size Set 2

a) Fixed parameters:

1) Packet Size (1024 bytes);

2) No Link Delay;

3) No Link Diversity;

4) No Link Errors;

5) No Simultaneous Transactions;

b) Variable parameter: File Size.

7.2.9.7.3 Delay Test Sets

7.2.9.7.3.1 Delay Set 1

a) Fixed parameters:

1) File Size (1 MB);

2) Packet Size (1024 bytes);

3) No Link Diversity;

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-67 July 2001

4) No Link Errors;

5) No Simultaneous Transactions;

b) Variable parameter: Link Delay.

7.2.9.7.3.2 Delay Set 2

a) Fixed parameters:

1) File Size (1 MB).

2) Packet Size (1024 bytes).

3) No Link Diversity.

4) BER = 1e-3.

5) No Burst Errors.

6) No Simultaneous Transactions.

b) Variable parameter: Link Delay.

7.2.9.7.4 Link Error Test Sets

7.2.9.7.4.1 Link Error Set 1

a) Fixed parameters:

1) File Size (1 MB);

2) Packet Size (1024 bytes);

3) Link Delay = 100 ms;

4) No Link Diversity;

5) No Burst Errors;

6) No Simultaneous Transactions;

b) Variable parameter: BER.

7.2.9.7.4.2 Link Error Set 2

a) Fixed parameters:

1) File Size (1 MB);

2) Packet Size (1024 bytes);

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-68 July 2001

3) Link Delay = 100 ms;

4) Packet Duplication Rate = 1e-?;

5) Packet Out-Of-Order Rate = 1e-?;

6) BER = 1e-3.

7) No Simultaneous Transactions.

b) Variable parameter: BEOP:

1) Burst Generation Rate = 0.03;

2) Burst Average Duration = 0.1 sec.

7.2.9.7.5 Link Diversity Test Sets

7.2.9.7.5.1 Link Diversity Set 1

a) Fixed parameters:

1) File Size (1 MB);

2) Packet Size (1024 bytes);

3) Link Delay = 100 ms;

4) BER = 1e-3;

5) No Burst Errors;

6) No Packet Out-Of-Order;

7) No Simultaneous Transactions;

b) Variable parameter: Link Diversity. Packet Duplication Rate = 1e-?.

7.2.9.7.5.2 Link Diversity Set 2

a) Fixed parameters:

1) File Size (1 MB);

2) Packet Size (1024 bytes);

3) No Link Delay;

4) No Link Errors;

5) No Packet Duplication;

6) No Simultaneous Transactions.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-69 July 2001

b) Variable parameter: TBS. Packet Out-Of-Order Rate = 1e-?.

7.2.9.8 Test Results

Test 1. Different Packet Size
Test Parameters Retransmission Strategy

Type Name Unit No ACKs Imm. NAKs Deferred NAKs
File File size Bytes 1,001,078 1,001,078 1,001,078

Constants
 Pos Ack Timeout Sec 0 30 30
 Pos Ack Max Retries 0 10 10

CFDP Negative Ack Timeout Sec 0 20 20
parameters Negative Ack Max Retries 0 10 10

 KeepAlive Timeout Sec 0 0 0
 Forward Link bit rate Kbps 100 100 100
 Link delay ms 0 0 0
 Bit Error Rate 0 0 0

LinkSim Packet duplication rate 0 0 0
parameters Packet out-of-order rate 0 0 0

 Burst mean duration Sec 0 0 0
 Burst mean arrival time Sec 0 0 0

Variables Packet Length (Bytes) Resulting Transfer Time (Sec)
 128
 256
 512

 1024

7.2.10 MIB FILE

Currently, the MIB file used for the ESTEC CFDP implementation is a text file divided into
three sections:

a) Addresses Table;

b) Default Setting Values;

c) Entity Capabilities.

Each section can contain an undefined number of Items, contained in table 7-10.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-70 July 2001

Table 7-10: MIB Items

SECTION ITEM COMMENTS
Addresses

Table

�

CfdpN CFDP Entity addresses mapping.
Used to retrieve the physical network
address (IP + Port) of a certain CFDP
Entity.
This line is not considered if the
CfdpnhN is present.
N = CFDP Entity identifier

�

CfdpnhN Identifies the Next Hop of a certain
CFDP Entity.
If this line is present, it means that the
local entity has no direct connectivity to
the final destination entity.
Then an INTERMEDIATE CFDP Entity
shall be used as a WAYPOINT.
N = CFDP Entity identifier

Default
Settings
Values

� Transaction Lifetime In seconds
� Max File Length In Kbytes
� Max File Segment Length In Bytes
� Put File Type Bounded/Unbounded
� Put Data Type Octets/Packets
� Put Report Mode Prompted/Periodic

� Transaction Finished Indication Active/Not active
(Sender � NAK only)

� Transmission Mode Acknowledged/Unacknowledged
(Transmission mode for outgoing FDU)

� NAK Mode Immediate/Deferred
Prompted/Asynchronous

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-71 July 2001

SECTION ITEM COMMENTS
� NAK Timeout In seconds
� NAK Max Number Error threshold � number of retries
� PDUs Reissue Timeout In seconds
� PDUs Max Reissue Number Error threshold � number of retries
� Keep Alive Period In seconds
� Max Offset Discrepancy In Kbytes
� Fault Action Abandon/Cancel/Suspend/Ignore
� Cancel Put Action Discard/Retain

Entity
Capabilities

� RCV Transmission Mode

Acknowledged/Unacknowledged
(Transmission mode for incoming FDU)
If Unacknowledged then none of the
Acknowledgements settings are
considered

Example:

-***** This is the MIB file used by CFDP Version for ESTEC *****-
This file contains the mappings of Host names to IP addresses and of
CFDP Entity IDs to IP addresses.
Each entry should be kept on an individual line.
The Host name or the CFDP Entity ID should be kept on an individual
line and placed in the first column followed by the corresponding IP
address.
When a line is to identify the CFDP Entity address mapping, it starts
with the sequence "cfdp" followed by the CFDP Entity ID (No space
between).
The sequence "cfdpnh" identifies the Next Hop of a certain CFDP Entity
If Such line is present, it means that the local entity has no direct
connectivity to the final Destination entity.
Then an INTERMEDIATE CFDP Entity shall be used as a WAYPOINT.
The character ":" should separate the first and the second columns
and at least one space. No space chars are allowed in the first
column up to the ":" .
This File is subdivided in SECTIONS. Each section contains different
types of information. The beginning of a
section is delimited by the characters sequence "$###$".
The Section names are located after the Section Delimiter up to the
end of the line.
Only the FIRST section is delimited by the sequence "$$####$$" and it
contains the CFDP address mapping.
The EOF is marked as "$$$$$".
Additionally, comments (such as these) must be denoted by a "#"
symbol and may be inserted on individual lines or following the
second column.
#
For example:
rhino.acme.com 102.54.94.97 # source server
x.acme.com 38.25.63.10 # x client host
cfdp13 171.25.32.11 # Lander

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 7-72 July 2001

$$####$$ Addresses Table
localhost: 127.0.0.1/6768
cfdp0: 127.0.0.1/6768 #Local Network
cfdp1: 131.176.12.116/6766 #Max PC
cfdpnh1: 131.176.12.116/6766 #Max PC Next Hop
cfdp2: 131.176.12.116/6769 #Max PC
cfdpnh2: 131.176.12.116/6770 #Max PC Next Hop
cfdp3: 131.176.12.141/6769 #Lab PC
cfdprelay: 127.0.0.1/6768 #CFDP Relay Testing Module
$####$ Default Settings Values
Transaction Lifetime: 150
Max File Length: 5000 #In Kbytes
Max File Segment Length: 1024 #In Bytes
Put File Type: bounded
Put Data Type: octets
Put Report Mode: Prompted
Transaction Finished Indication: active #Sender – NAK only
Transmission Mode: acknowledged #Transmission mode for outgoing FDU
NAK Mode: deferred
NAK Timeout: 30
NAK Max Number: 10
PDUs Reissue Timeout: 20 #In Seconds
PDUs Max Reissue Number: 4
Keep Alive Period: 100 #In seconds
Max Offset Discrepancy: 10000 #10 Kbytes
Fault Action: abandon
Cancel Put Action: discard
$####$ Entity Capabilities
RCV Transmission Mode: acknowledged/unacknowledged
$$$$$

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-1 July 2001

8 IMPLEMENTATION CAPABILITIES SURVEY

8.1 DERA/BNSC

CFDP Implementation Survey

Agency Name Submitted by

DERA BNSC R Smith

General Implementation Information

Platform OS Language

Force

Sparc

3CE

VxWorks 5.3.1 C

Max. File Size Max. Segment Size Mechanism Used for Persistent

Storage

Other Persistent Storage

Options

FFFFFFFF 512 (UDP packet

size limitation)
RAM-based DOS FS None on development system

Underlying Communications Systems

CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

 X

1. CFDP Procedures

CRC

Proced.

Put

Proced.

Transaction

Start Proced.

PDU

Forwarding

Proced.

Copy File

Proced.

Positive Ack.

Proced.

Faults

Proced.

Filestore

Proced.

X X X X X X

2. CFDP Protocol Classes

Unreliable

Transfer

Reliable

Transfer

Reliable Transfer by

Proxy

X X

3. CFDP Protocol Options

Options

End Type

Sender Receiver

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-2 July 2001

Put Modes

UnACK NAK

X X

Put NAK Modes

Immediate Deferred Prompted Asynchronous

 X

Put File Types

Bounded Unbounded

X X

Segmentation Control (Record Boundaries Respected)

Yes No

 X

Put Primitives (Receiving End)

File_segment_receive.ind

X

Put Error Responses (Sending End)

Ignore Abandon Cancel Suspend

 X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend

 X

Put Actions

Cancel_PutAction_ Suspend_PutAction_

X

Cancel Put Action (Receiving End)

Discard data Forward incomplete

X

Put Report Modes (Sending End)

Prompted_Rpt_ Periodic

File Store Options

Create File Delete File Rename File Append File Replace File Create Dir Remove Dir

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-3 July 2001

Directory Operations

Directory Listing Request Directory Listing Response

Release of Retransmission Buffers

Incremental and Immediate In total When "Finished" Received

 X

4. Timers and Counters

Timers

NAK Retry

Timer

ACK Retry

Timer

Prompt _NAK_

Timer

Async NAK

Timer

Keep Alive

Timer

Prompt _Keep

Alive_ Timer

Inactivity

Timer

X X X

Counters

NAK Retry Counter ACK Retry Counter

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-4 July 2001

8.2 EUROPEAN SPACE AGENCY (ESA)/EUROPEAN SPACE RESEARCH AND
TECHNOLOGY CENTRE (ESTEC)

CFDP Implementation Survey

Agency Name Submitted by

European Space Agency(ESA) ESTEC Eric Bornschlegl and Max Ciccone

General Implementation Information

Platform OS Language

PC Windows NT/95 Object Pascal on Delphi

Max. File Size Max. Segment Size Mechanism Used for Persistent

Storage

Other Persistent Storage

Options

up to 2 Mbytes 1024 bytes DOS System

Underlying Communications Systems

CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

 X

1. CFDP Procedures

CRC

Proced.

Put

Proced.

Transaction

Start Proced.

PDU

Forwarding

Proced.

Copy File

Proced.

Positive Ack.

Proced.

Faults

Proced.

Filestore

Proced.

X X X X X X X X

2. CFDP Protocol Classes

Unreliable

Transfer

Reliable

Transfer

Reliable Transfer by

Proxy

X X X

3. CFDP Protocol Options

Options

End Type

Sender Receiver

X X

Put Modes

UnACK NAK

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-5 July 2001

Put NAK Modes

Immediate Deferred Prompted Asynchronous

X X X X

Put File Types

Bounded Unbounded

X

Segmentation Control (Record Boundaries Respected)

Yes No

 X

Put Primitives (Receiving End)

File_segment_receive.ind

X

Put Error Responses (Sending End)

Ignore Abandon Cancel Suspend

X X X X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend

X X X X

Put Actions

Cancel_PutAction_ Suspend_PutAction_

X X

Cancel Put Action (Receiving End)

Discard data Forward incomplete

X

Put Report Modes (Sending End)

Prompted_Rpt_ Periodic

X X

File Store Options

Create File Delete File Rename File Append File Replace File Create Dir Remove Dir

X X X X X X X

Directory Operations

Directory Listing Request Directory Listing Response

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-6 July 2001

Release of Retransmission Buffers

Incremental and Immediate In total When "Finished" Received

 X

4. Timers and Counters

Timers

NAK Retry

Timer

ACK Retry

Timer

Prompt _NAK_

Timer

Async NAK

Timer

Keep Alive

Timer

Prompt _Keep

Alive_ Timer

Inactivity

Timer

X X X

Counters

NAK Retry Counter ACK Retry Counter

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-7 July 2001

8.3 NASA/JPL

CFDP Implementation Survey

Agency Name Submitted by

NASA JPL Alan Schlutsmeyer

General Implementation Information

Platform OS Language

PPC single-board computers VxWorks C

Sun Sparc/UltraSparc Solaris C

Max. File Size Max. Segment Size Mechanism Used for

Persistent Storage

Other Persistent

Storage Options

no fixed limit tested up to 40K 512 SDR persistent object

system

DRAM, NFS, local file

system

Underlying Communications Systems

CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

X X X X

1. CFDP Procedures

CRC

Proced.

Put

Proced.

Transaction

Start Proced.

PDU

Forwarding

Proced.

Copy File

Proced.

Positive Ack.

Proced.

Faults

Proced.

Filestore

Proced.

 X X X X X X X

2. CFDP Protocol Classes

Unreliable

Transfer

Reliable

Transfer

Reliable Transfer by

Proxy

X X

3. CFDP Protocol Options

Options

End Type

Sender Receiver

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-8 July 2001

Put Modes

UnACK NAK

X X

Put NAK Modes

Immediate Deferred Prompted Asynchronous

X X

Put File Types

Bounded Unbounded

X

Segmentation Control (Record Boundaries Respected)

Yes No

X

Put Primitives (Receiving End)

File_segment_receive.ind

X

Put Error Responses (Sending End)

Ignore Abandon Cancel Suspend

 X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend

 X

Put Actions

Cancel_PutAction_ Suspend_PutAction_

Cancel Put Action (Receiving End)

Discard data Forward incomplete

X

Put Report Modes (Sending End)

Prompted_Rpt_ Periodic

File Store Options

Create File Delete File Rename File Append File Replace File Create Dir Remove Dir

X X X X X X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-9 July 2001

Directory Operations

Directory Listing Request Directory Listing Response

Release of Retransmission Buffers

Incremental and Immediate In total When "Finished" Received

X

4. Timers and Counters

Timers

NAK Retry

Timer

ACK Retry

Timer

Prompt _NAK_

Timer

Async NAK

Timer

Keep Alive

Timer

Prompt _Keep

Alive_ Timer

Inactivity

Timer

X X

Counters

NAK Retry Counter ACK Retry Counter

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-10 July 2001

8.4 NASDA/NEC CORPORATION

CFDP Implementation Survey

Agency Name Submitted by

NASDA Hiroaki Miyoshi

General Implementation Information

Platform OS Language

PC Windows-NT
Ver.4.0 SP3 or
later

C++

Max. File Size Max. Segment Size Mechanism Used for

Persistent Storage

Other Persistent

Storage Options

65535 2000 DOS

Underlying Communications Systems

CCSDS AOS VCDU CCSDS TM_TC CCSDS Prox_1 SCPS_NP UDP_IP Other

 X

1. CFDP Procedures

CRC

Proced.

Put

Proced.

Transaction

Start Proced.

PDU

Forwarding

Proced.

Copy File

Proced.

Positive Ack.

Proced.

Protocol

Errors

Proced.

Filestore

Proced.

 X X X X X X

2. CFDP Protocol Classes

Unreliable

Transfer

Reliable

Transfer

Reliable Transfer by

Proxy

X X

3. CFDP Protocol Options

2.A Options

End Type

Sender Receiver

X X

Put Modes

UnACK NAK

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-11 July 2001

Put NAK Modes

Immediate Deferred Prompted Asynchronous

 X

Put File Types

Bounded Unbounded

X

Segmentation Control (Record Boundaries Respected)

Yes No

 X

Put Primitives (Receiving End)

File_segment_receive.ind

X

Put Error Responses (Sending End)

Ignore Abandon Cancel Suspend

 X

Put Error Responses (Receiving End)

Ignore Abandon Cancel Suspend

 X

Put Actions

Cancel_PutAction_ Suspend_PutAction_

X

Cancel Put Action (Receiving End)

Discard data Forward incomplete

X

Put Report Modes (Sending End)

Prompted_Rpt_ Periodic

File Store Options

Create File Delete File Rename File Append File Replace File Create Dir Remove Dir

Directory Operations

Directory Listing Request Directory Listing Response

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 8-12 July 2001

Release of Retransmission Buffers

Incremental and Immediate In total When "Finished" Received

 X

4. Timers and Counters

Timers

NAK Retry

Timer

ACK Retry

Timer

Prompt _NAK_

Timer

Async NAK

Timer

Keep Alive

Timer

Prompt _Keep

Alive_ Timer

Inactivity

Timer

X X X

Counters

NAK Retry Counter ACK Retry Counter

X X

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-1 July 2001

9 INTER-AGENCY TESTS

NOTES

1 The tests reported in this section were executed in the process of developing the
CFDP specifications. In the next release of this document, the reports herein will be
replaced by reports on the testing using implementations conforming to the CFDP
specifications contained in the next approved version of reference [1].

2 All references to Test IDs or Test Sequence IDs refer to the tests defined in annex B.

9.1 PURPOSE OF INTER-AGENCY TEST PROGRAM

The CFDP inter-Agency testing program has four distinct purposes.:

a) Verify the correctness of the protocol specification by creating multiple
implementations according to that specification, and thoroughly test those
implementations.

b) Provide measurements of the performance of the protocol and the resources required
by the protocol from its hosting system, including the size of the software
implementations.

c) Demonstrate the interoperability of independent implementations by inter-
implementation testing.

d) Make available the tested implementations as reference implementations for the use
of projects and programs which wish to use the CFDP.

9.2 OVERVIEW OF TEST PROGRAM

Three inter-Agency testing workshops have been held: the first was held at the Applied
Physics Laboratory (APL) of the Johns Hopkins University (JHU) in May 2000; the second
and third were held at the DERA facility at Farnborough, U.K., in September and November
2000.

The participants in the first workshop were ESA/ESTEC and NASA/JPL, in the second
DERA/BNSC and ESA/ESTEC and, in the third, DERA/BNSC, ESA/ESTEC, NASDA/NEC
and, via the Internet, NASA/JPL. A summary of the results of these workshops is provided
in the remainder of this section.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-2 July 2001

9.3 TEST REPORT SUMMARIES

9.3.1 CFDP MAY 2000 TEST WORKSHOP AT APL/JHU

Std.
Test
ID

Time from/to Mode File size Result Notes

F1-1 0840 J to E Unack 17 bytes good One data packet
F1-2 1755 J to E Unack 50Kbytes good Multiple data

packets
F1-1 1800 E to J Unack 10 bytes good One data packet
F1-2 1840 E to J Unack 50Kbytes good Multiple data

packets
F1-3 1845 E to J Ack 6K bytes good Multiple data packet,

no errors. No TLV
F1-3 1850 J to E Ack 6K bytes good Multiple data

packets, no errors.
No TLV

F1-3 1853 J to E Ack 50K bytes good Multiple data
packets, no errors.
No TLV

F1-3 1855 E to J ACK 50K bytes incorrect NAK and
retransmission PDU
formats verified.
Duplicate data
recognized in J
entity.

F1-7 1910 J to E ACK msg to user incorrect Msg okay, process
problem

F1-7 1916 E to J ACK msg to user good
F1-7 10/5/

1150
J to E ACK msg to user good

F1-4 1310 J to E ACK 5 Kbytes good Dropped one File
Data PDU. Minor
non-fatal Ack/NAK
problem.

F1-4 1346 J to E ACK 5 Kbytes good Problem fixed

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-3 July 2001

F1-4 1402 E to J ACK 5 Kbytes good Dropped one File
Data PDU.

F1-8 1420 E to J ACK good Sender Cancel.
F1-8 1435 J to E ACK good Sender Cancel.

9.3.2 CFDP SEPTEMBER 2000 TEST WORKSHOP

9.3.2.1 Participants

a) BNSC/DERA

b) ESA/ESTEC

9.3.2.2 Functional Test Series 1

Src BNSC/DERA ESA/ESTEC
Dest ESA/ESTEC BNSC/DERA

1 Y Y
2 Y Y
3 Y Y
4 Y Y
5 Y Y
6 1 1
7 Y Y
8 2 Y
9 Y Y

10 Y Y

NOTES

1 Unable to generate out-of-order PDUs.

2 Cancellation only took effect after all File Data PDUs were transmitted for the first
time.

BNSC code ignores incoming PDUs during the initial transmission of File Data PDUs,
meaning it cannot be canceled or suspended during this phase.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-4 July 2001

9.3.2.3 Functional Test Series 2

Src BNSC/DERA ESA/ESTEC
Dest ESA/ESTEC BNSC/DERA

1 Y Y
2 Y Y
3 Y Y
4 Y Y
5 Y Y
6 Y Y
7 1 1

NOTE � Test skipped as BNSC code does not currently support Error Procedures.

9.3.2.4 Functional Test Series 3

Tests skipped as BNSC/DERA code does not support Filestore Operations.

9.3.2.5 Functional Test Series 4

Src BNSC/DERA ESA/ESTEC
Dest ESA/ESTEC BNSC/DERA

1 Y Y
2 Y Y
3
4
5
6 Y Y
7 1 Y
8 1 2
9

10
11
12

NOTES

1 Sender could not suspend during initial transmission of all File Data PDUs.

2 Discovered conflict with Suspend Procedures when both entities attempt to suspend at
the same time, and only the suspending entity can resume. This had been identified
previously from a theoretical argument, but it was reproduced accidentally during the
workshop.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-5 July 2001

Suggested improvements:

a) Clarification of the default states of controls like Segmentation Control for other tests
in the book, e.g., either test 5 or 6 will be redundant as it will have been performed in
another test series, i.e., F1.3. This is similarly true for NAK modes.

b) Clarification of which Protocol Errors are involved in tests 9-12.

c) Review of Suspend Procedures.

9.3.3 CFDP NOVEMBER 2000 TEST WORKSHOP

9.3.3.1 Participants

a) BNSC/DERA

b) ESA/ESTEC

c) NASA/JPL (via Internet)

d) NASDA/NEC

9.3.3.2 Functional Test Series 1

Src BNSC/DERA ESA/ESTEC NASA/JPL NASDA/NEC
Dest E-E N-J N-N B-D N-J N-N B-D E-E N-N B-D E-E N-J

1 Y Y Y Y Y Y Y Y Y Y Y Y
2 Y Y Y Y Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y Y Y Y Y
4 Y Y 4 Y Y 4 Y Y Y 4 4 Y
5 Y 3 Y Y Y Y Y Y
6 Y 1 Y Y 1 1 1 1
7 Y Y Y Y Y Y Y Y
8 Y Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

10 Y Y 2 Y 2 Y Y Y

NOTES

1 Unable to generate out-of-order PDUs.

2 Receiver had memory storage problems with 1 Mb file, but success with 500 kb.

3 Unable to generate duplicated PDUs.

4 NASDA/NEC initially had problems interpreting NAKs. This was fixed and tested
successfully against NASA/JPL, but time constraints did not allow re-testing with
BNSC/DERA or ESA/ESTEC.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-6 July 2001

9.3.3.2.1 Problems Encountered

a) NASDA had trouble understanding the offsets required in NAK PDUs from the
description contained in reference [1]. This description requires some clarification.

b) NASDA had implemented the checksum in a different way than ESA, BNSC and
NASA. However, the NASDA method seemed stronger than that originally
proposed, and it has been adopted in issue 3.3 of reference [1].

9.3.3.2.2 Suggested Improvements

Add versions of tests 8 and 9 in unacknowledged mode.

9.3.3.3 Functional Test Series 2

Src BNSC/DERA ESA/ESTEC NASA/JPL NASDA/NEC
Dest E-E N-J N-N B-D N-J N-N B-D E-E N-N B-D E-E N-J

1 Y Y Y Y 2 Y Y Y
2 Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y
4 Y Y Y Y Y Y Y Y
5 Y Y Y Y Y Y Y Y
6 Y Y Y 3 2 Y Y Y
7 1 1 1 1 1 1 1 1 1 1 1 1

NOTES

1 Test skipped as description needs clarification.

2 Receiver gave incorrect NAK response to missing Metadata PDU.

3 Receiver gave incorrect NAK response to EOF PDU first.

9.3.3.3.1 Problems Encountered

Time was the main problem. NASDA fixed their NAK offsets remarkably quickly, but there
was insufficient time to test against all of the other codes. Effort was concentrated on
NASA-NASDA to speed progress.

9.3.3.3.2 Suggested Improvements

Clarification of Protocol Error definition. Test 7 refers to a Protocol Error without specifying
which one, or which entity causes it. Specifying two particular Protocol Errors, e.g.,
dropping all ACK (EOF Complete) and Finished (Complete) PDUs to cause an error at the
sender, and dropping all NAK PDUs to cause an error at the receiver, would make the tests
clearer.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 9-7 July 2001

9.3.3.4 Functional Test Series 3

Src BNSC/DERA ESA/ESTEC NASA/JPL NASDA/NEC
Dest E-E N-J N-N B-D N-J N-N B-D E-E N-N B-D E-E N-J

1
2 Y Y
3 Y Y
4
5
6
7 Y Y
8 Y Y
9

Many of the filestore operations are not currently supported by the BNSC and NASDA codes.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-1 July 2001

10 REQUIREMENTS

10.1 GENERAL

This section contains the requirements for the CFDP. The development of the requirements
was driven by a reference set of five scenarios. These scenarios are included herein. The
requirements proper are divided into two subsections: the first lists the requirements for the
protocol itself, and the second lists the requirements for the implementation of the protocol.

10.2 CONFIGURATION SCENARIOS

10.2.1 BASIS

Five operational configuration scenarios were used as the basis for the requirements for
CFDP. The scenarios are described as both space-to-ground file transfer operations and as
ground-to-space file transfer operations. The primary difference for ground-to-space
transfers is that most spacecraft are capable of receiving transmissions from only one ground
station at a time. Therefore, those configurations implying multiple simultaneous
transmissions to a spacecraft in fact have serial non-overlapping access for uplink
transmissions.

10.2.2 SPACECRAFT/NETWORK CONTROL CENTER (NCC) WITH NO
INTERMEDIATE FILE TRANSFER ENTITY

10.2.2.1 Scenario 1

Scenario 1 consists of End-to-End service using no intermediate File Transfer (FT) entities,
as shown in figure 10-1.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-2 July 2001

Grou
nd

Stati
on

Fram
e/CLT

U

Servi
ce

Fram
e/CLT

U

Servi
ce

Grou
nd

Stati
on

Netw
ork

Cont
rol

Cent
er

CFDP
Serv

ice

Pack
et Se

rvice

Spacecraft
CFDP

Service

Packet Service

Fram
e
Service

Figure 10-1: Scenario 1

10.2.2.2 Scenario 1: Space-to-Ground

In Scenario 1, the file transfer takes place from a spacecraft to its associated NCC. Multiple
ground stations receive frames from the spacecraft and route them to the NCC, with or
without extracting packets (i.e., the ground stations may extract the packets using the SLE
packet service and forward the packets, or may instead forward the frames, in which case the
packets are extracted at the NCC). The ground stations� frame acquisition may overlap one
another in time or be entirely disjoint. At the NCC, the packets are passed to the FT entity
for assembly and report generation. The reports are routed to the spacecraft�s FT entity via
the in-view ground station.

NOTE � The NCC�s FT entity discards duplicate blocks received during overlapping
contacts. The management of frame data at the ground station is not addressed by
the protocol.

The NCC�s FT entity detects loss and/or corruption of data blocks and requests that they be
retransmitted; it also tells the spacecraft�s FT entity which blocks it has successfully received.
The spacecraft�s FT entity retransmits blocks in response to requests from the NCC�s FT
entity, or in response to determination that an acknowledgment from the NCC�s FT entity is
overdue (either because the acknowledgment itself was lost, or because the blocks to be
acknowledged were not received). The source FT entity (on the spacecraft) continues
retransmission until the destination entity (in the NCC) has taken custody of the entire FTU.

On notification of complete reception, or on transaction cancellation (initiated by either of the
two FT entities), the spacecraft�s FT entity need no longer retain its copy of the FTU in a

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-3 July 2001

retransmission buffer. If the data path is simplex (i.e., the NCC can never send data to the
spacecraft), then the spacecraft�s FT entity assumes that FTU reception is complete as soon
as it has finished transmitting the FTU; it may optionally send some or all data blocks
multiple times (i.e., �proactive retransmission�) in an attempt to improve the likelihood of
successful initial FTU reception.

NOTES

1 The protocol is used to transfer files between space and ground file systems.

2 The protocol can cause file system management commands to be executed with
respect to the remote file system (ground or space). FT entities issue those commands
in response to file system management command PDUs.

3 The spacecraft can be anywhere in space, from near-Earth orbit to the furthest reaches
of the solar system and beyond.

4 Multiple transfers may be in flight concurrently.

5 The protocol may operate over TM/TC packets.

6 Transfers can span link passes (contacts).

7 The protocol delivers a file completion map along with the file (which may be
incomplete).

8 A file is defined to be an array of octets (not bits).

9 The �ground� (the NCC) is a single protocol endpoint, a single FT entity; individual
receiving stations are not FT entities in this scenario.

10 The protocol discards duplicate data.

11 The protocol is defined in levels to facilitate a range of implementation complexities
from simple to complex. Metadata can command the destination FT entity to:

a) get and put;

b) plus delete, rename, etc.;

c) plus mkdir, rmdir, etc.;

d) perform other functions yet to be defined (e.g., append, rename, patch, read).

12 Support for time-outs: each FT entity involved in one link of a communication path
is aware of the one-way light time between the two, and the presumed operative state
of the other

13 Optional features:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-4 July 2001

a) send and forget (simplex transmission);

b) incremental NAK: the receiving FT entity additionally reports on its reception
state (sends a NAK) immediately whenever it detects any missing data block
(again, the NAK is automatic, but provides for manual intervention in case of
anomaly).

10.2.2.3 Scenario 1: Ground-to-Space

Scenario 1 is also valid for ground-to-space file transfer. In that case, the file transfer takes
place, for example, from an NCC to a spacecraft. Multiple ground stations receive packets or
frames from the NCC (i.e., the ground stations may insert the packets into frames, or this may
be done at the NCC, in which case the ground stations receive frames) and route them to the
spacecraft. Because spacecraft usually (with the possible exception of large manned
spacecraft) can support only one uplink at a time, the frames are sent to the spacecraft from
one ground station at a time, in separate contacts. At the spacecraft the packets are passed to
the FT entity for assembly and report generation. The reports are routed to the NCC�s FT
entity via the in view ground station.

NOTE � The spacecraft�s FT entity discards any duplicate blocks which might have been
caused by ground station-to-ground station switchovers.

The spacecraft�s FT entity detects loss and/or corruption of data blocks and requests that they
be retransmitted; it also tells the NCC�s FT entity which blocks it has successfully received.
The NCC�s FT entity retransmits blocks in response to requests from the spacecraft�s FT
entity, or in response to determination that an acknowledgment from the spacecraft�s FT
entity is overdue (either because the acknowledgment itself was lost or because the blocks to
be acknowledged were not received). The source FT entity (in the NCC) continues
retransmission until the destination entity (in the spacecraft) has taken custody of the entire
FTU.

On notification of complete reception, or on transaction cancellation (initiated by either of the
two FT entities), the NCC�s FT entity need no longer retain its copy of the FTU in a
retransmission buffer. If, perhaps because of a spacecraft anomaly, the data path is simplex
(i.e., the spacecraft cannot send data to the NCC), then the NCC�s FT entity assumes that
FTU reception is complete as soon as it has finished transmitting the FTU; it may optionally
send some or all data blocks multiple times (�proactive retransmission�) in an attempt to
improve the likelihood of successful initial FTU reception.

10.3 PROTOCOL REQUIREMENTS

10.3.1 GENERAL

This subsection contains the File Delivery Protocol Functional Requirements. For ease of
review, they are divided into five groups. These groups are:

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-5 July 2001

a) Requirements Related to Communications.

b) Requirements Related to Underlying Layers.

c) Requirements Related to Structure.

d) Requirements Related to Capabilities.

e) Requirements Related to Records, Files, and File Management.

10.3.2 REQUIREMENTS RELATED TO COMMUNICATIONS

Many of the requirements for the protocol are set by the environment in which it must
operate. These include the physical characteristics of the communications links, as well as
the availability of those links. The physical characteristics of the communications links
include their quality (noisiness), bandwidth, propagation delay, operating mode (Simplex,
Half-Duplex, Full-Duplex), and availability. Refer to table 10-1.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-6 July 2001

Table 10-1: Requirements Related to Communications

Group
Num.

Requirement Req.
Ref.
Num.

Source

comm 01 The protocol shall be appropriate for both deep space and
near earth missions.

01 E11, G1,
I1, J15

comm 02 The protocol shall provide effective and efficient service
over communications links with propagation delays
spanning milliseconds to tens of hours.

02 C4, G3

comm 03 Round trip communications time shall be provided to the
protocol from an external source.

66 J37

comm 04 The protocol shall provide effective and efficient service
over communications links which are typically bandwidth-
restricted.

03 C3

comm 05 The protocol shall provide effective and efficient service
over communications links which may be significantly
unbalanced in bandwidth.

04 C3, G2

comm 06 The protocol shall provide effective and efficient service
when allocation of the available bandwidth is not under the
control of the protocol.

05 C1

comm 07 The protocol shall provide effective and efficient service
over communications links which have frequent outages.

06 J30

comm 08 The protocol shall provide effective and efficient service
over communications links which have long outages.

07 G4,
G12, J31

comm 09 The protocol must be capable of providing effective and
efficient service over a simplex link.

19 C5, J16,
J19

comm 10 The protocol must be capable of providing effective and
efficient service over a half-duplex link.

20 C5, E15,
J16

comm 11 The protocol must be capable of providing effective and
efficient service over full-duplex links.

21 J16

comm 12 Where the underlying protocols can provide the appropriate
level of responsiveness, the protocol shall operate when the
underlying protocols in both directions provide Reliable
service.

22 C1

comm 13 Where the underlying protocol can provide the appropriate
level of responsiveness, the protocol shall operate when the
underlying protocol in only one direction provides Reliable
service.

23 C1, G5,
J14

comm 14 The protocol shall operate when the underlying protocols
in both directions provide Unreliable service.

24 C1, G5,
J14

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-7 July 2001

10.3.3 REQUIREMENTS RELATED TO UNDERLYING LAYERS

The protocol must be able to operate over a wide range of underlying services. Where the
underlying services are CCSDS, it must operate over the CCSDS Path Service in Grades of
Service 2 and 3. In addition, it must operate over conventional commercial protocols in order
to provide required store-and-forward services. Refer to table 10-2.

Table 10-2: Requirements Related to Underlying Layers

Group
Num.

Requirement Req.
Ref.
Num.

Source

undr 01 The protocol shall provide the capability to operate over
current CCSDS Packet Telemetry, Advanced Orbiting
Systems, and Telecommand protocols and shall not inhibit
the normal operation of these protocols.

11 C8, E2,
E3, E4,
E5, G9,
G10,
I12, J2,
J26, J27

undr 02 The protocol shall provide the capability to operate over
Transmission Control Protocol (TCP)/User Datagram
Protocol (UDP).

50 E27, J2

undr 03 The protocol shall provide full capabilities over the
services provided by existing packet recommendations.

75 E03

undr 04 Full advantage shall be taken of the characteristics of the
Packet TM/TC service i.e. normally �perfect� data in
sequence with possible omissions.

76 E05

10.3.4 REQUIREMENTS RELATED TO STRUCTURE

Two requirements relate to the user-visible structure of the protocol, as described in table
C-1.

Table 10-3: Requirements Related to Structure

Group
Num.

Requirement Req.
Ref.
Num.

Source

struct 01 The protocol shall operate between automated, essentially
symmetrical peer entities.

09 I3

struct 02 A single service interface will be presented to the client. 10 E10
struct 03 The protocol shall be scaleable so that it may be used on

relatively simple, current technology spacecraft, as well as
on sophisticated, advanced design spacecraft.

60 G6, G7,
G8, J1

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-8 July 2001

10.3.5 REQUIREMENTS RELATED TO PROTOCOL CAPABILITIES

The largest group of requirements relate to the capabilities and operating characteristics
which the protocol must possess. Refer to table C-2.

Table 10-4: Requirements Related to Capabilities

Group
Num.

Requirement Req.
Ref.
Num.

Source

cap 01 A protocol Peer shall be capable of both receiving and
transmitting files simultaneously.

25 E23,
G13, J1,
J5

cap 02 A protocol Peer shall be capable of concurrently supporting
multiple file transfer instances.

26 E23,
G14, J4

cap 03 The protocol shall provide the capability to transfer both
files (arrays of octets, which may or may not be further
structured as arrays of CCSDS packets) and metadata
(which may or may not pertain to those files).

39 I02

cap 04 A file is defined to be an array of octets (not bits). 65 J35
cap 05 The protocol shall handle variable record sizes. 40 E19
cap 06 The protocol shall allow file transfer up to (2^32)-1 octets. 42 E13
cap 07 The protocol shall allow requests for a file transfer to

specify the file by name.
43 I8

cap 08 The protocol shall provide immediate access to the
received data as it is received, i.e., without waiting for the
file to be completed

37 E25,
G17, J3

cap 09 The protocol shall provide the capability to operate in a
�Single Transmission� mode, in which the data are sent
once and only once.

28 C10

cap 10 The protocol shall provide the capability to operate in a
�Selective Retransmission� mode, in which missing or
corrupted sub-data units are identified by the receiving Peer
to the sending Peer, and the sending Peer then retransmits
those and only those sub-data units.

30 C12,
G15, I10

cap 11 The protocol shall be automatic, but shall provide for
manual intervention in case of anomaly.

78 E09

cap 12 The protocol shall support suspend and resume operations. 53 I13
cap 13 The receiving protocol Peer shall remove any duplicate

data received.
61 G16, J36

cap 14 The protocol shall provide the capability of initiating a file
transfer without transfer initiation handshaking between the
Peers.

31 I7, J19

cap 15 The protocol receiving Peer shall provide the capability to,
during the file transfer process, make available to the using

35 C9, I6,
J7, J8,

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-9 July 2001

Group
Num.

Requirement Req.
Ref.
Num.

Source

Application the status of the available received data,
including reporting that: a) data are still being received
(and the available data do or do not contain errors), and b)
data have been completely received (and retransmission
requests are or are not pending) (and the available data do
or do not contain errors).

J9

cap 16 The protocol receiving Peer shall provide the capability to
periodically report comprehensive status back to the
sending Peer.

32 J7, J8,
J9

cap 17 The protocol receiving Peer shall not require
acknowledgment of the comprehensive status reports to
proceed if the file integrity is detected to be correct.

33 J19

cap 18 The protocol receiving Peer shall provide the capability to,
upon receiving a complete and correct file, provide a final
acknowledgment to the sending Peer.

36 I6, J24

cap 19 The protocol shall be capable of completion of a file
transfer without transfer completion handshaking between
the Peers.

38 I7, J3

cap 20 The protocol shall provide the capability to allow file
transfers to span protocol Sender/protocol Receiver
contacts.

62 E24, J33

cap 28 The protocol shall inform the recipient application that the
file is available for use. If the file is incomplete, the
temporary name being used by the protocol process shall
be provided along with a completeness map.

64 J34

cap 29 The scope of the data being transferred may be multiple
extents (not just a single length starting at zero), which may
change over time.

72 J43

cap 30 The protocol shall provide proxy file service. 81 I15
cap 31 For operation over unreliable lower layers, a checksum for

each file segment shall be optionally provided.
82 E28

cap 32 For bounded files, a checksum for the entire file shall be
provided.

83 E29

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-10 July 2001

10.3.6 MANAGEMENT

The requirements which delineate the record handling, file handling, file management, and
directory management which the protocol must possess are listed in table 10-5.

Table 10-5: Requirements Related to Records, Files, and File Management

Group
Num.

Requirement Req.
Ref.
Num.

Source

rfm 01 The protocol shall assume the following set of file access
primitives from the local file system: �Open�, �Read�,
�Write�, �Seek�, �Remove�, and �Close�.

44 E18, J28

rfm 02 The protocol shall provide File transfer capabilities of
�Get� (request file transfer from remote Peer to local Peer),
and �Put� (request file transfer from local Peer to remote
Peer).

45 E20,
G11, J32

rfm 03 The protocol shall provide the following file handling
services: Load a New File, Send a File, Modify a File, and
Replace an Existing File.

46 G11,
J10, J32

rfm 04 The protocol shall provide the following file management
services: Request a File, Rename a File, Delete a File, and
Report a File Status.

47 E21,
G11,
J11, J32

rfm 05 The protocol shall provide the following file directory
management services: Create directory, List directory,
Rename directory, Delete directory, Change to directory,
and Report current directory.

48 E22,
G11,
J29, J32

rfm 06 The protocol file transfer services shall be independent of
local filing systems.

63 E26

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page 10-11 July 2001

10.4 IMPLEMENTATION REQUIREMENTS

The requirements on the implementation of the File Delivery Protocol are shown in table
10-6.

Table 10-6: Implementation Requirements

Group
Num.

Requirement Req.
Ref.
Num.

Source

imp 01 The protocol shall minimize the load on onboard
computing resources.

58 C6, G8

imp 02 The protocol shall minimize the use of onboard memory
resources.

59 C7, E1,
G8

imp 03 The protocol specification shall be fully validated and
tested.

56 J13

imp 04 The protocol sending Peer shall have the option of
responding to the final acknowledgment of receipt by
deleting the file that is known to have been correctly
transmitted.

51 J25

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page A-1 July 2001

ANNEX A

ACRONYMS AND ABBREVIATIONS

ACK Positive Acknowledgment

APL Applied Physics Laboratory (at Johns Hopkins University)

BEOP Burst Error Occurrence Probability

BNSC British National Space Centre

CCSDS Consultative Committee for Space Data Systems

CFDP CCSDS File Delivery Protocol

CNES Centre National d�Etudes Spatiales

DERA Defence Evaluation and Research Agency

EOF End of File

ESOC European Space Operations Centre

ESTEC European Space Research and Technology Centre

FD(n) File Data Segment

FIN Finished (receiver to sender)

FDU File Delivery Unit

FIFO First-In-First-Out

FT File Transfer

GEO Geosynchronous Earth Orbit

GTO Geosynchronous Transfer Orbit

GUI Graphical User Interface

IDE Integrated Development Environment

JHU Johns Hopkins University

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page A-2 July 2001

LEO Low Earth Orbit

M Metadata

MCC Mission Control Center

MIB Management Information Base

MSB Most Significant Bit

NAK Negative Acknowledgment

NCC Network Control Center

OSI Open Systems Interconnection

PDU Protocol Data Unit

PRMPT Prompt

RTM Relay Testing Module

SAD Software Architectural Design

TBS To Be Supplied

TC Telecommand

TCP Transmission Control Protocol

TM Telemetry

UDP User Datagram Protocol

UT Unitdata Transfer

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page B-1 July 2001

ANNEX B

CFDP EXTENDED PROCEDURES

B1 CFDP EXTENDED PROCEDURES OPTIONS

Table B-1: Finished PDU Field Codes

Parameter Values

Delivery Code ‘0’ - Data Complete

‘1’ - Data Incomplete

End System Status ‘0’ - Generated by Waypoint

‘1’ - Generated by End
System

Table B-2: Extended Procedures Transaction Waypoint Options

Forwarding Method Effect

Incremental and

Immediate

Sends received PDUs to next entity as soon as received.

In Total Upon Complete
Custody Acquisition

Sends FDU to next entity only when entire FDU has been
received.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-1 July 2001

ANNEX C

REQUIREMENTS FOR CFDP EXTENDED PROCEDURES

C1 SPACECRAFT/USER VIA A SINGLE RELAY ENTITY

C1.1 OVERVIEW

Scenario 2 consists of a Hop-by-Hop service using an intermediate store-and-forward
process, as shown in figure C-1.

X

CFDP Service
TCP

User

Network

Control

Center

TCP CFDP Service

X

Packet Service

Ground

Station

Frame/CLTU

Service

Ground

Station

Frame/CLTU

Service

Spacecraft

CFDP ServicePacket ServiceFrame Service

X

Figure C-1: Scenario 2

C1.2 SCENARIO 2: SPACE-TO-GROUND

The first Scenario 2 example is a file transfer from a spacecraft to a User via one intermediate
entity, the NCC. The User may not always be online, or connection rate limitations might
require the NCC to provide store and forward delivery. The file transfer from the spacecraft
is performed by the NCC�s FT entity. The NCC�s FT entity serves as a reliable forwarding
entity, allowing the spacecraft�s FT entity to delete its copy of the file if necessary. File
transfer to the User Application is accomplished by the NCC.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-2 July 2001

NOTE � The NCC�s operations with the ground stations and spacecraft are as described in
Scenario 1. The protocol can delete the file from the NCC when transfer to the
User is accomplished. A protocol status report is sent from the User to the
spacecraft.

The source FT entity (on the spacecraft) continues retransmission until the intermediate
receiving entity (in the NCC) has taken custody of the entire FTU. The intermediate
receiving entity (in the NCC) begins transmission of the FTU to the destination receiving
entity (the User process) as soon as the applicable interim-acquisition rule has been satisfied;
this rule might be declared in transaction metadata, or a default rule might be in effect. The
intermediate receiving entity continues retransmission until the destination receiving entity
has taken custody of the entire FTU, at which time the destination receiving entity notifies the
User application.

NOTES

1 The file has proximate as well as final destinations; thus, the protocol has data block
relay functionality.

2 There are also final and proximate sources; thus, the protocol has status report-relay
functionality.

3 Each intermediate entity has store and forward capability; a ground station might or
might not be configured as an intermediate entity.

4 The protocol has interim-acquisition rules in effect at each receiving FT entity, for
example:

a) forward when N% of the file is received;

b) forward when the link from the sender is lost;

c) forward when the link to the receiver is available.

C1.3 SCENARIO 2: GROUND-TO-SPACE

Scenario 2 is also valid for ground-to-space file transfer. An example is a file transfer from a
User to a spacecraft. As in the space-to-ground case, the transfer is via one intermediate
entity, the NCC. The spacecraft may not always be online, or connection rate limitations
might require the NCC to provide store and forward delivery. The file transfer from the User
is performed by the NCC�s FT entity. The NCC�s FT entity serves as a reliable forwarding
entity, allowing the User�s FT entity to delete its copy of the file if necessary. File transfer to
the spacecraft is accomplished by the NCC. As in Scenario 1, because spacecraft usually can
support only one uplink at a time, the frames are sent to the spacecraft from one ground
station at a time, in separate contacts.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-3 July 2001

C2 ROVER/NCC VIA MULTIPLE RELAY ENTITIES IN SERIES

C2.1 OVERVIEW

Scenario 3 consists of a service from a source through multiple relaying entities in series to a
final destination, as shown in figure C-2.

Frame/CLTU

Service

Ground

Station

Frame/CLTU

Service

Ground

Station
CFDP Service

Packet Service

X
Netw

ork

Contro
l

Center

CFDP Service
Packet Service
Frame Service

XRover

Lander
CFDP

Service
Service

Service

Packet
Frame

X

CFDP Service

Packet Service

Frame Service

Orbiter
X

Figure C-2: Scenario 3

C2.2 SCENARIO 3: SPACE-TO-GROUND

The space-to-ground example is a file transfer from a planetary Rover to an NCC, via a
planetary Lander, a planetary Orbiter, and ground stations on Earth. In the example, the
Lander and the Orbiter are reliable entities. The files on the Rover and subsequently on the
Lander and Orbiter are deleted after acknowledged transfer to the next �reliable forwarding
entity� is completed.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-4 July 2001

Each intermediate FT entity begins transmission as soon as the applicable interim-acquisition
rule has been satisfied (and it has contact with the next FT entity), and continues
retransmission until the corresponding receiving entity has taken custody of the entire FTU.

A minor variation of this scenario is to combine it with Scenario 2, i.e., make the NCC
another in the series of intermediate entities and add a User application at the destination FT
entity for the transaction.

C2.3 SCENARIO 3: GROUND-TO-SPACE

The ground-to-space example of Scenario 3 is a file transfer from an NCC to a planetary
Rover, via ground stations on Earth, a planetary Orbiter, and a planetary Lander. In the
example, the Orbiter and the Lander are reliable entities. The files in the NCC, and
subsequently on the Orbiter and Lander, are deleted after acknowledged transfer to the next
�reliable forwarding entity� is completed.

Each intermediate FT entity begins transmission as soon as the applicable interim-acquisition
rule has been satisfied (and it has contact with the next FT entity), and continues
retransmission until the corresponding receiving entity has taken custody of the entire FTU.

As in Scenario 1, because spacecraft usually can support only one uplink at a time, the frames
are sent to the Orbiter from one ground station at a time, in separate contacts.

C3 SPACECRAFT/USER VIA MULTIPLE INDEPENDENT RELAY ENTITIES IN
PARALLEL

C3.1 OVERVIEW

Scenario 4 consists of a service from a source to a destination via multiple independent
ground stations, as shown in C-3.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-5 July 2001

CFDP Service

Ground
Station
TCP

Packet Service

Frame Service

CFDP Service

Ground
Station

Network
Control
Center

CFDP Service

TCP

Spacecraft
CFDP

Service

Packet Service

Fram
e
Service

TCP

TCP

Packet Service

Frame Service

Figure C-3: Scenario 4

C3.2 SCENARIO 4: SPACE-TO-GROUND

In the space-to-ground version of Scenario 4, a file is sent from a spacecraft to an NCC via
multiple ground stations, each of which acts as an intermediate FT entity. The source FT
entity (on the spacecraft) transmits as much of the FTU as the contact time allows to the first
intermediate entity that comes into view; that intermediate entity takes custody of that portion
of the FTU and informs the source entity of how much of the FTU is in its custody. The
source entity transmits the rest of the FTU to the next intermediate entity that comes into
view; that entity too informs the source entity of what extents of the FTU are now in its
custody. This transmission and retransmission continues until every extent of the FTU is in
the custody of at least one of the intermediate entities, at which time the source entity
relinquishes custody of the entire FTU.

The intermediate entities do not communicate with each other. Each one begins transmission
to the destination entity as soon as the applicable interim-acquisition rule has been satisfied,
and continues retransmission to the destination entity until the destination entity has taken
custody of whatever extents of the FTU are in the custody of that intermediate entity;
meanwhile, each entity requests retransmission from the source entity, as necessary, of
whatever extents of the FTU it does not have in its custody.

The source entity�s copy of the file (on the spacecraft) can be deleted once custody has been
shifted to the reliable forwarding entities (ground stations). The partial files at each
intermediate entity are deleted after transfer to the NCC.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-6 July 2001

NOTES

1 An intermediate entity can request �retransmission� of data that was not originally
transmitted to it (i.e., data that was transmitted to some other intermediate entity).

2 There may be multiple known proximate and/or final destinations.

C3.3 SCENARIO 4: GROUND-TO-SPACE

In the ground-to-space version of Scenario 4, a file is sent from an NCC to a spacecraft via
multiple ground stations, each of which acts as an intermediate protocol entity. The NCC�s
FT entity transmits the entire file to each of the intermediate entities. Since each of the
intermediate entities is a reliable forwarding entity, the source entity relinquishes custody of
the entire FTU. The first intermediate entity at the first opportunity sends as much of the file
to the spacecraft as the contact time allows. It then sends a status report to the source entity
reporting its stop point in the file. The source entity sends that information to the next
intermediate entity. This intermediate entity, when it gains contact with the destination
entity, begins transmission of the file at that point. Again, as much more of the file is sent to
the spacecraft as the contact time allows, and if the file transfer is not completed, a status
report is sent to the source entity reporting its stop point in the file, and the process continues
with the next intermediate entity. When the initial transmission of the FTU is complete, any
required retransmission requests are sent from the destination entity to whichever
intermediate entity is on contact with it. Since every intermediate entity possesses the entire
FTU, it can honor any retransmission request. If retransmissions are not completed during
that contact, then, when contact with the next intermediate entity begins, either a) a time-out
condition occurs in the receiving entity, causing retransmission of any uncompleted
retransmission requests, or b) the transition from Pause to Resume in the receiving entity
causes such retransmission. The final intermediate entity releases custody of its FTU and
also notifies the source entity. The source entity then notifies each of the intermediate
entities, which then release custody of their copies of the FTU.

The intermediate entities do not communicate directly with one another. This can be
especially important when the ground stations involved do not belong to the same
organization, as for example in international cross support.

As in Scenario 1, because spacecraft usually can support only one uplink at a time, the frames
are sent to the spacecraft from one ground station at a time, in separate contacts.

C4 SPACECRAFT/NCC VIA MULTIPLE COORDINATED RELAY ENTITIES IN
PARALLEL

C4.1 OVERVIEW

Scenario 5 consists of a service from a spacecraft to an NCC via multiple ground stations,
each of which acts as an intermediate FT entity, as in Scenario 4 above. However, in this

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-7 July 2001

scenario the intermediate entities do communicate among themselves, as shown in figure
C-4.

CFDP Service

Ground
Station
TCP

Packet Service

Frame Service

CFDP Service

Ground
Station

Network
Control
Center

CFDP Service

TCP

Spacecraft
CFDP

Service

Packet Service

Fram
e
Service

TCP

TCP

Packet Service

Frame Service

Figure C-4: Scenario 5

C4.2 SCENARIO 5: SPACE-TO-GROUND

In the space-to-ground example of this Scenario, the fact that the intermediate entities do
communicate among themselves enables each one to know what extents of the FTU are in the
custody of each of the others, so each intermediate entity need only request retransmission
from the source entity (as necessary) of whatever FTU extents are not in the custody of any
other intermediate entity.

C4.3 SCENARIO 5: GROUND-TO-SPACE

In the ground-to-space example of Scenario 5, as in the space-to-ground, the fact that the
intermediate entities do communicate among themselves enables each one to know what
extents of the FTU are in the custody of each of the others. Therefore, each intermediate
entity can retransmit whatever extents are required by the destination entity, since, if it does
not locally posses that extent, it can acquire it from that intermediate entity which does
possess it. Refer to tables C-1 and C-2 for requirements related to structure and capabilities.

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-8 July 2001

Table C-1: Requirements Related to Structure

Group
Num.

Requirement Req.
Ref.
Num.

Source

struct 02 A single service interface will be presented to the client
(the addition of the extended protocol shall be evident in
the quality of service and the multi-hop capability).

10 E10

DRAFT CCSDS REPORT CONCERNING THE CCSDS FILE DELIVERY PROTOCOL (CFDP)

CCSDS 720.2-G-0.9 Page C-9 July 2001

Table C-2: Requirements Related to Capabilities

Group
Num.

Requirement Req.
Ref.
Num.

Source

cap 21 The protocol shall provide an automatic store-and-forward
transfer capability.

49 I4

cap 22 The protocol shall support the transfer of files between
multiple protocol agents in series (e.g., between ground and
space as spacecraft and lander).

54 J17

cap 23 A file transfer operation may have proximate as well as
final destinations. (The protocol shall provide relay
functionality.)

67 J38

cap 24 A file transfer operation may also have final and proximate
sources. (The protocol shall provide ACK-relay
functionality.)

68 J39

cap 25 In store-and-forward modes the intermediate protocol agent
shall provide the capability to forward a file which it has
only partially received (e.g., forward that part of a file
received during a single protocol Sender/protocol Receiver
contact while waiting for the next contact, in which more
of the file will be received).

73 J44

cap 26 In store-and-forward modes the intermediate protocol agent
shall provide the capability to begin forwarding a file while
it is still receiving that file.

74 J45

cap 27 For store-and-forward, the protocol shall have the optional
capability to:

� forward when the link from the sender is lost;
� forward when the link to the receiver is available.

70 I14, J41

