Digital Preservation of CAD Artifacts

William C. Regli Department of Computer Science College of Engineering Drexel University Philadelphia, PA

Computer-Aided Design & Manufacturing

CAD/CAM data

- is ubiquitous
- supports a complete and unambiguous product
- documents several *trillion dollars* of institutional memory, intellectual property and trade secrets, etc
- is the critical for integrating design, manufacturing and product lifecycle activities
- captures behavior, performance, etc

Why is Archiving CAD Challenging?

- Complexity & diversity of the data types
 - Metadata is complex, multi-disciplinary, and hard to formally represent
 - Semantics of data must be preserved (Design, modeling, simulation, etc)
 - Important formats are proprietary; 2D images do not suffice
 - Data elements can be huge! Integrity of data a vast problem.
- Temporal aspects
 - May need to preserve changes in an object over time
- Business process workflows within organizations
 - Data must be captured and integrated from different places within the organization
- Engineering information is both *descriptive* and *prescriptive*
 - What to make and how to make it
- Lack of a well-defined stakeholder
 - People do not want to do any additional work to preserve
- It is hard to envision the ultimate use for the preserved data
 - Archeology, forensics, history, etc.

A Case Study in CAD Archiving: UK AWE Amber 2 Part

- Partner: Kansas City Plant & UK AWE
 - 50 year history
 - Primary manufacturing facility for the DoE & NNSA
 - Expertise in discrete parts, electronics, MEMS, …
- The Amber 2 part
 - High-precision machined part
 - Designed in the UK
 - Analysis at both UK AWE and KCP
 - Fabricated at KCP

UK AWE Amber 2: Part Data

- 2D CAD Drawings
 - TIFF images
- 3D CAD data
 - Parasolid, Pro/E, STEP, ACIS, …
- Shape data
 - Mesh & point cloud
- Tolerance data
 - ASME Y14.5 tolerances and tolerance features
 - Tolerance analysis
- Analysis data
 - FEA parameters and output

- Manufacturing data
 - Features
 - Process plans
 - Manufacturing plan simulations
- Fabrication data
 - Tooling, cost, time
- Inspection data
 - Inspection plan, robotic simulation
- Documentation
 - MS Word files
 - AVIs, MPGs
 - Other files

1 Discrete Machined Part > 3.5GB data!

Some Current Challenges

Representations & Registries

- Existing standards, STEP (ISO 103033) are not enough!
 - Need engineering workflows, provenance, other data elements
 - One format, one file, will not be enough

Software Tools

- Use cases
 - Who are the consumers of engineering archives?
- How to make preservation tangible? How to make ingest transparent? How to interrogate the data?
- Open Testbeds
 - If we aren't to have local, proprietary solutions, we need testbeds accessible to industry and academia

Representations & Registries

- Global Digital Format Registry (GDFR)
- UK National Archives PRONOM
- Library of Congress Digital Formats

Engineering-Specific Registries

- Our Approach: Semantic Wiki-based Format Registry
 - Identification and description
 - Example files
 - Format history and versioning
 - Sustainability factors
 - Quality and functionality factors
 - File type signifiers
 - Format Specifications
 - Useful links and references

	ISO 10303			
Name(s)	ISO 10303, Standard for the Exchange of Product model data, STEP, Industrial automation systems and integration - Product data representation and exchange			
Version(s)	Version Date Released			
	1 1984			
Original	ISO			
developer(s)				
Current	WG			
developer(s)				
Filename	.step, .stp			
extensions				
Example(s)	airplane.step			
Documenation	STEP Application Handbook			
	ISO 10303 Version 3			
	(Source: SCRA)			
File	Text			
classification				

Tools for Archiving

- Challenges to building tools
 - What use cases are there for creation/use of engineering archives?
 - How to make "archiving" a first-order activity within organizations?
 - How to insert archiving activity seamlessly into existing workflows?
- Typical engineering projects involve many participants
 - Designers work within CAD environments; manufacturing engineers use CAM; data gets passed around to dozens of engineers
 - None has "archiving" as part of their job description

Example Tools needed for Engineering Archives

- Ingest
 - Drexel Archiving and Retrieval Tool (DART)
 - Key ideas: Ingest as design rationale capture, capture content during content creation and make it as easy as possible to integrate with workflows
- Data verification/repair
 - ITI Trancendata CADfix, translates and repairs the geometry/topology of CAD data
- Backend storage
 - SRB, Amazon S3, etc
- CAD Search
 - Drexel's 3D CAD search engines and others

Developing Testbeds

- National Design Repository
 - Originally sponsored by NIST, part model library for graphics, CAD/CAM, and manufacturing research
- NSF Cyber-Infrastructure Projects
 - Multi-Disciplinary Engineering Modeling
 - Create models/designs/analyses of bio-inspired robots
 - Engineering Repositories for Undergraduates (CIBER-U)
 - Use of design repositories to enhance instruction and learning in engineering undergraduate curricula at 9 institutions

UMD Turtle MD Roach 4 Legged Bot **UMD** Crawler **Drexel Snake-Bot**

Megan's Course Project

From GICLWiki

Final Paper

Documentation

Physical

Virtual

1 Design

Contents

- 1.1 Physcial
- 1.2 Virtual
- 2 Progress ■ 2.1 Week 1
 - 2.2 Week 2
 - 2.3 Week 3
 - 2.3.1 IDEAs
 - 2.4 Week 4
 - 2.5 Week 5
 - 2.6 Week 6
 - 2.7 Week 7
 - 2.8 Week 8
 - 2.9 Week 9
 - 2.10 Week 10
 - 2.11 Week 11
- 3 Links

This section includes a list of files that can be used to reconstruct **Bill of Materials** Media:ComponentList.jpg **Final Videos** Media:Physcial.zip Media:Simulation.avi

Engineering Models

CIBER-U: Example Product Dissection

Table 2: List of Models for Download (Zipped ACIS, IGS, STL, STP, AD_PRT Files)					
Part #	Part Name	lmage	3D Models	2D Drawings	
1	Bəll	ъ	3D Package	2D Package	
2	Bottom Cover	P	3D Package	2D Package	
3	Bronze Controller	57	3D Package	2D Package	
4	Brush	а В	3D Package	2D Package	
5	Cage for Motor	Р	3D Package	2D Package	
6	Claw Shaped Core for Motor	ъ.	3D Package	2D Package	
7	Controls	6	3D Package	2D Package	
8	Fan	*	31 Package	2D Package	

Files

3D Models

3D Models as Alibre AD_PRT Files 3D Models as ACIS Format 3D Models as IGS Format 3D Models as STL Format 3D Models as STP Format

2D Drawings 2D Drawings in Alibre AD_DRW format 2D Drawings in STP format 2D Drawings as tiff pictures

Mixer Assembly

AD_ASM, ACIS, STP, STL format Back End Assembly Claw and Shaft Assembly Control Assembly Full Mixer Assembly Motor and Fan Assembly Cover Assembly

Example CIBER-U Use Case: Hand-Held Mixer

- Students generated 24 separate part models, 6 assembly models, 3 disassembly animations and videos
- Engineering file formats are duplicated and translated prior to archiving
 - 3D models from Alibre are *saved as a vector of part files:* AD_PRT, ACIS, IGS, STL, and STP Formats
 - Same for 2D Drawings and Assembly files: AD_DRW, STP, AD_ASM, STP, ACIS, and STL Formats
- We are creating registries and workflows to:
 - Verify and validate these files upon Ingest
 - Provide information about the file types for search and indexing
 - Allow for digital preservation practices (transformations, metadata harvesting) to be performed on these files

Prospectus/Observations

• Available workshop reports on Engineering Archives

- Atlantic Workshop on Long Term Knowledge Retention (LTKR)
 Department of Mechanical Engineering, University of Bath, UK, 12-13 February 2007
- Long Term Sustainment Workshop Report, NIST, 26-MAR-08
- Long Term Knowledge Retention Workshop Summary, NIST, 01-JAN-07
- Several obvious pieces of "low hanging" fruit
 - Format registries, ingest tools, data verification tools, development of "Best Practices",
- Representation and capture of information is fundamental and difficult
 - Going beyond STEP, creating workflow & knowledge capture tools, testing them operationally
- Need for open testbeds

Q&A

For more information:

DART!: http://gicl.cs.drexel.edu/wiki/CIBER-U

CIBER-U: http://gicl.cs.drexel.edu/wiki/CIBER-U

Sponsored by the National Science Foundation (NSF)

Digital Archiving and Long-Term Preservation (DIGARCH) Award NSF CISE/IIS-0456001

Cyber-Infrastructure TEAMs Demonstration Program Grant SCI-0537125, CIBER-U Grant SCI-0537370, Multi-Disciplinary Engineering Models

