
A Unified Framework for Periodic, On-Demand, and User-Specified
Software Information

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center

WS 258-6, Moffett Field, CA 94035 U.S.A.

E-mail: kolano@nas . nasa. gov

Abstract

Although grid computing can increase the number of re-
sources available to a user; not all resources on the grid may
have a sofrware environment suitable for running a given
qp!icatior- To provide users with the .necessary assistaxe
for selecting resources with compatible sojhvare environ-
ments a d o r for automatically establishing such environ-
ments, it is necessary to have an accurate source of infor-
mation about the sofrware installed across the grid This
paper presents a new OGSI-compliant sofrware informa-
tion service that has been implemented as part of NASA’s
Information Power Grid project. This service is built on
top of a generalframework for reconciling information from
periodic, on-demand, and user-specified sources. Informa-
tion is retrieved using standard XPath queries over a single
unified namespace independent of the information’s source.
Two consumers of the provided sojhare information, the
I P G -Resng.Te &&r c& fF,C I P G ?/&ZF&Z&CZ Scr,.ks
are briefly described.

1. Introduction

Although grid computing can increase the number of re-
sources available to a user, not all resources on the grid may
have a software environment suitable for running a given
application. To provide users with the necessary assistance
for selecting resources with compatible software environ-
ments and/or for automatically establishing such environ-
ments, it is necessary to have an accurate source of infor-
mation about the software installed across the grid. Exist-
ing solutions require manual entry of software information
imposing a significant administrative burden. To provide
a scalable solution adequate for large, multi-organization
,&ds. a software information service must support:

true software resource discovery integrated with the
tools used by administrators to install software

0 user-specified information for locating personal soft-
ware installations

extensibility for new types of information as they be-
come needdavailable

This paper presents Swim, the Software Information
Metacatalog, which is a software information service for
the grid built on top of a general framework for reconciling
information from periodic, on-demand, and user-specified
sources. Software information is periodicaily gathcred from
native package managers on FreeBSD, Solaris, and IRM as
well as RPM package managers on multiple platforms in-
cluding Linux.

Information that is too expensive to gather automatically
or is about software in non-standard locations such as per-
sonal directories is collected on-demand when necessary.
This idormation is collected under the requesting user’s
grid identity, thus using their permissions and their alloca-
tions, but is cached for their own and the common good.
Users may also manually enter information tagged with
their grid identity to assist services using this information
in finding their own personal software installations. Infor-
mation is retrieved using standard XPath [4] queries over a
single unified namespace independent of the information’s
source.

Swim is part of NASA’s Information Power Grid (IPG)
project [12]. The goal of the IPG is to develop new tech-
nologies to facilitate the use of the grid and enable scien-
tific discovery. Several prototype services have been im-
plemented including the Execution Service for submitting
and managing jobs, the Naturalization Service [131 for au-
tomatically establishing the execution environment for user
applications, the Surfer framework [14] for selecting and
ranking resources, and Swim, which is the subject of this
paper.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the periodic, on-demand,
and user-specified information framework. Section 4

1

presents the software information service built using this
framework. Section 5 discusses two applications that use
this service. Finally, section 6 presents conclusions and fu-
ture work.

2. Related Work

Several projects address subsets of the issues addressed
in this work. The Monitoring and Discovery Service (MDS)
[SI of the Globus Toolkit [7] provides grid resource in-
formation. MDS has a pluggable architecture that allows
new information providers to be integrated into the system.
Information can be cached in a back-end XML database.
While MDS has much of the required functionality for a
software information service, it is mainly designed to SUP-

port queries and updates of periodically-generated informa-
tion. It does not have direct support for user-specified in-
formation nor does it support true on-demand information
retrieval in which the same provider may be executed with
different arguments based on the contents of the query it-
self.

A very basic MDS provider for software information is
described in [161, where all installed software of interest on
a system must be manually entered into a configuration file,
which can then be queried through standard MDS mecha-
nisms. A similar approach is taken by the Uniform Interface
to Computing Resources (UNICORE) [6], where platform-
independent abstract job operations can be translated into
concrete operations for a specific system by replacing ab-
stract software names with concrete paths from the static
configuration file for that system. These approaches require
significant administrative overhead as the list of installed
software must be updated whenever software is installed,
removed, or upgraded on a system.

The Repository in a Box (RIB) [2] is a toolkit for build-
ing software metadata catalogs. Software information is
structured according to the built-in Basic Interoperability
Data Model or a custom model defined by the administra-
tor and is accessible through automatically generated web
pages. RIB is intended to set up software repositories, thus
does not have any mechanisms for automatic software dis-
covery required by a software information service.

Installers, package managers, and application manage-
ment systems [3] are typically used to manage the software
installed on standalone systems and systems on the same
network. These approaches greatly increase the ability of
system administrators to provide a consistent and stable set
of software across an organization's resources. The soft-
ware information maintained by these tools is vital for au-
tomatic software discovery. None of these tools by them-
selves, however, have the flexibility required of a grid soft-
ware information service. Resources on the grid may be
administered by different organizations, each of which may

use its favorite non-interoperable administration tools. Even
within the same organization, software may not be installed
by the same tool, may be compiled directly from a source
distribution, or may be installed by a user for personal use.
In these cases, information must be gathered from separate
sources, which, in general, is not supported by these types
of tools.

A key decision in designing a software information ser-
vice is how the software information will be structured. A
variety of X M L schemas have been proposed for describ-
ing software. The Open Software Description Format [111
describes software packages and their dependencies for au-
tomating software distribution over the internet. The Grid
Software Object Specification [161 describes software as

puting Element Schema [I] has elements for listing the soft-
ware installed on a system and for low-level file attributes.
All of these approaches are targeted at a single domain and
are not general enough for use in a comprehensive software
information service.

Replica management systems such as Reptor [lo] pro-
vide high-level mechanisms for managing the replication,
selection, consistency, and security of data to provide users
with transparent access to geographically distributed data
sets. While much of this functionality is also suitable for
managing software across grid resources, it does not include
automatic software discovery, which is critical for scalable
software information services.

gici objecis wiih a Iisi (j l 'Uiisk iii'u';btite~. Tlic; 91i.i~ Coiii-

3. Pour Framework

Pour is a new framework for Periodic, On-demand,
and User-specified Reconciliation of information. Namely,
Pour has the ability to receive periodic information updates,
collect information on-demand as needed, and accept user-
specified information while presenting a single unified view
of the information to the user. Information is processed ex-
clusively in XML and is stored in an XML database for later
retrieval. X M L databases offer significant advantages over
traditional relational databases in such dynamic, heteroge-
neous information streams. New sources and types of in-
formation can be easily integrated into the system without
requiring a new schema andor a Complete restructuring of
existing data. Any database conforming to the XML:DB
MI' may be used.

supports a hierarchical caching architecture for scalability.
Namely, Pour repositories may be arranged hierarchically
with higher level repositories fetching information from
lower level repositories when data is not cached in the local
database.

Like other information services such as MDS, Pour.

'nttp://www.mn1db.org

i .

The primary functionality of Pour is exposed to the user
in the m a t h query interface. Pour queries return a list of

dicate how the document was produced, who produced it,
and when it was produced. respectively.

XML DOM nodes satisfying the given XPath. Depend-
ing on the m a t h specified and the contents of the Pour
database, query processing may be as simple as a database
lookEp or as complex as a series of queries down a Pour
hierarchy to a set of Pour repositories that must compute
the requested information on-the-fly before the appropriate
results are returned. This complexity is invisible to users,
who may write any valid XPath and receive results inte-
grated from across the relevant periodic, on-demand, and
user-specfied sources.

Pour is implemented in Java as an Open Grid Services
Infrastructure (OGSI) compliant service within the Open
Grid Serv.icts &uch;iatiire (SGSAj fiae-w.Gik is;.
the OGSA model, all grid functionality is provided by
named grid services that are created dynamically upon
request. The reference implementation of OGSI is the
Globus Toolkit [7]. which provides grid security through
the Grid Security Infrastructure (GSI), low-level job man-
agement through the Globus Resource Allocation Manager
(GRAM), data transfer through the Grid File Transfer Pro-
tocol (G r i m) , and resourcdservice information through
the Monitoring and Discovery Service (M D S) . Individual
components of Pour are described in the following sections.

3.1. Spouts

Pour is a framework for building high-level information
services, but does not define any specific types of infoma-
tion itself. New types of information and the methods used
to collect them are described by spours, which can then be
easily integrated into the system using a single configura-
tion h e . Each spout defines the XML namespace for in-
formation it supplies. This includes the XML namespace
URI (e.g. http://ipg.nasa.gov/swim), the XhtL prefix used
for all attribute and element names (e.g. swim), and the
name of the root element for all X M L documents produced
(e.g. software). To illustrate these concepts, figures 1, 2,
and 3 show sample documents produced by the Swim spout,
which is described in section 4.

In addition to the XML namespace, a spout must define
how it produces its periodic, on-demand, and user-specified
information. For periodic information, the spout defines the
set of URIs for grid services whose service data it should
subscribe to. For on-demand information, the spout defines
a set of collectors used to fetch specific subsets of the in-
formation in its namespace. Finally, for user-specified in-
formation, a spout defines the X M L Document Type Def-
inition (DTD) that should be used to validate any user-
specified information to guarantee consistency. The roots
of all documents added to Pour are tagged with three at-
tributes: “pour:source”, “pour:user”, and “pour:time” to in-

As long as all three types of information in a given
spout use the same basic XML structure. information about
the same elements can be produced and stored indepen-
dently. Information is eventually integrated through the use
of m a t h queries. Namely, queries search across the docu-
ments of all three sources and produce a list of unified ele-
ments, which to the user, appears as though they were pro-
duced from a single source. Thus, for example, in the Swim
spout, an m a t h query for the information about a specific
file may result in a set of basic attributes from the periodic
source, a set of dependencies from the on-demand source.
and a comment from a user-specified source. Details of pe-
riodic, on-demand, and user-specified information handling
are given in the following sections.

3.2. Periodic Information

In the OGSA framework, grid services maintain infor-
mation about themselves in the form of grid service data.
This data can be directly queried at any time or can be
pushed as an X M L document to other services that sub-
scribe to this information when any or all of the data
changes. The periodic component of Pour obtains its in-
formation by subscribing to relevant service data in specific
grid services. Using this model, services providing informa-
tion to Pour can be configured independently of Pour itself.
This configuration includes items such as the methods used
to generate service data and the rate at which it is generated.

Each spout specifies the URIs of the = ~ d services for
which periodic information should be collected. Since a ser-
vice may collect information for other purposes than just the
spout, Pour only subscribes to the data in the spout’s X M L
namespace. When updated grid service data arrives, it is
given a “pour:time” timestamp, the “pour:source” attribute
is set to the URT of the corresponding grid service, and the
“p0ur:user” attribute is set to “gov.nasa.ipg.pour.Periodic”.
It is assumed that the services specified in the spout gen-
erate truly periodic data. In other words, that each update
contains the latest version of the same information so that
the last update from the same service can be replaced. For
example, the periodic component of Swim described in sec-
tion 4.1 satisfies this assumption since each update contains
the latest view of the software installed cn a paticdar host.
Information from the last update can be overwritten since
any software reported in that update that does not appear in
the latest update must have been uninstalled. Using this as-
sumption, the database can maintain a fairly stable size and
will contain only the freshest periodic information.

3.3. User-Specified Information

Users are allowed to addremove X M L documents
to/from the Pour database as desired. To maintain the con-
sistency of the information in the database, user supplied
documents are validated against the DTDs defined in each
spout in the system. If no DTD is found for which the doc-
ument can be validated, the document is rejected.

Before inserting a document into the database, it is
timestamped, the “pour:source” attribute is set to “user”,
and the “p0ur:user” attribute is set to the grid identity of
the submitting user (e.g. /O=Grid/O=National Aeronau-
tics and Space Administration/OU=Ames Research Cen-
ter/CN=Paul Kolano). Users can only remove their own
documents as determined by the user amibute. inis at-
tribute can also be utilized by users to restrict query results
to only the documents they or the framework submitted.

-.

3.4. On-Demand Information

Information that is too expensive to periodically collect
or that is related to individual users can be collected on-
demand. On-demand processing, which can be disabled on
a per query basis if desired, occurs according to the collec-
tors defined in each spout. A collector defines a set of P a t h
prefixes for which it has information and a set of P a t h re-
strictions that the query math must satisfy. These restric-
tions can include specific attributes or values that must be
defined and/or specific values they must take. For example,
one of the collectors of the Swim spout of section 4 provides
the following ma th prefix:

0 /swim: softwards wim:file/swim :dependencies

and has the following math restrictions:

0 /swim:softwardswim:file[@swim:host]

0 /swim:software/swim:file[@ swim:path]

These restrictions mean that the query P a t h given by
the user must have values for the attributes “swim:host”
and “swirxpath”. A collector also defines the length
of time its information can be considered valid. When
an m a t h query is made by the user for which there
is no information in the database or for which infor-
mation exists, but the “pour:time” attribute is too far
in the past, the given D a t h is parsed and stripped
of all but the absolute paths requested. In addition,
the attributelelernent values required of each subpath
are stored in an argument map. For example, the query
“/swim:software/swim: file[0 swim: host=’host 1 .nas.nasa.gov’
and @ swim:path=‘/some/file’]/swim:dependencies”
has a single absolute path

“/swim: software/swim: file/swim: dependencies”
and two attribute mappings
“/swim:software/swim:file[(3 swim:host]
=> host1 .nas.nasa.gov” and
“swim: softwarejs wim: file[@ s wim:path] => /some/file”. In
this case, since the path requested has a collected prefix
as its prefix and both path restrictions are met, the given
collector can be executed.

There are two built-in types of collectors. The first type
supports hierarchical caching, which is one form of on-
demand information. A collector of this type must specify
the set of Pour grid service URIs at the next lower level in
the hierarchy. When invoked, this collector simply passes
tine query on to fnese GXis for processing. Xore that wirh
the use of the XPath prefixes and restrictions defined in a
collector, sophisticated hierarchies can be built use differ-
ent URIs for different subsets of information.

The second type of co!lector supports collection using
the Globus GRAM. A collector of this type must specify
an executable (typically a shell or per1 script) to run and a
host to run it on given the argument map. This executable is
then run using GRAM on the given host with the appro-
priate arguments derived from the argument map. A lo-
cal Globus Access to Secondary Storage (GASS) server is
used to transfer the executable and retrieve the XML output.
Since the collector may gather more information than was
requested in the original m a t h query, the final step of pro-
cessing is to evaIuate the m a t h against the collected results,
which returns the information the user requested.

A benefit of using the GRAM service is that the collec-
tion occurs under the user’s grid identity, thus the collection
executable runs with the user’s permissions and the time to
compute the information is charged against the user’s al-
locations. In this way, the grid infrastructure can pay for
general-purpose information applicable to all users using
tlie periodic mechanism, while specialized information that
may only be of use to to a specific user is paid for by the
user who requires it. On-demand information is donated for
the common good after it is collected, so other users may
benefit from each other’s cached results.

When information is retrieved on-demand, the col-
lected information is cached in the database with the
“pour:source” attribute set to the collector class name and
the “pour:user” attribute set to the grid identity of the sub-
mitting user. Thus, users that run the same query several
times will only pay the price of collection once. Users do
not need to be aware that this processing is occurring and
do not need to change their queries in any way as it is com-
pletely based on the contents of their original m a t h query.

4

4. Swim

Swim is a Software Information Metacatalog built on
top of the Pour framework. Swim consists of a spout and
a set of collectors that provide information about software
installed across the grid. F i p e s 1, 2, and 3 show a sam-
ple of the types of infomation provided by Swim. The
two main classes of information provided are for software
packages and software files. The software package infor-
mation describes which packages of which types have been
installed on each system along with supporting information
such as a short text comment and each package's depen-
dencies. The software file information describes which ex-
ecutables and supporting libraries have been installed on
each system. Fiie informanon is currenriy oniy reported
for Executable and Linking Format (ELF) executables and
shared libraries, Java classes, Perl scripts and modules, shell
scripts, and Python scripts and modules. Two applications
that already utilize this information are described in section
5.

4.1. Periodic Information

Swim uses the Globus Toolkit Version 3 (GT3) MDS
(aka called the Index Service) as the source of its periodic
information. The Index Service can be easily configured
to run a script periodically on the Index Service host. The
Swim spout subscribes to information in the Swim XML
namespace, which is forwarded from the Index Service
when it changes. New results overwrite previous results
stored in the database. System administrators can choose
how often to gather information by using the appropriate
Index Service configuration. As software information does
not change rapidly, it is not necessary to gather informa-
tion more than once every few days. The Index Service also
serves as a redundancy mechanism in case the main Pow
repository fails. In this case users can bypass Swim entirely
and directly query individual MDS servers, although they
will lose the benefits of on-demand and user-specified in-
formation.

The Swim script invoked by the Index Service utilizes a
set of Perl modules that have been developed to collect soft-
ware information from different platform types. The main
source of information is from the package managers used
on each system. Swim collects information from native
package managers on FreeBSD, Solaris, and IRIX, as well
as RPM package managers on multiple platforms including
Linux. It is advantageom to use package managers since in
most cases they are the tools used by administrators to in-
stall the software in the first place. Since not all software is
available or installed in package form. however, Swim also
crawls the set of relevant paths from the Filesystem Hier-
archy Standard [17], which defines the standard filesystem

structure used by all major Unix distributions. Using these
two techniques, the vast majority of software installed on a
system will be located. Figure 1 shows a small sample of
the periodic information that is automatically gathered.

<swirn:software xmlns:suim="http:/lipg.nasa.goviswim"

~ s : p o u r = ~ t t p : N i p g ~ ~ . g o v / p o u r "

pour:time="l076266586754"

pour:~er='gov.nar;a.ipg.swimspoutSwim"

pour:source="http:/flceko.nas.~sa.gov:8080

/o~sa/KNices/basel~&~&xService">

<swimpackage swim:host="keko.nas.nasa.gov"

swimmam="Meesa-3.4.2-2" swim:type="native'>

<s wirn:os>freebsdclswim: o y

cswim:arch>i386</swim:~b

cswim:versiox~3.4.2~24wi~versio~

< s ~ C O I J X E I l D

A graphics library similar to SGI&aposs OpenGL

c/swim:commcnt>

<swirn:dependencies>

cswinxpachge swim:name="imake-4.2.0-1"

swim:rype="nafive" suim:os="freebsd"

swim:arch="i386" swim:version="4.2.0-1"/>

<swimpackage swim:name="freetype2-2.1.2"

swtm:tpe="natwe" swim:os="freebd"

swirn:arch="i386" swinrversion="2.1.2"6

<swim:package sWim:name="XFret86-lb~es-4.2.1~1"

swim:type="native" swim:os="freebsd"

swim:arch="i386" swim:version="4.2.1-1 "I>

c/swim:&pen&ncies>

</swim:package>

<swim:file swim:host="keko.nas.nasa.gov"

swim:path="/usr/Xl lR6fibflihMesaGT. so">

cswim:name>libMesaGL.so</swim:~me>

<swim:type>elf_shared</swim:type>

<swim:os>freebsdc/swim:os>

<swim:arch>i386c/swim:arcb

cswim:size>467028 </swim:size>

<s wim:mode>755</swim:mode>

<swim:owner>root</swimowner7

<swim:group~wheelc/swim:group>
</swim: file>

c/swim:sofiwm>

Figure 1. Swim periodic sample

As mentioned above, Swim only gathers information on
the specific file types that encompass executable software
and supporting libraries. To distinguish between these types
and the other types that comprise the majority of files on a
system, the Swim scripts use a custom pure Perl implemen-
tation of the Unix "file" command that has a subset of its
functionality, but is smaller, faster, and more portable. Files

5

.

with an appropriate type are further analyzed to gather ad-
ditional information, which is then formatted in X M L and
returned with the other results back to the Index Service.

New package managers can be integrated into the sys-
tem in a modular fashion with relatively little work using
the existing modules as templates. The key pieces are the
commands for retrieving the names of all installed pack-
ages and for listing the detailed information about a specific
package. A parser must be written to gather specific fields
after which the common routines for retrieving file informa-
tion and outputting the appropriate XML can be called.

4.2. On-Demand Information

Swim currently supports two on-demand collectors. The
first collector gathers dependency information about spe-
cific files. This analyzer is based on the dependency an-
alyzer developed in previous IPG Naturalization Service
work [131 and gathers the specific software that is required
for the correct execution of ELF executables and libraries,
Java classes, and Perl and Python modules. Section 3.4
shows the XPaths that are applicable to this collector. Fig-
ure 2 shows the results obtained from running this collector
on the file “/usr/Xl lR6/lib/libMesaGL.~o” located on host
“keko.nas.nasa.gov”, which results in a single shared library
dependency “IibXThrStub.so.6“. Section 5.2 describes one
of the uses of this collector in more detail.

<swimsoftware xmlns:swim=”http://ipg.nasa.gov/swim”

xmtns:pour=”http://ipg.nasa. gov/pour”

pour:time=”l07630776078 1”

pour:user=”/O=Grid/O=National Aeronauttcs and Space

Administration /OU=Ames Research Center/

CN=Paul Rolauo”

pour:source=”gov.nasa.ipg.swim.collec~or.Depende~cies”~

<swim: file swim:host=”keko.nas.nasa.gov”

swim:path=”/usri);i lR6/lib/libMesaGL.~o“>

<swim:dependencies>

<swim: file swim:name=”libX~SIhrSNb.so.6”

swim:type=”elf_shared” swim:version=”unknown”/>

dswim:dependencies>

</swim:lile>

c/swim:software>

Figure 2. Swim on-demand dependencies

The second collector is an experimental collector for lo-
cating a given Perl module using the Comprehensive Per1
Archive Network (CPAN)*. The idea of this collector is that
even if a specific module cannot be located anywhere on the

’htrp: / /m.cpan. o r g

grid, it can still be located using an existing external inter-
net repository. This collector provides the following m a t h
prefix:

0 /swim:software/swim:fiIe

and has the following P a t h restrictions:

0 /swim:software/swim:file[swim:type = ’perl’]

0 /swim:software/swim:file[swim:name]

When this collector is executed, it runs a Perl script that uses
Perl’s CPAN module to contact an available CPAN server
and find the path to the distribution containing the given

the ftp servers used in the CPAN configuration. This infor-
mation is formatted appropriately in X M L and returned to
Swim. Figure 3 shows the results obtained from using this
collector on a Perl module name “File::Type”.

---J..*- A - - A -r rmr- :--I--- ----.-.----A --
111uuuIG. fi ~ C L VI ~UUILG un13 I> u l G l 1 L u I i a U u ~ ~ c u VaDGu vu

<swim:software xmlns:swim=”http:Nipg.nasa.govlswim”

xmlns:po~”htrp://ipg.nasa.gov/pour“

pour:time=”10763 10278764”

pour:user=”/O=Grid/O=National Aeronautics and Space

Administration /OU=Ames Research Center/

CN=Paul Kolano”

pour:source=”gov.nasa.ipg.swim.collector.CPAN”>

<swim:fle>

<swim:name>File::Type</swim:n~e>

<swim:type>perldswim:type>

<swim:sources>

<swimarchive swim:type=”src-perl” swim:version=”0.12”

swim:uri=”ftp://cpan.cse.msu.edu/authors~d/

P/PM/€’MISON/File-Type-O.12.tar.g~”/>
<swim:archive swim:type=“srcqerl” swim:version=”0.12”

s wim:uri=”frp:/ve.progeny.com/CPA~/au~ors/id/

P/PMPMISON/File-Type-O.12.tar.p”/>
</swim:sources>

</swimfile>

</swim:software>

Figure 3. Swim on-demand CPAN sample

The eventual goal is to develop a comprehensive set of
collectors for all of the supported file types using repos-
itories such as RpmFind3 and Solaris Freeware4 for exe-
cutables and shared libraries, the Vaults of Pamassuss for
Python modules, etc. This information will be extremely
valuable in automatically establishing user environments as
described in section 5.2.

’hCtp://www.rpmfind.net
‘http://www.sunfreeware.corn
5http://~w.vex.net/pamassus/

I 4.3. Performance

Table 1 shows Swim periodic information results ob-
tained over a small grid testbed consisting of 9 systems.
The results include the number of software packages and
files located as well as the average XML document size,
the average collection time, and the average database inser-
tion time using the exist6 XML database. AS can be seen,
a significant number of software files were located, which
was only a fraction of the files inspected. Manually config-
ured software information services simply could not support
this volume of information. Collection time was reasonable
enough to run every day if desired. Documents were in-
serted in minimal time even though they were fairly large.

Table 2 shows Swlm query resuits when hosted on a 2.4
GHz Pentium 4 running Linux with 512 MB of memory
and using the exist XML database. The database was filled
with the periodic information collected in table 1. The re-
sults show the m a t h used for the query (with the “swim:”
prefix removed), the time the query took, and the number
of results obtained. The results are given in pairs where in
the first query, the data is not cached locally so must be col-
lected on-demand. The collectors used are the dependency
collector, the CPAN coll_ector, and the hierarchical caching
collector, respectively -4s can be seen, queries are very fast
when the information is cached locally. The dependency
and CPAN collectors are over an order of magnitude slower
when the information must be collected on-demand. Most
of this overhead is due to the use of the Globus GRAM and
not from the executables used to collect the information.

5. Swim Applications

Two applications have already been developed to take
advantage of the information provided by Swim: the IPG
Resource Broker and the P G Naturalization Service. These
applications are discussed in more detail below.

5.1. IPG Resource Broker

The IPG Resource Broker is a grid service for select-
ing and ranking grid resources based on user-specified con-
straints and preferences. The Resource Broker is built us-
ing Surfer [14], which is an extensible brokering frame-
work that can be customized to any ,orid environment by
adding information providers knowledgeable about that en-
vironment. A Surfer provider has been written for Swim to
select software resources. This allows users to not only find
the compute resources that have a particular piece of soft-
ware installed, but also allows them to find the exact path to
that software. Figure 4 shows an example Resource Broker

6http : / /w. exist-&. org

request to find a compute resource running Linux with at
least 128 CPUs and an ELF executable “java” on the same
host that is at least version 1.3.1 and is world readable and
world executable.

Resource:
Id: c l

constraint:
. Type: ComputeResource

freecpus >= 128
&& operatingSystem = “Linux”

Ranking:
freecpus

Resource:
Id: SI
Type: SoftwareResource
Cons&aint:

name = ‘Tan’’
&& type = “elf’
&& version == “1.3.1”
&&mode% 10=5
&& host = $cl.host

Figure 5 shows the Swim query that is automatically
constructed by the Surfer provider to support this request.
Note that the complex restriction on the software’s mode is
handled by the provider once the initial results of the query
have been returned. The restriction on the host names be-
tween resources is handled by the framework itself.

/swirn:software/swimfile
[s~.m.name=’jwa’][sw~~~‘elf‘][swim:version=’ 1.3.1’1

Figure 5. Resource Broker query

5.2. IPG Naturalization Service

The IPG Naturalization Service [131 is a grid service for
automatically establishing the execution environment for

ronment, the Naturalization Service (1) determines the soft-
ware that the user application requires, (2) provides a loca-
tion for that software on the execution host either by finding
already existing software on that host or by finding a source
for the software elsewhere on the grid and copying it to the
execution host, and (3) sets environment variables based on
the provided software locations.

The original implementation of the Naturalization Ser-
vice had its own software catalog based on the Local
Replica Catalog and Replica Metadata Catalog of the Eu-
ropean DataGrid project [lo], which stored manually-
specified software location and dependency information.
The dependencies of user applications were analyzed us-
ing shell scripts that were executed by the Globus GRAM
service. These dependencies were then located on the ex-
ecution host using another set of shell scripts. Any depen-
dencies that could not be located were then looked up in the
software catalog.

The original implementation suffered from three major
drawbacks. First, the location and dependency information

”5K-r 2piFp!ic2fcns. f= or&== tc es+Ab!is!: an c x ~ i i ; i o ~ eEy&

7

.

Query XPath
/software/file[@host=’evelyn.nas.nasa.gov’] [@path=’/usr/libfibcil.so.3’]/dependencies/file

/software/file[@host=’evelyn.nas.naa.gov’][@path=’/usr/lib/libcil.s0.3’]/dependencies/file (cached)
/software/file[type=’perl’] [name=’File: :Type’]/sources/archive

/software/file[type==’perl’] [name=’File: :Type’]/sources/archive (cached)
/software/file[type=’elf][name=’java’] (cached remote)
/software/file[type=’elf’] [name=’java’] (cached local)

Platform 1) FreeBSD 1 lRIX I Linux I Solaris 1 1 Totals

Query Time Results
30.6 sec 22
1.01 sec 22
38.2 sec 10
1.02 sec 10
2.31 sec 21
1.04 sec 21

Table 1. Swim periodic results

Table 2. Swim query results

was not cached, so the user had to pay the price of GRAM’S
overhead every time. Second, the software catalog had to be
manually populated and kept up-to-date. Finally, the soft-
ware catalog was tightly coupled to the Naturalization Ser-
vice so did not readily lend itself to othcr qdications such
as the Resource Broker.

With the information accessible from Swim, this service
has been considerably enhanced. Figure 6 shows the Swim
queries used to extract the dependency and location infor-
mation required by the Naturalization Service. Since the
dependency information is computed on-demand, the user
may experience a delay in the first query, but afterwards
will obtain the cached results immediately. Software infor-
mation is automatically gathered from across the grid peri-
odically, thus there is minimal administrative overhead, al-
though the user still has the option of manually specifying
personal software installations so the Naturalization Service
will have more accurate information.

Once all of the external repository collectors of section
4.2 have been implemented, the Naturalization Service will
be able to offer more advanced functionality. Specifically,
required software not found on the local grid will be located
in an appropriate external internet repository. Once found,
the software can be temporarily installed on-the-fly as nec-
essary using the appropriate installation mechanisms (e.g.
using a package manager, compiled from source, etc.).

1. Find dependencies of a file with a given path on a specific host:
/swim:sofhvare/swim:file

[@ swim:host=’host 1 ’1 [@swim:path=’/pathl ’1
/swim: dependencies

2. Find location of a file with a given name, type, and version on a

specific host:
/swim:sofhvare/swim:file[@swim:host=’host’]
[swim:name=’name2’][swim:type=’type2’]
[swim:version=’version2’]

3. Find locations of a file with a given name, type, and version:
/swim:software/swim:file

[swim:name=’name3’] [swim:type=’type3’]
[swim:version=’version3’]

Figure 6. Naturalization Service queries

6. Conclusions and Future Work

This paper has described a new software information
service for grid computing called Swim, the Software
Information Metacatalog. Swim is built using a unified
framework for integrating periodic, on-demand, and user-
specified information where on-demand processing is initi-
ated during queries depending on the math given and the
current contents of the local XML database. Swim repos-
itories can be arranged hierarchically for scalability and
have a modular architecture for integrating new informa-
tion sources, which include grid services as well as cus-
tom collectors using the Globus GRAM. Swim’s use of

8

the Globus MDS provides built-in redundancy as users can
query MDS servers directly for software information about
specific hosts.

The most important contribution of Swim is the new set

users. Software information is a critical component of
seamless computing across multiple systems and organiza-

[71 Foster, I., Kesselman, C.: Globus: A Metacomputing
Infrastructure Toolkit. Intl. J. Supercomputer Applica-
tions. 11(2) (1997) 115-128.

of s o ~ a r e infomation it automatically provides to g-id [SI Foster, 1 . 7 Kesselman, C. (e&.): The GRID:
Blueprint for a New Computing .Infrastructure.
Morgan-Kaufmann, San Francisco, CA (1999).

tions. Until now, an adequate software information source
with true automatic software discovery based on the tools
used by systems administrators was not available. With
such a source available, resource brokers can more accu-
rately select compatible resources and more existing re-
sources can be automatically made compatible, which, in
the end, results in greater user productivity.

L l l r l u Luu IJUIbIY. U U V I U V A W fcr f.2::r:: ryPsc2zc5. !A
ditional package managers will be incorporated into peri-
odic collection scripts. These will include the native Per1
manager, the native F’ython manager, and the Globus Pack-
aging Toolkit. Additional on-demand collectors will also
be developed. Besides the external repository collectors
mentioned in section 4.2, collectors will be implemented
to gather Unix “stat” information for a given file and to
compute an MD5 or similar hash of a given file to verify
integrity. Additional collectors will be added as necessary.

TI.,.-, I -P rC.r.nnl X-e,.G--,.

References

[l] AnQeozzi, S.: Glue Computing Element Schema
Version 1.1. Mar. 2003. Available at http:
//www.cnaf.infn.it/-sergio/datatag/
glue/vll/CE/GlueCE-DOC-V-l-l.htm.

[2] Browne, S . , McMahan, P., Wells, S.: Repository in a
m . iecn-

nical Report UT-CS-99-424, Dept. of Computer Sci-
ence, Univ. of Tennessee, May 1999.

131 Carzaniga, .4., Fuggetta, A., Hall, R.S., Heimbigner,
D., van der Hoek, A., Wolf, A.L.: A Characteriza-
tion Framework for Software Deployment Technolo-
gies. Technical Report CU-CS-857-98, Dept. of Com-
puter Science, Univ. of Colorado, Apr. 1998.

BGX Tcc!~~: :si S~ft;;lzie aiid Resuuic Silanng. .

[4] Clark, J., DeRose, S.: Xh4L Path Language (math)
Version 1 .O. W3C Recommendation, Nov. 1999.
Available at http: //www.w3. org/TR/xpath.

[5] Czajkowski, K., Fitzgerald, S . , Foster, I., Kesselman,
C.: Grid Information Services for Distributed Re-
source Sharing. loth EEE Intl. Symp. on High Per-
formance Distributed Computing, Aug. 2001.

[6] Erwin, D.W., Snelling, D.F.: UNICORE: A Grid
Computing Environment. 7th Intl. Euro-Par Conf.,
Aug. 2001.

[9] Foster, I., Kesselman, C., Nick, J., Tuecke, S . : The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Inteaation. Open
Grid Service Infrastructure WG, Global Grid Forum,
Jun. 2002.

[lo] Guy, L., Kunszt, P., Laure, E., Stockinger, H.,
C+,,,.I~;---’ v . D~..I;,.- nin..n---p..t ;- netn PXA.
“ c ” I * ~ I I - ” . , &-.. *.IyLA-u A.*.A*-*-I-sL‘& 111 Y*- u..u.l.

Global Grid Forum 5 Informational Document, Jul.
2002.

e D

[ll] van Hoff, A., Partovi, H., Thai, T.: The Open
Software Description Format (OSD). W3C Note,
Aug. 1997. Available at http: / /www.w3. org/
TR/NOTE-OSD.

[12] Johnston, W.E., Gannon, D., Nitzberg, B.: Grids as
Production Computing Environments: The Engineer-
ing Aspects of XASA’S Information Power Grid. 8th
IEEE Intl. Symp. on High Performance Distributed
Computing, Aug. 1999.

[131 Kolano, P.Z.: Facilitating the Portability of User Ap-
plications in Grid Environments. 4th IFIP Intl. Conf.
on Distributed Applications and Interoperable Sys-
tems, Nov. 2003.

p4j Kn!anC3, P.Z.: Surfer: ’k Ex:cn;i!ie rii::-Baseci
Framework for Resource Selection and Ranking. 4th
IEEE/ACM Intl. Symp. on Cluster Computing and the
Grid, Apr. 2004.

[I51 Miller, J.: Grid Software Object Specification.
Feb. 2001. Available at http: //mw-unix.
mcs.anl.gov/gridform/gis/reports/
software/software.pdf.

[16] Miller, N.: A Software Installation Information
Provider for MDS 2.x. Apr. 2003. Available at
http://gldap.mcs.anl.gov/neillm/
mds/inf o-providers.

[17] Russell, R., Quinlan, D. (eds.): Filesystem Hierarchy
Standard - Version 2.2 Final. May 2001. Available at
h t t p : //www.pathname.com/fhs.

9

