Development of a Catalyst/Sorbent for Methane Reforming

Brent H. Shanks and T. D. Wheelock Principal Investigators

> Justinus A. B. Satrio Research Associate

DOE Grant No. DE-FG26-2NT41549

Chemical Engineering Department and Center for Sustainable Environmental Technologies

> Iowa State University Ames, IA 50011

Research Objectives

Overall objective

Develop a combined catalyst and sorbent to promote and improve the efficiency of steam reforming which will improve the overall efficiency of producing hydrogen from coal.

Specific objectives

- Develop a combined catalyst/sorbent material
- Demonstrate the usefulness of the material for steam reforming
- Optimize the preparation conditions

Chemical Reactions for Producing H₂ from CH₄

Steam methane reforming (SMR) reaction:

$$CH_{4(g)} + H_2O_{(g)} \leftrightarrow 3H_{2(g)} + CO_{(g)}$$
$$K_{SMR} = \frac{(Y_{H_2})^3(Y_{CO})}{(Y_{CH_4})(Y_{H_2O})}P^2$$

Water gas shift (WGS) reaction:

$$CO_{(g)} + H_{2}O_{(g)} \leftrightarrow H_{2(g)} + CO_{2(g)}$$
$$K_{WGS} = \frac{(Y_{H_{2}})(Y_{CO_{2}})}{(Y_{CO_{2}})(Y_{H_{2}O})}$$

Equilibrium modifying (EM) reaction:

$$CaQ_{(s)} + CQ_{2(g)} \leftrightarrow CaCQ_{3(s)}$$
$$K_{EM} = (Y_{CQ_2})^{-1} P^{-1}$$

Reaction Equilibrium Constants for SMR & WGS

Effect of CO₂ Removal on Product Composition (R=3.0)

B. Balasubramanian et al. / Chemical Engineering Science 54 (1999) 3543-3552

The O. Charlife I found in some of the compartional stars mathems referming more

Primary Reactor Regenerator

Fig. 10. Simplified flow diagram of the single-step steam methane reforming process.

Relevant Technical Literature

- B. Balasubramanian et al., "Hydrogen from methane in a single-step process," *Chem. Eng. Sci.*, <u>54</u>, 3543-3552 (1999).
- Y. Ding and E. Alpay, "Adsorption-enhanced steam-methane reforming," *Chem. Eng. Sci.*, <u>55</u>, 3929-3940 (2000).
- J. R. Hufton et al., "Sorption-Enhanced Reaction Process for Hydrogen Production," *AIChE Jour.*, <u>45</u>, 248-256 (1999).
- W. E. Waldron et al., "Production of Hydrogen by Cyclic Sorption Enhanced Reaction Process," *AIChE Jour.*, <u>47</u>, 1477-1479 (2001).

Limestone Particle

weak, friable material

CaO core

Core-in-Shell Pellet strong, porous, Al₂O₃ shell reactive

The core-in-shell structure overcomes the inherent weakness of lime particles.

Micrographs of a freshly made limestone-based pellet; i) section of an entire pellet at 17X, ii) the shell at 110X, iii) the core at 110X, and iv) the shell at 1000X.

Desired Characteristics of Core-in-Shell Catalyst/Sorbent

Shell:

- Physically strong and abrasion resistant
- Adequate surface area for supporting Ni catalyst
- Sufficiently porous to allow CO₂ to diffuse readily into and out of the core

Core:

- Large CO₂ absorption capacity
- Easily regenerated
- Highly stable to prevent loss in reactivity as it is repeatedly loaded and regenerated

CaO Based Sorbent

Advantages:

- Excellent absorption capacity at high temperature
- Raw materials (i.e., limestone or dolomite) are plentiful and inexpensive
- Easily regenerated by heating or depressurizing

Problems:

- Chemically reactive CaO is a weak, friable material
- At high temperature CaO becomes less reactive due to sintering

Scope of Work

Material preparation and development

- Prepare pellets with CaO cores and Al₂O₃ shells
- Impregnate shells with Ni
- Vary pellet composition and preparation conditions

Material characterization

- Measure BET surface area and pore volume
- Estimate and/or measure Ni content
- Measure compressive strength of pellets
- Measure abrasion resistance of pellets

Performance testing

- Conduct steam reforming tests on a bench-scale
- Use results to improve pellet formulation

Materials Used for Preparing Pellets

Core Materials:

• Iowa Limestone:	98% CaCO ₃	
	-325 mesh	
• Dolime:	$Ca(OH)_2 \cdot Mg(OH)_2$	Fresh
	$CaCO_3 \cdot Mg(OH)_2$	As used

Shell materials:

- α-alumina (T-64 from Alcoa) 8 μm (average)
- α-alumina (A-16SG from Alcoa)
- γ-alumina (CP-7) from Alcoa)

- 1 μm (average)
- 8 μm (average

 $280 \text{ m}^2/\text{g}$

Preparation procedure for a core-in-shell sorbent

Adsorption testing

Figure 1. Results of a multicycle CO_2 absorption test with a limestone pellet.

Figure 2. Results of a multicycle CO₂ absorption test with a dolime pellet.

The CO₂ absorption capacity of pellets prepared from different materials.

Cast Pellets Used for Studying Shell Material

Preparation Method

- Mix alumina and limestone powders with a dilute lignin solution to prepare a flowable slurry
- Fill cavities in a plastic mold with the slurry
 - Cavities are 6 mm in diameter and 6 mm deep
 - Mold rests on a plaster base to aid dewatering
- Allow to dry for 24 hr or more
- Remove pellets from mold and store or
- Calcine and impregnate with nickel

Characterization Methods

- Measure crushing strength
- Measure BET surface area
- Determine the specific volume of micropores

Procedure for Loading Nickel on Shell Material

- 1. Calcine pellets at 1100°C for 2 hr to partially sinter shell material
- 2. Treat core-in-shell pellets with CO_2 at 700°C to convert CaO back to CaCO₃
- 3. Soak pellets in $Ni(NO_3)_2/THF$ solution
- 4. Dry pellets in open air to vaporize THF
- Calcine pellets at 600°C to convert Ni(NO₃)₂ to NiO
- 6. Reduce pellets with H₂ at 600°C to convert NiO to Ni

Note: If pellets are stored following step 2, they will need to be dried in a vacuum oven before proceeding with step 3.

Properties of cast tablets of shell material

(Tablets also contained 32% A-16SG alumina and 20% limestone)

Shell Material	γ-Al ₂ O ₃ CP-7, %	α -Al ₂ O ₃ T-64, %	NiO %	Surf. Area, m ² /g	Pore Vol., cm ³ /g	Strength, N
Standard	0	48	0	1.0	0.0018	409
(1) Ni impreg.			5.4	2.1	0.0065	
(2) Ni impreg.			11.4	2.3	0.0089	
CP-7 Mix #1	48	0	0	36.2	0.093	48
(1) Ni impreg.			7.8	13.0	0.048	
(2) Ni impreg.			14.0	12.4	0.039	
CP-7 Mix #2	24	24	0	5.3	0.015	98
(1) Ni impreg.			6.9	6.9	0.022	
(2) Ni impreg			12.0	7.8	0.027	
CP-7 Mix #3	36	12	0	23.9	0.067	32
(1) Ni impreg.			10.3	24.7	0.052	
(2) Ni impreg.			17.6			
CP-7 Mix #4	30	18	0	15.1		43
(1) Ni impreg.			7.5			
(2) Ni impreg.			13.2			
CP-7 Mix #5	18	30	0	7.4		95
(1) Ni impreg.			7.3			
(2) Ni impreg.			11.1			

Absorption of 5% CO₂ at 650°C by Core-in-Shell Pellets

a). Core-in-Shell Pellet without Ni

b) Core-in-Shell Pellet Impregnated with Ni (4% NiO)

Fixed Bed Reactor System

Accomplishments

- 1. Determined the effects of temperature, $H_2O:CH_4$ ratio, and degree of CO_2 removal on the equilibrium conversion and product composition
- 2. Compared the relative stability of sorbents derived from limestone and dolime
- 3. Determined the effects of replacing α -alumina with γ -alumina in the shell material
- 4. Demonstrated an appropriate method for nickel impregnation
- 5. Showed that significant amounts of Ni can be supported by the shell material
- 6. Showed that the presence of Ni in the shell does not interfere with CO_2 absorption by the core

Future Work

- 1. Complete assembling a fixed bed reactor for testing the combined catalyst/sorbent under appropriate reaction conditions
- 2. Conduct a series of performance tests with the fixed bed reactor to evaluate the combined catalyst/sorbent
- 3. Further characterize the catalyst/sorbent material by SEM, XRD, and AAS
- 4. Utilize the results to improve the material