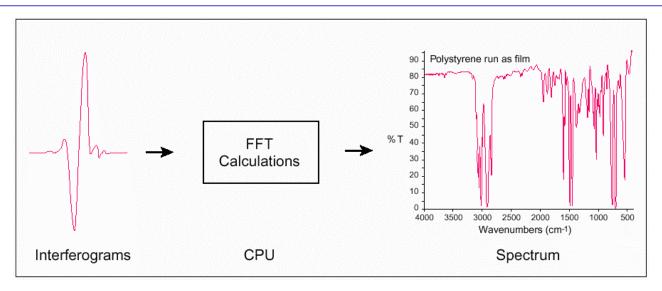

How an FTIR Spectrometer Works

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Pathlength difference = xThe intensity detected of two plane waves: $I = \left|\vec{E}\right|^{2} = \left|E_{1}\right|^{2} + \left|E_{2}\right|^{2} + 2\vec{E}_{1} \bullet \vec{E}_{2}\cos(q)$ Normal incidence, $\theta = kx$, can simplify to: $I(x) = 2[1 + \cos(kx)]$ For non-monochromatic light: $I(x) = \int_{0}^{\infty} [1 + \cos(kx)]G(k)dk$ $= \int_{0}^{\infty} G(k)dk + \int_{0}^{\infty} G(k)\frac{e^{ikx} + e^{-ikx}}{2}dk$

$$= \frac{1}{2}I(0) + \frac{1}{2}\int_{-\infty}^{\infty}G(k)e^{ikx}dk$$



FTIR Math Continued

We can rewrite this to something more familiar:

$$W(x) \equiv \frac{2I(x) - I(0)}{\sqrt{2p}} = \frac{1}{\sqrt{2p}} \int_{-\infty}^{\infty} G(k)e^{ikx}dk$$

A Fourier Transform!

The detected intensity as a function of moving mirror position, I(x), can therefore be converted into G(k), the intensity spectrum as a function of frequency by a simple Fourier transform.

FTIR Spectrometers

In practice one cannot measure from $-\infty$ to ∞ . The resolution of a measurement is simply given by how far in x you measure.

resolution $\propto \frac{1}{2\boldsymbol{p}x_{\max}}$

Rapid-Scan measurements:

- Sweep mirror quickly, average many interferrograms
 - Very fast & easy
 - Not high resolution
 - Not for quickly changing signals or very low signal

Step-Scan measurements:

- Step to each x position, then measure (long average, or triggered time series). Can have very long path length.
 - Excellent for fast time resolution, low signals (lock-in)
 - Harder to run stably.