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ABSTRACT 

The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is 
capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship 
between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition 
for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the 
reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, 
this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different 
profiles. The condition of a non-uniform grating is also addressed. 
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1. INTRODUCTION 
Fiber Bragg gratings represent an important element in the emerging fields of optical communications and optical 
sensing. Despite its vast usefulness, the device is comparatively simple. Typically a dielectric cylinder of index n1, 
usually referred as core, is surrounded by a concentric dielectric cylinder of index n2. The two refractive indices obey the 
relation n1 > n2. In such an arrangement, since the field decays exponentially inside region of index n2, practically no 
field exists outside of region 2. In its simplest form a fiber Bragg grating consists of a periodic modulation of the 
refractive index in a core of a single mode optical fiber, where the phase fronts are perpendicular to the fiber’s  
longitudinal axis and with grating planes having a constant period. Because of its intrinsic simple physical nature, the 
theory behind Bragg grating is equally simple. Light, guided along the core of an optical fiber, is scattered by each 
grating plane. If the Bragg condition is satisfied, the contributions of reflected light from each grating plane add 
constructively in the backward direction to form a back reflected peak with center wavelength defined by the grating 
period. A considerable amount of theoretical work1-11 has been reported with various approaches giving reasonable 
results in predicting the reflectivity as a function of wavelength. The theoretical works fall into two categories, the matrix 
transfer function method and the coupled mode theory. In the matrix transfer function, the Bragg grating is simulated as 
an alternating stratified medium having index of refraction of  n and n+∆n and weak guiding approximation is assumed, 
i.e., the difference of index refraction between the core and cladding is ignored, which some times is called the scalar 
wave approximation. In this approximation, the modes are transverse. When the grating is periodic, a closed solution for 
the reflectivity as a function of scanning wavelength is obtained. However when the grating periodicity is slightly off as 
happens in a non-uniform strain measurement, the reflected spectrum can only be obtained numerically12. The coupled 
mode method assumes the grating serves as a perturbation which couples power between forward and backward moving 
modes with a x (optical axis) dependence amplitude. This method also assumes that the amplitudes do not change 
abruptly and the second derivative of amplitudes with respect to x are dropped resulting in  the amplitudes being 
represented by a first order linear differential equation with constant coefficients. Both approaches provide reasonable 
results.  
 
2. EVALUATION OF REFLECTIVITY USING TRANSFER MATRIX METHOD 

Following references13-14closely, we outline the simple results of the expressions for light propagating in a Bragg grating. 
Under the assumption of a scalar wave approximation (weakly guiding approximation) the electric and magnetic field 
amplitudes are assumed to be perpendicular to the propagation direction and both satisfy the simple plane wave equation. 
When the plane wave travels through regions of different index of refraction, the wave number adopts the local index and 
part of the wave gets reflected back with different amplitude.  A typical square index profile for a Bragg grating with 
period s is shown in Fig.1. 
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                                    Fig. 1 square profile of index of refraction 
 
Consider a plane wave polarized in the y direction from a medium of index n and is incident normally to a film of 
thickness of 2a, of index n’ and emerging to medium of n. We may interpret this arrangement as equivalent to an optical 
index potential. 
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where ŷ stands for a unit vector in the y direction and the quantity 1
1

ik xE e+  represents a plane wave propagating in the 

positive x direction with an amplitude 1E+ ; the quantity 1
1

ik xE e−−  represents a plane wave propagating in the negative x 

direction with an amplitude 1E− etc. 
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and 0 / 2 /k cω π λ= =  represents the free space wave number. The corresponding magnetic fields H can be evaluated 

as 
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where ω  is the frequency and 0µ  is the magnetic permeability of the free space. Since both E and H represent 

tangential components, they must be continuous at the boundaries -a and a. By eliminating 2 2 E and E+ − , 1 1 E and E+ −  

can be expressed in terms of  3 3 E and E+ −  as follows 
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where m is referred to as the transfer matrix for single potential. We may construct the transfer matrix for the whole 
array by duplicating the basic potential in Eq.(6) N times at regular interval s with s >2a. 
The electric field between the potentials (where the index is n ) can be written  
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To keep track of the subscript index, we have changed the notation from iE+  and iE−  to Am and Bm . Again, Am and Bm 

represent the electric field amplitude of the wave moving to the right and left, respectively. 
For the mth potential we can write as in Eq. (6) and obtain 
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P as well as m is uni-modular, i.e., (detP=1). Using Eq. (9) recursively, 
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Now the task reduces to the evaluation of PN 
. Among many methods reported, the most elegant is to use the Cayley-

Hamilton theorem15 to obtain the expression of PN 
.  
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We have changed the notation  from 2a to r, i.e., the width of the potential (layer).  l is the width between the potentials 
and s=r+l is the period as shown in Fig.1. UN is the Nth Chebychev polynomial of the second kind16 

. 
 

2a Maximum Reflectivity (tuned) 

From Eq.(10), we can easily determine the transmission coefficient ( transmitivity) and reflectivity for N potentials. For 
example, the transmission coefficient is 
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Assuming there is no absorption, the reflectivity RN  is 

RN=1-TN .          (13) 
Where 
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TN  can also be expressed as 
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In practice, the difference ∆n is minute which implies that 1ε+ ≅ . We can further write Eq. (14) as 

cos( ' )k r klξ = +          (17) 

The numerical result shows this assumption is good, especially when tuned, i.e., cos( ' )k r klξ = + = -1. The quantity 

of interest to us is RN and in fact we would like to have RN approach 1. In order that the value of TN  approaches zero, i.e., 
the value of the denominator of TN has to approach infinity which implies that in Eq.(12) the value of  UN (ξ ) has to be 
large. This means γ has to be zero or a multiple of π and ξ takes the value of -1 or +1 at which  UN (1) =N+1, UN (-1)=(-
1)N (N+1) . The quantity inside the absolute value is finite and it takes the maximum value when k’r becomes an odd 
multiple of π/2. Therefore, we can conclude that for the reflectivity to reach maximum value, in other words “tuned”, the 
optical path length in the n’ region (index of refraction higher)  has to be close to odd multiple of π/2 and so is the optical 
path length in the n region (index unchanged), but the sum of the optical path length in the whole period has to be a 
multiple of π. The number of periods N happens to be a multiplicative factor. When γ approaches a multiple of π, we find 
TN  approaches zero as 

2
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and RN=1-C N-2 , where C is just some proportional constant. 
To reach maximum reflectivity,  
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as commonly used in the literature. 
 
2b. Detuned reflectivity 
When the scanning laser wavelength range is out of the “tuned” wavelength which is determined by the period s, the 
reflectivity graph commonly shows damped oscillatory behavior with a series of outlying minima as a function of wave-
length ( shown in Fig. 2). The reflectivity graph is symmetrically displayed along both sides of the tuned wavelength λ0. 
In this method some explanation can be easily provided. 
For RN  to be approaching zero, TN has to be approaching 1. Since r and l have been fixed, we can rewrite Eq.(19) as 
 

 
 
        (20) 
 
 
   

First consider λ is greater than λ0, i.e., ρ is less than 1 but greater than 0. 

In the denominator of Eq. (12) ε−  is small in the order of ∆n, however is finite, and the other two terms contain all the 

relevant information. As λ departs from λ0, i.e., ρ departs from 1 and approaches to 0; the term sin 'k r monotonically 
changes from 1 to 0 which gives the damping effect. And ξ changes from -1 to +1. For the domain -1 to +1, the 
Chebychev polynomial UN-1(ξ ) has N-1 zeros which are located according to this formulas17 
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With Eq. (21) and simple algebra, we obtain 
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What will happen if λ departs from λ0 and moving toward to the left, i.e., toward shorter wavelength. As  ρ increases 
from 1 to 2,  the reflectivity is the mirror reflection image around the axis ρ =1. Therefore, in principle, the reflectivity 
curve as a function of reduced parameter ρ has a period of 2ρ; that is the reflectivity curve repeats itself every 2ρ. 
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                        Fig. 2  a typical reflectivity vs wave length curve, λ0 =1550 nm, N=3000 
 
   
 
  
3. IMPERFECT SQUARE INDEX PROFILE 
If the profile is not perfectly square but is still periodic, we can rely on a numerical procedure to arrive at the value of m 
and subsequently PN.  As shown in Fig. 3, an arbitrary profile can be segmented into M equally spaced square profiles of 
width w and continuity conditions applied to obtain m.  
 
  

 
 
 

  
 
 
 
 
 
 

Fig. 3 Imperfect index profile 
 
The reflectivity of a perfect square profile and an imperfect profile were calculated using  the following parameters; 
n=1.45, ∆n=10-3 , n’=n+ ∆n, λ0 =1550 nm, grating period s = λ0/2neff , and the scanning wavelength ranging from 1546 
to 1552 nm. A typical graph is shown as in Fig. 2. The peak of the reflected spectrum is located at 1550 nm as expected 
and the reflectivity registered at 0.93808 for a perfect square profile with 3000 periods. As shown in Fig. 3, the M value 
is chosen to be 8, i.e., the profile is segmented to be 8 equal parts of rectangular profile and the height of each rectangle, 
say ñ , is greater than n but less than n’. This represents the profile with a round off shoulder. Table 1 lists the segmented 
profiles and the index of refraction ñ at each station is uniformly distributed. We termed imperfect profile #1 and #2 and 
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in particular, the perfect profile can be represented in this format. Table 2 gives a comparison of these three profiles with 
total number of gratings of 3000, 2000, 1000 and 800. The values listed represent the reflectivity at the peak (at 1550 
nm). For imperfect profile #2 the peak value of reflectivity has slightly shifted to λ0 =1549.8 nm. 

 

Table 1 segmented index representation for profile 

Perfect profile Imperfect profile #1 Imperfect profile #2 
1.451 1.4507098 1.45001332 
1.451 1.4508549 1.45005685 
1.451 1.451 1.4507098 
1.451 1.451 1.451 
1.451 1.451 1.451 
1.451 1.451 1.451 
1.451 1.451 1.4507098 
1.451 1.4508549 1.45005685 
1.451 1.4507098 1.45001332 

 
 

Table 2 
 

Comparison of peak value of reflectivity at λ0 =1550 nm for three profiles 
 

Total # of 
gratings 

Imperfect 
profile #2 

Percentage change 
from perfect 
profile 

Imperfect 
profile #1 

Percentage change 
from perfect 
profile 

Perfect profile 

800 0.151765 39.7      0.238144 5.68 0.251673 
1000 0.223794 37.3      0.339586 5.16 0.357135 
2000 0.596927 23.0      0.756083 2.50 0.775615 
3000 0.831459 11.4     0.928576 1.00 0.938080 
 
4. NON-UNIFORM GRATING 
Non-uniform grating can exist either by design or arise from circumstance, such as in a structure non-uniform strain 
measurement. Since the “period” has lost its meaning, a compact expression for reflectivity can not be obtained. On the 
other hand, one can easily carry out the transfer function manipulation grating by grating by numerical procedure. As 
previously reported, a pre-described non-uniform strain can be suggested, including linear, sinusoidal and random 
distributions. Interesting results are obtained depending upon the regime of strain.  The simulations indicate that for non-
uniform strain, the multi-peak spectra occur when the strain has reached the order of 10-2 or greater. If the strain is small, 
say less than 10-3, non-uniformity is not an important issue; all the reflected spectra would give a sharp peak and 
uniquely determine the strain. However when the strain increases to the order of 10-2, the spectrum is broadened and 
splits into multiple peaks. Finally, when the strain increases beyond 10-2 for a non-uniform grating, the reflected signals 
can be completely lost, which has been observed in some experiments19. These phenomena can be understood in a 
qualitative sense, i.e., each grating plane defines a reflected and selected wavelength. And when the grating distance is 
constant, all the reflected waves contribute constructively, creating a strong peak uniquely defining the grating distance. 
But when the successive grating distances are off slightly, each distance selects a slightly shifted wavelength. Therefore 
each back-scattered wave contributes non-coherently and multi-peak spectra are produced.  
 
5. CONCLUSION 
We have revisited the transfer matrix formulation once again, but also have gained some new understanding which was 
not well known before: (1) The transfer matrix is easy to implement and involves less approximations and in our opinion 
is more physically transparent than the coupled mode theory. (2) From the mathematical point of view, we understand 



how the maximum reflectivity is obtained; it is not the individual layer that produces the phase change of π/2, equivalent 
to say the individual layer width equal to λ/4n’ or  λ/4n.  The important fact is the sum of the phase changes in the 
individual double layer has to be π or a multiple of π, and each layer can be slightly off from π/2. The reflectivity will 
decrease if the phase shift k’r is moving away from odd multiple of π/2 because of the quantity sin(k’r) in Eq. (16). To 
gain maximum reflectivity, each layer must have a phase path length of odd multiples of π/2 which has some practical 
implication, namely we can inscribe less points on the fiber to achieve the same results. For example, in the n region we 
can set l=3λ0/4n.  This has been demonstrated in numerical simulation. (4) We have gained the understanding of the role 
of number of double layers N. The reflectivity approaches 1 in the fashion shown in Eq. (18) for large N, which is in 
contrast to results shown in Ref.18 where the maximum reflectivity is proportional to N,  when N is small. (5)  Eq.(23) 
shows how we can compute the full width half maximum of the major peak and also the distance between a pair of out 
lying minima. (6) The transfer function method can study and evaluate the relative efficiency of various index profiles by 
using the segmented potential treatment. (7) For non-uniform grating, a numerical procedure can be applied with 
interesting results. 
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