FLEXAN (Version 2.0)
 User's Guide

Scott S. Stallcup
Computer Sciences Corporation
Hampton, Virginia

Prepared for
Langley Research Center under Contract NAS1-17999

MNSA

National Aeronautics and Space Administration

Scientific and Technical Information Division

Preface

This document describes the FLEXAN computer program, version 2.0. FLEXAN is an acronym for "Flexible Animation". FLEXAN animates three dimensional wireframe structural dynamics on the Evans \& Sutherland PS300 graphics workstation with a VAX/VMS host computer. FLEXAN runs under VMS 4.5 or later and PS300 firmware version A3.V01 or later. The FLEXAN program does not model structures or calculate the dynamics of structures; it only animates data from other computer programs.

FLEXAN is based on the MODAN program developed by the Aerospace Corporation. MODAN animates unconstrained structural vibrational modes.

FLEXAN animates unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation time history animations are supported by FLEXAN.

FLEXAN was developed for the Spacecraft Analysis Branch, NASA Langley Research Center to aid in the study of the structural dynamics of spacecraft. A typical application of FLEXAN is the animation of a spacecraft undergoing structural stresses caused by thermal and vibrational effects. The animation displays the spacecraft shape distortions while the changing element colors represent temperature variations.

FLEXAN was written in VAX FORTRAN and is specific to the Evans and Sutherland PS300 family of graphics workstations.

VAX FORTRAN and PS300 dependencies are reasonably well separated, but the program would require extensive changes if ported to another environment.

FLEXAN was written specifically for the PS390 but there are no PS390 dependencies in the code.

Preceding page blank not fllmed

Acknowledgements

The author would like to acknowledge a few individuals who contributed to the development of FLEXAN and this document. Thanks to Russ Criste (CSC), Jerry Plassman (CSC), John Davis (CSC), and Larry Rowell (SAB, NASA) who reviewed this document. John Davis also contributed many helpful suggestions during the development of FLEXAN. Special thanks to Larry Rowell for allowing me the time and the creative freedom to make FLEXAN possible.

Table of Contents

1.0 Introduction 1-1
2.0 Mathematical Model 2-1
2.1 Geometry 2-1
2.2 Animation 2-1
2.3 Delta History Animation 2-3
2.4 Mode Animation 2-3
2.5 Mode History Animation 2-4
2.6 Rotation History Animation 2-4
3.0 FLEXAN Execution 3-1
3.1 FLEXAN Command 3-1
3.2 Parameter Qualifiers 3-2
3.3 Command Qualifiers 3-3
3.4 Dials and Function Keys 3-4
4.0 File Formats 4-1
4.1 Geometry Files 4-2
4.2 Mode Shape Files 4-4
4.3 Delta History Files. 4-5
4.4 Color History Files 4-6
4.5 Mode History Files 4-7
4.6 Rotation History Files 4-8
5.0 Examples 5-1
5.1 Example 1 -Geometry 5-2
5.2 Example 2-Node \& Element Numbers 5-3
5.3 Example 3-Mode Animation 5-4
5.4 Example 4 - Mode History Animation 5-5
5.5 Example 5 - Delta / Color History Animation 5-6.
5.6 Example 6 - Rotation / Color History Animation 5-7
5.7 Example Input Files 5-8
6.0 Hints and Final Comments. 6-1
References R-1

1.0 Introduction

FLEXAN is a computer program that animates structural dynamics on an Evans \& Sutherland PS300 graphics workstation with a VAX/VMS host. FLEXAN can display single natural modes of vibration, a mode time-history (multiple modes), or any general deformations of a flexible structure. Elements of a structure can be animated through color changes to reflect thermal information, stresses, etc. Selected parts of a structure can also be rotated through time. FLEXAN does not generate structural geometries or calculate any influences on structures; it only displays data generated from other computer programs.

A structure is represented on the PS300 as a three-dimensional wireframe object. Solid objects or raster representations are not supported. The VAX/VMS computer calculates the animation frames and sends them to the PS300. The PS300 displays these frames in real time with rotation, scaling, and translation provided by the dials of the PS300. The PS300 is not a true real time machine, but it does provide a very close approximation. The animation can be displayed forward or backward at one to fifty frames per second or stepped one frame at a time. The animation speed is controlled by a dial and two function keys. Other function keys toggle on and off various parts of the display or enable different views of the structure.

FLEXAN is capable of animating two independent sets of data in separate windows on the PS300. An optional third window displays a superposition of the two datasets. This capability is useful for displaying the differences between design iterations, or analytical versus experimental datasets.

2.0 Mathematical Model

This section explains the mathematical model used by FLEXAN. Animations are described as a sequence of matrix operations. A basic understanding of matrix algebra is assumed.

2.1 Geometry

Structural geometry information is input through a geometry file as a matrix of nodes \mathbf{A} and a matrix of elements \mathbf{E}.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
a_{x 1} & a_{y 1} & a_{z 1} \\
a_{x 2} & a_{y 2} & a_{z 2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
a_{x p} & a_{y p} & a_{z p}
\end{array}\right] \quad E=\left[\begin{array}{cc}
e_{m 1} & e_{d 1} \\
e_{m 2} & e_{d 2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
e_{m q} & e_{d q}
\end{array}\right] \\
& \text { Where: } \begin{array}{l}
p=\text { the number of nodes } \\
q=\text { the number of elements. }
\end{array}
\end{aligned}
$$

Each row of \mathbf{A} represents the undeformed location of a node point in three-dimensional space. Each row of \mathbf{E} contains two integer row indices into A specifying the endpoints of an element (move and draw).

2.2 Animation

An animation consists of a sequence of frames; each frame f_{i} is displayed in rapid succession from frame f_{1} to the last frame f_{n}.

$$
f_{1}, f_{2}, f_{3}, \ldots f_{n}=\left\{f_{i}\right\}_{i=1, n}
$$

Each frame contains the color values for each element and the absolute coordinates of each node point. The deformed node point data and color values are input through data files. The program processes the matrices in the frame generation function \mathcal{F}.

$$
\mathrm{f}_{\mathrm{i}}=\mathcal{F}\left(\mathbf{H}_{\mathrm{i}}, \mathbf{E}, \mathrm{C}_{\mathrm{i}}\right)
$$

Where \mathbf{E} is the matrix of elements, and \mathbf{H} and \mathbf{C} are described below. For an animation involving the geometry elements, color values are supplied in a color history file. This file contains a sequence of \mathbf{C} matrices from frame f_{1} to the last frame f_{n}.

$$
\mathbf{C =}\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{q}
\end{array}\right] \quad\left\{C_{i}\right\}_{i=1, n}
$$

Matrix Contains the color information (real number values) corresponding to each element (row) in matrix E. FLEXAN maps the values into a range of continuous colors from blue through green, yellow, and red. A labeled color bar is also generated and displayed.

If no color history file is supplied, then the elements of the first dataset default to red for a single dataset animation or for dataset one of a two dataset animation. The elements of dataset two of a two dataset animation will be green.

For an animation involving deformed node points, four options are available: mode animation, mode history animation, delta history animation, and rotation history animation. The details of each option are explained later, but the result is a sequence of \mathbf{H} matrices which contain the absolute node points for each frame f_{1} to the last frame f_{n}.

$$
\mathbf{H}=\left[\begin{array}{ccc}
h_{x 1} & h_{y 1} & h_{z 1} \\
h_{x 2} & h_{y 2} & h_{z 2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \vdots \\
h_{x p} & h_{y p} & h_{z p}
\end{array}\right] \quad\left\{\boldsymbol{H}_{i}\right\}_{i=1, n}
$$

Concurrent combinations of the animation options are possible. All concurrent combinations of mode history, delta history, color history, and rotation history animations are supported by FLEXAN. Mode animations cannot be animated concurrently with any other animation option.

2.3 Delta History Animation

The simplest and most general node point deformation animation is a delta history animation. A delta history file is supplied which contains a sequence of D matrices for frame f_{1} to frame f_{n}. Each D_{i} contains the relative translations or "Deltas" for each node point in the geometry.

$$
\begin{gathered}
\mathbf{D =}\left[\begin{array}{ccc}
d_{x 1} & d_{y 1} & d_{z 1} \\
d_{x 2} & d_{y 2} & d_{z 2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot \\
d_{x p} & d_{y p} & d_{z p}
\end{array}\right]\left\{D_{i}\right\}_{i=1, n} \\
\left\{H_{i}=\mathbf{A}+\mathbf{D}_{\mathrm{i}} \alpha\right\}_{i=1, n} \\
\alpha=\text { Amplitude scale factor (input on command line) }
\end{gathered}
$$

2.4 Mode Animation

A single, unconstrained vibrational mode can be animated using a sine wave function to drive the animation. A mode shape file is supplied which contains a sequence of matrices, where each matrix M contains the relative translation of each node point. The sequence of matrices represents mode 1 to the number of modes w. A frequency ω_{k} in hertz is supplied in the file for each mode. The frequency is displayed and the number of frames per second s is calculated and displayed.

$$
\begin{gathered}
\mathbf{M}=\left[\begin{array}{ccc}
m_{x 1} & m_{y 1} & m_{z 1} \\
m_{x 2} & m_{y 2} & m_{z 2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
m_{x p} & m_{y p} & m_{z p}
\end{array}\right]\left\{M_{k}\right\}_{k=1, w} \\
\left\{\mathbf{H}_{i}=\mathbf{A}+\mathbf{M}_{\mathrm{k}} \sin \left(\frac{(\mathrm{i}-1) 2 p}{z}\right) \alpha\right\}_{\mathrm{i}=1, \mathrm{z}} \quad s=(z)\left(\omega_{\mathrm{k}}\right) \\
\alpha=\text { Amplitude scale factor (input on command line) } \\
k=\text { Selected mode to animate (input on command line) } \\
\mathbf{z}=\text { Number of frames per cycle (input on command line) }
\end{gathered}
$$

2.5 Mode History Animation

An animation displaying the contribution of all modes in the mode shape file is generated by supplying a mode history file which contains a single matrix X. This matrix contains the relative contribution of each mode across the rows from mode 1 to mode w. The contribution (damping) factors typically range from 0.0 to 1.0 . Each column represents a single frame in the animation from f_{1} to $f n$.

$$
\begin{gathered}
X=\left[\begin{array}{cccc}
x_{11} & x_{21} & \ldots & x_{n 1} \\
x_{12} & x_{22} & \ldots & x_{n 2} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
x_{1 w} & x_{2 w} & \ldots & x_{n w}
\end{array}\right] \\
\left\{H_{i}=A+\left(\sum_{k=1}^{w} M_{k} x_{i k}\right) \alpha\right\}_{i=1, n} \\
\alpha=\text { Amplitude scale factor (input on command line) }
\end{gathered}
$$

2.6 Rotation History Animation

Rotation history animations involve the rotation of selected parts of a structure through time. The rotating parts of a structure are identified in the structural geometry input file. A rotation history file supplies the absolute rotation of each part relative to the undeformed geometry for each frame in the animation. The rotation matrix operations are well known and will not be discussed here ${ }^{1}$.

[^0]
3.0 FLEXAN Execution

All program input is through data files and command line parameters and qualifiers. Prompts are not generated during the execution of FLEXAN. The parameters and qualifiers define the input file names and animation options. FLEXAN reads the input files then generates and sends the animation frames to the PS300. FLEXAN execution ends on the VAX/VMS host computer when all frames have been sent to the PS300. The animation is then completely controlled by the PS300 using the labeled dials and function keys. The FLEXAN command follows the VAX/VMS command conventions concerning parameters and qualifiers. Consult the VMS documentation for more information on the VMS commands and the Evans \& Sutherland PS300 documentation on the operation of the PS300.

The frame calculation and download time can last several minutes. As frames are downloaded, a progress "Thermometer" is displayed on the PS300 screen. When all of the frames are downloaded the thermometer disappears and the animation begins.

Press the <shift> <line_local> keys of the PS300 to get into local mode. In local mode the animation can be controlled using the dials and function keys. Press <line_local> to get into the VAX/VMS terminal emulation mode.

3.1 FLEXAN Command

FLEXAN can be run from any terminal type but the graphics must be sent to a PS300 workstation. The /DEVICE qualifier described below may be used to choose a particular PS300 device. The default PS300 device is installation dependent. FLEXAN is executed by issuing the FLEXAN command:
\$ FLEXAN geo1 geo2
The two parameters geo1 and geo2 are the filespecifications for the geometry files. Geo1 is required and geo2 is optionally used for a two dataset animation. The default file extension is ".GEO".

3.2 Parameter Qualifiers

Qualifiers on each parameter specify the animation options for the respective datasets. If no parameter qualifiers are present, then the undeformed geometry is sent to the PS300 with no animation frames.
/MS = Mode-shape-file-spec
Specifies a mode shape file to be used for a mode animation or a mode history animation. The default file extension is ".MOD". The presence of this qualifier requires the presence of the /AMP and either /MODE or/MH qualifiers. If no file-spec is supplied with this qualifier, then the geometry file name with ".MOD" extension is implied.

```
/MH = Mode-history-file-spec
Specifies a mode history animation. The default file extension is ".MHY". If no file-spec is supplied with this qualifier, then the geometry file name with ".MHY" extension is implied.
```

/DH = Delta-history-file-spec
Specifies a delta history animation. The default file extension is ".DHY". The presence of this qualifier requires the presence of the /AMP qualifier. If no file-spec is supplied with this qualifier, then the geometry file name with ".DHY" extension is implied.

> ICH $=$ Color-history-file-spec
> Specifies a color history animation. The default file extension is ".CHY". If no file-spec is supplied with this qualifier, then the geometry file name with ".CHY" extension is implied.
/RH = Rotation-history-file-spec
Specifies a rotation history animation. The default file extension is ".RHY". If no file-spec is supplied with this qualifier, then the geometry file name with ".RHY" extension is implied.
/MODE = Mode-number
Specifies a mode animation. Mode-number is the desired mode number (integer) from the mode shape file.

[^1]/CMIN = Minimum-color
Specifies a minimum color value (real number) for the color mapping of a color history animation. The presence of this qualifier requires the presence of the /CH qualifier. The minimum color value in the color history file is used if this qualifier is not present.
/CMAX = Maximum-color
Specifies a maximum color value (real number) for the color mapping of a color history animation. The presence of this qualifier requires the presence of /CH. The maximum color value in the color history file is used if this qualifier is not present.

3.3 Command Qualifiers

Command qualifiers affect both datasets if two datasets are animated and they can appear anywhere on the command line.

/Frames = Number-of-frames

Specifies the number of frames to animate for time history animations. If this qualifier is not present, then the number of frames is chosen to be the lowest number of frames specified in the time history file(s). For mode animations, this qualifier is required and refers to the number of frames per cycle. The maximum number of frames is 9999 .
/Super
If two datasets are animated then this qualifier creates a third window which is a superposition of the two animations in the same window. If this qualifier is absent, then no superposition window is available (saves memory space).
/Device $=$ Device-number
Specifies a PS300 device to be used for the animation. Device-number is an integer. The range of devices and the default for this qualifier is installation dependent.

3.4 Dials and Function Keys

There are eight dials and twelve function keys available on the PS300. This section lists the functions of the dials and function keys used by FLEXAN.
dial 1 Translates the structure(s) horizontally.
dial 2 Translates the structure(s) vertically.
dial 3 Translates the structure(s) in the z direction (depth).
dial 4 Scales the structure(s) in all three directions.
dial 5 Rotates structure(s) about the x axis.
dial 6 Rotates structure(s) about the y axis.
dial 7 Rotates structure(s) about the z axis.
dial 8 Controls the animation rate. (1... 50 FPS)
fkey 1 Toggles start and stop of an animation.
fkey 2 Steps through frames one at a time.
fkey 3 Toggles the undeformed geometry (white).
fkey 4 Toggles the animation in the forward/backward directions.
fkey 5 Toggles the animation frames.
fkey 6 Toggles the information (amp, FPS, title, etc.).
fkey 7 Toggles the color bar (for color animations only).
fkey 8 Toggles the node numbers.
fkey 9 Toggles the element numbers.
fkey 10 Toggles the frame number.
fkey 11 Toggles the orientation axis.
fkey 12 Toggles through windows (for two dataset animations only).

4.0 File Formats

This section describes the text formats for the FLEXAN input files. The file formats were designed to integrate well with other programs at NASA Langley Research Center, but every effort was made to make them as easy to create and read as possible. All real or integer values are read by "list directed" read statements.

Each file type is described; then FORTRAN code fragments to read the file are presented. The code fragments represent the method used by FLEXAN to read each file (error checking code has been stripped out). Section 5.7 of this document contains a complete set of example files.

The first two lines of each file type have the same format. The first line is an 80-character title. The title is ignored in all file types except the geometry file type. The title of the geometry file is displayed at the top of the animation window(s). The first three columns of the second line must contain the default file extension for the respective file types. For example, geometry files must have "GEO" in the first three columns of line two.

4.1 Geometry Files

Example files are presented on pages 5-9 and 5-14. The first line is an 80 -character title that is displayed across the top of the window for each dataset. The second line must contain the file type "GEO" in the first three columns. The third line must contain the integer number of nodes followed by the integer number of elements. The fourth line contains the number of rotating parts, the number of rotating part types, the starting element index number and the ending element index number for the main body of the structure.

Rotating part types are consecutive integers starting at one. Each rotating part in the structure has one or more rotating part types associated with it. Rotating part types are specified later in this file by supplying a point of rotation and an axis of rotation. Rotation history files (discussed in section 4.6) supply an angle or rotation for each rotation part type in each animation frame.

The next lines contain the node points (one node point per line). The first number on each line must be an integer node index starting at 1 increasing to the number of nodes (specified on line three). The next three numbers on each line are the X, Y, and Z coordinates (real numbers) of the node point. The node indexes must be consecutive; otherwise an error is generated. The node coordinates may be in any consistent cartesian system. FLEXAN will scale and translate the geometry to fit into the display window.

The next lines contain the element or connectivity information (one element per line). The first number on each line must be an integer element index starting at 1 increasing to the number of elements (specified on line three). The next two numbers on each line are the integer indexes of the node points which form the endpoints of an element. The element indexes must be consecutive; otherwise an error is generated.

The next lines contain the rotating part information. The first number must be an integer rotating part index starting at 1 increasing to the number of rotating parts (specified on line four). The number of rotating part types for the part is next, followed by the starting and then the ending element index numbers for the part. The next lines for each part contain the rotation part type number followed by "1", "2", or "3" for the axis of rotation "X", "Y", or "Z" respectively. The "XYZ" point of rotation ends the line.

The FORTRAN code fragment to read this file is:

```
    CHARACTER*80 TITLE File title
    CHARACTER*3 FTYPE File type
    INTEGER NNODES
    INTEGER NELEM
    INTEGER NFRAMS
    REAL
    INTEGER
    REAL
    •
    READ (2,200) TITLE
    READ (2,201) FTYPE
200 FORMAT (A80)
201 FORMAT (A3)
    READ (2,*) NNODES, NELEM
    READ (2,*) NROT, NROTYPE, BODYS, BODYE
    DO 100 I = 1, NNODES
        READ (2,*) N, NODES (1,I), NODES (2,I), NODES (3,I)
100 CONTINUE
    DO 110 I = 1, NELEM
        READ (2,*) N, ELEMS (1,I), ELEMS (2,I)
110 CONTINUE
    DO 120 I=1, NROT
        READ (2,*) N, NRTYP (I), RINDS (I), RINDE (I)
        DO 130 J=1, RNTYP (I)
            READ (2,*) RTYPE (I,J), RAXIS (I,J),
    1 RP(1,I,J), RP (2,I,J), RP (3,I,J)
130 CONTINUE
120 CONTINUE
```


4.2 Mode Shape Files

An example file is presented on page 5-10. The first line is an 80character title which is ignored by the program. The second line must contain the file type "MOD" in the first three columns. The third line must contain the integer number of modes followed by the integer number of nodes.

The next lines contain the sequence of modes from mode 1 to the number of modes (specified on line three). The first line of each mode must contain the integer mode number followed by the real number frequency of the mode in Hertz. On each of the following lines of the mode there must be an integer node index starting at 1 increasing to the number of nodes (specified on line three). The next three numbers on each line of the mode are the X, Y, and Z translations (real numbers) of the node point. The node indexes must be consecutive; otherwise an error is generated. The node translations must be in the same coordinate system as used by the geometry file. An error is generated if the number of nodes in this file is not equal to the number of nodes in the geometry file.

The FORTRAN code fragment to read this file is:

```
CHARACTER*80 TITLE File title
CHARACTER*3 FTYPE Flle type
INTEGER NNODES Number of nodes
INTEGER NMODES Number of modes
REAL FREQS(1000) Frequency array
REAL MDEL (3,5000) Mode shape array
READ (2,200) TITLE
READ (2,201) FTYPE
200 FORMAT (A80)
201 FORMAT (A3)
READ (2,*) NMODES,NNODES
K = 0
DO 100 I = 1, NMODES
    READ (2,*) N, FREQS (I)
    DO 110 J = 1, NNODES
        K=K + I
        READ (2,*) N, MDEL (1,K), MDEL (2,K), MDEL (3,K)
    CONTINUE
CONTINUE
```


4.3 Delta History Files

An example file is presented on page $5-13$. The first line is an $80-$ character title which is ignored by the program. The second line must contain the file type "DHY" in the first three columns. The third line must contain the integer number of frames in the history followed by the integer number of nodes in the corresponding geometry file. The fourth line must contain the real number of frames per second (FPS) the history represents. The FPS is displayed as a label on the screen and serves only as a guide for determining the display real time ratio. This value should be 0.0 if the FPS is unknown or undefined.

A FORTRAN "implied do loop" is used to read the rest of the file so that the lines or records can be any length desired but the real number delta values must appear in the correct order. The following pseudocode defines the order of the delta values:

```
do i=1 to the number of frames
    do j=1 to the number of nodes
        do k = 'x' to 'y'
            write the delta value for frame i, node j, coordinate k
        end do
    end do
end do
```

The delta values are the absolute translation of each node point relative to the undeformed geometry. The number of nodes in this file must be equal to the number of nodes in the geometry file and the node translations must be in the same coordinate system used by the geometry file.

The FORTRAN code fragment to read this file is:

```
\begin{tabular}{lll} 
CHARACTER*80 & TITLE & File title \\
CHARACTER*3 & FTYPE & File type \\
INTEGER & NNODES & Number of nodes \\
INTEGER & NFRAMS & Number of frames \\
REAL & FPS & Number of frames per second \\
REAL & DELTAS \((3,500000)\) & Delta array
\end{tabular}
READ (2, 200) TITLE
READ (2,201) FTYPE
200 FORMAT (A80)
201 FORMAT (A3)
READ (2,*) NFRAMS,NNODES
READ (2,*) FPS
INUM = NFRAMS * NNODES
READ (2,*) ((DELTAS (K,J), K=1, 3), J = 1, INUM)
```


4.4 Color History Files

Example files are presented on pages 5-11 and 5-16. The first line is an 80 -character title which is ignored by the program. The second line must contain the file type "CHY" in the first three columns. The third line must contain the integer number of frames in the history followed by the integer number of elements in the corresponding geometry file. The fourth line must contain the real number of frames per second (FPS) the history represents. The FPS is displayed as a label on the screen and serves only as a guide for determining the display real time ratio. This value should be 0.0 if the FPS is unknown or undefined. The fifth line must contain the left justified characters of the color value units (maximum of ten characters) starting in column one. The units are not used in any calculations, but is displayed at the bottom of the labeled color bar.

A FORTRAN "implied do loop" is used to read the rest of the file so that the lines or records can be any length desired but the real number color values must appear in the correct order. The following pseudocode defines the required order of the color values:

```
do i=1 to the number of frames
        do j=1 to the number of elements
            write the color value for frame i, element j
        end do
end do
```

The color values may span any range of real numbers desired. FLEXAN determines the maximum and minimum color values and maps the range to the color system of the PS300. The number of geometry elements in this file must be equal to the number of geometry elements in the geometry file.

The FORTRAN code fragment to read this file is:

```
                CHARACTER*80 TITLE File title
                CHARACTER*3 FTYPE File type
                CHARACTER*10 UNITS Color units
                INTEGER NELEM Number of elements
                INTEGER NFRAMS Number of frames
                REAL FPS COLORS (500000)
                Number of frames per second
                                    Colors array
    READ (2,200) TITLE
    READ (2,201) FTYPE
    FORMAT (A80)
    FORMAT (A3)
    READ (2,*) NFRAMS,NELEM
    READ (2,*) FPS
    READ (2,202) UNITS
202 FORMAT (A10)
    INUM = NFRAMS * NELEM
    READ (2,*) (COLORS (J), J = 1, INUM)
```


4.5 Mode History Files

An example file is presented on page 5-12. The first line is an 80character title which is ignored by the program. The second line must contain the file type "MHY" in the first three columns. The third line must contain the integer number of frames in the history followed by the integer number of modes in the corresponding mode shape file. The fourth line must contain the real number of frames per second (FPS) the history represents. The FPS is displayed as a label on the screen and serves only as a guide for determining the display real time ratio. This value should be 0.0 if the FPS is unknown or undefined.

A FORTRAN "implied do loop" is used to read the rest of the file so that the lines or records can be any length desired but the real number mode contribution values must appear in the correct order. The following pseudo-code defines the order of the values:

```
do i = 1 to the number of frames
    do j=1 to the number of modes
        write the mode contribution value for frame i , mode j
    end do
end do
```

The values are the contribution of each mode for each frame. Typically the values range from 0.0 to 1.0. The number of modes in this file must be equal to the number of modes in the mode shape file.

The FORTRAN code fragment to read this file is:

```
CHARACTER*80 TITLE File title
CHARACTER*3 FTYPE Flle type
INTEGER NMODES Number of modes
INTEGER NFRAMS Number of frames
REAL FPS Number of frames per second
REAL DAMPS(500000) Mode history damping array
READ (2,200) TITLE
READ (2,201) FTYPE
200 FORMAT (A80)
201 FORMAT (A3)
READ (2,*) NFRAMS,NMODES
READ (2,*) FPS
INUM = NFRAMS * NMODES
READ (2,*) (DAMPS (J), J = 1, INUM)
```


4.6 Rotation History Files

An example file is presented on page $5-15$. The first line is an 80character title which is ignored by the program. The second line must contain the file type "RHY" in the first three columns. The third line must contain the integer number of frames in the history followed by the integer number of rotating part types in the corresponding geometry file. The fourth line must contain the real number of frames per second (FPS) the history represents. The FPS is displayed as a label on the screen and serves only as a guide for determining the display real time ratio. This value should be 0.0 if the FPS is unknown or undefined.

A FORTRAN "implied do loop" is used to read the rest of the file so that the lines or records can be any length desired but the real number rotation values must appear in the correct order. The following pseudocode defines the order of the values:
do $i=1$ to the number of frames
do $j=1$ to the number of rotating part types write the angle for frame i, rotating part type j
end do
end do
The values are the absolute rotation angle in degrees of each rotating part type relative to the undeformed geometry.

The FORTRAN code fragment to read this file is:

```
CHARACTER*80 TITLE Flle tltle
CHARACTER*3 FTYPE File type
INTEGER NRTYPS Number of rotating part types
INTEGER NFRAMS Number of frames
REAL FPS Number of frames per second
REAL ROTS (500000) Rotatlons array
200 FORMAT (A80)
201 FORMAT (A3)
READ (2,*) NFRAMS,NRTYPS
READ (2,*) FPS
INUM = NFRAMS * NRTYPS
READ (2,*) (ROTS (J), J = 1, INUM)
```


5.0 Examples

This section presents six example FLEXAN runs. The examples use the sample data files provided on the FLEXAN distribution tape. Fragments of these files are presented in section 5.7. Five of the examples use a simplified antenna structure under study at NASA Langley Research Center. The last example is a simplified "generic" satellite model with rotating solar arrays. Unfortunately the PS300 screen pictures in this document are black and white. The undeformed geometries are displayed in black (white on the PS300). The animation frame geometries are also shown here in black (red or green on the PS300). Color history animations are shown here with all black elements and a solid black color bar. The PS300 uses "depth cueing"; objects grow dimmer as the object's distance increases from the eye. Depth cueing is not preserved in these pictures.

Each of the following example runs contains a description followed by the corresponding command line and then a PS300 screen picture. Each animation window shown here displays the frame number of the "still" picture from the animation. The "Frames/sec" section shows the FPS of the dataset and the current display FPS selected by dial number 8 on the PS300.

5.1 Example 1-Geometry

The screen picture below shows FLEXAN's ability to display a simple undeformed geometry with no animation. The geometry file is "TEST.GEO" in the current default directory.

\$ FLEXAN TEST

Scole Model - Analytical

5.2 Example 2 - Node \& Element Numbers

The screen picture below displays FLEXAN's ability to display node numbers and element numbers. The FLEXAN command is the same as example 1. The function keys for node and element numbers were toggled to make this picture.

\$ FLEXAN TEST

Scole Model - Analytical

5.3 Example 3-Mode Animation

The screen picture below displays frame 21 of a mode animation of mode \#2 with an amplitude scale factor of 3.4. The undeformed geometry is also shown. The number of frames per cycle is 25 .

```
$ FLEXAN/FRAMES=25 -
    TEST/MS=TEST .MOD/MODE=2/AMP=3.4
```


5.4 Example 4 - Mode History Animation

The screen picture below displays frame 5 of a mode history animation with an amplitude scale factor of 3.2. The undeformed geometry is also shown. The number of frames defaults to the number of frames in the mode history file; 600.
\$ FLEXAN TEST/MS=TEST/MH=TEST/AMP=3.2

5.5 Example 5-Delta / Color History Animation

The screen picture below displays frame 21 of a two dataset animation with a superposition window. The number of frames is chosen to be 400. Dataset one is a delta history animation with an amplitude scale factor of 3.2. Dataset two is a color history and a delta history animation with a scale factor of 4.5.

```
$ FLEXAN/FRAMES=400/SUPER
    TEST/DH=TEST/AMP=3.2
    TEST/DH=TEST/CH=TEST/AMP=4.5
```


5.6 Example 6 - Rotation / Color History Animation

The screen picture below displays frame 3 of a rotation and color history animation. Note the inheritance of file names from the geometry file name. The files read are GEN.GEO, GEN.RHY, and GEN.CHY.

\$ FLEXAN GEN/RH/CH

5.7 Example Input Files

Fragments from each of the input files for the previous examples are listed below. The size of these files prevents complete file listings, but the distribution tape does contain the actual files.

TEST.GEO

Scole Model - Analytical GEO

00132

	1	. 00
	2	. 00
	3	. 00
	4	. 00
	5	. 00
	6	. 00
	7	. 00
	8	. 00
	9	. 00
	10	. 00
	11	. 00
	12	. 00
	13	. 00
	14	24.00
	15	36.00
	16	24.00
	17	. 00
	18	-12.00
	19	12.00
	20	. 00
	21	4.00
	22	. 00
	23	4.00
	24	5.00
	25	-6.000
	26	. 00
	27	-4.50
1	2	3
2	3	4
3	4	5
	-	
	-	
30	25	13
31	26	13
32	27	13

32
$\begin{array}{lll}.000 & .000 & -150.000 \\ .000 & .000 & -154.750\end{array}$
$.000 \quad .000-166.750$
$.000 \quad .000-178.750$
$.000 \quad .000-190.750$
$.000 \quad .000-202.750$
$.000 \quad .000-214.750$
000 . $000-226.750$
$.000 \quad .000-238.750$
$.000 \quad .000-250.750$
$.000 \quad .000-262.750$
$000 \quad .000-274.750$
000 . $000-275.800$
$-.005-275.800$
$20.780-275.800$
$41.565-275.800$
$41.565-275.800$
$20.780-275.800$
$20.780-275.800$
$4.000-191.000$
$.000-191.000$
$4.000-237.800$
$.000-237.800$
$8.656-275.800$
$.000-275.800$
$-6.000-275.800$
$-4.500-275.800$

TEST.MOD

DATA FROM SPARKS DATABASE

 MOD| | | 27 | |
| :---: | :---: | :---: | :---: |
| 1 | . 443 | | |
| 1 | . $00000 \mathrm{E}+00$ | . $00000 \mathrm{E}+00$ | . $00000 \mathrm{E}+00$ |
| 2 | -. $25004 \mathrm{E}-05$ | -. 41963E-05 | -. $14811 \mathrm{E}-08$ |
| 3 | -. 29074E-01 | -. $48794 \mathrm{E}-01$ | -. $47036 \mathrm{E}-06$ |
| 4 | -. $10986 \mathrm{E}+00$ | $-.18437 \mathrm{E}+00$ | -. 93924E-06 |
| 5 | -. $23389 \mathrm{E}+00$ | -. 39251E+00 | -. 14081E-05 |
| 6 | -. $39390 \mathrm{E}+00$ | -. 66104E+00 | -. 18620E-05 |
| 7 | -. $58347 \mathrm{E}+00$ | -. $97916 \mathrm{E}+00$ | -. $23159 \mathrm{E}-05$ |
| 8 | -. $79690 \mathrm{E}+00$ | -. $13373 \mathrm{E}+01$ | -. $27697 \mathrm{E}-05$ |
| 9 | -. 10291E+01 | -. $17270 \mathrm{E}+01$ | -. 32236E-05 |
| 10 | -. $12754 \mathrm{E}+01$ | -. $21403 \mathrm{E}+01$ | -. 36523E-05 |
| 11 | -. $15315 \mathrm{E}+01$ | -. 25701E+01 | -. 40811E-05 |
| 12 | -. $17934 \mathrm{E}+01$ | -. 30097E+01 | -. 45098E-05 |
| 13 | -. $18165 \mathrm{E}+01$ | -. 30484E+01 | -. $45101 \mathrm{E}-05$ |
| 14 | -. $18165 \mathrm{E}+01$ | -. 30477E+01 | -. 52864E+00 |
| 15 | -. 18171E+01 | -. $30473 \mathrm{E}+01$ | -. $15647 \mathrm{E}+01$ |
| 16 | -. $18177 \mathrm{E}+01$ | -. 30477E+01 | -. $20708 \mathrm{E}+01$ |
| 17 | -. 18177E+01 | -. 30484E+01 | -. $15401 \mathrm{E}+01$ |
| 18 | -. $18171 \mathrm{E}+01$ | -. 30487E+01 | -. 50406E+00 |
| 19 | -. $18171 \mathrm{E}+01$ | -. 30480E+01 | -. $10341 \mathrm{E}+01$ |
| 20 | -. $23724 \mathrm{E}+00$ | -. $39752 \mathrm{E}+00$ | -. 80074E-01 |
| 21 | -. $23687 \mathrm{E}+00$ | -. 39715E+00 | -. 47715E-01 |
| 22 | -. $10104 \mathrm{E}+01$ | -. 16951E+01 | -. $13424 \mathrm{E}+00$ |
| 23 | -. 10101E+01 | -. $16947 \mathrm{E}+01$ | -. 79998E-01 |
| 24 | -. $18168 \mathrm{E}+01$ | -. 30482E+01 | -. $42993 \mathrm{E}+00$ |
| 25 | $-.18165 \mathrm{E}+01$ | -. 30485E+01 | . $13176 \mathrm{E}+00$ |
| 26 | -. 18163E+01 | -. $30484 \mathrm{E}+01$ | . $22112 \mathrm{E}+00$ |
| 27 | -. 18164E+01 | -. 30485E+01 | . $26466 \mathrm{E}+00$ |
| 2 | . 447 | | |
| 1 | . $00000 \mathrm{E}+00$ | . $00000 \mathrm{E}+00$ | . $00000 \mathrm{E}+00$ |
| 2 | . $42773 \mathrm{E}-05$ | -. 25489E-05 | -. 16861E-09 |
| 3 | . 49685E-01 | -. 29608E-01 | -. 53548E-07 |

TEST.CHY				
TEST COLORS				
CHY				
500 32				
20.1				
K				
4.300000	7.600000	10.90000	14.20000	17.50000
20.80000	24.10000	27.40000	30.70000	34.00000
37.30000	40.59999	43.89999	47.19999	50.49999
53.7999	57.09999	60.39999	63.69999	66.99999
7.30000	73.60000	76.90000	80.20000	83.50001
86.80001	90.10001	93.40002	96.70002	100.0000
103.3000	106.6000	109.9000	113.2000	116.5000
119.8000	123.1000	126.4000	129.7000	133.0000
136.3000	139.6001	142.9001	146.2001	149.5001
152.8001	156.1001	159.4001	162.7001	166.0001
169.3001	172.6001	175.9001	179.2001	182.5001
185.8001	189.1001	192.4001	195.7001	199.0001
202.3001	205.6001	208.9001	212.2001	215.5001
218.8001	222.1001	225.4001	228.7001	232.0001
235.3001	238.6001	241.9001	245.2001	248.5002
251.800	255.1002	258.4001	261.7001	265.0001
268.3001	271.6001	274.9001	278.2001	281.5001
284.8000	288.1000	291.4000	294.7000	298.0000
301.3000	304.6000	307.9000	311.2000	314.4999
317.7999	321.0999	324.3999	327.6999	330.9999
334.29999	337.5999	340.8998	344.1998	347.4998
350.7998	354.0998	357.3998	360.6998	363.9998

TEST.MHY		
TEST mode history		
60010		
20.1		
5.00000	0.00000	0.00000
0.00000	0.00000	0.00000
0.00000	0.00000	0.00000
0.00000		
4.99227	0.00000	0.00000
0.00000	0.00000	0.00000
0.00000	0.00000	0.00000
0.00000		
4.96941	-0.00008	-0.00021
-0.00011	-0.00002	-0.00006
0.00004	-0.00005	0.00000
-0.00009		
4.93181	-0.00033	-0.00078
-0.00041	-0.00009	-0.00020
0.00010	-0.00008	0.00000
-0.00011		
4.87961	-0.00073	-0.00152
-0.00087	-0.00017	-0.00032
0.00011	-0.00004	0.00002
-0.00002		
4.81295	-0.00130	-0.00227
-0.00142	-0.00024	-0.00035
0.00006	-0.00002	0.00002
-0.00007		
4.73206	-0.00202	-0.00306
-0.00200	-0.00029	-0.00026
0.00002	-0.00006	0.00000
-0.00011		
4.63717	-0.00290	-0.00407
-0.00252	-0.00029	-0.00011
0.00004	-0.00006	-0.00001
-0.00004		
4.52859	-0.00394	-0.00540
-0.00292	-0.00026	-0.00001
0.00008	-0.00003	0.00000
-0.00005		
4.40666	-0.00513	-0.00700
-0.00314	-0.00021	-0.00002
0.00008	-0.00004	0.00000
-0.00010		
4.27175	-0.00646	-0.00882
-0.00316	-0.00014	-0.00014
0.00005	-0.00006	0.00000
-0.00006		

```
TEST.DHY
SCOLE DELTA HISTORY FILE NUMBER 1
DHY
100 27
20.1
    -4.3500
            -6.4500
            -6.4500
            -6.4500
            21.0800
            16.7300
            -4.3500
            -6.4500
            12.3800
        8.0300
        3.6800
            -0.6700
            -5.0200
            -9.3700
            -13.7200
            -18.0700
                            -18.0700
                            -4.3500
                    -4.3500
            -22.8100
            -22.8100
            -22.8100
            8.70
            -6.4500
            4.3500
            1.0900
                            -22.8100
                            -4.3500 8.6200 -22.8100
                            -8.7000 1.0900 -22.8100
        0.0000 1.0900 -22.8100
    -4.3500
        -5.0000
            22.8100
            7.9400
            7.9400
            -9.0300
            -9.0300
            -22.8100
            -22.8100
            -22.8100
            -22.8100
            22.8100
            21.0800
            16.7300
            12.3800
            8.0300
            3.6800
            -0.6700
            -5.0200
            -9.3700
            -13.7200
            -18.0700
            7.9400
            -9.0400
            -9.0300
            -22.8400
            -22.8400
            -6.6600 -6.6700 -22.8000
            -4.4800 -8.8500 -22.7900
            -6.1100 -8.3000 -22.7900
            -4.3500 -6.4500 22.8100
```

GEN.GEO					
Generic Satellite					
GEO					
4670					
4	2	1	20		
1	-5	5	0		
2	-5	5	-5		
3	-5	0	0		
4	-5	0	-5		
	-				
44	-15	-10	-2. 5		
45	-12.5	-2	-2.5		
46	-12.5	7	-2.5		
1	1	5			
2	2	6			
3	5	7			
	-				
	-				
68	43	44			
69	44	41			
70	45	46			
1	1	21	36		
1	1	7.5	2.5	-2.5	
2	1	37	52		
1	1	-7.5	2.5	-2.5	
3	2		53	61	
2	2		12.5	2.5	-2.5
1	1		7.5	2.5	-2.5
4	2		62	70	
2	2		-12.5	2.5	-2.5
1	1		-7. 5	2.5	-2.5

GEN.RHY

Generic satellite rotation history
RHY
802
.001
-7.820000

GEN.CHY

Generic Satellite Temperature Data 1 orbit CHY
18070
0.001

K
$0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03$
$0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03 \quad 0.25830 \mathrm{E}+03$
$0.22650 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+030.25860 \mathrm{E}+030.17010 \mathrm{E}+03$
$0.25860 \mathrm{E}+030.17010 \mathrm{E}+030.25800 \mathrm{E}+030.25800 \mathrm{E}+030.25800 \mathrm{E}+03$
$0.25800 \mathrm{E}+030.23780 \mathrm{E}+030.25830 \mathrm{E}+03 \quad 0.22650 \mathrm{E}+030.25830 \mathrm{E}+03$
$0.22650 \mathrm{E}+030.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03$
$0.25800 \mathrm{E}+030.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03$
$0.25830 \mathrm{E}+030.22650 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+030.25860 \mathrm{E}+03$
$0.17010 \mathrm{E}+030.25860 \mathrm{E}+030.17010 \mathrm{E}+030.25800 \mathrm{E}+030.25800 \mathrm{E}+03$
$0.25800 \mathrm{E}+030.25800 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03 \quad 0.25830 \mathrm{E}+030.22650 \mathrm{E}+03$
$0.25830 \mathrm{E}+03 \quad 0.22650 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03$
$0.17010 \mathrm{E}+030.25800 \mathrm{E}+030.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+030.25800 \mathrm{E}+03$
$0.23780 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+03$
$0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03$
$0.23780 \mathrm{E}+030.22650 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+030.17010 \mathrm{E}+03$
$0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+030.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03$
$0.25800 \mathrm{E}+030.23780 \mathrm{E}+030.25830 \mathrm{E}+030.22650 \mathrm{E}+03 \quad 0.25830 \mathrm{E}+03$
$0.22650 \mathrm{E}+030.25860 \mathrm{E}+030.17010 \mathrm{E}+030.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03$
$0.23780 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03 \quad 0.23780 \mathrm{E}+03 \quad 0.25280 \mathrm{E}+03$
$0.25280 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03$
$0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+030.25830 \mathrm{E}+030.22770 \mathrm{E}+030.25510 \mathrm{E}+03$
$0.22770 \mathrm{E}+030.25280 \mathrm{E}+030.25280 \mathrm{E}+030.25800 \mathrm{E}+030.25800 \mathrm{E}+03$
$0.17010 \mathrm{E}+03 \quad 0.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+030.25860 \mathrm{E}+03 \quad 0.24190 \mathrm{E}+03$
$0.24190 \mathrm{E}+03 \quad 0.25810 \mathrm{E}+03 \quad 0.25390 \mathrm{E}+03 \quad 0.25280 \mathrm{E}+03 \quad 0.25280 \mathrm{E}+03$
$0.25800 \mathrm{E}+03 \quad 0.25800 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+030.25860 \mathrm{E}+03 \quad 0.17010 \mathrm{E}+03$

6.0 Hints and Final Comments

FLEXAN is a design tool to be used in conjunction with analytical computer programs and/or experimental data produced from physical devices such as laboratory instruments. In many applications, very large amounts of data may need to be animated. FLEXAN's FORTRAN array sizes are installation dependent but geometries on the order of 500 nodes and elements are acceptable.

PS300 workstations are configured with varying amounts of main memory and the systems will usually crash if memory is exhausted. The examples presented in this document were run on a four megabyte PS390. The following suggestions may help prevent memory problems:

In general, geometries should be as simple as possible. Try to keep the number elements less than 200.

The maximum number of animation frames is 9999 . Two dataset mode or delta history animations of 1200 frames have been performed on a PS390 with four megabytes of memory.

Color history animations require large amounts of memory. Try to keep the number of animation frames below 100 for most color history animations.

Avoid two dataset animations with very large geometries or color history animations.

The superposition window in two dataset animations uses additional memory; avoid using it for large dataset animations.

References

1. Foley, J. D. ; Van Dam, A. : Fundamentals of Interactive Computer Graphics, Addison Wesley, 1982.
2. "Guide to Programming on VAXNMS (FORTRAN Edition)", Order No. AA-Y503A-TE, Version 4.0, Digital Equipment Corp., September 1984.
3. "PS390 Document Set (E\&S \#901194-400)", Version A3.V01, Evans \& Sutherland Computer Corp. P. O. Box 8700, 580 Arapeen Dr. Salt Lake City, Utah 84108.

NASA FORM 1626 OCT 86

[^2]
[^0]: 1 Refer to reference 1 of this document for a complete discussion of matrix rotation transformations.

[^1]: /AMP = Amplitude-scale-factor
 Specifies an amplitude scale factor (positive real number) for mode, mode history, and delta history animations.

[^2]: For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

