Possible Detection of a Pair-Instability Supernova in the Modern Universe, and Implications for the Evolution of the First Stars

Nathan Smith UC Berkeley

> <u>Collaborators on SN2006gy</u> **UC Berkeley:** A. Filippenko, W. Li, R. Foley, D. Pooley, R. Chornock, J. Silverman, J. Bloom, C. Hansen **U Texas:** C. Wheeler, R. Quimby

POW

Death of an extremely massive star like Eta Carinae

Smith et al. 2007, ApJ, 666, in press (astro-ph/0612617)

SN2006gy:

Type IIn in NGC1260 (S0/Sa at 73 Mpc)

Total $E_{rad} > 10^{51}$ ergs ... requires either:

1. Star needs Mdot \ge 0.5 M_{\odot}/yr if CSM int.

2. 10-20 M_{\odot} of $^{56}\rm Ni$

 V_{exp} = 4,000 km/s (slow...massive H envelope) Massive circumstellar nebula (M = 10 M_o) -- or wind with Mdot<1-2×10⁻² M_o/yr V_{exp} = 200 km/s (not a RSG! More like an LBV)

Soft X-rays indicate CS interaction

- ---- indicate progenitor Mdot=1-5×10⁻⁴ M_{\odot}/yr
- ---- far too weak to account for L_{rad} .
- ---- SOFT X-rays are not heavily absorbed

Death of an extremely massive star like Eta Carinae

Smith et al. 2007, ApJ, 666, in press (astro-ph/0612617)

SN2006gy:

Type IIn in NGC1260 (S0/Sa at 73 Mpc)

Total $E_{rad} > 10^{51}$ ergs ... requires either:

- 1. Star needs Mdot $\ge 0.5 \text{ M}_{\odot}/\text{yr}$ if CSM int.
- 2. 10-20 M_{\odot} of ^{56}Ni

 V_{exp} = 4,000 km/s (slow...massive H envelope) Massive circumstellar nebula (M = 10 M_{\odot}) -- or wind with Mdot<1-2×10⁻² M_{\odot}/yr V_{exp} = 200 km/s (not a RSG! More like an LBV)

Soft X-rays indicate CS interaction

- ---- indicate progenitor Mdot=1-5×10⁻⁴ M_{\odot}/yr
- ---- far too weak to account for L_{rad}.
- ---- SOFT X-rays are not heavily absorbed

For CSM hypothesis:

 L_{rad} requires Mdot > 0.5 M_o/yr

Same as Eta Car's average Mdot during 19th century LBV eruption.

Death of an extremely massive star like Eta Carinae

Smith et al. 2007, ApJ, 666, in press (astro-ph/0612617)

SN2006gy:

Type IIn in NGC1260 (S0/Sa at 73 Mpc)

Total $E_{rad} > 10^{51}$ ergs ... requires either:

1. Star needs Mdot \ge 0.5 M_{\odot}/yr if CSM int.

2. 10-20 M_{\odot} of ^{56}Ni

 V_{exp} = 4,000 km/s (slow...massive H envelope) Massive circumstellar nebula (M = 10 M_o) -- or wind with Mdot<1-2×10⁻² M_o/yr V_{exp} = 200 km/s (not a RSG! More like an LBV)

Soft X-rays indicate CS interaction

- ---- indicate progenitor Mdot=1-5×10⁻⁴ M_{\odot}/yr
- ---- far too weak to account for L_{rad} .
- ---- SOFT X-rays are not heavily absorbed

Death of an extremely massive star like Eta Carinae

Smith et al. 2007, ApJ, 666, in press (astro-ph/0612617)

SN2006gy:

Type IIn in NGC1260 (S0/Sa at 73 Mpc)

Total $E_{rad} > 10^{51}$ ergs ... requires either:

1. Star needs Mdot \ge 0.5 M_{\odot}/yr if CSM int.

2. 10-20 M_{\odot} of ^{56}Ni

 V_{exp} = 4,000 km/s (slow...massive H envelope) Massive circumstellar nebula (M = 10 M_o) -- or wind with Mdot<1-2×10⁻² M_o/yr V_{exp} = 200 km/s (not a RSG! More like an LBV)

GEE, WHY WAS GY SO BRIGHT?

Two plausible options for the power source... ...both require a very massive star with H envelope intact.

ENGINE:	PROs:	CONs:
CSM Interaction	We see CSM Interaction in IIn spectrum and X-rays	X-rays: 1000x too weak
Shock runs into 10s of M_{\odot}		narrow H α : 50x too weak
KE I Light	Could work if star had Eta Car-like outburst 10-20 yr before final SN	little/no deceleration
(LBV eruption, PPI, Type IIa)		light curve and spectrum unlike almost any other IIn
PISN need 10-20 M_{\odot} of ⁵⁶ Ni	Slow rise, low V _{Exp} very massive envelope	Surprising
	Slow decay, long duration	÷
	CSM interaction Mdot from X-rays and H α are plausible (normal LBV wind)	

How can you get a PISN and Type IIn in the modern Universe? Star needs to retain massive H envelope at death.

...But in the modern Universe, massive stars are supposed to lose mass through winds and become WR stars before they die.

How can you get a PISN and Type IIn in the modern Universe? Star needs to retain massive H envelope at death.

...But in the modern Universe, massive stars are supposed to lose mass through winds and become WR stars before they die.

> Instead, recent observations indicate that because of clumping in hot-star winds, O-star mass-loss rates are factors of 3-10 lower. Fullerton et al. 2006

er et al 2003 olustetal. 2004 Crowther et al., etc. *Note:* The so-called

et al 2006

"standard" mass loss rates are those given by Nieuwenhuijzen & de Jager (1990), derived from $H\alpha$ and radio continuum assuming homogeneous winds.

But..."standard" mass-loss rates have been *misoverestimated*.

This leaves us with two plausible alternatives...

OPTION 1: Giant eruptions of LBVs like Eta Carinae make up the difference.

(see Smith & Owocki 2006)

This leaves us with two plausible alternatives...

OPTION 1: Giant eruptions of LBVs like Eta Carinae make up the difference. or... (see Smith & Owocki 2006)

OPTION 2: Even LBV mass-loss is insufficient, and the star explodes "prematurely" without shedding its H envelope.

no problem because

they become RSGs.

BOTH are probably right, depending on initial mass...

At solar metallicity, MS mass loss is not so different from Pop III stars!

