Variation in Flame Surface Density in Acoustically Perturbed Flames

Albert Ratner

Mechanical and Industrial Engineering University of Iowa

11th International Workshop on Premixed Turbulent Flames August 9- 10, 2008 *Montreal, Canada*

University of Iowa

University of Iowa – Flood of June 2008

Outline

INIVERSITY

- □ Motivation Why are we interested?
- Methodology How is ours different?
- Experimental system
 - Chamber, burner, & imaging system
- Results and analysis
 - Flame Surface Density assessment
 - Analysis of physical mechanisms
- Conclusions

Motivation – Continuing Issues in Gas Turbine Power Systems

- Common problem: many combustion systems exhibit instabilities
- Instabilities may arise out of inadequate design or off-design operation
- Combustion instability is a result of interactions between system acoustics, system flow topology, and energy/heat release
- Instability can generate acoustic waves strong enough disturb the flow field, increase wall heat transfer, induce system vibration, and even catastrophic failure

Methodology

Objective

UNIVERSITY

- Examine the acoustics/combustion interaction for lean premixed low swirl stabilized flames
- Assess flame/flow coupling
- Observe changes in the relative importance of various effects as scaling parameters are varied

Technique

- Chamber-based (downstream of flame) acoustic driving
 - Minimizes the effect of mass/turbulence intensity oscillations at the burner exit...
- PLIF imaging:
 - Phase-resolved data acquisition followed by phase-dependent resorting...

Outline

INIVERSITY

- □ Motivation Why are we interested?
- Methodology How is ours different?
- Experimental system
 - Chamber, burner, & imaging system
- Results and analysis
 - Flame Surface Density assessment
 - Analysis of physical mechanisms

Conclusions

Experimental System - Chamber

- Stainless Steel Chamber
 - Diameter 12", height: 6'
- Optical imaging windows
- Side access ports

Experimental System – Chamber & Burner

G: Fuel/Air Inlets

H: Nitrogen Co-flow

flow divergence for stabilization

THE UNIVERSITY

provided by Dr. Robert Cheng of LBNL

123

Pressure fluctuations

 \square In general, P_{rms} is about 0.05%. But it also depends on excitation frequency

Experimental System - Imaging

□ Laser system

University

- Nd:YAG pump laser, dye laser, frequency doubler
- Sheet-forming optics

Camera system

- ICCD camera
- View field: 8.9cm*8.9cm (512*512))
- Excitation detection
 - 283 nm pump beam with 308-350 nm detection

Simplified schematic view of imaging system

Experimental Conditions

Reactants

UNIVERSITY

- fuel: methane
- oxidizer: air
- equivalence ratio: $\Phi = 0.5$
- □ Flow rates:
 - air: 100 slpm, methane: 5 slpm
 - reactants: 3.48m/s (outlet of the burner)
- Enforced acoustics
 - frequency: 22-370Hz
 - amplitude: ~0.05%
- □ Chamber bulk pressure:
 - P= 1 5 bar

OH-PLIF images

1 bar

instantaneous flame(OH-PLIF), $\phi = 0.59$, 1bar, 85Hz

Width (Cm)

1.8 bar instantaneous flame(OH-PLIF), $\phi = 0.59$, 1.8bar, 85Hz

Width(cm)

Flame Intensity Distribution $\phi = 0.59$, p =20psi, 85Hz

4000

3000

2000

1000

Instantaneous OH-PLIF images

Mean OH-PLIF images

PLIF/Chemiluminescence Comparison

Instantaneous flame from OH-PLIF

> Instantaneous flame from OH*

Visual image from ordinary camera

Averaged flame from OH-PLIF

THE UNIVERSITY

Averaged flame from OH*

Outline

INIVERSITY

- □ Motivation Why are we interested?
- Methodology How is ours different?
- Experimental system
 - Chamber, burner, & imaging system
- Results and analysis
 - Flame Surface Density assessment
 - Analysis of physical mechanisms
- Conclusions

Rayleigh Index Distribution from OH-PLIF

HE UNIVERSITY

Rayleigh Index at the center plane of the flame

Flame Surface Density vs. Flame Intensity

□ Flame surface density is approximated as: *total flame length/ area*

- □ OH intensity is : *sum of OH/ area*
- Calculated in Matlab

UNIVERSITY

Flame Surface Density vs. Flame Intensity (1 bar)

- □ Correlation of FSD and OH at 1 bar
 - Block 1: 0.94

THE UNIVERSITY

Flame Surface Density vs. Flame Intensity (1.5 bar)

- □ Correlation of FSD and OH at 1.5 bar
 - Block 1: 0.92

The University

Block 2: 0.91

Flame Surface Density with Increasing Pressure

HE UNIVERSITY

- Flame Surface Density increases with increasing pressure even while Reynolds number is held constant
- Increases are most likely due to increases in turbulence intensity

Natural Instability Growth

- Normal operation involves controlling the pressure amplitude by increasing or decreasing the driving power to hold the amplitude constant
- As a test, constant power was applied at various frequencies
- At 125 Hz, the system slowly developed an unstable mode that grew the pressure amplitude, caused the flame to move upstream, and the flame to extinguish after some time
- It was found that there is a minimum driving pressure to establish the shear-layer vortex street that then can lead to this unstable mode

Effect of Pressure Oscillation Amplitude

 The pressure variation p'/P has to be more than 0.04% to trigger coupling

INIVERSITY

- Between 0.04% to 0.7%
 perturbation, the distribution of the vortex structure remains unchanged
- □ Above 5%, flash back occurs

Flame Transition

THE UNIVERSITY OF LOWA

Summary

- □ Flame Surface Density is constant across frequencies
- Guessing that the instability is driven by burner heating
- Increase in heat release appears to be driven by an increase in FSD
- □ If that is true, is the FSD increase driven by increasing turbulence intensity coming off of the swirler?
- Flash-back is probably driven by flow reversal driven by velocity oscillations at the burner exit
- □ Why does blowout occur?

Thanks for Listening!

Any Questions?

Analysis

□ Wave equation

$$\nabla^2 \mathbf{p}' - \frac{1}{\mathbf{a}^2} \frac{\partial^2 \mathbf{p}'}{\partial t^2} = -\frac{1}{\mathbf{a}^2} \frac{\mathbf{R}}{\mathbf{C}_{\mathbf{v}}} \frac{\partial \mathbf{q}'}{\partial t} + \mathbf{g}$$

□ Superscript ()' denotes deviations from mean value, *a* is the speed of sound, and the term *g* contains all influences other than that of heat addition.

Energy per cycle

$$\Delta \varepsilon_n(t) = (\gamma - 1) \frac{\omega_n^2}{E_n^2} \int dV \int_t^{t+\tau_n} \frac{p'_n}{\overline{p}} \frac{q'}{\overline{q}} dt$$

n denotes different modes of the acoustic oscillation

Rayleigh Index

$$R_f = \int_0^1 \frac{p'q'}{p_{rms}\overline{q}} d\xi$$

Positive Rf means that pressure oscillation and heat release are in phase and hence the oscillation is enhanced

In reality, a flame could be stable while exhibiting a positive Rayleigh Index since dissipation is not included in this equation

Data Reduction

- □ No clear structure seen from OH concentration
- Pattern appears in Rayleigh Index

Rayleigh Index (1.8bar)

Rayleigh Index at elevated pressures

Shear Layer Forming Vortices

THE UNIVERSITY

A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, ``A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations,'', J. Comp. Phys., 142, pp. 1-46, 1998.

Vortex Behavior

The Rayleigh Index through a line running between the vortex cores is extracted and a curve fit is applied

Rayleigh Index along the structure, 100Hz

Wave number and calculated velocity

 $k = \frac{2\pi}{\lambda} = 258$ ----Wave number $v = \frac{2\pi f}{k} = 2.43m/s$ ---comparable with the fluid velocity

Sensitivity to Swirl Number

Flame with swirl number of 0.5

Flame with swirl number of 0.2

Neither swirl number nor pressure change have a significant impact on the coupling evident in these low swirl flames

THE UNIVERSITY

Net Global Rayleigh Index

- Although there are local negative positive regions, the global Rayleigh index is close to zero
- Similar phenomena is observed for the other pressures tested
- The increase of pressure does affect the coupling but not significant difference observed yet

Coupling Range

□ How to predict the coupling?

Can you easily tie the shear layer instability to jet instability or behavior?
 Are Reynolds number and Strouhal number analyses useful?

U is the inlet velocity $Re = UD \rho / \mu \qquad D \text{ is the burner diameter}$ $St = fD/U \qquad f \text{ is excitation frequency}$

 $\boldsymbol{\mu}$ is the dynamic viscosity of the reactants

Re = 5562 (1bar), f: 55-120Hz, St: 0.27-0.87
Re =7376 (1.8bar), f:22-140Hz, St: 0.23-1.49
Re = 8547 (1bar), f: 22(tested), St: 0.11

Coupling range study

Rayleigh Index Exploration

f=116Hz, Re=7040

- OH concentration changes in a cycle
- **Raleigh** Index distribution doesn't change much in a cycle.

Comparison of Unstructured Flow

□ When the acoustics perturbation and the shear layer are not coupled, there is no clear structures from OH and Rayleigh index.

