
Registered File Support for Critical Operations Files at
SIRTF

G. Turek, T. Handley, J . Jacobson, J. Rector

Infrared Processing and Anslysis Center / SIRTF Science Center
California Institute of Technology, Pasadena, California 91 125

Abstract. The SIRTF Science Center's (SSC) Science Operations Sys-
tem (SOS) has to contend with nearly one hundred critical operations
files via comprehensive file management services. The management is ac-
complished via the registered file system (otherwise known as TFS) which
manages these files in a registered file repository composed of a virtual
file system accessible via a TFS server and a file registration database.
The TFS server provides controlled, reliable, and secure file transfer and
storage by registering all file transactions and meta-data in the file regis-
tration database. An API is provided for application programs to com-
municate with TFS servers and the repository. A command line client
implementing this API has been developed as a client tool. This paper de-
scribes the architecture, current implementation, but more importantly,
the evolution of these services based on evolving community use cases
and emerging information system technology.

1. Introduction

The registered file system (TFS) is based on a client server architecture where
clients are built upon the TFS application program interface, or API. Each
server is connected to a Registered File System composed of a database, where
meta-data is stored, and a file system where files managed by TFS are stored.
The registered file system presents a virtual interface made up of a collection of
file types. File operations (add files, get files, or add or get information about
files) are conducted in the context of a file type. Files types have names, like
1, image", . "ephemerisi', or "cmdCdlV, so one adds an "image" file or one gets
an "ephemeris" file or one lists the "cmdCdl" files. The user does not need to
know the files actual location or its server; the user just needs to know about
file types. TFS is secure, not much may be done unless permission to execute
commands for different file types has been granted.

2. TFS Architectural Overview

Figure 1 shows a federated TFS configuration with two TFS servers in an oper-
ational deployment, there can be many, but, here, two are shown for illustrative
purposes. The system is federated for the two servers manage one or more file
types in common, hence they must cooperate when they make changes. Having

the servers write state information about file changes into the RFS database
accomplishes this cooperation. The configuration as shown has a particular
application. One TFS server supports user connections, while a second per-
forms administration functions that require significant server support in their
own right. File-database synchronization checking and file-integrity checking are
the two administration functions that may require significant server resources so
that running them on user-communities servers might affect performance. One
or more TFS servers manage the file types defined in the Registered File System
database. From a user's point-of-view, there is only one server for TFS service
for the user does not work with servers, only with file types - the mapping be-
tween file types and servers is done in the TFS Domain file. If more servers
are added, and the file types redistributed, the user only need be given a new
Domain file that updated the file type to sever mapping. It is often a good
idea to start with one or two servers and monitor the load on the servers. This
performance information is then used to modify the configuration, adding more
servers as required and redistributing the set of file types across servers so the
best performance is achieved.

2.1. TFS Server

A TFS server has a number of input and output channels as illustrated in Fig.
2. 1/0 channel-related parameters for a TFS server are specified in the server-
Parameters table.

fflUser port: TCP port for new user connections
ffl Admin port: TCP port for new admin connections
ffl Event port: TCP port for out-of-band events
ffl Dynamically assigned client port: established by server's TCP protocol to

service each client
fflFile System: servers can connect to multiple file systems RFS database:

stores server state, configuration and file management information. Each
TFS server has one or more continuously open connections to the RFS
database

ffl Log file: each TFS server has an independent log file
ffl Significant events database: server errors that require immediate notice

are logged in the sigEvents database.

2.2. TFS Clients

Client programs that communicate with TFS servers are built using the TFS
user and administration application program interfaces, (APIs) . The command
line client, tfs, is a command line utility that allows interactive access to the
TFS server. Users log onto the system, and then navigate file types using the
ct (changeType) command. A number of operations are allowed depending on
the user's permissions (read, write, delete). The command line client, tfsAdmin,
is a command line utility that allows interactive access to the TFS server for
administration purposes. Server, file system, user, and database administration
functions are provided. In Figure 1, the tfsAdmin tool is connected to the user
support server for monitoring purposes. Applications implementing the TFS
API obtain connection information from the TFS Domain file. The domain
file maps file types to servers, so it is essential that all applications and user

Figure 1. Federated TFS Configuration

<<server>>
TFS

4

Register FieSystem I

ri 1-1
A A

 server a

b TF6 4

A

tfsAdrmn

1 1 1
1%sApI

I

Application

Dwnain File

Sig Event 4 + log file
datcbase I I

user port --------
a h i n port --------
evert port --------

I
L-------,,-,,-

dyna-nicdly assgned
client port

Figure 2. TFS Input and Output Channels

communities have a complete and up-to-date domain file. Since the contents
of domain files are written in ASCII text, the updated files can be emailed to
user communities. TFS domain files are generated from data held in the RFS
database tables, the servers, and fileTypes being managed within the service.

2.3. Registered File System

The Registered File System consists of two major components: a file system
and a database for storing data about the file system. TFS servers support files
on any type of file system, local, remote, SAN based, NAS based. TFS servers
may share files with other programs that know nothing about TFS; although
it is best that these other programs only read copies of files that are locked in
the file system. It is important to note that a locked file cannot be modified
by any TFS server. Information about the TFS system and the files that it
manages is stored in the Registered File System Database (RFS DB). Each file
type described in the RFS table fileTypes has a file system directory associated
with it, that is, the location of the files of the specified type.

2.4. System Requirements

All TFS Java software requires Java SDK 1.3 or later. Additionally, TFS servers
require:

ffl Java(tm) 2 SDK, Enterprise Edition (1.2.1 or later)
fi Java(tm) Secure Socket Extension (1.0.2 or later)
ffl Java Naming and Directory Interface(tm) (JNDI) File System Service

Provider (1.2 beta 3 or later)
ffl C compiler for J N I functions
fflFile space for TFS distribution (2Mb) and server log files
ffl TFS account with rwx file access privileges on the file system used by files

serviced, and access to the RFS database(s)

3. Implementation at SIRTF

Figure 3 shows the implementation of TFS at the SIRTF Science Center's (SSC).
TFS will manage critical system operations files, data products and archival data
as well as provide a file transfer mechanism between the SOS and the Mission
Operations File System located at JPL.

Figure 3. SIRTF Operations Configuration

