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Abstract 

The construction of reflectionless potentials supporting a prescribed spectrum 

of SchrGdinger bound states is discussed and related to the inverse problem for 

confining potentials. A simple formula is derived for the Jost solution in a one- 

dimensional reflectionless potential with N bound states. This leads to compact 

expressions for the potential and the bound-state wavefunctions in terms of the 

bound-state energies. For symmetric potentials, N-fold product formulas are 

obtained for bound-state wavefunctions and their slopes at the origin. Corres- 

ponding quantities in a confining potential are given by infinite products. 

Comparison of the finite-product and infinite-product expressions allows a 

demonstration of the convergence of the reflectionless results to the confining 

potential results as N + 03. Several sum rules satisfied by the refl ectionless 

potential at the origin are applied to numerical studies of convergence. 
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I. INTRODUCTION 

In a series of recent publications [ l-3 1, several of us proposed a systematic 

procedure for using bound-state information to generate a sequence of approxima- 

tions to a confining potential. The same procedure also yields approximations to 

the Schrodinger wavefunctions. In [ 1 ] the convergence of approximations to 

symmetric confining potentials in one dimension was studied numerically, with 

encouraging results. The closely-related problem of approximating a central 

potential for s-wave bound states in three dimensions was investigated in [ 21. 

There an algorithm was presented for constructing from experimental data 

approximations to the (phenomenological) confining potential which binds massive 

quarks and antiquarks in meson systems such as J/$ (3 GeV/c2) and T (10 GeV/c2). 

These approximations are determined by the masses and leptonic decay widths of 

the observed (spin-triplet) s-wave levels, in addition to two free parameters: the 

mass of the bound quarks and a fictitious continuum energy Eo. The comparison of 

approximate potentials derived separately from information on the $ and T families 

provided evidence that the interquark potential is flavor-independent [ 3 I. We 

report in the present article new rigorous results and improvements in the 

numerical analysis. 

The procedure developed in [ 1 ] involves the approximation of a symmetric, 

confining, one-dimensional potential V(x) = V(-x) by a unique function VN(x;u , Eo) 

which satisfies the following three requirements: 

(i) vN supports precisely N bound states of a system with reduced mass 1-1. 

The bound-state energies coincide with the energies El’ E2,...,EN of the N lowest- 

lying bound states in the potential V(x). 

(ii) Lim 
IxPa 

V,(x) = E,(N). 
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(iii) For a system with reduced mass u 9 the quantum-mechanical scattering 

determined by VN is reflectionless. 

We shall show that in the limit as N becomes infinite the Schrcdinger 

wavefunctions and their first derivatives implied by the reflectionless approxima- 

tion converge to the correct values at x = 0, so long as the ratio Eo(N)/EN 

approaches unity. In the course of this demonstration we shall also derive several 

sum rules that make possible a rather extensive numerical analysis of the large N 

behavior of V,(x = 0). 

To arrive at these results we shall use general analytic properties of reflec- 

tionless systems in one dimension to establish simple closed formulae for the 

approximate wavefunctions and their derivatives at the origin in terms of the 

(even- and odd-parity) bound-state energies. These expressions will then be 

compared with infinite-product representations for the exact wavefunctions and 

their derivatives, obtained directly from analytic properties of the Schradinger 

problem for the full confining potential. 

An analogous approximation procedure was presented in [2] for the problem 

which is of direct physical interest to us: the reconstruction of a confining three- 

dimensional central potential V(r). In this situation we approximate V(r) by a 

unique function V2n(r; U, E,) which meets these requirements: 

6) V2n supports precisely n s-wave bound states of a system with reduced 

mass !J. Their energies and the squares of their normalized wavefunctions at the 

origin coincide with those of the n lowest-lying s-wave bound states in the potential 

V(r). 

(ii) Lim V,,(r) = Eo(2n). 
t-+-a 

(iii) Regarded as a symmetric potential V2n(~) = V,,(-x) in one dimension, the 

approximate potential defines a quantum-mechanical scattering problem with no 

reflection. The s-wave bound states of the central potential are identified with the 

odd-parity bound states of the one-dimensional problem. The normalized 
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wavefunctions at the origin (r = 0) of the three-dimensional s-wave states 

correspond to the slopes at x = 0 of the odd-parity wavefunctions of the one- 

dimensional problem. 

When considered as a one-dimensional potential, V2n also supports even- 

parity bound states which are fictitious from the standpoint of the three- 

dimensional central potential but nevertheless carry computational significance. 

The fictitious bound-state energies may be expressed as nontrivial algebraic 

functions of the s-wave bound-state energies and normalized wavefunctions at the 

origin. As a consequence, it is convenient to cast the three-dimensional problem in 

terms of the corresponding one-dimensional problem. 

Before concluding this brief introduction, we wish to place the present work 

in the context of the general literature’ dealing with the inverse problem of the 

Schrodinger equation. Apparently little attention has been paid to approximation 

schemes of the kind we discuss. However, it has been shown by Grosse and Martin 

[ 41 that the full (infinite) set of s-wave energies and wavefunctions at the origin 

does uniquely determine a confining central potential which is integrable at r = 0. 

They have also presented a systematic procedure for constructing the even-parity 

bound-state energies of the symmetric problem in one dimension from the s-wave 

energies and wavefunctions at the origin of the three-dimensional problem. The 

question of whether all the energies of both parities uniquely characterize a 

symmetric potential in one dimension has been considered by Gasymov and Levitan 

151, by Barcilon [: 6 1, and by Zakhariev, et al. [ 71, among others. The infinite 

product representations we shall derive make more graceful the connection 

between the one-dimensional and three-dimensional problems by expressing the 

derivatives of the odd-parity wavefunctions at x = 0 in terms of the odd-parity and 

even-parity bound-state energies. These representations amount to very natural 

extensions of the developments in ref. [ 5 1. 
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This paper is organized as follows. In the next Section we explain the general 

theory of reflectionless potentials which was set out in [ 1 I, following the ideas of 

Gel’fand and Levitan [ 8 I and of Kay and Moses [ 9 1. In Section III we specialize to 

the symmetric case and derive new expressions for wavefunctions and their 

derivatives at x = 0 and new sum rules for the potential at the origin. In earlier 

work [ 1,2 I the reconstructed potential and its eigenfunctions were expressed in 

terms of determinants which were rather cumbersome in applications of practical 

importance. We have since learned how to bypass these large determinants. In 

addition, our discussion of the symmetric potential problem, which formerly made 

use of properties of soliton solutions of the Korteweg-de Vries equation [ 10 1, has 

been streamlined. The analytic theory of symmetric confining potentials is 

developed in Section IV. There infinite-product representations of the exact 

wavefunctions and their first derivatives at the symmetry point x = 0 are obtained, 

and the convergence of the one-dimensional reflectionless approximations to these 

quantities is established. Section V is devoted to numerical studies of the conver- 

gence of the reconstructed potential at the origin, and to an examination of the 

influence of the parameter Eo. Some applications of the refl ectionl ess approxima- 

tion to quarkonium physics are discussed in Section VI. Section VII contains a 

re’sume’ of our results and some parting remarks on future developments. 
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II. THE GENERAL REFLECTIONLESS POTENTIAL 

In this Section we discuss some properties of the one-dimensional Schriidinger 

equation 

( 
a2 -- 

8X2 
+ V(x) - V(w) (6, I;1 = c2$(x, d 

1 
(2.1) 

in a general reflectionless potential V(x). As in [ 11, we define Jost solutions Q 1 

an.d 4 2 which are analytic in the upper-half c-plane with asymptotic behavior 

Q1(x, 5) fl eiGx asx-bfw 9 (2.2) 

(p2(x, 5) s emigx asx-t -02 . (2.3) 

From these independent solutions to (2.1) we construct a meromorphic function 

I 

a-+ $$ ,(x, 5 )e’< ‘, Im <>O (2.4a) 

dx, ig = 

#,*(x, 5 *)eic ‘, Im<<O (2.4b) 

where a-‘(<) is the conventional transmission coefficient. The discontinuity of Q 

across the real c-axis is proportional to the reflection coefficient and so vanishes 

for the reflectionless case we consider here. 

In El 1 the analytic properties of Q, were used to derive a set of linear 

algebraic equations for the normalized wavefunctions q,(x), n = 1, 2,...,N of the 

bound states supported by the reflectionless potential V(x). This procedure led to 
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explicit formulas for the potential V(x) and the’ wavefunctions $,(x) in terms of 

N x N determinants that depend upon the bound-state energies. Numerical 

evaluation of these determinants is unappealing when N becomes large. However, 

,explicit evaluation of the determinants for small values of N reveals extensive 

cancellations-among terms, out of which emerge simplified expressions for V(x) and 

for q.(x) exhibiting a systematic combinatorial pattern. Here we shall derive a 

general expression for the analytic function Q (x, 3 ) from which the simplified forms 

for V(x) and Q,.,(x) follow directly. 

By definition, Q(x, 3) is meromorphic with poles on the positive-imaginary 

axis at 3 = ilc,, n = 1, 2,..., N corresponding to bound states at En = V(m) -K z. The 

residues of these poles are proportional to the normalized bound-state wavefunc- 

tions. Hence we may express @(x, 3 ) in terms of its singularities [ 1 ] as 

N iKnX 

Q(x, 3) = 1 + i 
c 

‘ne 
‘qx) 9 (2.5) 

n=l 
3 -iKn 

where cn is determined by the asymptotic behavior of the bound-state wavefunc- 

tion, 

JinbJ rest cne 

-Knx 

X+m 
- X,(x) . (2.6) 

Evaluated in the lower half-plane, at 3 = -iK,, the function @(x, 3) is proportional 

to the bound-state wavefunction [ 1 1, 

Nx, 4 Km) = 9 ,(x)/A ,(x1 (2.7) 

Combining eqns. (2.5) and (2.7), we obtain a system of N linear equations for the N 

wavefunctions $n(x), which may be represented as 



10 FERMILAB-Pub-79/77-THY 

where the matrix A is defined by 

A 6 + ‘mhn 
mn = mn K +K m n 

Inverting eq. (2.8) as Q = A-lx, we may rewrite eq. (2.5) in the form 

0(x,<) = 1 + 2 ( 5 ‘hrn )(hmnhn l 

m,n=l 

(2.9) 

(2.10) 

To deduce an explicit formula for (9(x,< ), it is convenient to write 

@ (x, 5) E Jf’?x, r Vdet A(x) 9 (2.11) 

in recognition of the equivalence of A-l to the matrix of cofactors of A divided by 

det A. It follows from the definition of A that the function JF* is a multinomial in 

the Xn in which for each value of n only X z and hi can appear. We may therefore 

write 

/= xfS( {K} , ,,n x2 

S PCS p 
, (2.12) 

where the sum ranges over all subsets S of (I, 2,...,N}, including the null set and 

the full set. It will be useful below to notice that the contribution of the null set to 

(2.12) must be 

. (2.13) 
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Comparison of (2.12) with the expression for xobtained from (2.10) and 

(2.11) indicates that 

fS(k’,l) = g,({d)Tl[ (3) 
PCS P 

9 (2.14) 

where the function gs is independent of 5. This may be seen as follows. According 

to eqns. (2.10-12), fS must be equal to pfl (5 - iKp)-1 times a polynomial of order N 

in 5 (in order that @ (x,< ) + 1 as 5 + a). But note that, by (2.10), the residue in the 

pole of Nat 5 = iKp contains a factor X E. Therefore the pole (c - kp)-l can only 

occur in fS if p E: S, so that fS must in fact be given by n (c - iKp) -’ times a 
PCS 

polynomial in 5 of order equal to the number of elements in the set S. Next 

rewriting eq. (2.7) as 

N 
cP(x, -iKp) = +- 

c 
p q=l 

(A-l)pq Xq Y (2.15) 

we note that xx, -iKp) is free of any terms containing a factor of h 2 Thus fS 
P 

. 

must vanish at 5 = ilc p for any p c S. These requirements uniquely fix the <- 

dependence of fS to be that displayed in (2.14). 

Now let us determine gs((Ic} ). We note from (2.10) and (2.15) that 

lim (5 - iKP)&x, Sp) = iX:JGx, -iicp) . 
c-+iKp 

(2.16) 

Evaluating both sides of (2.16) with the aid of (2.12) and (2.14), we are led by an 

inductive argument to the result 

(2.17) 
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But, as indicated by (2.13) and (2.141, g+ = 1, so that 

“N%,d = c[ ~s&(~)](fS!s I?;:- / l (2*18) 

S 

nm m 

Because cP(x, 5) + 1 as 5 + 03, det A must be the limit as < + 03 of (2.18). Moreover, 

this implies that (2.18) itself can be written as a determinant. In summary, we 

have 

det A(x, ) 
‘tx, z;) = det A(x, & = 

x[pgg (Eq] (& s )::,i:-, ) 
S (2.19) 

where the matrix A(x, 6) is defined by 

[Ah, dl pq = 6 pq + 

~,(~)~~, ($q 
P 

KP+Kq 
. (2.20) 

Expressions for the bound-state wavefunctions now follow from the pole 

residues of (2.1 Y), as 

4J ,(x) = KP- 
KP+Ko )I T--I (n&n)C S 

Kn -Km I I Icn+Icm 

where 

D(x) = det A(x, a) = 

9 (2.2 1) 

. (2.22) 
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The potential V(x) may be recovered from (I? (x, 5) by noticing that [ 1 ] 

lim z; 
5’” 

$x,5) = $[V(x)-V(m)1 

and using the fact (deduced from the numerator of (2.19)) that 

det A(x, < ) & D(x) - i dy’dx + g(G 2, 
r+* 

from which we recover [ 1 ] 

d2 v(x) = v( 4 - 2 - 
dx2 

In D(x) 

(2.23) 

(2.24) 

(2.25) 

III. SYMMETRIC REFLECTIONLESS POTENTIALS 

The results obtained in Section II are valid for an arbitrary reflectionless 

potential in one space dimension. A reflectionless potential which supports N 

bound states can be reconstructed uniquely in terms of the N binding energies 

Kn = V(a) - En and N additional parameters cn, defined in eq. (2.6). For the 

problem of a central potential in three dimensions which is of physical interest to 

us, it is appropriate to consider the case of a symmetric potential in one dimension 

[ 21. We are thus led to consider the further simplifications of results of §I1 that 

follow from the symmetry requirement 

v(x) = v&x) (3.1) 
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By convention we shall arrange the binding energies in descending order, 

K 1 > K 2> . . . >K N, SO that El = V(a) - K: refers to the ground-state energy, etc. 

Thus, the bound-state wavefunctions will satisfy the parity conditions 

JI ,(-xl = (-l)p+‘ep(x) 

and 

g-x) = (-l)P$;,(X) 

; 

. 

(3.2a) 

Let us begin by evaluating @(x = 0, r) for a symmetric reflectionless 

potential. Since the even-numbered (odd parity!) wavefunctions vanish at x = 0, 

inspection of (2.5) indicates that cP(0, 5) has poles only at 5 = iKP for odd values of 

P* Hence @(O, 5 ) is given by I-I 
p odd 

(r - iKp)-’ multiplied by a polynomial in 5 of 

degree equal to the number of even-parity bound states: degree = N/2 if N is even, 

or degree = (N + 1)/2 if N is 

(2.7), @(O, -iKp) = 0 for even 

5 + QJ, this requirement fixes 

odd. Consider first the even-N case. According to 

values of p. With the asymptotic condition @-t 1 as 

the result 

(3.2b) 

where 

(N even) (3.3) 

p=l 

-tP 
E (-1)P . (3.4) 

The case of odd N is most elegantly treated as a limiting case of N even with 

KN+O. From the asymptotic condition (2.6) it may be seen that normalization of 
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the wavefunction Q,(x) requires that $,(x) + 0 for all x as K N -+ 0. Thus, by (2.5) 

0 (x, L;) for N even with Ic N = 0 is identical to Q (x, c) for N - 1 bound states. At 

x = 0 we therefore have 

N 
do, 5) = q-1 (z; + it $ p; p (N odd) . (3.5) 

p=l 

Using (3.3) and (3.5) we may evaluate ~J~(O) and cp for odd values of p. 

According to (2.9 and (2.7), 

[JIB I2 = -i 1ir-n. 
C.--KP 

[ (r; - iKp)Q(O, r )I Q1(% -bp) 

=;bpPN 21 K;-K;fq 7 podd 

Again using (2.5) and (2.7) we have that 

= 2K 

[ (5; - iKp)@(o, 5 I I /@(O, -iKp) 

, p odd 

(3.6a) 

. (3.6b) 

(3.7a) 

l (3.7b) 

Both (3.6b) and (3.7b) are valid for even and odd values of N. The expression (3.7b) 

and a similar expression (3.13b) below are precisely the conditions for ii symmetric 

potential which were obtained in [ 1 ] by appealing to the properties of a complex 

of N Korteweg-deVries sol itons. 

Analogous results for even values of p may be deduced by considering the 

first derivative of Q at x = 0. It is convenient to construct the function 

. 
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ax, 3) = 
a@ 
a~(% 3) - iT@(x, r) (3.8a) 

Iv h Wb’ (4 
= -i< f 2 ~g(x)$,(x) + i C q 9 (3.8b) 

q=l q=l 
3- iKq 

where the last expression follows from (2.5). From (2.7) and (3.8a) we learn that 

G(0, -iy,) = $; (0)/cp 9 (3.9) 

which vanishes for odd values of p in a symmetric potential. Equation (3.8b) shows 

that G(0, iKP) has simple poles for p even, and that asymptotically G(0, c)+ -i< as 

< -f CQ. Consequently we may write 

N 

G(0, 3) = -in (c - i’cpK p)-‘p , N odd 

p=l 

. (3.10) 

As before, we may obtain an expression valid for even values of N by letting ~~ -t 0 

in (3. IO), whereupon 

N 

G(O,<) = -i<n(c -iTpKp) 
-T 

p , N even 
p=l 

. (3.11) 

Using (3.10) and (3.11) we may now evaluate [ $b(O)] ’ and ct for even values 

of p. According to (3.8b) and (3.9), 

[ $; (0) 1 2 = -i iim 
c+ilcp ‘(’ 

- i tcp)G(O, 5 ) 1 GO, -iKP) (3.12a) 

(3.12b) 

and 
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2 
cP = 

-i lim 
3-+i Kp 

[ ( 3 - kp)G(O, <> ] /G(O, -ilcp) 

= 2Kpgls 1 Y P even 

(3.13a) 

. (3.13b) 

The common expression (3.7b), (3.13b) for ci can be shown by explicit substitution 

in (2.25) to lead to a symmetric potential. From the definition (2.22) of D(x) we 

find that 

D(x) = qexp[ -2X gsKp] I-o,% ’ (3.14) 

where 5 denotes the complement of the set S and 

. (3.15) 

Since II(S, 3 is symmetric under the interchange of S and 3, we are free to com- 

bine terms in (3.14) to obtain 

D(x) 

where 

, (3.16) 

(3.17) 

is manifestly symmetric in x. Hence 
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v(x) = v(4 - 2 d2 - In D(x) 
dx2 

(2.25) 

d2 = V(w) - 2 - 
dx2 

In D(x) (3.18) 

is symmetric as well because the exponential factor in (3.16) does not contribute to 

the second derivative of D. 

Because eq. (3.7b), (3.13b) determine the N parameters c in terms of the 
P 

binding energies, the reconstruction of a symmetric, reflectionless potential is 

specified uniquely by the N binding energies. It is this reduction in the number of 

parameters that makes it possible to contemplate physical applications of the 

inverse bound-state problem. 

By substituting into (2.21) the expression for c 
P’ 

one can also obtain 

expressions for the bound-state wavefunctions which are themselves manifestly 

symmetric in x for odd values of p and antisymmetric in x for even values of p. 

Together with (3.17) and (3.18) these constitute a considerable simplification of the 

determinant4 formulas derived in [l 1, both for the demonstration of symmetry 

properties and for practical computation. 

A simple formula for V(0) is obtained from eq. (2.23) with the aid of (3.3), 

(3.5)’ (3.10)’ and (3.11). We may write (2.23) as 

V(0) = V(4-2ilim <yx(x’ 3)( 
3-f” x=0 

= v(~) - 2i lim [3 G(0, 3) + ir2@(O’ 3) 1 
3+a 

(3.19a) 

(3.19b) 

A straightforward computation using the explicit forms for G(0, 3) and @(O, G) 

yields the result 
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N 
V(0) = V(m) + 2 

c 
(-l)P$ 

p=l 
. (3.20) 

This expression will find several applications in §V and 5 VI. 

We conclude the formal development of this section by deriving two sum rules 

that relate V(0) to the squares of wavefunctions or of slopes of wavefunctions at 

the origin. The first sum rule is based on the observation that 

N 

do, &4l, -3) = 1 - 2 
c -A 
p=l 3 +‘cp 

E qp(o) 1 2 ’ (3.2 I) 

and the second follows from 

(1,’ 32)G(0, 3)G(O, -3) = 1 + 2 
N [$’ (OH2 

c 2 
p=l Kp(32 + “p’ 

(N even) . (3.22) 

Both of these expressions are derived most gracefully by examining the asymptotic 

behavior and the singularities of each side of the equations, using (2.5)’ (2.7)’ and 

(3.8) to determine the pole residues for the left-hand sides. Although eq. (3.22) is 

valid only for even values of N, it can be used in the now familiar way to obtain 

from the limit ~~ + 0 results which hold for any value of N. 

To derive the sum rules, we evaluate the left-hand sides of (3.21) and (3.22) 

using eqns. (3.3) and (3.1 l), and compare the coefficients of (l/3 ‘) on left-hand and 

right-hand sides, in the limit as < + ~0. From eq. (3.21) we find 

N N 

c 
2 

rPKP = 
-2 

c Kp[ $ p(o) 1 2 
p=l p=l 

(3.23) 

whereas eq. (3.22) yields 
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c 
2 

rPKP = -2 c 
p=l p=l 

To generalize (3.24) to include odd values of N, we need only note from (3.12b) that 
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I$’ Co)? 

KP 
(N even) l (3.24) 

lim 
[&(0)12 1 

= - 

K 40 N KN 2 I-I (K 2iT ’ . 
p#J p 

(3.25) 

Using eq. (3.20) to express the left-hand 

potential, we obtain the sum rules 

sides of (3.23) and (3.24) in terms of the 

N 
V(0) = vb) - 4 

c Kp[qp(o) I2 ’ 
p=l 

(3.26) 

and 

N [jJ’ fO)12 
N 

V(O) = v(4 - 4x -JKT +(‘cN- (3.27) 
p=l p=l 

The sum rules (3.26) and (3.27) will be applied in Section V to the numerical 

study of the convergence of reflectionless approximations to confining potentials at 

x = 0. The result (3.27) with N even is of particular importance for the three- 

dimensional problem because it depends only upon information about the physical s- 

wave 1 evels (i.e. the odd-parity levels in one dimension). Equation (3.26) is a 

special case of a sum rule earlier derived by Gardner, Greene, Kruskal, and Miura 

[ 101. 

To close this otherwise formal Section, we wish to illustrate the use of eq. 

(3.18) for the reconstruction of confining potentials. We display in Figs. l-3 the 8- 

level one-dimensional reflectionless approximations to the symmetric linear, 

harmonic oscillator, and infinite square well potentials. In each case we have set 
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the reduced mass to lo = K and chosen the continuum energy Eo(N) = VN(m) = 

MEN + EN+1 ). The fidelity of approximation suggested in the figures is both 

remarkable and encouraging. 

IV. CONVERGENCE TO WAVEFUNCTIONS AT THE ORIGIN 

The results derived in the preceding Sections, especially (3.6b) and (3.12b), 

enable us to demonstrate the convergence of the reflectionless approximation for 

wavefunctions and their slopes at the origin. To accomplish this, we adapt to our 

present needs the program introduced by Grosse and Martin [ 4 ]. We consider 

solutions of the Schrodinger equation 

-u”(X) + v(x)u(x) = ELI(x) (4.1) 

in a symmetric, confining potential 

v(x) = v(-x) ’ (4.2) 

lim V(x) = 00 . (4.3) 
x4m 

Under rather weak assumptions it can be shown [4 ] that there exists a solution 

u(x, E) which behaves asymptotically like the (approximate) WKB wavefunction, i.e. 

U(X, E) e (V(x) - E)-%exp - s ’ dy/wE 
I 

’ (4.4) 
X+= X 

0 

where x o is the classical turning point, at which V(x,) = E. The logarithmic 

derivative of the wavefunction at the origin, 
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’ (4.5) 

plays a central role in the proof of convergence. By studying the properties of this 

function, we shall obtain infinite-product representations for the squares of bound- 

state wavefunctions and their slopes at the origin. The resulting infinite products 

are identical to the corresponding reflectionless approximations (3.6b) and (3.12b), 

in the limit of an infinite number of bound states (N + a), provided that the 

parameter Eo(N) is chosen properly. Thus the proof that reflectionless approxima- 

tions converge to the exact wavefunctions and slopes at the origin reduces to a 

demonstration that certain infinite products exist. 

It can be shown [ 4 1 that the function R(E) is meromorphic, with alternating 

poles and zeroes lying on the real axis. The poles of R(E) occur at the energies of 

the odd-parity bound states: E = E E E 2’ 4’ 6”” and the zeroes occur at the energies 

of the even-parity levels: E = El, E3, E5, etc. The residues of the poles in R(E), 

which we shall require later to make contact with the reflectionless approximation, 

may be evaluated by constructing the Wronskian of solutions with energies E and 

E + AE, which gives 

- 8 dx u2(x, EP) 

IE=E = 2 Lu;o E ) 12 
, p even . 

P ’ 0 

Similarly, the residue of the poles in l/R(E) are found to be 

sm 
&R(E) 1 = --03 

dx u2(x, Ep) 

, P odd 
E=E 

P 
2 IdO, Ep) I2 

(4.6) 

(4.7) 
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If the potential V(x) is integrable at the origin, the asymptotic behavior of R along 

the negative real axis is given by the WKB approximation of eqn. (4.4)’ which 

becomes valid down to x = 0 [4 I. This yields 

R(E) CCI - G + 0(1/a . 
E-t-co 

(4.8) 

By taking the Wronskian of u(x, E) with its complex conjugate, one obtains an 

important property of R(E), 

SW 
ImR(E) = - ~0 

dx Iu(x, E) 1 2 
Im E 2 lu<O, E) I2 

> 0 ’ (4.9) 

which is to say that the imaginary part of R(E) is positive in the upper half-plane 

and negative in the lower half-plane. A function with this property is known as a 

Herglotz [ll I or Pick [ 12 ] function. For our purposes, the most important 

attribute of such a function is that it grows no faster than IE I and decreases no 

faster than IE 1-l. As a consequence, two Pick functions which have the same 

discontinuity across the real axis can differ only by a linear function a + bE. We 

shall use this fact to argue that R(E) is specified uniquely by the positions of its 

poles and zeroes together with the asymptotic condition (4.8). This is a variation 

on the more familiar procedure of constructing an analytic function from its pole 

positions, pole residues, and asymptotic behavior which led to eq. (2.5). 

Consider a Pick function f(E) which has the same poles and zeroes as R(E), 

namely 

f(Ep) = 0 , p odd 

(4.10) 

l/f(Ep) = 0 , p even 
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and which has the same asymptotic behavior as R(E) along the negative real axis, 

f(E) m -Cl? + 0(1/-E) . (4.11) 
ES-W 

We wish to demonstrate that these conditions ensure that f(E) = R(E). TO show this, 

let us compare In f(E) and In R(E). If we choose the branches of the I ogarithms so 

that both In f and In R are real in some interval (E2n-l, E2& then their discon- 

tinuities across the real axis are equal and al ternate between ir and zero: 

i 

in -w<E<El 

disc [In f(E)1 = disc [ In R(E)] = 0 El < E< E2 

i7r E2 < E < E3 
l 

: 

Moreover the fact that f and R are both Pick functions implies that 

0 f Im [In f(E)] 2 r 7 \ 

-I 

, ImE>O , 

0 c Im [In R(E) 1 -2 ?r - 

. (4.12) 

(4.13) 

and that 

0 
1 

Im [In f(E)] 
2 

-IT 7 

i 

, ImEg . (4.14) 

0 > Im [lnR(E)I 2 -IT ~ 

Thus In f and In R are themselves Pick functions so that 



25 FERRIIILAB-Pub-79/77-THY 

In [f(E)1 -In [R(E) I = a t bE . (4.15) 

What is more, since by virtue of (4.13) and (4.14) the imaginary parts of In f and 

In R are bounded by IT for all E, we must have b = 0. Finally, a = 0 follows from the 

asymptotic conditions (4.8) and (4.11). This proves that f(E) = R(E). 

Having established that R(E) is specified uniquely by (4.9)-(4.11) we now 

construct the function explicitly. We shall show that it is none other than 

where the sequence of positive numbers C L satisfies 

cL 
;Frnq q l 

. 

(4.16) 

Provided that the limit exists (which will be verified below), the function (4.16) 

obviously has the desired poles and zeroes prescribed by (4.10). To show that (4.16) 

has the Pick function property (4.9)’ we note that all the pole residues in (4.16) are 

real and negative, so that we may write 

(4.17) 

f(E) = lim 
L+w iBcL+$ “‘2n} 

’ (4.18) 

with r n < 0. The property (4.9) follows immediately. To show that (4.16) exists and 

has the desired asymptotic behavior (4.11)’ it is convenient to rewrite the product 

in (4.16) as 
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L 

I-It 
n=l 

“,:?-I) = expi In (E$$ +$-In ( kGL) +nL(E)/ , (4.19) 

where 

oL(E) z (4.20) 

Under fairly general conditions, the sum (4.20) is convergent as L + 03. Here we 

demonstrate this convergence for potentials that support energy levels with eigen- 

values that are power-behaved for large principal quantum numbers, 

En fl constant x ny . (4.21) 

This is the case, for example [13 1, for any potential which is power-behaved at 

large distances 

V(x) fl constant x 1 x Iv . (4.22) 

Using this result we find that the large-n terms in (4.20) decrease more rapidly than 

n-l, so that the sum over o L converges for large values of L. All of the L 

dependence of the product is therefore contained in the second term of the 

exponent in (4.19). Therefore we have shown that 

L 

I-It 
E - E2n-l 
E - E2n 

= /i=&=BL(E) ’ (4.23) 
n=l 2L 

where(for fixed values of E) BL(E) is finite and independent of L as L-+ 00. A 

sensible limit as L -+ 00 of the right-hand side of (4.16) will exist, provided only that 

CL is proportional to FL for L + a. 
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Thus the function f(E) exists. Before identifying it with R(E) defined by (4.5), 

we have only to check its asymptotic behavior as E + -CQ. This is conveniently done 

using the representation (4.19). Using the WKB estimate (4.22) to determine the 

large-n terms in am(E) z lim oL(E), we readily conclude that 
L+m 

lim o,(E) = 0 . (4.24) 
E-t- o 

The large-E behavior of f(E) then arises solely from the second term of the 

exponent in (4.19). The denominator E - E2L has already been absorbed in the 

L + ~0 limit of (4.23). All that remains is the numerator, which contributes a factor 

JIiEi, so that 

lim f(E) = -slim cL 
L4w q 

’ (4.25) 
E4- co 

which satisfies the requirement (4.1 l), provided that the condition (4.17) is met. 

Consequently we conclude that 

’ 
(4.26) 

subject to (4.17). 

The expressions (4.6) and (4.7) for the pole residues of R(E) and l/R(E) may 

now be used to construct infinite-product representations for the squares of the 

wavefunction and its slope at the origin. For normalized bound-state wavefunc- 

tions defined by 

JI,(x) - u(x,Ep)[l mdx[u(x,En)]2] -’ 
-00 

(4.27) 
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we find from (4.6), (4.7) and (4.26) thatF1 

* (Ep+l - Ep) 
L E 

II( 
p - E2n 

E - E2n-l 
’ p odd (4.28) 

n=l P 
2n-lfp 

and 

[J1;,(0)12 = lim 5 L E 
2 (Ep - EpJ I-U 

p - E2n-l 
L+a E ! , p even . (4.29) 

n=l P - E2n 

2nk3 

Let us now rewrite the reflectionless approximations (3.6b) and (3.12b) in forms 

that are easily compared with these results. We have, for even values of N, 

N 

[$pt”)12( 
N 

= 2& 
0 

IEp-EqlTq , p odd (4.30) 

and 

rJ1’,(0H21 = 
N -ii 2 

4P 

IE~-E~I-‘~ , P even , (4.31) 

with -cq = (-1)‘. Hence the N -+ 03 limit of the reflectionless approximation to 

[ @p(0) I2 and [IJJ~ (0) I2 gives precisely the same result as a confining potential with 

the same spectrum, provided that 

lim 
E,(N) 
- =1 . 

N4a EN 
(4.32) 

This is what we set out to prove. 
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V. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 

The discussion in Section IV has made apparent the importance of a proper 

choice of the lowest continuum energy Eo(N) for an N-level approximation to a 

confining potential and its SchrGdinger wavefunctions. The requirement (4.32) that 

lim (Eo(N)/EN) = 1 guarantees that the approximate wavefunctions and their first 
N--J 
derivatives converge to the exact results at x = 0. 

The requirement that 

Iim VN(0) = V(0) 
N--J 

(5.1) 

imposes a much more stringent constraint upon Eo(N). It is our purpose in this 

Section to explore the circumstances under which convergence to the exact value 

of the potential at the origin can be achieved. To do so, we shall examine 

calculations based upon three realizations of the reflectionless approximation 

technique: 

(i) reconstruction of a symmetric potential from its energy levels of both odd 

and even parity, characterized by the sum rule 

N 
vN(o) = E,(N) + $ c (-I)‘,; ; 

p=l 
(3.16) 

(ii) reconstruction of a symmetric potential from its even-parity energy levels 

and their wavefunctions at the origin, corresponding to the sum rule 

N 

vN(“) = E,(N) - ; c KP 1 I/J,(~) I2 , for odd N; (3.22) 
p=l 
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(iii) reconstruction of a symmetric potential from its odd-parity energy levels 

and the slopes of their wavefunctions at the origin, represented by the sum 

rule 

, for even N. (3;23) 

2 All of these methods are of course identical if one uses the values of K~, 111, ,(a) I , 

and 1$;(O) I2 associated with an N-level symmetric reflectionless potential, rather 

than only the N lowest levels of a confining potential. However, in practice it may 

be necessary or desirable to approximate a confining potential on the basis of 

mixed information. For the quarkonium problem discussed in the Introduction it is 

the information contained in the third sum rule (3.27) which is accessible to 

experiment. 

We shall consider three examples of confining potentials (linear, harmonic 

oscillator, and infinite square well), always assuming that 21.1 = 1. For the linear 

potential, 

VW = 1 x 1 ’ 

the energy eigenval ues are given by the zeroes of Airy functions: 

Ai’(-En) = 0 (n = 1, 3, 5,...) , 

A&E,) = 0 (n = 2, 4, 6,...) ; 

(5.2) 

(5.3) 

and the normalized wavefunctions at the origin are [ 131 
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19,(O) I2 = l/GE ) n (n = 1, 3, 5,...) \ , 

i (5.4) 

IV,(O) I2 = l/2 (n = 2, 4, 6,...) . t 

The bound-state energies of the harmonic oscillator potential, 

V(x) = x* 

are the odd integers 

En = 2n - 1 (n = 1, 2, 3,...) 

and the normalized wavefunctions at the origin are [ 14 1 

9 
I 

I*2p+101* = L-o! 
22pJ;r (p!)2 

IQ’ zp+2 (0) I 2 = 1 (2p + l)! 
z2p% (p!J2 

f I 

where p = O,l,Z,... The infinite square well 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

supports bound states at 
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En = n2 (n = 1, 2, 3,...) 9 (5.9) * 

with wavefunctions 

I$n(o) l2 = */Tr 

1 J, ; (0) I* = *n*/n 

(n = 1, 3, 5 ,...) , 

(n = 2, 4, 6 ,...) . 

In reference [ 1 ] the lowest continuum energy was chosen as 

EON = V’(EN + EN+$ 9 

(5.10) 

which was adopted in calculating the one-dimensional reflectionless approximations 

shown in Figs. l-3. With this choice, VN(0) = 0 for all values of N for the harmonic 

oscillator potential, and visually excellent approximations result for all three 

examples. Let us now examine more quantitatively the convergence of the 

reflectionless approximation to V(0). 

For the three examples under consideration, V(0) = 0. The values of VN(0) 

which follow from the choice (5.11) for E,(N) are shown in Fig. 4(a) for 

reflectionless approximations to the linear potential (5.2) based upon the three sets 

of bound-state information characterized by sum rules (3.20), (3.26), and (3.27). 

The approximations based upon the energy levels of both parities (plotted at all the 

integers) and upon the even-parity energy levels and wavefunctions (plotted at the 

odd integers) tend with increasing N toward the true value V(0) = 0. In contrast, 

the approximation based upon the odd-parity energy levels and slopes of their 

wavefunctions drifts away from V(0) = 0. All three approximations yield values of 

(5.11) 
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VN(0) which differ from the correct value by amounts that are diminishing 

fractions of the nominal depth of the potential as measured by E,(N). This is shown 

in Fig. 4(b). 

An analogous situation may be observed for the harmonic oscillator potential 

(5.5) in Fig. 5. As already noted, the approximation to V(0) based upon the bound- 

state energies of both parities is exact for this case. The even-parity 

approximation (3.26) again tends toward V(O) = 0, while the odd-parity approxima- 

tion (3.27) departs from the true value somewhat more rapidly than was the case 

for the linear potential. The deviations of VN(0) from zero are once more 

decreasing fractions of Eo(N). 

Approximations to the infinite square well (5.8) manifest rather similar 

behavior, as illustrated in Fig. 6. This time the one-dimensional approximation 

(3.20) leads to 

vN(o) = (fi)(-l)N Y (5.12) 

and the even-parity approximation (3.26) departs gradually from V(O) = 0. Both of 

these provide excellent fractional approximations to the depth of the potential. 

The odd-parity approximation departs significantly from the true value of V(O) but 

shows signs (confirmed by more extensive numerical studies) of converging in the 

fractional sense. 

What is to be learned from these numerical exercises? At least in some 

circumstances, the reflectionless approximations to confining potentials are seen to 

converge to V(O) as the number of included bound states tends to infinity. The rate 

of convergence depends upon the particular approximation employed and upon the 

precise choice of Eo(N) within the allowed interval, as we shall soon demonstrate in 
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more detail. For the examples we have considered, the numerical studies have not 

indicated that the odd-parity approximation converges to V(0) when Eo(N) is chosen 

according to (5.11). The numerical experiments do not, of course, prove that 

convergence does not occur. The confining potentials we have considered as 

examples all have V”: 0, which is to say I $ b+l(O) 12, I Q b(O) 1’. Consequently the 

largest term in the sum rule (3.27) is the final term, I + h(O) I*/JE~(N) - EN, which 

is exquisitely sensitive to the choice of Eo(N). Approximations to concave- 

downward potentials, or to potentials for which IJ, b(O) I* is a decreasing function 

of p, are likely to prove less strongly affected by the choice of Eo(N). 

An alternative to (5.11) would be the choice of Eo(N) to guarantee that 

VN(0) = V(0) for all N. (Th is condition is not physically motivated, for it relies upon 

information that is inaccessible to experiment!) According to the discussion in §IV, 

fine-tuning E, will not alter the fact of convergence to the Schrodinger 

wavefunctions (al though it will influence the rate of convergence). It is 

straightforward to choose Eo(N) to ensure that VN(0) = V(0) for the one-dimensional 

approximation. To see this, let us rewrite the sum rule (3.20) as 

N 
vN(o) = Eo(N)(-l)N + 2x (-l)p+lEp 

p=l 

which leads to 

N 
Eo(N) = V(0)(-l)N + 2x (-l)N-pEp 

p=l 
. 

(5.13) 

(5.14) 

It follows from (5.14) that 

Eo(N) = 2N = fi(EN + EN+l) (5.15) 
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is the appropriate choice for the harmonic oscillator potential (as we knew) and 

that 

EON = N(N + 1) = (EN EN++’ = %(EN + EN+l) - K (5.16) 

ensures that V[N(O) = V(0) for the infinite square well. Similar1 y E,(N) may be 

expressed in terms of sums and differences of zeroes of Airy functions for the 

linear potential. The values of Eo(N) for which VN(0) = V(0) at finite values of N 

are plotted in Figs. 7-Y for the linear, harmonic oscillator, and square well 

potentials. Note that VN(0) = V(0) is not a trivial condition when eq. (3.22) (even- 

parity approximation) or eq. (3.23) (odd-parity approximation) is used, because 

Eo(N) appears nonlinearly. The even-parity approximation to the linear potential 

cannot reproduce VN(0) = V(0) = 0 for any real choice of Eo(N), for finite values of 

N. In all the other cases examined, a suitable choice of Eo(N) can be made. 

Many numerical studies of the rate of convergence of the reflectionless 

approximation to quantum mechanical observableg suggest themselves, but we are 

not yet able to provide a comprehensive description of the convergence problem. 

We will, however, cite one amusing consequence of the choice (5.11) for Eo(N). 

Application of the one-dimensional approximation to the ground state of the square 

well using (3.4) for the wavefunction at the origin leads to a rapidly-converging 

expression for n: 

where 

7T = lim Sn 
n+-a 

(5.17) 
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sn E 

4 (3* - 1)(5* - l)...(n* - 1) 
tfntn + ‘) - ’ (2’ - 1)(4* - l)...((n - 1)’ - 1) ’ 

n: odd 

. (5.18) 
- (3’ - 1)(5* - l)...((n - 1)’ - 1) 4/K-l) - K 2 

(2’ - 1)(4* - l)...(n* - 1) 
9 n: even 

The first three terms in the sequence of approximations are Sl = 1.040 ?T, 

S2 = 0.995 IT, S3 = 1.001 n, which exhibit a rapid convergence indeed! 

As a final application of the sum rules (3.20), (3.26), and (3.27), let us 

investigate how well a potential singular at the origin is reproduced by the 

refl ectionl ess approximation. Consider the Coulomb potential 

V(r) = -l/r (5.19) 

in three dimensions, for which the limit of the continuum energy is naturally chosen 

as 

E 0 - - lim Eo(N) = 0 
N--J 

(5.20) 

The S-wave bound-state energies of the Schrodinger equation are 

En = -1/4n* (n = 1, 2, 3,...) 9 (5.21) 

and the odd-parity wavef unctions of the corresponding one-dimensional problem 

satisfy 
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I +;, (0) I* = 1/4n3 . (5.22) 

It is straightforward to sum the (infinite) series (3.27) in this case; one finds 

V,(O) 1 IT* = -2 c 7 = - 3 zs - 3.29 . (5.23) 
n=l 

Thus the odd-parity reflectionless approximation leads to a very deep, but finite, 

representation of the Coulomb potential. Of course, even for a non-singular poten- 

tial, we would not expect to reproduce V(0) exactly if V is not confining, since 

information from the continuous part of the spectrum has been ignored. 

VI. PHYSICAL APPLICATIONS AT x = 0 

In the preceding Sections of this article we have elaborated and applied the 

reflectionless approximation to confining potentials. The new formal results of this 

work, which concern the Schrodinger wavefunctions and the reconstructed potential 

at the origin, have made possible a systematic (if still incomplete) investigation of 

the convergence of the method. In this Section our intent is considerably different: 

we now appi y the new formal results to the problem of reconstructing the 

interquark potential from the properties of quarkonium states. 

The program we envisage [Z, 31 for the quarkonium system entails the recon- 

struction of a spin-triplet, s-wave potential from the masses and leptonic-decay 

widths of the 3S1 (Q@ levels. The leptonic width of an n3Sl quarkonium state of 

mass Mn is related by the van Royen-Weisskopf formula [I 51 

r(Tg + e+e-) = 
lb?TN, 2 a21 Y,(O) /* 

3 eQ 
Nin 

(6.0 
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to the wavefunction at the origin. Here NC is the number of colors (3 for ordinary 

quarks), eQ is the quark charge in units of the proton charge, and a 2 l/137 is the 

fine-structure constant. Experimental information about an infinite number of 

bound states will of course not be available.F2 What we hope to achieve is 

therefore not an exact reproduction of the interquark potential, but a faithful 

representation in the region of space probed by a small number of bound states. 

Numerical experiments reported in [I ] and extended by Figs. l-3 encourage this 

approach. 

The odd-parity reflectionless approximation characterized by the sum rule 

(3.27) makes use of the available information. The masses of the quarkonium levels 

correspond to the energies E2, E4,... of the odd-parity levels in one dimension. The 

three-dimensional wavefunction Y n is connected to the one-dimensional odd-parity 

wavef unction Y 2n by 

1 Yn(0) I2 = (l/2*)~~~n(o)12 l (6.2) 

The experimental information, supplemented by the continuum parameter E. and 

the mass m 
Q of the bound quark, specifies the approximate potential. Since the 

quark mass is not known from other information, we arrive at a two-parameter 

family of potentials which reproduce the spectrum of s-wave bound states. By 

comparing with experiment the predictions these potentials entail for other 

observables (e.g. the masses of orbital excitations) we may select a favored 

potential from among the possibilities. This has been done [ 2 ] for the charmonium 

family, by using the $(3095) and $‘(3686) masses and leptonic widths to generate a 

family of potentials which were winnowed on the basis of the center of gravity of 

the Z3PJ levels and the properties of the upsilon resonances. 
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It is useful for computation to reexpress the wavefunction information in 

terms of (fictitious) even-parity energy levels of the related one-dimensional 

problem. This may be done by inverting the connection (3.12b) between the bound- 

state energies and the wavefunctions, which can be transcribed as 

N 

hQ)3'2 
r-II 

M n - E2k-l I 

1 Yn(0) I2 = 4r (E, - M,,)’ k=l 

I-II 
9 (6.3) 

Mn-"pl 
Pb 

when the potential is reconstructed from N (three dimensional) physical levels. The 

set of N equations of the form (6.3) in the N unknowns El, E3...EzN 1 is 

conveniently solved in practice by iteration, or by minimizing the function 

x2~~E,,-l~) = f [Iy,jo) Ifnput - 1 yn(O) /jEZk 1)] * 
n=l 

(6.4) 

using standard numerical search techniques. 

By substituting eq. (6.1) and (6.2) into the sum rule (3.23) we arrive at an 

expression for 

N 
V(0) = E. - 3 

2N e *o*m 3’2 cc M; mm 1 (6.5) 

cQ Q n=l 

which makes explicit the dependence of V(0) upon the properties of the bound 

quark, and upon Eo. For a given set of vector meson masses and leptonic widths 

the potential is deeper, the smaller is the quark’s color charge NC or electric 

charge e Q or mass m Q’ Radiative corrections to (6.1), which could well be 

appreciable, may alter these conclusions quantitatively but not qualitatively. As 

E. approaches the highest level MN from above, the potential becomes infinitely 

deep. 
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VII. SUMMARY AND OUTLOOK 

A totally satisfying theory of heavy quarkonium states would provide a 

description from first principles of the quark-antiquark binding. It is generally held 

that the interquark force directly reflects the properties of the nonabelian glue of 

quantum chromodynamics, but reliable calculations are lacking. The overall 

phenomenological success of nonrelativistic potential models for the $ and T states 

[ 16,17 1 encourages the belief that future considerations will center upon the 

determination of a static, interquark potential. In [ I] and [ 21, a systematic 

procedure whereby reflectionless approximations to the potential could be 

constructed directly from the masses and leptonic widths of s-wave bound’ states 

was described. An approximate potential thus reconstructed from information on 

the 9 family provided a number of predictions for the T states that were 

subsequently confirmed by experiment. Later [ 3 I a potential determined from the 

properties of the T states alone yielded direct evidence, free from the bias of a 

specific assumed parametrization, for flavor-independence of the interaction. 

When more complete data are available for the T system, we expect these inverse 

methods to produce an extremely faithful reproduction of the true potential. 

The adoption of reflectionless approximations is of course a matter of 

calculational simplicity, but it is also a very natural restriction for confining 

potentials in which the spectral data consist entirely of bound-state parameters. 

Indeed, we have seen in §IV that in a confining potential bound-state wavefunctions 

and their slopes at the origin can be written as infinite products which are limiting 

cases of finite-product representations for the same quantities in a reflectionless 

potential. The numerical experiments reported in [ 1 I and in this article indicate, 

moreover, that the reflectionless approximation procedure converges rapidly for 

any reasonably well -behaved potential. Although it may be doubted that in the real 
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world of light quarks and finite flavor thresholds the issue of mathematical 

convergence is of any great significance, the numerical studies show that excellent 

local approximations are achieved with only a few bound states. 

Quarkonium aside, the convergence of the reflectionless approximation to 

confining potentials is a topic of interest in mathematical physics. The discussion 

in §IV represents the beginning of an analytic treatment of convergence. Our 

accomplishments are nontrivial, but rather limited: pointwise convergence has 

been demonstrated only for wavefunctions and their slopes at the origin in a 

symmetric potential. It goes without saying that statements about the potential 

and wavefunctions away from the symmetry point are to be desired. 

In our investigation of convergence, as in the earlier work of Grosse and 

Martin [ 4 1, a central r^ole was played by the logarithmic derivative of the (asymp- 

totically damped) Schrodinger wavefunction. From its analytic properties, this 

function was shown to have an infinite-product representation, which yielded 

infinite-product representations for the wavefunctions and their slopes at the 

origin. An analogous r^ole was played in the case of reflectionless potentials by the 

logarithmic derivative G(0, c)/@(O, 5 ) of the Jost solution @(x, ~)e-~” at the origin. 

This similarity suggests that in view of the representation (2.19) for (5,(x, c), the 

wavefunction in the confining potential could be expressed as the N-t = limit of a 

ratio of N-dimensional determinants. If this could be shown, convergence results 

away from the origin would be forthcoming immediately. An investigation along 

these lines may lead to a more complete understanding of the relationship between 

the inverse spectral problems for reflectionless and confining potentials. 
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FOOTNOTES 

Fl Expressions (4.28) and (4.29) closely resemble ones derived in Ref. 7 under a 

different set of boundary conditions. 

F2The expe rimental difficulty is self-evident. Perhaps more importantly, the 

single-channel potential model description is untrustworthy above the (flavor) 

threshold for decay of (Q@ quarkonium states into (Q$ + (gq) meson pairs. 
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Fig. 1: 

Fig. 2: The eight-l eve1 refl ectionl ess approximation to the harmonic 

oscillator potential V(x) = x2. Bound-state energies are indi- 

cated by the broken lines. 

Fig. 3: 

Fig. 4: 

The eight-l.evel reflectionless approximation to the infinite 

square well potential V(x) = {O,I x I <1~/2;cQ,jxI >IT/*}. 

Bound-state energies are indicated by the broken lines. 

(a) The value of the reflectionl ess approximation to the linear 

potential V(x) = I x I at the origin, given by the sum rules 

(3.16), (3.22), and (3.23). For all three cases, the choice 

EON = K(EN+1 + EN) has been made. The approximation 

(3.16) based on the bound-state energies of both parities is 

plotted (top curve) at all (integer) values of the number N of 

bound states. At odd values of N the approximation (3.22), 

which makes use of the even-parity bound-state energies and 

the values of even-parity wavefunctions at the origin, is 

plotted (middle curve). The approximation (3.23), based on the 

energies of the odd-parity bound-states and the values of the 

slopes of the odd-parity wavefunctions at the origin, is plotted 

(bottom curve) at the even integers. (b) Fractional errors 

VN(O)/E,(N) of the approximations. 

Same as Fig. 4, for the harmonic oscillator potential V(x) = x2. 

Same as Fig. 4, for the infinite square well potential. 

Fig. 5: 

Fig. 6: 
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CAPTIONS 
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The eight-l eve1 refl ectionl ess approximation to the 1 inear 

potential V(x) = Ix I. B ound-state energies are indicated by 

the broken I ines. 



Fig. 7: The value of Eo(N) - EN which yields VN(0) = V(0) = 0 for a 

finite value of N for the linear potential is displayed as a 

fraction of the level splitting EN+I - EN. The set of points at 

all integers corresponds to the approximation (3.16). The set 

plotted at the even integers refers to (3.23). In this case, no 

real choice of Eo(N) yields Vh’(0) = 0 for the even-parity 

approximation (3.22), which would be plotted on the odd 

integers. 

Fig. 8: Same as Fig. 7, for the harmonic oscillator potential. 

Fig. 9: Same as Fig. 7, for the infinite square well potential. 
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