Glossary and Acronyms 9840 9841 9842 GLOSSARY 9843 9844 Adaptive capacity 9845 The ability of people to mitigate or reduce the potential for harm, or their vulnerability to 9846 various hazards that can cause them harm, by taking action to reduce exposure or 9847 sensitivity, both before and after the hazardous event. 9848 9849 Adaptive management 9850 Approach to water resource management that emphasizes stakeholder participation in 9851 decisions; commitment to environmentally-sound, socially just outcomes; reliance upon 9852 drainage basins as planning units; program management via spatial and managerial 9853 flexibility, collaboration, participation, and sound, peer-reviewed science; and, embracing 9854 ecological, economic, and equity considerations. 9855 9856 **Boundary organizations** 9857 Entities that perform translation and mediation functions between producers (*i.e.*, 9858 scientists) and users (*i.e.*, policy makers) of information. These functions include 9859 convening forums to discuss information needs, provide training, assess problems in 9860 communication, and tailoring information for specific applications. Individuals within 9861 these organizations who lead these activities are often terms "integrators." 9862

Do Not Cite or Quote

Page 419 of 426

9863	Conjunctive use
9864	The conjoint use of surface and groundwater supplies within a region to supply various
9865	uses and permit comprehensive management of both sources. This requires co-
9866	management of a stream or system of streams and an aquifer system to meet several
9867	objectives such as conserving water supplies, preventing saltwater intrusion into aquifers,
9868	and preventing contamination of one supply source through polluting the other.
9869	
9870	Decision maker
9871	In water resources, the term embraces a vast assortment of elected and appointed local,
9872	state, and national agency officials, as well as public and private sector managers with
9873	policy-making responsibilities in various water management areas.
9874	
9875	Decision-support experiments
9876	Practical exercises where scientists and decision-makers explicitly set out to use decision-
9877	support tools – such as climate forecasts, hydrological forecasts and other – to aid in
9878	making decisions in order to address the impacts of climate variability and change upon
9879	various water issues.
9880	
9881	Disaggregation
9882	Similar to downscaling, but in the temporal dimension $-e.g.$, seasonal climate forecasts
9883	may need to be translated into daily or subdaily temperature and precipitation inputs for a
9884	given application (as described in Kumar, 2008).
9885	

Do Not Cite or Quote

9886	Downscaling				
9887	The process of bridging the spatial scale gap between the climate forecast resolution and				
9888	the application's climate input resolution, if they are not the same. If the climate				
9889	forecasts are from climate models, for instance, they are likely to be at a grid resolution				
9890	of several 100 km, whereas the application may require climate information at a point				
9891	(<i>e.g.</i> , station location).				
9892					
9893	Dynamical forecasts				
9894	Physics based forecasts that are developed from conservation equations.				
9895					
9896	Ensemble streamflow prediction (ESP)				
9897	Uses an ensemble of historical meteorological sequences as model inputs (e.g.,				
9898	temperature and precipitation) to simulate hydrology in the future (or forecast) period.				
9899					
9900	Hindcasts				
9901	Simulated forecasts for periods in the past using present day tools and monitoring				
9902	systems; hindcasts are often used to evaluate the potential skill of present day forecast				
9903	systems.				
9904					
9905	Integrated Water Resource Planning				
9906	Efforts to manage water by balancing supply and demand considerations through				
9907	identifying feasible alternatives that meet the test of least cost without sacrificing other				

9908	policy	goals –	such as d	epleted	aquifer rec	harge.	seasonal	groundwater	recharge.
//00	ponej	Sound	baon ab a	opiecea	aquiter ree	mai 50,	Seasonai	Sioundination	reemange,

- 9909 conservation, growth management strategies, and wastewater reuse.
- 9910
- 9911 Knowledge-to-action networks
- 9912 The interaction among scientists and decision-makers that results in decision-support
- 9913 system development. It begins with basic research, continues through development of
- 9914 information products, and concludes with end use application of information products.
- 9915 What makes this process a "system" is that scientists and users discuss what's needed as
- 9916 well as what can be provided; learn from one another's perspectives; and try to
- 9917 understand one another's roles and professional constraints.

9919 **Objective hybrid forecasts**

- 9920 Forecasts that objectively use some combination of objective forecast tools (typically a
- 9921 combination of dynamical and statistical approaches).

9922

9923 Physical vulnerability

9924 The hazard posed to, *e.g.*, water resources and water resource systems by exposure to

- harmful, natural or technological events such as pollution, flooding, sea level rise, or
- 9926 temperature change.

9927

9928 Sensitivity

9929 The degree to which people and the things they value can be harmed by exposure. Some 9930 water resource systems, for example, are more sensitive than others when exposed to the

9931	same hazardous event. All other factors being equal, a water system with old
9932	infrastructure will be more sensitive to a flood or drought than one with new state-of-the-
9933	art infrastructure.
9934	
9935	Social vulnerability
9936	The social factors (e.g., level of income, knowledge, institutional capacity, disaster
9937	experience) that affect a system's sensitivity to exposure, and that also influences its
9938	capacity to respond and adapt in order to reduce the effects of exposure.
9939	
9940	Statistical Forecasts
9941	Objective forecasts based on empirically determined relationships between observed
9942	predictors and predictands.
9943 9944	Subjective consensus forecasts
9945	Forcasts in which expert judgement is subjectively applied to modify or combine outputs
9946	from other forecast approaches.
9947	
9948	Water year or hydrologic year
9949	October 1st through September 30th. This reflects the natural cycle in many hydrologic
9950	parameters such as the seasonal cycle of evaporative demand, and of the snow
9951	accumulation, melt, and runoff periods in many parts of the US.
9952 9953 9954 9955 9956	

9957 9958	ACRONYMS				
9959 9960	ACCAP	Alaska Center for Climate Assessment and Policy			
9961	ACF	Apalachicola-Chattahoochee-Flint river basin compact			
9962	AHPS	Advanced Hydrologic Prediction System			
9963	AMO	Atlantic Multidecadal Oscillation			
9964	CALFED	California Bay-Delta Program			
9965	CDWR	California Department of Water Resources			
9966	CEFA	Center for Ecological and Fire Applications			
9967	CFS	Climate Forecast System (see NCEP)			
9968	CLIMAS	Climate Assessment for the Southwest Project			
9969	CVP	Central Valley (California) Project			
9970	DO	dissolved oxygen			
9971	DOE	U.S. Department of Energy			
9972	DOI	U.S. Department of the Interior			
9973	DRBC	Delaware River Basin Commission			
9974	DSS	decision support system			
9975	ENSO	El Nino Southern Oscillation			
9976	ESA	Endangered Species Act			
9977	ESP	Ensemble Streamflow Prediction			
9978	FEMA	Federal Emergency Management Agency			
9979	FERC	Federal Energy Regulatory Commission			
9980	GCM	General Circulation Model			
9981	ICLEI	International Council of Local Environmental Initiatives			

9982	ICPRB	Interstate Commission on the Potomac River Basin
9983	INFORM	Integrated Forecast and Reservoir Management project
9984	IJC	International Joint Commission
9985	IPCC	United Nations' Intergovernmental Panel on Climate Change
9986	IWRP	integrated water resource planning
9987	NCEP	National Center for Environmental Predictions
9988	GFS	Global Forecast System (see NCEP)
9989	MDBA	Murray-Darling Basin Agreement
9990	MLR	Multiple Linear Regression
9991	MOS	Model Output Statistics
9992	NCRFC	North Central River Forecast Center
9993	NGOs	non-governmental organizations
9994	NIFC	National Interagency Fire Center, Boise, Idaho
9995	NSAW	National Seasonal Assessment Workshop
9996	NWS	National Weather Service
9997	NYCDEP	New York City Department of Environmental Protection
9998	OASIS	A systems model used for reconstructing daily river flows
9999	PDO	Pacific Decadal Oscillation
10000	PET	Potential Evapotranspiration
10001	RGWM	Regional Groundwater Model
10002	RISAs	Regional Integrated Science Assessment teams
10003	SARP	Sectoral Applications Research Program
10004	SECC	Southeast Climate Consortium

10005	SFWMD	South Florida Water Management District
10006	SPU	Seattle Public Utilities
10007	SRBC	Susquehanna River Basin Commission
10008	SWE	Snow Water Equivalent
10009	SWP	State Water Project (California)
10010	TOGA	Tropical Ocean - Global Atmosphere
10011	TRACS	Transition of Research Applications to Climate Services program
10012	TVA	Tennessee Valley Authority
10013	USACE	U.S. Army Corps of Engineers
10014	USGS	U.S. Geological Survey
10015	WMA	Washington (D.C.) Metropolitan Area
10016	WRC	U.S. Water Resources Council
10017	WSE	Water Supply and Environment – a regulation schedule for Lake
10018		Okeechobee
