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Current team

Hovzien m  Neal Katz (Astro) m  Byn Choi (CS)

Goals
ProbStat

HEP m  Michael Lavine (Math) = Joerg Colberg (Astro)

Advantages

Software features B Houjun MO (AstrO) | Ilsang YOon (AStrO)

Killer applications

éj\"l':,_'l’f\'Tyt'c models m  Eliot Moss (CS) m Lu Yu (Astro)
Galphat results

Status

M-H #1

M-H #2

Tempered-states #1

Tempered-states #2

Tempered-states #3

HEP details
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Motivation

Multi-terabyte data catalogs (2MASS, SDSS, GOODS, etc.)

In-principle solution to the inference problem: MCMC

[0 Incorporate data from multiple catalogs

[0 Can merge data sources with different attributes
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m  Multi-terabyte data catalogs (2MASS, SDSS, GOODS, etc.)

Goals

ProbStat

HEP

pohantages m In-principle solution to the inference problem: MCMC
oftware features

Killer applications

Semi-analytic models [0 Incorporate data from multiple catalogs

GALPHAT

Galphat results [0 Can merge data sources with different attributes
Status

M-H #1

M-H #2 m  Current packages—Bayespack, BUGS, 5-Plus, R

Tempered-states #1

Tempered-states #2 [0 Not production oriented

Tempered-states #3
HEP details

0  Although good for proof of concept
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General Goals for the BIE

1.

Perform inference & hypothesis testing on large-volume

survey data
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General Goals for the BIE

MGG — 1. Perform inference & hypothesis testing on large-volume
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Advantages 2. Apply advanced computational techniques to optimize

Software features
Killer applications Bayesian methodology
Semi-analytic models
GALPHAT

Galphat results
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General Goals for the BIE

1. Perform inference & hypothesis testing on large-volume
survey data

Apply advanced computational techniques to optimize

Bayesian methodology

Exploit the intrinsic parallelism in MCMC
Embed structures optimized for mapped data

Multiple data sets incorporated by general data stream
architecture (consumer-producer chains)

Library, with front-end parser (like Octave)

BIE — slide 4



Motivation

Goals

ProbStat
HEP
Advantages

Software features
Killer applications
Semi-analytic models
GALPHAT

Galphat results
Status

M-H #1

M-H #2
Tempered-states #1
Tempered-states #2
Tempered-states #3
HEP details

AISR Workshop

General Goals for the BIE
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Bayesian methodology
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Multiple data sets incorporated by general data stream
architecture (consumer-producer chains)
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3. Platform for future development and statistical research
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General Goals for the BIE

Heiveien 1. Perform inference & hypothesis testing on large-volume
ProbStat survey data

HEP

Advantages : " mMi
AP 2. Apply.advanced computational techniques to optimize
Killer applications BayeS|an methOdOlOgy

Semi-analytic models

GALPHAT m  Exploit the intrinsic parallelism in MCMC

Galphat results

Status ..

MoH 1 m  Embed structures optimized for mapped data

M-H #2

Tempered-states #1 m  Multiple data sets incorporated by general data stream
Tempered-states #2 ) .

Tempered-states #3 architecture (consumer-producer chains)

HEP details

m Library, with front-end parser (like Octave)

3. Platform for future development and statistical research

Statistical, computational and astronomical research on
the same platform!
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ProbStat . . .
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Software features [0 Parametric in dimensions with strong astronomical prior
Kl/ I t . ] Ve -
ot analytie mor knowledge (an exponential disk, Sérsic bulge)
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Galphat results [0 Non-parametric in dimensions with little prior knowledge
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Specific Goal: Inference!

Motivation m  Parametric modelling

ProbStat . . .

HEP m  Semi-parametric modelling

Advantages . ] . . . . .
Software features [0 Parametric in dimensions with strong astronomical prior
Kl/ I t . ] Ve -

Semtamalytic models knowledge (an exponential disk, Sérsic bulge)

GALPHAT ] ] ] ] ] ] .

Galphat results [0 Non-parametric in dimensions with little prior knowledge
Status .

M-H %1 (asymmetry analysis)

M-H #2

Tempered-states #1 . . . .
Tempered-states 42 m  Full non-parametric modeling (basis sets, Polya-tree priors)
Tempered-states #3 . .

HEP details m  General hypothesis testing

1 Without nested models . ..
[1 More than model selection

[0 Complex hypotheses
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Probability and Statistics

Standard Metropolis-Hastings peti

Details
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Probability and Statistics

Standard Metropolis-Hastings peti
0 Bayes: m — P(H|D) x P(H)P(D|H)
[ Detailed balance: 7 (x)T(x,x") = w(x")T(

Details

x', x
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Probability and Statistics

Standard Metropolis-Hastings peti
0 Bayes: m — P(H|D) x P(H)P(D|H)
[ Detailed balance: 7 (x)T(x,x") = w(x")T(

Tempered-states annealing (R. Neal) oetis

x', x

)
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Probability and Statistics

ot vatier m  Standard Metropolis-Hastings petis

Stat 0 Bayes: m — P(H’D) X P(H)P(D‘H)

Advantages

Softwaregfeatures |:| Detalled balance 7T<:E)T<x7 x/) — T‘-(:C/)T(x/,x)

Killer applications
Semi-analytic models

GALPHAT m  Tempered-states annealing (R. Neal) petis
Galphat results

Status m  Multiple chains:

M-H #1

M-H #2

Tempered-states #1
Tempered-states #2
Tempered-states #3
HEP details
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Probability and Statistics

Standard Metropolis-Hastings peti
0 Bayes: m — P(H|D) x P(H)P(D|H)
[0 Detailed balance: 7w (x)T(x,2") = n(2")T (2, x)

Tempered-states annealing (R. Neal) oetis

Multiple chains:

[0 Dispersed chains, same temperature
[0 Parallel tempered chains

[0 Differential evolution
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Probability and Statistics

m Standard Metropolis-Hastings oetais
0 Bayes: m — P(H|D) x P(H)P(D|H)
[0 Detailed balance: 7w (x)T(x,2") = n(2")T (2, x)

m  Tempered-states annealing (R. Neal) petis

m  Multiple chains:

[0 Dispersed chains, same temperature
[0 Parallel tempered chains

[0 Differential evolution

m Particle filter
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Probability and Statistics

m Standard Metropolis-Hastings oetais
0 Bayes: m — P(H|D) x P(H)P(D|H)
[0 Detailed balance: 7w (x)T(x,2") = n(2")T (2, x)

m  Tempered-states annealing (R. Neal) petis

m  Multiple chains:

[0 Dispersed chains, same temperature
[0 Parallel tempered chains

[0 Differential evolution

m Particle filter

m  Convergence analysis
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HEP

Z';tli:atb“ m  Multilevel resolution: Hierarchical Empirical Priors
ProbStat Observer

HEP =

Advantages N

Software features
Killer applications
Semi-analytic models
GALPHAT

Galphat results
Status
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HEP

m  Multilevel resolution: Hierarchical Empirical Priors

Level 1 -
Level 2 ——
Level 3 m—

Details
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Summary: advantages

Multilevel hierarchical prior:

[]

[]
[]
[]

Eliminates high-dim volume at low resolution
Degrades the influence of prior on convergence
Improves MCMC convergence

Rigorously conserves probability
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Summary: advantages

m  Multilevel hierarchical prior:

[0 Eliminates high-dim volume at low resolution

[0 Degrades the influence of prior on convergence
0  Improves MCMC convergence
L]

Rigorously conserves probability

m  Multiple temperatures, “Loosened constraints”
(with M. Lavine)

[0 Accelerates convergence and mixing

[0 Prevents getting “stuck” in local minima
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Software features

Automated model integration and convergence testing
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Automated model integration and convergence testing

MPI implementation for clusters and supercomputers

Object-oriented design, easily extensible
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Software features

m  Automated model integration and convergence testing

m  MPI implementation for clusters and supercomputers
m  Object-oriented design, easily extensible

m Persistence system: save, checkpoint, recall objects!
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Software features

m  Automated model integration and convergence testing

m  MPI implementation for clusters and supercomputers
m  Object-oriented design, easily extensible
m Persistence system: save, checkpoint, recall objects!

m  Non-Bayesian “data mining”
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Software features

plativadar m  Automated model integration and convergence testing

Goals

ProbStat . .
HEP m  MPI implementation for clusters and supercomputers

Advantages

m  Object-oriented design, easily extensible
Killer applications
Semi-analytic models
GALPHAT

Galphat results . » oo "
Status m  Non-Bayesian “data mining
M-H #1

M-H #2

Tempered-states #1

Tempered-states #2 Screen shots: GUI Visualizer Strip Contour
Tempered-states #3

HEP details

m Persistence system: save, checkpoint, recall objects!

AISR Workshop BIE — slide 9



Motivation 1

Goals
ProbStat

HEP 2

Advantages

Software features 3 ]

Killer applications

Semi-analytic models
GALPHAT

Galphat results
Status

M-H #1

M-H #2
Tempered-states #1
Tempered-states #2
Tempered-states #3
HEP details

AISR Workshop

Killer applications

Star counts
Semi-analytic models (SAMS)

Galaxy image analysis
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Semi-analytic models

BIE-SAM: incorporates features from all major SAM groups
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Semi-analytic models

BIE-SAM: incorporates features from all major SAM groups

Current practice: adjust parameters by hand to fit observed

summary data (e.g. luminosity or mass function)

BIE — slide 11



Semi-analytic models
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puantages summary data (e.g. luminosity or mass function)
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CALPHAT rejecting phenomenological models
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Semi-analytic models

Vioivatior m  BIE-SAM: incorporates features from all major SAM groups
robSta . . .

oo m Current practice: adjust parameters by hand to fit observed
puantages summary data (e.g. luminosity or mass function)

Killer applications

m  Problem: no confidence estimates/can not achieve goal of

GALPHAT . . .
S rejecting phenomenological models

Status . .
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Semi-analytic models

Motivation OF T T
Goals C

ProbStat

HEP

Advantages

Software features
Killer applications
GALPHAT

Galphat results

Status

M-H #1

M-H #2
Tempered-states #1 -
Tempered-states #2 -

Tempered-states #3 S S Y R S
HEP details 85 90 95 10.0 105 11.0 11.5

log,,Mh®/M,

Predicted stellar mass function '

l@glo(@/hgl\ﬂ[pcg?’l@gml\ﬂ[gl)
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Semi-analytic models
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GALPHAT

Galphat results

Status

M-H #1

M-H #2 |
Tempered-states #1 05¢F
Tempered-states #2 -
Tempered-states #3
HEP details

logfy
O
I

00l iy

1.O 1.5 20 25 3.0 35 4.0 4.5
logM,.—10

Cooling cut-off (My) vs. merging
timescale
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Amplitude vs. power index of
supernova reheating
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Galaxy photometric attributes
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GALPHAT: main features

Multicomponent modeling (typically 12 parameters, more)
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GALPHAT: main features

Multicomponent modeling (typically 12 parameters, more)

Background estimation

Adaptive integration, optimized with two-dimensional

Interpolation on cumulative distributions
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GALPHAT: main features

m  Multicomponent modeling (typically 12 parameters, more)

m Background estimation

m  Adaptive integration, optimized with two-dimensional

Interpolation on cumulative distributions

m  Rotation by FFT shear algorithm
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GALPHAT: main features

m  Multicomponent modeling (typically 12 parameters, more)

m Background estimation

m  Adaptive integration, optimized with two-dimensional
Interpolation on cumulative distributions

m  Rotation by FFT shear algorithm

» Three passes rotation of 45°

xX-shear

xX-shear
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GALPHAT: main features

m  Multicomponent modeling (typically 12 parameters, more)
m Background estimation

m  Adaptive integration, optimized with two-dimensional
Interpolation on cumulative distributions

m  Rotation by FFT shear algorithm
m Scientific goals

1. Evaluation of galaxy evolution theories
(model selection)

2. Look for correlations between inferred parameters
and everything else to gain insight
(knowledge discovery)
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GALPHAT: main features

Multicomponent modeling (typically 12 parameters, more)

Background estimation

Adaptive integration, optimized with two-dimensional
Interpolation on cumulative distributions

Rotation by FFT shear algorithm

Scientific goals

[]

Accurate recovery of bulge/disk ratios from 2MASS
& SDSS

Extend to higher redshift (GOODS, GEMS):
evolution of bulge/disk ratio

Hypothesis testing with full posterior probabilities
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GALPHAT: results

S/N=15, Sersic index: n, 1- and 2-component models
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GALPHAT: results

ot vatien m  S5/N=15, Sersic mcjemxm n, 1- and 2-component models
ProbStat g j ] [ i ‘

HEP i ] £ )
Advantages ! I ] i
Software features /ﬂ”r 1“11\_

20.05 20.06 2007 2008 2009 201

Killer applications q Mag
Semi-analytic models

GALPHAT i ' | | W ] ltH
| |

Status g : —=
M-H #1

M-H #2
Tempered-states #1
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HEP details
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GALPHAT: results

o vatien m  S/N=15, Sersic index: n, 1- and 2-component models
ProbSta
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NGC 374 [SO/a]
left: data, middle: 1-comp, right: 2-comp

log(Bs21) = 0.056— minimal evidence to reject 1-comp
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Current status

m Listed on Astro Stat web site

m Project web site: www.astro.umass.edu/~weinberg/bie

m 2008 release (Summer?) including persistence
m  2008/2009 release of GALPHAT stand-alone
m 2009 release of BIE-SAM stand-alone

m Interim releases (e.g. now) contact me!
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Current status

m Listed on Astro Stat web site

m Project web site: www.astro.umass.edu/~weinberg/bie

m 2008 release (Summer?) including persistence
m  2008/2009 release of GALPHAT stand-alone
m 2009 release of BIE-SAM stand-alone

m Interim releases (e.g. now) contact me!

The End
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Metropolis-Hastings: details [1]

Motivation

Goals

ProbStat m Begin with state x = X

HEP

NPT m  Select new state with transition probability: ¢(x,x’)

Software features
Killer applications

St enelyie meddk m  Accept X;,; = 2’; otherwise reject 2’ and set X, = .
GALPHAT

Galphat results m Thisis a Markov chain with transition probabilities given by:
Status
, ) ,
M-H 72 P(x,2") = q(z, 2" )a(x, 2)
Tempered-states #1
Tempered-states #2 .
Tempered-states #3 |f xr # Qj/, or
HEP details
/ / /
P(z,2") =1~} q(z,2")a(z,2")
xFx!
otherwise.
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Metropolis-Hastings: details [2]

Motivation m |f we now set:

Goals

ProbStat

HEP / : W(x/) (
alr, ') =min |1

il (@) @)l 2)

Killer applications

Semi-analytic models . / N __ :

P if m(x)g(2’, ) > 0 and a(x,2’) = 1 otherwise.

Galphat results .

Status m It is now easy to check that 7w (z)p(x,2') = w(z")p(a’', x).
M-H #1

Tempered-states #1

Tempered-states #2

Tempered-states #3

HEP details
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Metropolis-Hastings: details [2]

m |f we now set:

if m(x)g(2’, ) > 0 and a(x,2’) = 1 otherwise.

m It is now easy to check that 7w (z)p(x,2') = w(z")p(a’', x).

Theorem:

One can then show that 7(x) is the equilibrium distribution of
the Markov chain if ¢(x, z') is aperiodic and irreducible
(Hastings 1970).
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_ Tempered-states annealing: details [1]

o Want: sample from a distribution, py(x), which may have many
ErEoFlfStat iIsolated modes

e Strategy.

gﬁr_:‘n‘;‘lﬂyﬁiﬂ;zels m  Define a series of n other distributions, py(x), ..., pn(x)
ggti;isuns B p; being easier to sample from than p;_4

i/ltf:lu;ﬂ m For each 7, define a pair of base transitions, TZ and 7T,

M-H #2 m  Each p; as an invariant distribution

m  Satisfy the following mutual reversibility condition for all « and
Tempered-states #3 2

HEP details N

pz(ﬂf)ﬂ(ﬂf, CIZ'/) — TZ (:Clv I)pz(ﬂfl)
m Detailed balance if TZ — Tz-

m Find candidate state by transitions in the sequence
T, ---T,T, T}
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Tempered-states annealing: details [2]

m  Accepted or rejected based on ratios of probabilities
involving intermediate states. Choose levels to be
successively broader, higher temperature.

m  Begin in state 7, generate candidate state, ), as follows:

Generate 21 from 2 using T7.
Generate 1 from 21 using T5.

Generate z,, from 2,,_1 using T,,.
Generate &,,_1 from X using T,,.

Generate &1 from Zo using T5.
Generate &g from &1 using T7.
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Tempered-states annealing: details [3]

Motivation m [he candidate state is then accepted with probability

Goals

ProbStat ) ) V
X . Lo :E
HEP « = min |:1,M--- P (Zn—1) .pn 1(Zn—1) ,.-pO( O):|

pO(aAZO) pn—l(in—l) pn(jn—l) pl(av:O)

Advantages
Software features
Killer applications

Semi-analytic models m Each p; occurs an equal number of times in the numerator
GALPHAT . . y
and denominator of the above product of ratios = Don't

Galphat results

Status need normalization for p;
M-H #1

M-H #2 : : :
Terpercd-states 441 m  Need fine spacing of levels to have high acceptance

Tempered-states #2 o
probability

HEP details

return
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HEP details

Standard Bayes: P(H|D,I)= P(H|I)P(D|H,I)/P(D|I)
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HEP details

Motivation

Goals

ProbStat m Standard Bayes: P(H|D,I) = P(H|I)P(D|H,I)/P(D|I)
HEP

Advantages m  Binning at level n — 1 contains all of the observations but

Software features

Killer applications with less information than at level n:

Semi-analytic models

GALPHAT Dn—l — U Dn
Galphat results

Status

M-H #1

M-H #2

Tempered-states #1

Tempered-states #2

Tempered-states #3

HEP details
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_ HEP details
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Standard Bayes: P(H|D,I)= P(H|I)P(D|H,I)/P(D|I)

Binning at level n — 1 contains all of the observations but
with less information than at level n:

Dp—1=|JD,
Hierarchical update:
P(H|Dy, D1, ...,Dn,I) < P(H|Dy,...,Dp_1,I) x
\P(Dn|H,I)/P(Dn-1|H,T)]
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[0 Prior is posterior at previous level
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