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Abstract

Retailers typically sell many different products from the same manufacturer at the
same price. I consider retailer-based explanations for this uniform pricing puzzle, using
a structural model to estimate the counterfactual profits that would be lost by a retailer
switching from a non-uniform to a uniform pricing regime in the carbonated soft drink
category. Applying the demand model developed in McMillan (2005) to household-level
panel data on purchases of carbonated soft drinks, I estimate that the retail store I observe
earned an additional $36.56 (1992 dollars) in average weekly profits by charging non-uniform
prices. This corresponds to roughly a 3% difference in profits, and suggests that when a
retail store faces even a relatively small cost to determine the optimal set of non-uniform
prices, it may be optimal to charge the same price for many products.
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1 Introduction

Retailers typically sell many different products from the same manufacturer at the same

price. For example, in the yogurt category, all flavors of six ounce Dannon Fruit-on-the-

Bottom yogurt are sold at one price, while all flavors of six ounce Yoplait Original yogurt

are sold at a second (uniform) price. This practice is common in many product categories,

including frozen dinners, ice cream and salsa. In other product categories, however (e.g.,

frozen juice), items are typically sold at different prices within manufacturer brands. While

not true at all times, in all stores, and for all products, the extent of these uniform prices

across different retailers, product categories, and time is stunning. Why is it optimal for

the retailer to sell many different items at the same price? Consider the following anecdotal

examples:

Tea and Juice Although many teas and juices are sold at uniform prices, there are notable

exceptions. Frozen orange juice is almost always priced differently from other frozen

juice. Within the premium juice category (e.g., brands such as Odwalla and Naked

Juice), prices are frequently completely non-uniform. Similarly, although most teas

are sold at uniform prices, some varieties of tea are frequently sold at a higher price.

These non-uniform prices seem to correlate with marked differences in marginal costs.

Although most tea leaves cost roughly the same, some cost more to produce. Similarly,

differences in cost and juiciness across different fruits can lead to different marginal

costs for the same volume of liquid. Furthermore, both tea and juice are products

that are difficult for manufacturers to adjust the amount of input per unit of output.

If manufacturers adjust the amount of real juice or tea leaves, consumers are likely to

notice.

Wine Different varieties of wine from the same vineyard and vintage are typically sold at

the same price when they are sold for less than $15 a bottle. For example, the much-

reviewed Charles Shaw wines are $1.99, regardless of variety (e.g., Merlot, Cabernet

Sauvignon, Shiraz, Gamay Beaujolais, Chardonnay, or Sauvignon Blanc). However,

for more expensive wine, different varieties are generally priced non-uniformly. As

prices increase, we see more and larger deviations from uniform prices.

Clothing Within a particular style, clothing is typically sold at the same price for different

colors and sizes. There are however, exceptions to this rule: while S,M,L and XL sizes
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are typically the same price, many retailers charge more for XXXL and “tall” sizes.

These sizes generally cost the retailer more, either because of the amount of fabric

used, or because average costs are higher due to lower volumes. Also, although men’s

shirts are usually priced uniformly across colors, striped shirts are frequently priced

differently. Retailers frequently claim that this is because striped shirts are a different

style than solid colored shirts, with different demand. Finally, upscale clothing stores

are more likely to charge different prices for different colors.

Books Books, even harlequin romance novels, are not sold at uniform prices. Even

different books by a single author generally have different prices. At first this seems

puzzling. But unlike many products, books are frequently sold with a suggested retail

price stamped on their cover or dust jacket. Furthermore, this price is the same

everywhere. While many retailers offer lower prices (e.g., discounts for New York

Times Bestsellers), these are nearly always offered as a percentage difference from

this suggested price. If one is willing to take as given the constraint that most books

are sold at a single price (or at most 2-3 prices) nationally, it becomes clear that the

demand for different books is almost certainly quite different.

While many products exhibit uniform prices, there seem to be clear patterns character-

izing products that are not priced uniformly. Products with ostensibly different marginal

costs, such as different flavors of tea, varieties of frozen juice, and odd sizes of clothing are

frequently sold at different prices. Other products, with demand that clearly differs across

varieties such as different colors of designer clothes, colors of cars, expensive varieties of

wine also tend to be priced differently.

A suggestive pattern emerges: unless there are clearly additional profits from non-

uniform pricing, there is a strong tendency towards uniform prices. If marginal costs are

sufficiently different, we tend to see non-uniform prices. If demand for the products is

sufficiently different, we tend to see non-uniform prices. If prices are sufficiently high, we

tend to see non-uniform prices. This suggests that managerial menu costs on the part of

the retailer may be able to explain the observed uniform pricing behavior. In determining

what price to charge, the retailer incurs a cost, most obviously the opportunity cost of a

price-setting executive’s time. Given this cost, it may be optimal for the retailer to group

products with similar costs and demands and sell them at a single price.
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Given the pervasiveness of uniform pricing in retail environments, the dearth of papers

on the subject is quite surprising. To my knowledge, only Orbach & Einav (2001) confront

the uniform pricing puzzle directly (and then only in the movie industry). They observe

that tickets for movies that are a priori expected to be blockbusters are sold at the same

price as movies that are a priori expected to be box office bombs. Unfortunately, they are

hamstrung by the fact that they never observe non-uniform pricing for movies, and are

unable to find any convincing explanation.

The answer to the uniform pricing puzzle must revolve around the key question: How do

retailers set prices? Menu costs are not the only potential explanation. Indeed, in addition

to the menu cost explanation, there are a variety of explanations, which fall into two groups:

demand-side (consumer-based) and supply-side (retailer-based) explanations.

Potential demand-side explanations involve explicit consumer preferences for uniform

prices. Based on discussions with price-setters, Kashyap (1995) and Canetti, Blinder &

Lebow (1998) find that many firms believe they face a kinked demand curve, containing so-

called “price points” where marginal revenue is discontinuous. Two consumer preferences

that might yield a “uniform price” price point are that more prices makes it harder to figure

out what to buy, and that more prices make the consumer feel that the retailer is trying to

take advantage of her. Shugan (1980) and Hauser & Wernerfelt (1990) develop theoretical

models of costly optimization and Draganska & Jain (2001) find some evidence of this in

yogurt. Kahneman, Knetsch & Thaler (1986) look at consumers’ perceptions of fairness,

and show that consumers may perceive unfairness in retailers pricing policies. Evidence

that these perceptions of fairness can affect demand can be found in recent popular press

surrounding actions by Coke (Hays 1997) and Amazon (Heun 2001).

In addition to the “null” hypothesis that the observed prices are actually optimal in a

traditional supply and demand framework, the two principal supply-side explanations are:

(1) that the observed uniform pricing behavior is either driven by menu costs or (2) that it

stems from an attempt by retailers to soften price competition.

The former explanation is favored by Ball & Mankiw (2004), who use it to explain

“sticky” prices. The puzzle of uniform pricing across differentiated products is closely

related to the long-standing macro-economic issue of sticky prices. Sticky prices can be

thought of as uniform prices for products that are differentiated by time – an example

of inter-temporal price uniformity. Addressing this issue, Ball & Mankiw (2004) suggest

that much of the observed inter-temporal price uniformity can be explained by the menu
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costs associated with “the time and attention required of managers to gather the relevant

information and make... decisions.”(p.24-25).

Leslie (2004) also believes that menu costs play a role in pricing decisions. He finds

that Broadway theaters can earn higher profits by charging prices that differ across seats.

While he finds that charging different prices for different seating categories results in higher

profits, he cannot explain why theaters use only two or three different categories. Because

he does not observe seat-level price variation he cannot estimate the implied menu costs.

Although they do not describe it as such, Chintagunta, Dubé & Singh (2003) provide

a measurement of implied menu costs. They find that multi-store retail chains can earn

higher profits by charging different prices in different geographic areas. They predict that if

retailers charged a different price in each store (rather than using only three or four different

menus of prices for over 80 stores), the chain would have earned an additional $10,000 per

week in the orange juice category alone! Such a large result seems unreasonable in light

of the salary levels found in Levy, Bergen, Dutta & Venable (1997), and may be due to

the potential demand-side explanations discussed above or the restrictive assumptions that

they make about the nature of competition between retailers in order to identify demand.

Taking a different tack and inferring managerial menu costs from salary data, Levy et al.

(1997) guesstimate that the annual price-setting managerial costs are $2.3-$2.9 million at

the chain level, which translate to average annual per-store costs of roughly $7000.1 These

are average, not marginal costs, however.

As mentioned above, an alternative supply-side explanation for uniform pricing is that

it leads to a softening of price competition. There is an extensive literature investigating the

effects of multi-market interaction on firms’ abilities to collude (for example Nevo (2001)

looks at the case of breakfast cereal, while Carlton (1989) suggests this as an explanation

for inter-temporal price uniformity). Most relevant to my analysis is Corts (1998) who

shows that firms engaged in multi-market competition may prefer to commit themselves to

charging the same price in both markets in order to soften price competition. Corts models

the interaction between two firms which compete in a Bertrand setting in two markets.

In his model, the two firms have identical costs, but these costs differ across markets. If

they are able to charge different prices in each market, the firms drive the price down to

marginal cost. However, if they are able to restrict themselves to charge the same price

in both markets, then they are able to earn positive profits in expectation. Viewing two
1These figures are in 1992 dollars. One 1992 dollar is equivalent to $1.35 2004 dollars.
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different flavors as different markets, his result suggests that retailers may benefit if they are

able to tacitly agree to charge fewer prices than the number of distinct products that they

sell. Alternatively, charging fewer prices may allow colluding firms to more easily detect

cheating. However, both of these theories of collusion require retaliation by the cartel in

the face of detected cheating. This does not coincide with what I see in my data: I see

repeated non-uniform pricing by one retailer that is not met by non-uniform pricing by any

other retailers in my sample. As we will see in more detail later (see Figures 1-4), I do not

see the stores in my data retaliating through the use of non-uniform prices in the face of

deviations.

Finally, there has also been a growing body of literature exploring the implications of

line length – the dual of the uniform pricing puzzle (See, for example, Draganska & Jain

(2001), Bayus & Putsis (1999), and Kadiyali, Vilcassim & Chintagunta (1999)). These

papers model the retailer’s decision to add products to a “line”. This literature has taken

for granted that all the products in a line have the same price. Indeed, many authors have

defined a product line as the set of products from a single manufacturer sold by the retailer

at a uniform price. Rather than examine the pricing decision, this literature has focused

exclusively on the decision of whether to introduce additional products. Clearly in addition

to facing the problem of maximizing product line length, manufacturers face the decision

of when to price products differently, that is, when to split a line. To my knowledge, this

question has not been directly addressed by the line length literature.

Although many of these explanations for uniform pricing are plausible (and may be

the cause for some cases of uniform pricing), this paper examines the plausibility of the

managerial menu cost explanation, which is essentially a story of bounded rationality on

the part of the retailer. There are several reasons for this focus. The first reason for this

focus is that the menu cost explanation uses standard assumptions concerning consumer

choice behavior, and at a minimum will provide a useful benchmark for comparison when

considering other explanations. Second, it is certainly plausible that for many goods, menu

costs may be able to explain uniform pricing. Third, while there is reason to believe that

demand-side explanations may play a role, I am limited by a lack of data. Exploring

demand-side explanations in more detail cannot be done with the data presently available.2

By contrast, if I assume that consumers do not have explicit preferences for uniform prices,
2Doing so would, at a minimum, require exogenous switching between uniform and non-uniform pricing

strategies. In addition, Kahneman et al. (1986) suggest that consumer responses to alternative price behavior
are heavily dependent on framing (e.g., explanations for alternative pricing behavior).
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it is possible to examine the implications of uniform pricing for retailers.

This paper estimates the economic profits that retailers appear to lose by following

optimal uniform pricing strategies. These lost profits place bounds on the retailer’s costs of

implementing these alternative pricing regimes. In the next section, I describe a framework

for estimating the menu costs to the retailer from following non-uniform pricing strategies,

and identify soft drinks as a product category for investigation. The remainder of the paper

proceeds as follows: section 3 lays out the empirical demand model, and section 4 describes

the data. Section 5 contains both the parameter estimates of the demand model and the

results of the coutnerfactual experiment. Section 6 interprets these results in light of other

available evidence on menu costs and section 7 concludes.

2 An Overview of Managerial Menu Costs for Soft Drinks

Assuming that uniform pricing is driven entirely by supply-side factors, then clearly the

first-order question is: “How much profit is forgone?” To answer this question, I assume

that retailers are able to choose among a variety of different pricing strategies of differing

sophistication. These strategies are functions that map each period’s state space to a vector

of prices. Consider the array of potential pricing strategies that a retailer of carbonated

soft drinks might choose from:

• Charge a constant percentage markup of 30% over wholesale price.

• Charge a markup of a constant amount of $0.25 over wholesale price.

• Charge a constant percentage markup of x% over wholesale price, where x is chosen

optimally.

• Charge a single per unit price (e.g., $0.25 per 12 ounces) for all soft drinks, regardless

of size or flavor.

• Charge a single per unit price for all soft drinks from the same manufacturer, regardless

of size, but charge different prices across manufacturers.

• Charge a single per unit price for all soft drinks of the same size, regardless of

manufacturer, but charge different prices across sizes.
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• Charge a different price for each product (e.g., one price for a 2-Liter bottle of Diet

Coke, a second price for a 2-Liter bottle of Coke Classic, a third price for a 2-Liter

bottle of Diet Pepsi, etc.).

• Charge two different per-unit prices for all soft drinks, but determine the groupings

of products and these two price levels optimally.

In this context, uniform pricing by manufacturer-brand-size and completely non-uniform

prices are just two of many potential pricing strategies. The retailer’s implementation costs

for these pricing strategies clearly differ. For example, charging a constant markup of 30%

on all products requires no knowledge on the part of the retailer about the residual demand

curve that it faces. In fact, many books on applied pricing for small retailers (e.g., Burstiner

(1997)) suggest that they simply charge a 100% markup on their entire inventory, a practice

known as “keystone pricing”. By contrast, charging a different (and profit maximizing price)

for each product requires intimate knowledge on the part of the retailer of the residual

demand curve that it faces. It must be cognizant not only of consumers’ preferences, but

also of the current state space (competitors’ current prices, current advertising activity,

current wholesale prices, holiday periods, etc.). Furthermore, mapping these state variables

to optimal prices for each product involves solving a high dimensional optimization problem

every period.

The following framework is useful for analyzing the retailer’s decision process. Assume

that each period, the retailer maximizes expected profits, less menu costs:

Expected

Profit

this Period

=

Expected

Revenue

from Sales

−
Expected

Cost

of Goods

−
Menu Costs

this Period
(1)

The menu costs incurred by the retailer each period can be thought of as having two

components:

Menu Costs

this Period
=

Maintenance

Costs

(Recurring)

+

Upgrade

Costs

(if any, Non-Recurring)

(2)

The first component of the current period’s menu cost is the recurring cost of maintaining

the current pricing strategy. Obviously, this cost would vary depending on the pricing
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strategy chosen. A simple pricing strategy, such as “charge the same prices as last period”

would incur zero maintenance costs. But in the case of a complex strategy, this cost could

be quite high. Each period, the retailer would have to learn the current state space (entering

wholesale prices into a computer pricing program, learning competitors’ prices, etc.) and

apply the pricing rule to determine the prices for that period. Even within the class of

complicated pricing rules, costs might vary. Due to the difficulties inherent in numerical

optimization, uni-dimensional pricing strategies (e.g., charging a single optimal markup) are

much easier to implement (and hence require less managerial time) than high-dimensional

pricing strategies.

The second component of the current period’s menu cost is the cost of upgrading to a

better pricing strategy. This fixed cost is non-recurring (or at least infrequently recurring).

If the retailer decides to use the same pricing strategy as in the previous period, no upgrade

costs would be incurred. But if, for example, a retailer decided to switch from a “charge

the same prices as last period” strategy to a “charge the profit-maximizing price for each

good” strategy, they would potentially have to incur several costs.

First, in order to learn their demand curve, the retailer may want to introduce

exogenous price variation.3 In addition to the opportunity cost of the time it takes for

a manager to determine these prices, this experimentation involves forgone profits, because

it explicitly requires charging prices that are believed to be non-optimal. Fortunately,

this experimentation is required only infrequently – when it is believed that the structural

parameters of the demand system have changed.

Second, the retailer must analyze the data to recover the structural parameters of the

demand system. Here the retailer faces a choice regarding the level of sophistication used in

estimating the demand curve. For example, the retailer could employ a homogenous logit

model, a heterogenous logit model, or another model (such as that found in this paper) in

estimating demand. In choosing among alternative models, the retailer must trade off the

opportunity cost of a manager’s time, or the cost of hiring consulting services against the

expected cost of mis-specification. Like the costs associated with experimentation, this cost

must be incurred only when it is believed that the structural parameters of the demand

system have changed. Third, the retailer may potentially have to purchase software (such

as optimization software) to allow it to convert the estimated demand system to a set of
3As discussed in more detail later, it is not possible to estimate the cross-price elasticities between two

products if their relative prices are constant.
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optimal prices.

Unlike the maintenance costs, which are incurred each period, these upgrade costs

would only be incurred by the retailer infrequently, when the retailer perceives that the

upgrade costs are less than the present discounted value of the additional profits gained from

following the new pricing strategy.4 This means that the upgrade costs must be incurred

whenever there is reason to believe that the structural parameters of the demand system

have changed. If the demand system changes substantially over time, or across distance, this

will lead to additional upgrade costs. For example, if Coke is more popular in some areas,

while Diet Coke is more popular in other areas, then demand must be estimated separately

in each of these areas. This explains why even large chains might charge uniform prices

- because demand may differ structurally across geographic areas, and hence it may need

to be re-estimated for each area, eliminating returns to scale in upgrade costs. Similarly

(though less likely), the retailer will have to re-estimate demand more frequently in areas

where the distribution of consumers’ preferences change frequently. We are less likely to

see costly-to-implement pricing strategies when the retailer cannot expect to recoup the

upgrade costs.

For tractability, this paper assumes a static model, and estimates the additional per-

period maintenance costs for non-uniform pricing relative to uniform pricing. A dynamic

structural model would have to include a model of the retailer’s expectations about the

demand curve it would find if it experimented, as well as the retailer’s expectations how

marginal costs and demand would change over time, and their competitor’s actions.

My approach to measuring the menu costs that would rationalize the observed uniform

pricing behavior is to look at the counterfactual expected profits earned by the retailer
4I choose to remain agnostic about the process that allows the retailer to form expectations about the

additional profit to be gained from upgrading to a new pricing system without actually implementing the
system.
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under uniform and non-uniform pricing strategies. That is, for each week, I compute:

Minimum Menu Cost

this Period

that Rationalizes

Uniform Prices

=


Expected

Revenue from Sales

this Period

with Non-Uniform

Prices

−

Expected

Cost of Goods

this Period

with Non-Uniform

Prices

− (3)


Expected

Revenue from Sales

this Period

with Uniform

Prices

−

Expected

Cost of Goods

this Period

with Uniform

Prices

 (4)

The left-hand side of this equation corresponds to the amount of profit that the retailer

actually earned by charging non-uniform prices instead of uniform prices. Therefore, the

model predicts that if the retailer had faced menu costs higher than this amount, I would

have observed that retailer charging uniform prices if the choice was made on a week-by-

week basis. More likely, the uniform versus non-uniform pricing strategy decision is made

infrequently. This would mean that the relevant profit difference to consider would be the

discounted value of the sum of the profit differences over several weeks. The difference

between the profits earned under uniform and non-uniform prices depends only on the

demand function faced by the store, and it’s marginal costs.

In order to make this comparison empirically, it is necessary to learn (a) the demand

system faced by the retailer and (b) the cost structure faced by the retailer. Learning

these two pieces in order to perform the counterfactual experiment posed above, requires

developing a structural model of demand and supply. The remainder of this section discusses

(a), deferring discussion of (b) to section 5.3.

In order to actually calculate the implied menu costs, I must learn both the marginal

costs and the demand curves faced by the retailer. In practice, I only observe data on

weekly prices and quantities purchased by households. Economic theory suggests I can

recover the marginal costs if I know the residual demand function, but I must observe price

and quantity data that includes variation in prices - I must observe a retailer charging non-

uniform prices.5 I solve this problem by considering a product that is frequently (but not
5Strictly speaking this is not quite true. For example, it is possible to empirically estimate a homogenous

logit model and hence derive cross-price elasticities between two goods whose price ratio is constant as long
as the their price levels are changing (i.e., get identification off sales). To see this, consider the case with two
products and an outside good, with product dummies for characteristics. In this case, a homogenous logit
model of household choice implies a system of 2 linear equations, where the dependent variable in equation j
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always) priced uniformly: different flavors of carbonated soft drinks.

In addition to the necessary price variation, there are a number of features that make

the carbonated soft drink category amenable to this investigation. First, the soft drink

category has a large number of products, and a large number of different varieties of

similar products. Second, contrary to many other product categories, these products could

plausibly be grouped in a number of alternative ways. This stems from the fact that the

product packaging for soft drinks is largely identical across brands and manufacturers. The

label on a 2-Liter bottle of Coke may differ from its Pepsi counterpart, but the physical

shape of the bottle is identical. This physical similarity is much different than other product

categories, like yogurt, where consumers might be less likely to accept line pricing by flavors.

Third, soft drinks are the most frequently purchased item in scanner data. According to

scanner data, in most product categories, the median household makes a purchase only a

couple of times per year. By contrast, the median household in the sample purchases soft

drinks on eleven occasions over the sample period of two years. This gives us the hope of

obtaining reasonably good estimates.

Unfortunately, there are several potential drawbacks to looking at carbonated soft

drinks. The first potential drawback is that anecdotal evidence suggests that consumers may

stockpile soft drinks. If true, this would greatly complicate the demand model. However,

Hendel & Nevo (2002b) find no evidence of stockpiling of soft drinks. This is not definitive

however, since they also find little evidence of stockpiling in detergents, while their structural

paper on detergents (Hendel & Nevo 2002a) does find such effects.

A second potential problem with using soft drinks is that retailers may view the soft

drink category as a “loss-leader” category, pricing it low in order to drive store traffic.

Although it features in some theoretical work (see for example, Hess & Gerstner (1987))

there is little empirical evidence of loss leader behavior. To the extent that cross-category

is the log of the ratio of the market share of good j to the market share of the outside good: ln(sjt)− ln(s0t).
The independent variables are the price of good j and indicator variables for each good. Because the logit
assumes that the coefficients on these prices and dummy variables are equal in each equation, the system
collapses to a single equation with three variables: price and indicator variables for the two goods. This
equation is usually estimated by OLS. If the two goods are sold at the same price, say $1 in every period,
clearly the price variable is co-linear with the product dummies, and the model cannot be estimated. If,
however, the two goods are sold at different prices in each period, but at the same price relative to each
other, then the model can be estimated. Unfortunately, the identification in this case is coming entirely from
the functional form. The logit model assumes that households choose the alternative yielding the highest
indirect utility. Because indirect utility functions are homogenous of degree zero – meaning that a change
in the level of all prices is equivalent to a change in the level of income – the effect of this price variation is
equivalent to variation in household income.
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loss-leader behavior by the retailer does occur, it would only affect the assumptions I use to

recover marginal costs. My method would interpret low prices as evidence of low marginal

costs, when in fact prices would be low in order to drive store traffic. While my approach

could be modified to account for cross-category loss-leader behavior, I lack strong candidates

for an alternative to assuming the retailer maximizes profits on a category-by-category basis,

and simultaneously estimating demand for several product categories is beyond the scope

of this paper.

A third potential problem with the soft drink industry is the argument that the soft

drink category is different because the two main manufacturers, Coke and Pepsi, have

extraordinarily strong brands and, as a result, may exert pressure on retailers to price their

products in a particular way. If Coke and Pepsi exerted influence over pricing, it does not

present a problem for my demand estimation, which relies solely on the fact that I observe

price variation. It could potentially affect my profit calculations. However, what I see in

the data does not appear to be consistent with the Coke and Pepsi influencing pricing (at

least not at the store that charged non-uniform prices). What I observe in the data is one

store charging non-uniform prices, and all other stores charging uniform prices. It seems

highly implausible that Coke and Pepsi would (or could) dictate to every other store in the

area to charge uniform prices, but allow the retailer I observe to charge non-uniform prices.

Within the soft drink category, there is often a great deal of price variation, both for the

same product over time and between products from different manufacturers. Indeed, Coke

and Pepsi frequently alternate promotion weeks, with Coke on sale one week and Pepsi on

sale the next. This behavior can be seen in Figures 1 and 2, which plot the weekly price

(normalized to 12-ounce servings) of 2-Liter containers of Coke and Pepsi over a two year

period at two different stores. In contrast to the price variation seen in these figures, soft

drinks are typically sold at uniform prices by manufacturer-brand-size. Within a size, all

flavors of Pepsi are typically sold at one price, and all flavors of Coke at another uniform

price. Figure 3 illustrates this by plotting the ratios of the price of Diet Pepsi and Diet

Caffeine Free Pepsi to Regular Pepsi. From the graph, it is easy to see that at this store

(the same store as in Figure 1), the three Pepsi UPCs6 were always sold at the same price.

However, not all stores charged uniform prices during this time. Figure 4 shows the same
6The Store Keeping Unit (SKU), also sometimes known as a Universal Product Code (UPC) is a number

that uniquely identifies each product/size. For example, a 2-Liter plastic bottle of Caffeine-Free Diet Coca-
Cola has a different SKU than a 2-Liter plastic bottle of Diet Coca-Cola, or a 12oz can of Caffeine-Free Diet
Coca-Cola.
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price ratios as in Figure 3 but at another store (the same store as in Figure 2). The graph

for this store clearly shows a great deal more variation in the prices of different flavors

of Pepsi. This variation allows us to estimate demand separately for each Pepsi variety.

Similar price variation among varieties of other manufacturer brands at this store allows us

to estimate demand for many different items.7

7As an aside, note that Figures 3 and 4 (and the puzzle addressed in this paper) highlight two features of
the data: (1) the prices of the three goods are moving in lock-step (i.e., Figure 3 is essentially two straight
lines) and (2) they are all the same price (i.e., these lines are at 1). Although this paper considers (2),
observing only (1) but not (2) would also be explained by menu costs. For example, if a retailer knew that
Diet Coke was more popular than Coke (but not how this varied with their absolute prices or the prices of
other products) then one unsophisticated pricing strategy that would result from this would be to always
charge $0.10 more for Diet Coke than Coke.

14



F
ig

ur
e

1:
G

ra
ph

of
P

ri
ce

s
fo

r
C

ok
e

an
d

P
ep

si
at

St
or

e
B

,
6/

91
-6

/9
3

1520253035
Cents per 12oz Serving 08

ju
n1

99
1

05
de

c1
99

1
02

ju
n1

99
2

29
no

v1
99

2
28

m
ay

19
93

C
ok

e
P

ep
si

W
ee

k

P
ric

es
 o

f 2
L 

(6
7.

6o
z)

 s
iz

es
 a

t S
to

re
 B

15



F
ig

ur
e

2:
G

ra
ph

of
P

ri
ce

s
fo

r
C

ok
e

an
d

P
ep

si
at

St
or

e
A

,
6/

91
-6

/9
3

101520253035
Cents per 12oz Serving 08

ju
n1

99
1

05
de

c1
99

1
02

ju
n1

99
2

29
no

v1
99

2
28

m
ay

19
93

C
ok

e
P

ep
si

W
ee

k

P
ric

es
 o

f 2
L 

(6
7.

6o
z)

 s
iz

es
 a

t S
to

re
 A

16



F
ig

ur
e

3:
G

ra
ph

of
P

ri
ce

s
R

at
io

s
of

P
ep

si
V

ar
ie

ti
es

to
R

eg
ul

ar
P
ep

si
at

St
or

e
B

,
6/

91
-6

/9
3

.6.811.21.4
Price Ratio 08

ju
n1

99
1

05
de

c1
99

1
02

ju
n1

99
2

29
no

v1
99

2
28

m
ay

19
93

D
ie

t P
ep

si
D

ie
t C

af
fe

in
e 

F
re

e 
P

ep
si

W
ee

k

P
ric

e 
R

at
io

s 
of

 P
ep

si
 V

ar
ie

tie
s 

to
 R

eg
ul

ar
 P

ep
si

,  
2L

 (
67

.6
oz

) 
si

ze
 a

t S
to

re
 B

17



F
ig

ur
e

4:
G

ra
ph

of
P

ri
ce

s
R

at
io

s
of

P
ep

si
V

ar
ie

ti
es

to
R

eg
ul

ar
P
ep

si
at

St
or

e
A

,
6/

91
-6

/9
3

.6.811.21.4
Price Ratio 08

ju
n1

99
1

05
de

c1
99

1
02

ju
n1

99
2

29
no

v1
99

2
28

m
ay

19
93

D
ie

t P
ep

si
D

ie
t C

af
fe

in
e 

F
re

e 
P

ep
si

W
ee

k

P
ric

e 
R

at
io

s 
of

 P
ep

si
 V

ar
ie

tie
s 

to
 R

eg
ul

ar
 P

ep
si

,  
2L

 (
67

.6
oz

) 
si

ze
 a

t S
to

re
 A

18



3 Empirical Demand Model

I need a model of consumer demand that will allow me to estimate the residual demand

curve in period t for each product j: Qjt(·). It is important to note that I need to estimate

the residual demand function faced by a single store. Unless the retailer is a monopolist,

this is the not the same as the market demand function faced by all stores. The residual

demand function reflects the presence of other stores in the market. The difference is that

the residual demand function accounts for the fact that the prices charged at other stores

affect demand at store A. This means that if store B has a clearance sale, I should expect

demand at store A to decline. Several previous empirical demand studies have ignored this

aspect for the very good reason that in most datasets, this information is simply not available

– prices for other stores are not observed. In my case, however, I observe the prices charged

at four other competing stores. Furthermore, as explained later, the additional stores in the

dataset were chosen precisely because they were the stores that shoppers were most likely

to visit.8

I assume that the households’ choice process is as follows. First, I assume that an

exogenous process governs consumers’ decision of whether to shop in a given week, as well

as their total grocery expenditure in that week. Second, conditional on deciding to shop,

I model households’ store-choice decision using a conditional logit. Then, conditional on

a household’s choice of store, I assume that they optimally allocate expenditure between

soft drinks and all other groceries. Hence, the residual demand faced by store A is equal to

the sum over all households i (that went shopping in that week) of the probability that the

household chose store A, multiplied by their expected purchases qit, conditional on choosing

store A. The resulting expected residual demand vector faced by store A in week t is:

Et [Q(p)] =
X

i

E [i’s purchases|i goes to A] · P

 
i goes to A

����� i’s characteristics

and prices at all stores

!
(5)

or, more formally:

E [Q(pt|Ωobs,t,Ωunobs,t)] =
∑

i

E [qit|parameters,Ωobs,t] · P (A|parameters,Ωobs,t) (6)

where Ωobs,t and Ωunobs,t represent observed and unobserved variables specifying the state of

8Throughout this paper I assume that the retailer uses a best-response to other retailers, and does not
account for the fact that deviations may lead to changes in rivals’ pricing strategy. This is the same as the
criterion for a Nash equilibrium.
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the world in week t. For tractability, I assume that the store choice decision is conditionally

independent of the households’ soft drink purchase decision. Economically, this rules out,

for example, going to store A because it is the only store that carries product j. More

importantly, it also rules out going to a particular store based on a purchase-occasion-

specific shock. This means that I am assuming that households’ idiosyncratic preference

shocks for varieties of soft drinks are independent of their idiosyncratic shock for their

store-choice decision. Unfortunately, this means that the complete demand model is not

consistent with utility maximization.9 The next two subsections describe the specification

and estimation procedure used for each of these two components of residual demand on

more detail.

3.1 Product-Level Demand Model

The majority of extant demand models are unable to address simultaneously: comple-

mentarities between goods, continuous choice, and a large number of products. Given

that households typically purchase several different soft drink products within the same

purchase occasion, there is reason to believe that complementarities exist in my data. This

behavior is summarized in table 1, which replicates a similar table in Dubé (2001). The

same phenomenon is also evident, though to a lesser degree, when I consider only purchases

among the top 25 SKUs by sales in Table 2.

The importance of addressing these issues, particularly in the current setting, is explored

in McMillan (2005) through a series of Monte Carlo experiments. In light of this, I use the

household-level demand model developed in that paper. This model is a hybrid between

Kim, Allenby & Rossi (2002)’s and Chan (2002). It improves on Chan (2002) by explicitly

solving for the household’s budget constraint, by extending it to SKU-level demand. The

non-linearity also allows a more flexible matrix of characteristics, with more characteristics

than products. I also use physical characteristics, rather than brand-level (as in Chan) or

product-level (as in Kim et al. (2002)) dummy variables.10

In order to reduce the dimensionality of the parameter space, I assume that, as in the

logit model, households derive utility from product characteristics. Each product j (shown

in Table 5) can then be expressed as a vector of C different characteristics (described in
9For example, the household’s choice of store is assumed to be conditionally independent of the

household’s preferences for particular items. This is reflected in my use of a generic average price, rather
than an average of the bundle of products the household would purchase.

10McMillan (2005) contains a detailed discussion of the properties and features of this utility function.
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Table 1: Distribution of Purchase Occasions by Number of Items and Number of SKUs
Purchased (all Carbonated Soft Drinks)

Total Number Total Number
of Items Purchased of SKUs Purchased

1 2 3 4 5+ Total
1 1,332 0 0 0 0 1,332
2 967 377 0 0 0 1,344
3 177 195 86 0 0 458
4 370 111 45 16 0 542
5 25 50 22 9 3 109
6 122 46 22 5 2 197
7 7 23 13 4 2 49
8 83 16 17 1 1 118
9 15 11 3 4 0 33

10+ 169 39 11 5 4 228
Total 3,267 868 219 44 12 4,410

This table shows the distribution of household purchase occasions across multiple units and multiple
products, replicating a similar table found in (Dubé 2001).

Table 2: Distribution of Purchase Occasions by Number of Items and Number of SKUs
Purchased (Among Top 25 Carbonated Soft Drinks)

Total Number Total Number
of Items Purchased of SKUs Purchased

1 2 3 4 5 Total
1 1,163 0 0 0 0 1,163
2 274 108 0 0 0 382
3 86 38 6 0 0 130
4 49 23 3 1 0 76
5 17 23 5 2 0 47
6 25 15 6 0 0 46
7 5 6 2 0 0 13
8 8 3 3 0 0 14
9 3 2 2 0 0 7

10+ 60 5 2 0 1 68
Total 1,690 223 29 3 1 1,946

This table shows the distribution of household purchase occasions across multiple units and multiple
products, replicating a similar table found in (Dubé 2001).
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section 4), and the menu faced by the household can be represented by a J × C matrix A

where the rows of A are the products, and the columns are characteristics. Hence, A is just

a stacked matrix consisting of the Xjt’s from the logit model.

To illustrate how the dataset fits into the model, consider an example with just two

characteristics (Diet and Cola) and three available products (Coke, Diet Coke, and Diet

7Up). Because it is a non-diet cola, Coke has characteristic vector [0 1].11 As a diet

cola, Diet Coke has characteristic vector [1 1]. Finally, as a diet non-cola, Diet 7Up has

characteristic vector [1 0]. Stacking these three products’ characteristic vectors yields the

following A matrix12:

A =


0 1

1 1

1 0


Again following the logit, I assume that a household’s utility function is additively separable

in these characteristics. Unlike the logit, however, this model allows households the ability

to consume multiple units of a single product, as well as consuming several different

products. In particular, I assume that in week t, household i myopically maximizes the

utility function13:

Uit(qt, zt) =
∑
c∈C

βc(A′
ctqt)

ρc + ε′itqt + zt (7)

with respect to the vector qt and the scalar zt. Act is the cth column of A in week t, qt is

a column vector of length J comprising the household’s purchases of the J goods described

by A, zt is the amount of outside good consumed, and βc and ρc are characteristic-specific

scalar parameters. The J dimensional vector εit represents the household/shopping-occasion

marginal utility shock, which is observed by the utility-maximizing household, but not by

the econometrician.14 The household maximizes this utility function subject to the budget
11Note that although in this case the product characteristics are indicator variables, in general they need

only be non-negative. For example, in the estimated model one of the characteristics is the number of
milligrams of caffeine per 12-ounce serving.

12Although the A matrix shown here is time invariant, the empirical A matrix will typically vary from
week to week, because I include feature and display as time-varying characteristics.

13For simplicity, the model assumes households are homogenous in their preferences (β and ρ). Extending
the model to account for heterogeneity (observed or unobserved) is straightforward, though computationally
burdensome.

14I currently assume that εit is i.i.d. across products, time, and households, and negatively log-normally
distributed on the interval (−∞, 0). It is necessary to bound εit from above in order to prevent unreasonable
choice behavior. If, for example, the realization of εitj is greater than the price of good j, a household may
never consume the outside good on that purchase occasion, regardless of the level of wt.
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constraint: ∑
j∈ J

pjtqjt + zt ≤ wit (8)

where wit is the household’s total grocery expenditure in the store in week t. Returning to

the three-good example above and substituting the A matrix into the utility function, we

can see that the household maximizes 15:

Uit(qt, zt) = βDiet (qDietCoke,t + qDiet7Up,t)
ρDiet + βCola (qCoke,t + qDietCoke,t)

ρCola +

εi,Coke,tqCoke + εi,DietCoke,tqDietCoke,t + εi,Diet7Up,tqDiet7Up,t + zt

with respect to q and z, subject to:

pCoke,tqCoke,t + pDietCoke,tqDietCoke,t + pDiet7Up,tqDiet7Up,t + zt ≤ wit

The model is estimated using the Method of Simulated Moments (MSM), developed

independently by McFadden (1989) and Pakes & Pollard (1989)16. This estimation method

uses the fact that the expectation of the difference between the expected purchases and the

actual, observed purchases, is zero at the true parameter values. More formally, I use the

(J + 2) ∗ (J + 1) moment conditions:

HI,T,R(β, ρ) =
1

IT

I∑
i=1

T∑
t=1

(qit − E[qit|β, ρ,pt, wit])xit (9)

where qit is the household’s vector of actual purchases. Each moment is an average across

all purchase occasions of the difference between expected purchases and the actual, observed

purchases, interacted with the instruments. The vector of instruments, xit consists of all

exogenous variables in the model (more on this in the following paragraphs), namely: the

prices of each good, the household’s budget, and a constant.

Because exact computation is infeasible, I simulate E[qit|β, ρ,pt, wit] by drawing R = 30
15In reality, households are forced to choose between the discrete sizes offered by the store. I make no

attempt to model this feature of the data, as it introduces an extraordinary amount of computational cost
with little clear return. In the estimation, I do not restrict the predicted purchases to the discrete purchases
that the household could have actually made, instead allowing purchase quantities to vary continuously.
Although Dubé (2001) suggests selecting the purchasable grid point adjacent to the unconstrained maximum,
this is not numerically feasible in my case as it would require the examination of 225 ' 3.3× 107 points for
each household maximization.

16Gouriéroux & Monfort (1996) contains the best summary and discussion of various simulation estimators
and their properties that I have found.
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sets of εit’s (which I hold constant as I search the parameter space). Hence, I use the fact

that:

E[qit|β, ρ, wit,pit] ≈
1
R

R∑
r=1

q(β, ρ, wit,pt, ε
r
it) (10)

Using these moments, I define my estimates as minimizing the distance function:

[ρ̂, β̂] = argmin
{
(HI,T,R(ρ, β))′ W (HI,T,R(ρ, β))

}
(11)

Ideally, I would implement this as a two-stage procedure. The first stage of this

procedure would involve choosing the weighting matrix, and finding consistent estimates

of the parameters. The second stage takes these estimates and uses them to calculate

the optimal weighting matrix, and then re-estimates the parameters. In practice, however,

estimation currently takes several weeks. Therefore, I report only the (inefficient) first-stage

estimates.

Each of these two stages of estimation consists of iterating over several steps:

1. Choose starting values for the parameters: β and ρ.

2. Take the actual characteristics of the households in the sample that went shopping in

that week. In this case, a household is completely characterized by it’s budget (wit).

This amounts to assuming that the retailer knows the distribution of the households

that would go shopping (not necessarily at its store) in each week.

3. Draw R sets of εit’s for each observed purchase occasion. I use R = 30. This means

drawing R∗(Number of Purchase Occasions)∗(Number of Products)= 30∗16, 008∗25 =

12, 006, 000 i.i.d. negative lognormal random numbers. These random numbers are

held constant across iterations.

4. Using the expenditures from the actual purchase occasion as the budget constraint,

and the actual menu of prices in the week of the purchase occasion, take the current

parameters and solve explicitly (numerically) the household’s utility maximization

problem. This step is non-trivial and accounts for the bulk of the computational power

involved in this estimation procedure. This means solving R∗(Number of Purchase

Occasions)=30 ∗ 16, 008 = 480, 240 utility maximization problems for each iteration
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of the parameter values.17I discuss this process, and suggest numerical algorithms at

greater length in the Appendix.

5. For each purchase occasion, average over the R different purchase vectors to get the

expected purchases for that purchase occasion at the current set of parameter values.

6. Using the difference between the actual vector of purchases on that purchase occasion

and the expected purchases calculated in Step 4, calculate the current moment

equations.

7. Interact these moment equations with the weighting matrix W to calculate the current

distance function. The weighting matrix is of dimension (J + 2) ∗ (J + 1) by (J + 2) ∗
(J + 1).

8. Using a numerical minimization algorithm18, choose a new set of parameter values (β

and ρ) and repeat steps until a minimum is found.

In addition to the computational cost, this simulation method forces me to make

assumptions about the distribution of the unobservables (ε). The assumption that I choose

to make is that these unobservables are distributed independently of all observable variables.

In particular, I assume that they are distributed independently of prices. The distributions

of ε could be made dependent upon prices (or other observables). I do not do so here for

two reasons. First, it seems at least plausible that brand, holiday, feature, and display

variables account for much of the potential for unobserved correlation between price and

these unobservables, but to the extent that the retailer observes time-varying changes

in the household error terms, the unconditional distribution of the error term will differ

significantly from its distribution conditional on prices. In this case my estimates may be

both biased and inconsistent. Short of simulation, I cannot think of a way to “bound”

the effects of violations of this assumption. The second, and principal justification for this

assumption, is that it is crucial in making the estimation tractable. Even implementing a

recursive routine to match predicted with observed market shares (as in Berry, Levinsohn &

Pakes (1995)) would be prohibitively computationally expensive. Economically, with respect

to prices, I am assuming that the retailer does not observe any (or at least does not adjust
17In solving the household utility maximization problem, I have had the most success using the gradient-

based E04UGF routine available from the Numerical Algorithms Group (NAG).
18In searching for the global extremum of the distance function, I have had the most success using NAG’s

simplex-based E04CCF routine.
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prices in response to) time-varying changes in the distribution of the idiosyncratic demand

shocks. Given this assumption that the idiosyncratic shocks are distributed independently

of prices, it is internally consistent to use prices as instruments (since they will be orthogonal

to the difference between the actual and the expected demands).

3.2 Store Choice Model

As noted earlier, I need to estimate the store’s residual demand, not market demand. The

true process by which households choose where to shop is almost certainly related to their

decisions about exactly what to purchase once they get there. However, I am unaware of any

paper that simultaneously models the household’s store choice and product-level purchasing

decisions. A fully structural model would involve calculating the household’s expected

utility, net of travel costs, from visiting each of the stores in its choice set. Such a model

would also involve consumers forming expectations of the menu of prices they would face at

each store. Furthermore, the effects of these prices on store choice would almost certainly

depend on the household’s expected shopping basket on that purchase occasion. Given

my estimation procedure, this approach is far too computationally burdensome. Instead,

I approximate this choice, by assuming that households’ choices among the stores in my

sample follow a logit choice model. This model represents an approximation, of the true

model and does not directly correspond to any model of utility maximization. I use it

because it is computationally cheap, and because I believe the approximation is reasonable.

The model I estimate assumes that in week t, conditional on going shopping, household

i derives indirect utility:

uist = D′
istδ

0 − p′
stδ

1 + ηist (12)

from choosing store s at time t, where Dist is a vector of household characterstics interacted

with store indicator variables, p is a vector of price indices for several product categories at

store s, including soft drinks, and δ0 and δ1 are vectors of parameters.19 I defer discussion

of the exact specifications and discussion of the estimated coefficients to section 5.2.

This model implicitly assumes that households form expectations about current prices

(see Ho, Tang & Bell (1998)). I estimate several specifications using current prices, implicitly

assuming that the household is able to perfectly forecast (or learn) these prices. I also

estimate several other specifications using prices from the previous two weeks as predictors of
19In principle, the elements of δ0 and δ1 could be allowed to vary across households, though I do not do

so here.
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store choice20, though in general I do not find that prices substantially influence households’

choice of store. These findings are consistent with those of Hoch, Dreze & Purk (1994) who

also find that consumers are largely inelastic to short term price changes in their choice of

store.

Although I am not aware of any papers that simultaneously address the household’s

decision of what to buy and where to shop, there is an extensive literature on store choice,

which I will not attempt to summarize in detail here. Instead I focus on the portions of

that literature that I have included in the specification of this model.

I follow Bell, Ho & Tang (1998) and Leszczyc, Sinha & Timmermans (2000) in

incorporating household-level demographics and find that these are both statistically and

economically significant in predicting store choice. While Rhee & Bell (2002), find that

once unobserved heterogeneity is accounted for, shoppers’ demographic characteristics are

not statistically significant in predicting the probability of switching, they do not allow

the effects of these characteristics to vary across stores. Although I do not control for

unobserved heterogeneity, I find that the effect of household characteristics vary on a store-

by-store basis.

After demographic variables, I find that one of the most significant predictors of store

choice is whether the household visited the store in the previous two weeks. This is consistent

with the finding by Rhee & Bell (2002), who find that households are highly path-dependent

in their choice of store. However, this may simply be controlling for unobserved time-varying

heterogeneity among consumers.

I also account for the possibility that, as suggested by Bell & Lattin (1998), households

with higher expenditure levels tend to prefer stores with certain pricing formats. Specifically,

they found that households with large average expenditure levels tend to prefer so-called

Every Day Low Price (EDLP) stores to High-Low stores whose prices fluctuate more wildly

from week-to-week. To account for this effect, I interacted the household’s expenditure level

for the purchase occasion with store indicator variables. This allows shoppers who expect

to have high (or low) expenditure levels to seek out specific stores.

Finally, as mentioned earlier, I take the household’s decision to go shopping to be

governed by an exogenous process. This is consistent with evidence in Chiang, Chung &

Cremers (2001) who find that consumers decision to shop is largely unaffected by marketing
20I also experimented with using longer lags, but found that they did not improve the predictive power of

the model.
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mix variables.

3.3 Residual Demand

I complete the construction of the residual demand system by bringing together the product

choice and store choice models. The residual demand faced by store A is equal to the sum

over all households (that went shopping in that week) of the probability that the household

chose store A, multiplied by their expected purchases, conditional on choosing store A.

Hence, the expected demand system faced by store A in week t is:

Et [Q(p)] =
∑

i

E [qit|ρ, β,pt, wit] · P
(
A|Dist, pAt, p−At

)
(13)

≈
∑

i

[
1
R

R∑
r=1

q(ρ, β,pt, wit, ε
r
it) ·

exp
(
D′

iAtδ
0 − pAtδ

1
)∑

s∈{A,B,C,D,E} exp (D′
istδ

0 − pstδ
1)

]
(14)

In calculating this expected demand, I follow similar steps to those used in the

estimation:

1. Take the estimated values of the parameters: β and ρ.

2. Draw R sets of εit for each observed purchase occasion. I use R = 30. These random

numbers need not be the same as those used to estimate the parameters above. Note

that in this case the number of purchase occasions is the total number of store trips

(to any store) made in that week, not just the purchase occasions from store A.

3. Using the expenditures from the actual purchase occasions as the budget constraints,

and the actual menu of prices in the week of the purchase occasion, take the current

parameters and solve explicitly solve the household’s utility maximization problem

(using numerical methods discussed in the Appendix).

4. For each purchase occasion, average over the R different purchase vectors to get the

expected purchases for that purchase occasion at the current set of parameter values.

5. For each purchase occasion, multiply these expected purchases by the probability of

choosing store A in that week.
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4 Data

Although a trip to nearly any store offers many cases of uniform pricing, I focus exclusively

on grocery stores. There are a number of reasons for restricting my attention to grocery

stores. First, they offer literally thousands of examples of uniform pricing. Second, given

that grocery stores carry a large number of products,21 one might expect them to use

relatively sophisticated pricing techniques. Third, grocery stores are a significant portion

of the economy. In 1997, U.S. grocery stores had sales in excess of $368 billion, with

roughly 100,000 establishments (U.S. Economic Census, 1997). Fourth, with few exceptions,

groceries are not characterized by consumer uncertainty. Consumers are presumably quite

familiar with products’ characteristics as well as their preferences over these characteristics.

For example, there is not much uncertainty about what will be inside when you pop open a

can of Diet Coke. Finally, grocery stores conveniently offer the availability of scanner panel

data.

For a two-year period from 1991 to 1993, Information Resources Incorporated (IRI)

collected a panel dataset in urban Chicago. This dataset has both aggregate and micro

components. The aggregate component consists of weekly price and quantity22 data at

the store/SKU level for several different product categories at five geographically close

stores. Throughout the paper, these stores are referred to as stores A through E. As

mentioned earlier, one of these stores, which I will call store A, charged non-uniform prices

for carbonated soft drinks during this period. The micro-level component of this dataset

contains carbonated soft drink purchase histories for 548 households at these five grocery

stores over the two-year period. The dataset also contains the households’ total grocery

expenditure on each purchase occasion. IRI paid these households to use a special electronic

card that recorded their purchases when they shopped at these stores. For the majority

of the analysis, I use only a subset of these households consisting of 262 households that

visited store A (the store at which I estimate demand) at least once during the two year

sample period. 23

21A typical grocery store carries over 14,000 different products.
22Quantity sold includes sales to all customers, not just those in the panel.
23I supplement the IRI data with demographic and wholesale price data from Dominick’s Finer Foods, a

grocery chain located in the greater Chicago metropolitan area. From 1989 to 1997, through an arrangement
with the University of Chicago Graduate School of Business, Dominick’s kept track of store-level, weekly
unit sales and price for every SKU for a number of product categories, including carbonated soft drinks.
This dataset has weekly store sales totals in these product categories as well as store area demographics
pulled from census data. In addition, the dataset contains the actual wholesale prices that Dominick’s
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According to the documentation provided with the data, these five stores and 548

panelists were selected by IRI using two criteria: First, although very little information

is available on the actual sampling procedures used, IRI tried to create a stratified random

sample of households, reflective of the population in the area. Second, in order to avoid

the effects of unobserved market fluctuations, it was IRI’s goal to, as much as possible,

achieve a closed system. That is, IRI tried to include the stores that the households in

the panel would be most likely to shop at, in order to observe as large a fraction of their

grocery expenditure as possible. That IRI achieved this goal is supported by the fact for the

vast majority of the households, grocery expenditure at stores within the sample universe

appears to be fairly constant over time.

Tables 3 and 4 show the distribution of households’ expenditure at different stores for

all households, as well as for those who shopped at store A at least once. The mean weekly

expenditure by a household shopping at Store A was $22, while the median was $15.24 This

is less than stores B and C, but similar to stores D and E. Even households that shopped

at store A at least once tended to spend more at these other stores, although the majority

($350,000) of their total expenditure of $610,000 over the period was at store A.

paid for each good. For a more thorough description of the dataset, see Hoch et al. (1994). This dataset
is publicly available from the Kilts Center at the University of Chicago Graduate School of Business web
page: http://gsbwww.uchicago.edu/kilts/research/db/dominicks/ Finally, because this dataset covers the
same time and geographic area as the IRI dataset, one can match many of the products across the two
datasets, giving us a measure of the wholesale prices for these products. To the best of my knowledge this
matching has not been done in previous work.

24For clarity, all dollar references in this section are nominal. Hence, prices in 1991 use 1991 dollars,
etc. I use this approach because retailers and wholesale prices over the period do not appear to move with
inflation. For reference, one 1991 dollar is equivalent to $1.39 2004 dollars, a 1992 dollar is equivalent to
$1.35 2004 dollars, and a 1993 dollar is equivalent to $1.31 2004 dollars.
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Unlike many previous papers which have estimated brand-level demand, this paper

estimates SKU-level demand. Over a two year period, a typical grocery store sells over 200

different items in the carbonated soft drink category. The vast majority of these products

are offered only rarely, or quickly enter and exit. Because this paper uses panel purchases to

estimate demand, and many of these products are only rarely (or never) purchased by the

panel, it not practical to estimate the households’ demand for them. Instead, I estimate the

households’ demand for the 25 products with the largest market share by volume. These

products represent 71% of the Store A’s carbonated soft drink sales by volume, and 69% of

their total soft drink sales by dollar value.

The products included in the analysis are shown in Table 5. Of these, three varieties

(8 items) were distributed by the Coca Cola Corp., two varieties (8 items) were distributed

by Pepsi Co., two varieties (4 items) were distributed by Dr. Pepper/7Up, two varieties (4

items) were distributed by the Royal Crown Corp., and one variety (1 items) was distributed

by an independent producer under a private label.

Table 5: Variety and Size Distribution of in the Dataset, grouped by Manufacturer
Manufacturer Variety Number of 12oz servings (Liters in parentheses) Number of

1 5.63 6 8.45 12 24 Sizes Avail.
(0.36) (2.0) (2.13) (3.0) (4.26) (8.52)

Coca Cola Coke ! ! ! 3
Diet Coke ! ! ! 3
Diet CF Coke ! ! 2

Pepsico Pepsi ! ! ! ! 4
Diet Pepsi ! ! ! ! 4

RC Corp. RC ! 1
Diet Rite ! ! ! 3

DP/7Up 7Up ! ! 2
Diet 7Up ! ! 2

PL Private Label ! 1
Total Number of Items 1 8 2 2 5 7 25

Some descriptive statistics on the price and sales volume for these products are shown

in Table 6. The price of a 12-ounce serving of carbonated soft drink varied from a high

of $0.49 as part of a 12-pack of 12-ounce cans of Diet Coke, to a low of $0.12 for a single

can of the Private Label cola. Most products appear to have had either an end-of-aisle

display, or a mention in the store’s circular in between one-third to one-half of the weeks.

The notable exceptions to this were the 3L bottle of Pepsi, the 2L bottle of Diet 7up, and

the store brand which received significantly less advertising (as measured by circular and

display activity).
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Both the traditional logit model and the new model estimated here reduce the

dimensionality of the demand system parameter space by assuming that households’

preferences over products are driven by product characteristics. The store’s residual demand

Qjt(·) for product j is denominated in twelve ounce servings of carbonated soft drink.

The characteristics used in the analysis are: calories (per 12 ounce serving), milligrams

of sodium (per 12 ounce serving), milligrams of caffeine (per 12 ounce serving), grams

of sugar (per 12 ounce serving), as well as indicator variables for the presence of citric

acid, phosphoric acid, and whether it is a diet drink. These physical characteristics were

obtained by contacting the manufacturers of the products, and, to the best of my knowledge,

represent the characteristics of the products during the relevant time period. I also include

indicator variables for size, brand, and whether it was featured in store A’s weekly circular,

or an in-store display (in store A), as well as a constant common to all products. These

characteristics were chosen based on earlier work by Dubé (2001). These characteristics are

the elements of the A matrix, and are shown in Table 7. This table also shows the number

of weeks that each product was available. For example, the 12-pack of 12-ounce cans of

Diet Pepsi was unavailable for 16 of the 104 weeks, while the 24-pack of 12-ounce cans of

Diet Caffeine Free Coke, and the 24-pack of 12-ounce cans of Diet Caffeine Free Coke were

not available for 15 weeks.
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5 Results

5.1 Structural Model

The parameter estimates and standard errors25 from the structural model are presented

in Table 8. The nonlinearity of the model makes these parameter estimates difficult to

interpret directly, however we can make some inferences, particularly relative to each other.

The characteristic that appears to have the largest affect on households’ soft drink

purchasing decisions is the indicator variable for whether the product is sold on a holiday.

This characteristic has both the largest maximal marginal effect26 (βholidayρholiday) and a β

that is statistically significantly greater than zero. The effect of the Holiday characteristic is

offset somewhat by the fact that ρholiday is quite close to zero. This means that although the

marginal utility from soda on holidays starts off higher, its second derivative is more negative

than for other characteristics. Taken together, these two facts imply that households are

more likely to purchase soft drinks on holidays, but not likely to substantially increase the

quantity that they purchase.

After the Holiday characteristic, the Coke and Pepsi characteristics have the largest

effects, based on their high maximal marginal utility values. Interestingly, while βPepsi is

statistically significantly different from zero, βCoke is not. Given that both βPepsi and ρPepsi

are relatively large, consumers differentially prefer Pepsi (and Coke, to a lesser degree) to

other soft drinks – they are both more likely to purchase these brands, and more likely to

purchase more of them.

At the other end of the spectrum, due to the fact that both their β’s and their ρ’s

are relatively small, Sodium and Caffeine do not appear to significantly affect consumers

purchasing behavior (although their coefficients are imprecisely estimated).

More readily interpretable than the parameter estimates are the own and cross-price

elasticities that they imply. In the logit model, the cross-price elasticities are infamously

25The standard errors shown in Table 8 are calculated using the fact that:
√

n(bθn−θ0) →d N (0, V ) as the
number of observations n goes to infinity. V = [G′

0WG0]
−1

G′
0W

�
Ω0(1 + 1

R
)
�
WG0 [G′

0WG0]
−1

, where W is

the weighting matrix. I obtain a consistent estimator of V by using bGIT = 1
IT

PI
i=1

PT
t=1 xit

∂E[qit|θ,pt,wit]

∂θ

and bθ = [bβ, bρ]. I use the estimated parameters β and ρ to compute bΩIT = 1
IT

PI
i=1

PT
t=1((qit −

E[qit|bβ, bρ,pt, wit])xit)((qit − E[qit|bβ, bρ,pt, wit])xit)
′ which is a consistent estimator of Ω0. For further

discussion, see Gouriéroux & Monfort (1996). I use a diagonal weighting matrix (W ), with the elements
scaled by the sum of squares of each of the instruments.

26The term “maximal marginal effect” is somewhat misleading. It is actually the most positive marginal
effect. When βc is negative, ρc is necessarily greater than one, and hence, the marginal effect is increasing
in magnitude as quantity increases.
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Table 8: Parameter Estimates from Structural Model of Product Choice
Maximal
Marginal

β ρ Effect
Characteristic Units coeff. s.e. coeff. s.e. (βρ)
Constant 0.0001 (0.5435) 0.7471 (0.6382) 0.0001
Calories per 12oz -0.0001 (0.6231) 1.2581 (0.5957) -0.0001
Sugar g per 12oz 0.0054 (1.2754) 0.8134 (0.5749) 0.0044
Sodium mg per 12 oz 0.0000 (0.8227) 0.1608 (0.2259) 0.0000
Caffeine mg per 12oz 0.0000 (0.3318) 0.0957 (0.0737) 0.0000
Phosphoric Acid Indicator Variable 0.5431 (0.1842) 0.3742 (0.2111) 0.2032
Citric Acid ” 0.1674 (0.0708) 0.6585 (0.2603) 0.1102
Cola ” 0.2588 (0.1187) 0.4188 (0.3062) 0.1084
Flavored ” 0.3671 (0.1610) 0.5139 (0.3254) 0.1886
Single Serving ” 0.3174 (0.0311) 0.5690 (0.0640) 0.1806
288oz ” -0.0003 (0.0046) 1.6013 (0.4515) -0.0005
Diet ” -0.0076 (0.0059) 1.3875 (0.4267) -0.0105
Coke ” 0.5836 (0.3054) 0.4090 (0.2517) 0.2387
Diet Coke ” -0.0115 (0.0062) 1.6398 (0.0793) -0.0189
Pepsi ” 0.4477 (0.0216) 0.4764 (0.0778) 0.2133
7up ” 0.2333 (0.1140) 0.5892 (0.2415) 0.1374
RC ” 0.2380 (0.0906) 0.4824 (0.1868) 0.1148
Jewel ” 0.4449 (0.3412) 0.3507 (0.2108) 0.1560
Holiday ” 5.3081 (1.8195) 0.0586 (0.0305) 0.3111
Feature ” 0.2232 (0.1304) 0.3683 (0.2217) 0.0822
Display ” 0.4830 (0.4114) 0.2712 (0.2434) 0.1310

This table shows parameter estimates from the structural model under two different
specifications. The right-most column is the product of β and ρ.

dependent upon market shares. These restrictions are evident in Table 9, which shows a

matrix of own and cross price elasticities for several sizes and varieties of Coke and Pepsi.

The logit model predicts, for example, that the demand for 24-packs (288oz) of Diet Coke

increases by 0.46% from either a 1% increase in the price of a 2-liter bottle of Diet Coke

or a 1% increase in the price of a 2-liter bottle of Pepsi. This contrasts sharply with the

price elasticities implied by my structural model, presented in Table 10. As clearly seen, my

model allows for a rich pattern of cross-price elasticities. In addition to allowing cross-price

elasticities to vary across products, my model also allows for negative off-diagonal price

elasticities, suggesting that complementarities exist. For example, if households tend to

purchase both 12-packs of Coke and 6-packs of 7Up, then an increase in the price of Coke

may cause more people to buy Pepsi, but it will also lead people both to buy less Coke and

37



to buy less of the Coke/7Up bundle. This flexibility is not possible using the traditional

logit model.

Table 9: Selected Own and Cross Price Elasticities from Homogenous Logit Model of
Product Choice

Coke Diet Coke Pepsi Diet Pepsi
288oz 2L 288oz 2L 288oz 2L 288oz 2L

Coke - 288oz -2.398 0.015 0.046 0.014 0.073 0.019 0.051 0.013
Coke - 2L 0.052 -1.992 0.046 0.014 0.073 0.019 0.051 0.013
Diet Coke - 288oz 0.052 0.015 -2.404 0.014 0.073 0.019 0.051 0.013
Diet Coke - 2L 0.052 0.015 0.046 -2.001 0.073 0.019 0.051 0.013
Pepsi - 288oz 0.052 0.015 0.046 0.014 -2.203 0.019 0.051 0.013
Pepsi - 2L 0.052 0.015 0.046 0.014 0.073 -2.002 0.051 0.013
Diet Pepsi - 288oz 0.052 0.015 0.046 0.014 0.073 0.019 -2.392 0.013
Diet Pepsi - 2L 0.052 0.015 0.046 0.014 0.073 0.019 0.051 -2.000
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5.2 Store Choice Model

As discussed in section 3.2, I estimate a conditional logit model of store choice, where the

choice is conditional on shopping at one of the stores that we observe.27 The results from

eight different specifications of the store choice model are presented in Tables 11, 12, and 13.

Specifications I-III have identical demographic variables, but involve progressively longer

lagged price indices. Specifications IV-VI are nearly identical to I-III. They differ only in the

fact that they include an additional variable that measures whether the household made a

purchase at the store in the previous two weeks. Specifications VII and VIII simultaneously

incorporate price indices from several periods for a subset of products, both with and

without the lagged store choice variable.28

The two main results of my analysis of store choice are: (1) that observable demographics

significantly affect households’ choice of store, even after incorporating a measure of path

dependence, and (2) for the product categories for which we have data, households are (at

least in the short term) relatively inelastic with respect to store choice.

Table 11 presents the coefficients on the demographic variables in Specifications III and

VI. These coefficients remain essentially unchanged with respect to different combinations

of price index variables. The demographic variables include an indicator variable equal to

one if the household made a purchase (of any kind) at the store in the previous two weeks.

This lagged store choice variable accounts for two things: First, it acts like a household-level

fixed effect, and second, it accounts for fact that it is easier to shop at a store when you

know that store’s layout.29

With respect to observable demographics, I find that people with lower incomes, were

less likely to shop at stores A and B, and more likely to shop at stores C, D and E.

Having an unemployed female in the household at the beginning of the sample period was

a significant factor in store choice (although having an unemployed male was not), with

unemployed female households much more likely to shop at store C. Non-white households

were more likely to shop at store A, and households that subscribed to a newspaper were
27For two different sets of stores, there are a non-trivial number of households that shop at both stores.

This is true for stores A&D and B&C. I treat going to both stores as a separate alternative. In generating
the price variables in this case, I use the lower of the two price indices of the stores in the bundle.

28Note: The coefficients are all measured with respect to Store C. If a household made multiple purchases
at the same store in the same week, I collapsed these into a single purchase occasion.

29In the case of the “bundled” stores, the variable is created slightly differently. For example, if you went
to stores A and D last two weeks, then this week the variable would be one for store A, store D, and the
bundle of stores A and D. If you only went to Store A in the last two weeks, then this week the variable
would be one for store A, zero for store D, and 0.5 for the bundle of stores A and D.
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substantially more likely to shop at stores A, D, and to a lesser extent E. They are less likely

to shop at store B. Furthermore, the coefficients on these demographic variables are largely

invariant to the other aspects of the specification (depending primarily on whether lagged

store choice is included). For this reason, I only present these coefficients for Specifications

III and VI in Table 11.

Although the effects of expenditure levels on store choice are statistically significant,

they are not economically so.30

As mentioned in section 3.2, I explored a variety of specifications for the store choice

model, including lags of price indices, alternative measures of price, additional demographic

variable, and additional index variables measuring the fraction of the category that was

featured in the store circular or an end-of-aisle display.

The evidence from the effects of price on store choice were less encouraging, though,

as noted earlier, they are in substantial agreement with the literature. The coefficients

for price of Cookies and Detergent have the expected sign, and are statistically significant.

Unfortunately, although some of the price index variables are significant, many are only

significant at the five percent level. Given the number of coefficients, it is not surprising

that a subset are statistically significant. Furthermore, many of the price index variables

do not have the expected sign. Cat food, bar soap, and yogurt, for example, both have

statistically significantly positive coefficients in several specifications. This suggests that

these price indices may be capturing effects other than (i.e., that they are correlated with

an omitted variable). This gives me less confidence in interpreting the coefficient on soft

drinks, which (although the point estimates do not move too wildly) is only significant when

I do not account for path dependence.

While I do not report their results here, I also estimated models using alternative price

indices, including the Stone price index and a variety of indices measuring the extent of

discounts offered. These alternative measures of price did not appear to have any effect on

store choice.
30I explored using logged expenditure, as well as nonlinear effects from expenditure levels, but the effects

were not substantially different.
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Table 11: Coefficients on Demographic Variables from Specifications III and VI of the
Conditional Logit Model of Store Choice

Specification III
Store

A A and D B B and C D E
Constant 4.633 4.595 2.38 1.18 -0.544 -4.904

[0.190] [0.235] [0.203] [0.279] [0.276] [0.296]
Expenditure ($) -0.012 -0.010 -0.001 0.002 -0.014 -0.012

[0.000] [0.001] [0.000] [0.000] [0.001] [0.001]
Log(Income) -0.443 -0.507 -0.256 -0.246 0.030 0.452

[0.019] [0.024] [0.020] [0.028] [0.027] [0.028]
Unemployed -0.768 -0.479 -0.070 0.209 -0.640 -1.110
Female [0.038] [0.049] [0.036] [0.049] [0.055] [0.060]
Unemployed -0.053 -0.542 -0.427 -0.176 -2.183 0.127
Male [0.069] [0.097] [0.078] [0.105] [0.256] [0.106]
Non-white 0.921 0.243 0.271 -0.710 -0.907 -0.819

[0.035] [0.045] [0.037] [0.063] [0.067] [0.065]
Subscribes to 0.428 0.089 -0.463 -0.311 0.361 0.150
Newspaper [0.034] [0.045] [0.038] [0.052] [0.044] [0.043]
Household Has -0.920 -16.726 -1.071 1.752 -16.315 -0.807
No Kids [0.209] [742.304] [0.248] [0.170] [713.396] [0.299]

Specification VI
Adds an Indicator Variable for Whether the

Household Visited that Store in the Last Two Weeks)
Store

A A and D B B and C D E
Constant 2.586 3.887 2.462 1.849 -0.679 -1.668

[0.309] [0.321] [0.294] [0.306] [0.387] [0.432]
Expenditure ($) -0.011 -0.007 0.000 0.002 -0.013 -0.014

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
Log(Income) -0.263 -0.410 -0.261 -0.260 0.027 0.178

[0.030] [0.032] [0.029] [0.030] [0.037] [0.041]
Unemployed Female -0.552 -0.306 -0.026 0.288 -0.586 -0.631

[0.062] [0.065] [0.052] [0.054] [0.080] [0.086]
Unemployed Male 0.331 -0.027 -0.278 -0.013 -1.42 0.091

[0.120] [0.131] [0.112] [0.113] [0.280] [0.165]
Non-white 0.551 0.093 0.090 -0.747 -0.642 -0.538

[0.056] [0.060] [0.054] [0.066] [0.082] [0.086]
Subscribes to 0.450 0.151 -0.400 -0.254 0.475 0.373
Newspaper [0.055] [0.059] [0.053] [0.056] [0.065] [0.067]
Does not Have Kids 1.088 -14.635 -0.368 1.773 -13.314 1.455

[0.310] [631.998] [0.279] [0.197] [676.928] [0.372]
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Table 12: Coefficients on Price Index Variables for Specifications I-VI of Conditional Logit
Model of Store Choice. Standard errors are in brackets.

Specification
I II III IV V VI

Product Current Prices Prices Current Prices Prices
Category Prices Lagged 1 Week Lagged 2 Weeks Prices Lagged 1 Week Lagged 2 Weeks

Bacon 0.022 -0.005 -0.036 0.019 -0.042 -0.063
[0.023] [0.023] [0.023] [0.032] [0.032] [0.032]

BBQ Sauce -0.121 -0.019 0.139 -0.101 0.087 0.180
[0.093] [0.094] [0.095] [0.128] [0.130] [0.132]

Butter -0.065 -0.050 -0.023 -0.002 -0.069 -0.056
[0.067] [0.068] [0.068] [0.092] [0.094] [0.094]

Cat Food 1.217 0.993 1.070 0.286 0.181 0.718
[0.284] [0.288] [0.283] [0.412] [0.422] [0.417]

Cereal -0.123 0.006 0.166 -0.139 0.159 0.240
[0.051] [0.052] [0.052] [0.074] [0.074] [0.075]

Cleansers 0.129 0.101 -0.041 0.039 -0.055 -0.217
[0.061] [0.062] [0.062] [0.088] [0.091] [0.091]

Coffee 0.094 0.060 0.010 0.123 -0.007 -0.001
[0.035] [0.036] [0.036] [0.049] [0.050] [0.049]

Cookies -0.468 -0.479 -0.526 -0.437 -0.291 -0.410
[0.071] [0.071] [0.071] [0.101] [0.103] [0.102]

Crackers -0.023 -0.01 0.038 -0.090 -0.001 0.065
[0.043] [0.043] [0.043] [0.062] [0.062] [0.062]

Detergents -0.064 -0.076 -0.042 -0.095 -0.003 0.026
[0.020] [0.020] [0.020] [0.028] [0.028] [0.028]

Eggs 0.073 0.149 0.011 -0.101 0.051 -0.303
[0.057] [0.058] [0.057] [0.084] [0.085] [0.083]

Fabric Softener -0.086 -0.086 -0.091 -0.131 -0.157 -0.065
[0.054] [0.055] [0.054] [0.076] [0.078] [0.078]

Frozen Pizza -0.010 -0.028 -0.032 -0.031 -0.026 -0.042
[0.031] [0.033] [0.032] [0.042] [0.046] [0.045]

Hot Dogs 0.015 0.059 0.105 -0.028 0.043 0.122
[0.032] [0.032] [0.032] [0.044] [0.045] [0.045]

Ice Cream -0.051 -0.048 -0.002 -0.015 -0.035 0.029
[0.036] [0.037] [0.036] [0.049] [0.051] [0.050]

Peanut Butter -0.091 -0.093 0.003 -0.194 -0.072 0.092
[0.045] [0.046] [0.044] [0.064] [0.065] [0.061]

Snacks -0.173 -0.247 -0.270 -0.160 -0.198 -0.237
[0.061] [0.061] [0.061] [0.085] [0.085] [0.085]

Bar Soap 0.304 0.252 0.288 0.465 0.324 0.470
[0.064] [0.065] [0.064] [0.089] [0.089] [0.088]

Soft Drinks -0.041 -0.101 -0.082 -0.026 -0.037 -0.019
[0.031] [0.032] [0.032] [0.044] [0.045] [0.045]

Sugarless Gum 0.007 -0.012 0.058 0.026 0.058 0.209
[0.069] [0.069] [0.069] [0.094] [0.096] [0.096]

Toilet Tissue -0.066 -0.003 -0.002 -0.042 0.055 -0.008
[0.045] [0.045] [0.046] [0.063] [0.063] [0.064]

Yogurt 0.432 0.195 0.681 0.149 -0.053 0.869
[0.105] [0.105] [0.105] [0.148] [0.150] [0.151]

Shopped at Store 4.372 4.376 4.386
in Past 2 Weeks [0.029] [0.029] [0.029]
Number of 277,011 274,337 273,489 277,011 274,337 273,489
Observations
Pseudo R2 0.124 0.1241 0.1246 0.5243 0.5282 0.5291
Log Likelihood -67,458 -66,800 -66,586 -36,632 -35,982 -35,821

Effect on Market Share from a
increase in Soft Drink Prices:
Before: .3405 .3407 .3414 .3405 .3407 .3412
After: .3395 .3384 .3395 .3402 .3404 .3412

5.3 Counter-Factuals

5.3.1 Marginal Costs

In order to use the estimated demand system to recover estimates of the expected profits

lost from uniform pricing, I need to make an assumption about the actual price-setting
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Table 13: Coefficients on Price Indices for Specifications VII and VIII of Conditional Logit
Model of Store Choice. Standard errors are in brackets.

Specification Specification
VII VIII

Product Current Prices Lagged Prices Lagged Current Prices Lagged Prices Lagged
Category Prices 1 week 2 weeks Prices 1 week 2 weeks

Cat Food 0.657 0.469 0.715 -0.192 0.283 0.681
[0.317] [0.335] [0.316] [0.461] [0.485] [0.460]

Cereal -0.129 -0.019 0.126 -0.153 0.121 0.247
[0.054] [0.055] [0.055] [0.077] [0.077] [0.077]

Coffee 0.091 0.009 0.002 0.162 -0.066 -0.003
[0.036] [0.036] [0.036] [0.050] [0.049] [0.050]

Cookies -0.372 -0.189 -0.365 -0.391 -0.021 -0.248
[0.078] [0.081] [0.077] [0.112] [0.117] [0.112]

Detergents -0.049 -0.036 -0.014 -0.076 0.042 0.035
[0.021] [0.021] [0.021] [0.029] [0.029] [0.029]

Eggs 0.023 0.148 -0.043 -0.183 0.112 -0.337
[0.060] [0.061] [0.059] [0.088] [0.089] [0.086]

Hot Dogs -0.036 0.013 0.074 -0.060 0.005 0.105
[0.032] [0.032] [0.033] [0.045] [0.045] [0.047]

Peanut Butter -0.034 -0.064 0.025 -0.131 -0.072 0.090
[0.048] [0.049] [0.046] [0.066] [0.068] [0.063]

Salty Snacks -0.069 -0.220 -0.134 -0.152 -0.122 -0.135
[0.069] [0.072] [0.069] [0.095] [0.096] [0.094]

Bar Soap 0.241 0.035 0.198 0.362 -0.075 0.384
[0.077] [0.083] [0.075] [0.106] [0.113] [0.103]

Fabric Softener -0.064 -0.081 -0.025 -0.126 -0.097 0.008
[0.059] [0.062] [0.058] [0.083] [0.087] [0.083]

Soft Drinks -0.008 -0.101 -0.081 0.010 -0.070 -0.018
[0.033] [0.033] [0.033] [0.046] [0.045] [0.046]

Yogurt 0.327 0.037 0.586 0.075 -0.182 0.812
[0.109] [0.108] [0.107] [0.156] [0.154] [0.153]

Shopped at Store 4.389
in Past 2 Weeks [0.029]
Number of 273,489 273,489
Observations
Pseudo R2 0.1255 0.5296
Log Likelihood -66,524 -35,786
Effect on Market Share from a
increase in Soft Drink Prices:
Before: 0.3414 0.3414
After: 0.3370 0.3406

behavior of the retailer during the sample period. The assumption I choose to make is that

the retailer maximizes total weekly profit for the soft drink category, and charges the profit-

maximizing price for each product in each week. This assumption implies the following J

first-order conditions (one for each good j) for each week t:

∂Πt,Non−Uniform

∂pjt
= Et [Qjt(pt)] +

∑
k∈J

(pkt − ckt)
∂Et [Qkt(pt)]

∂pjt
= 0 (15)
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By taking these first-order conditions numerically31, I am able to solve the system of J

equations and J unknowns for each week – the cjt’s – and recover the implied weekly

marginal costs for each product. Note that in recovering these marginal costs, the level of

Qjt drops out. That is, the implied marginal cost is independent of the total number of

households shopping in that week.

In recovering the marginal costs from the first-order conditions of the retailer, I am

implicitly assuming that the demand system that I have estimated is the true demand

system (and by association, that it is the demand system that store A used in setting its

prices), and that in each week, the retailer knows the distribution of the budgets of the

households. Solving this system of equations, gives me the implied marginal cost cjt for

each good, at store A, during week t.

Table 14 contains summary statistics for these implied marginal costs. In general, the

estimated marginal costs are substantially lower than the wholesale prices reported in the

Dominick’s dataset (taken from a geographically proximate competing grocery retailer) and

shown in Table 6. This discrepancy may be explained by the fact that store A is part of

a large chain, and therefore may have received preferential wholesale prices. Additionally,

these implied marginal costs may be capturing the effects of slotting allowances or non-

linearities in wholesale prices (such as block discounts) not accounted for in the Dominick’s

data (see Israilevich (2004)).

If I am underestimating the true marginal costs, the likely source would be that suggest

that either retailers are pricing non-optimally with respect to the soft drink category, that

the estimated demand model is incorrect, or that the assumed supply model is incorrect

(e.g., retailers may be engaging in cross-category subsidization).

31I do this by (1) choosing a fixed number of households, (2) simulating demand from these households
at the observed prices at store A in week t, (3) numerically taking the derivatives of demand for each good
with respect to all other goods.
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As is frequently the case (see Villas-Boas (2002)) my estimates imply that in some weeks,

for some products, marginal costs are negative. Although this seems economically bizarre,

in theory this result could be explained by slotting allowances. In practice, (see Israilevich

(2004)) the arrangements between retailers and manufacturers regularly involves nonlinear

contracting schemes such as block discounts (which imply negative marginal costs over some

regions). To the extent that my assumption of constant marginal costs is violated, I may

be picking up some of these nolinearities.

Figure 5 shows a typical path of prices and implied marginal costs over time, The key

feature to notice here is that intertemporal marginal cost (e.g., wholesale price) variation is

responsible for nearly all of the inter-temporal price variation. This feature is mirrored in

the Dominick’s data. Figure 6 plots the average markup in cents per 12oz serving over the

sample period implied by the derived marginal costs. The average average markup across

products appears to be roughly fourteen cetns per 12oz serving, with occasional spikes

upwards (and one large spike downwards). Together with the low standard deviations on

margins shown in Table 14, this also agrees with what is observed in the Dominick’s data.

5.3.2 “Optimal” Uniform Prices

In order to calculate the profits the firm would have earned by following a uniform pricing

strategy, I must first solve for the “optimal” uniform prices. I do this by restricting the prices

each week to be uniform by manufacturer-brand-size32. Then for each week, I numerically

solve for the set of prices that maximizes expected profits, subject to this restriction.

Table 15 presents summary statistics on the differences between these “optimal” uniform

prices and the non-uniform prices actually charged by the retailer. Contrary to (my)

expectations, the majority of the differences were not uniformly positive or negative. That

is, in some weeks the non-uniform price was higher than the optimal uniform price, while

in other weeks it was lower. In hindsight, this is actually suggested by the variation in

the price ordering of the varieties in Figure 4. Furthermore, for all but two products (2L

containers of RC and Diet Rite), the average difference between the non-uniform and the

optimal uniform prices was less than one cent per 12oz serving.

32For example, I restrict 12-packs of 12oz cans of Coke, Diet Coke, and Diet Caffeine Free Coke to all sell
at the same price each week, although I allow this price to vary across weeks.
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Figure 5: Graph of the Price and Implied Marginal Cost (in cents per 12oz serving) for a
2L Bottle of Regular Pepsi, 6/91-6/93
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Figure 6: Graph of the Average Markup (in cents per 12oz serving) Across Products, 6/91-
6/93
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Figure 7: Graph of the Maximum Difference Across Products (in cents per 12oz serving)
Between a Product’s Uniform and Non-Uniform Prices, 6/91-6/93
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5.3.3 Profit Differences

Using my marginal cost estimates and the actual quantities sold, I can estimate the profits

that the store A actually earned in each week. In addition, by simulating expected demand,

I can also calculate the profits that the firm expected to earn each week. The difference

between these two numbers is that the former is scaled by the number of shoppers who

actually went shopping in that week. These give me a measure of the profits earned

by the firm under the non-uniform pricing regime. Comparing the these expected profit

figures yields a weekly estimate of the percentage profit decrease that store A would have

experienced if it had charged uniform prices.

Table 16 shows the detailed results of these calculations for a typical week of the sample:

the week beginning July 7, 1991. Several features are apparent. The first is that demand

is strongly skewed towards the lowest priced products. The ten products priced at $0.21

cents per 12oz serving or lower sell by far the lasrgest share of the quantity. The second

feature is that many of the prices are the same or nearly the same under both uniform

and non-uniform pricing policies. In this week, store A actually charged the same price for

24-packs of 12oz cans of both Coke and Diet Coke. Because I assume (in order to identify

the marginal costs) that the retailer charged the optimal prices in each week, the results

are skewed towards finding a smaller estimate of the profit difference. Third, much of the

increase in profits comes from a significant decrease in the price of a single product: 2L

bottles of Royal Crown (RC) cola. Finally, I note in passing that demand for some goods

increased, in spite of an increase in the price going from the uniform to the non-uniform.

This can be attributed to the effects of cross-price elasticities – the prices of many other

goods also moved.
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The weekly expected differences in profits are presented in Figures 8 and 9. I estimate a

distinct mass point at zero lost profits. As noted above, this is largely due to my assumption

that, in each week, the prices charged by store A were optimal. This assumption implies

that for weeks in which store A actually charged uniform prices, it could not have expected

to lose any profits doing so.

My estimates imply that by charging uniform, rather than non-uniform prices, the

retailer would have lost $36.56 per week in profit, or a total of $3,803 over the two year

period of my sample. The prospect of earning an additional $3,803 in profits (roughly $5,135

2004 dollars) over a two-year period for the soft drink category may seem small, but this is

only a single store in a much larger chain of more than 100 stores. If the chain were able

to realize similar profit increases at other stores in the chain, a rough estimate of the profit

increase would be over $250,000 dollars per year in 2004 dollars. This would presumably be

more than enough to hire an empirical economist to determine the optimal prices for each

product in each store in each week. Furthermore, this estimate is solely for the soft drink

category. While it is not clear what the results would be for other categories, similar profit

increases may be possible.

6 Interpreting “Lost” Profits

6.1 Menu Costs

As mentioned in the introduction, if we set aside demand-side explanations, the two

reasons for retailers to charge uniform prices are: to reduce menu costs and to soften

price competition with other retailers. In the event that the difference between uniform

and non-uniform prices is close to zero, this would suggest that retailers do not expect to

lose much (if any) profit by charging uniform prices. On the other hand, if the predicted

profit differences are positive, we must try to differentiate between these (and potentially

other) explanations for the hypothetical “lost profits”. When talking to store managers,

the most frequently offered explanation for the observed price uniformity is some form of

menu costs. When pressed, Safeway store managers respond that the reason for uniform

pricing is that it is “too much trouble” to price every good separately. In understanding

what is meant by “too much trouble” it is important to distinguish between two different

kinds of menu costs: physical menu costs and managerial menu costs.

One type of menu cost comes from the costs associated with physically changing prices.
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According to Tony Mather, Director Business Systems, Safeway (U.K.): “Pricing at the

moment is very labor-intensive. Shelf-edge labels are batch printed, manually sorted and

changed by hand while customers are out of the store.”33 Levy et al. (1997) estimate the

average menu costs to a large chain-owned grocery store for physically changing a single

price tag to be $0.52. To put this in perspective, a typical large grocery store usually

changes the price tags on about 4,000 items each week, changing as many as 14,000 tags in

some weeks. Although their study was conducted on behalf of a company selling electronic

price display tags, their stated aim was to put a lower bound on menu costs and they report

that grocery store executives generally agreed with their findings.

One might think physical menu costs promote uniform pricing – that stores reduce their

physical menu costs by charging uniform prices. However, two pieces of evidence suggest

that physical menu costs do not explain uniform prices. First, grocery stores typically

post prices for every SKU even when they are uniformly priced. Hence, the physical menu

costs are the same, regardless of whether the prices are priced uniformly or non-uniformly.

Second, in cases where the physical menu cost is presumably small or insignificant, we still

observe uniform prices. Even grocery stores that have implemented electronic display tags

and that can change prices throughout the store at the touch of a button from the store’s

central computer continue to charge uniform prices. Furthermore, online grocery stores –

who presumably have nearly zero physical menu costs – also sell at uniform prices.

A second kind of menu cost, and one that has not typically been discussed in the

literature is the managerial cost associated with figuring out what price to charge for

that product. While academic papers generally assume that retailers learn optimal prices

costlessly, this is an abstraction from reality. In order to learn its demand function, a

retailer must experiment by charging a variety of prices – introducing exogenous price

variation – and this experimentation can be costly. In addition, the retailer may have

to hire personnel or consulting services to determine “optimal” prices. These costs may

not be insubstantial. A recent article in Business Week (Keenan 2003) suggests that

implementing the advanced techniques offered by pricing consultants typically requires a

“12-month average installation” time and a price that “start[s] at around $3 million.” If

the additional expected profit to be gained from charging different prices for two products

is less than the cost of figuring out what those prices should be, then we will see uniform

prices.
33http://www.symbol.com/uk/Solutions/case study safeway.html
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This suggests that the store’s choice of whether to follow a uniform or non-uniform

pricing strategy is more likely a long-term decision rather than a week-by-week decision.

In this case, the relevant cost to consider is the present discounted value of the sum of the

lost expected profits across weeks and represents the one-time or infrequent cost either of

experimentation or consulting services.

Managerial menu costs also suggest a reason that pricing strategies may vary across

stores – leading some stores to charge uniform prices while others charge non-uniform prices.

Pricing decisions for most large grocery chains are made at the chain level. Store managers

at these chains typically receive the week’s prices electronically from company headquarters,

and are only responsible for making sure that price labels are printed and placed on shelves.

This centralization allows large chains to spread out these managerial costs across many

stores. However, evidence suggests that even large chains may be influenced by managerial

menu costs. Chintagunta et al. (2003) document the fact that Dominick’s Finer Foods

grouped its stores into three different categories based on the levels of competition the

stores faced, with each of roughly one hundred stores charging one of three menus of prices.

Such pricing heuristics presumably lower managerial costs by reducing the dimensionality

of the optimal pricing problem, but at the cost of non-optimal prices.

Other pricing heuristics seem to be in widespread use. Both small retailers and large

grocery stores34 frequently use constant-markup pricing heuristics, such as pricing all goods

at wholesale cost plus a fixed percentage or amount. The apparent widespread use of these

pricing heuristics may explain why soft drink prices tend to vary dramatically over time, but

not cross-sectionally – while wholesale prices move a good deal over time, wholesale prices

are typically uniform within manufacturer-brand. Unfortunately, this raises the question of

why manufacturers would choose to price their products uniformly.

34Data suggests that Dominick’s Finer Foods (described in section 5) frequently followed a constant-
markup pricing strategy.
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Figure 8: Graph of the Difference Between Profits from Uniform and Non-Uniform Price
Strategies, as a Percent of the Profits Earned at Non-Uniform Prices, 6/91-6/93
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Figure 9: Graph of the Counterfactual Dollars Lost from Charging Uniform Prices, 6/91-
6/93
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7 Conclusion

In retail environments, many differentiated products are sold at uniform prices. Expla-

nations for this behavior can be grouped into demand-side and supply-side explanations.

Lacking the necessary data to investigate demand-side explanations, I look at supply-side

explanations. Using grocery store scanner panel data and household grocery purchase

histories, I examine the market for carbonated soft drinks – a product that is frequently,

but not always, sold at uniform prices – and evaluate the validity of several supply-side

explanations.

Using the demand system developed in McMillan (2005), I conduct the counter-factual

experiment of forcing the prices of a particular store to be uniform, and comparing the

resulting profits to the non-uniform case. This comparison of the expected profit earned

by a single retailer at the weekly prices actually charged to the expected profit that same

retailer would have earned, had it charged uniform prices that were optimal in each week

(subject only to the restriction that they be uniform by manufacurer-brand-size), I am able

to infer that the retailer would have experienced a profit loss of roughly $36.56 (in 1992

dollars) per week if it had charged uniform, rather than non-uniform prices. This suggests

that uniform pricing would have led to a total profit loss for the retailer over the two year

sample period, of roughly $5,135 in 2004 dollars.

This result suggests that there are additional profits to be earned from non-uniform

pricing, under the assumption that the retailer charged optimal prices. Clearly, however,

it may not be profitable for single-store retailers to take advantage of this opportunity.

Without the benefits of multiple stores over which to spread the managerial costs of

determining optimal prices, single store retailers may find it optimal to charge uniform

prices. Unfortunately, this “scale” explanation cannot be the whole story. Anecdotal

evidence suggests that Walmart charges uniform prices for many products, even though

that company has almost certainly realized most returns to scale with respect to managerial

menu costs. Although additional research is necessary regarding demand-side reactions to

non-uniform pricing, these results suggest that pricing managers, particularly those at large

retail chains, should be aware of potential additional profits available from non-uniform

pricing. Moreover, they suggest that for single-store retailers, relatively small managerial

menu costs are able to generate the behavior observed at many retailers – that of uniform

prices.

57



References

Ball, L. & Mankiw, N. G. (2004), ‘A sticky-price manifesto’, NBER Working Paper (4677).

Bayus, B. L. & Putsis, W. P. (1999), ‘Product proliferation: An empirical analysis of

product line determinants and market outcomes’, Marketing Science 18(2), 137–153.

Bell, D., Ho, T.-H. & Tang, C. (1998), ‘Determining where to shop: Fixed and variable

costs of shopping’, Journal of Marketing Research 35(3), 352–369.

Bell, D. R. & Lattin, J. M. (1998), ‘Shopping behavior and consumer preference for store

price format: Why “large basket” shoppers prefer edlp’, Marketing Science 78, 66–88.

Berry, S., Levinsohn, J. & Pakes, A. (1995), ‘Automobile prices in market equilibrium’,

Econometrica pp. 841–890.

Burstiner, I. (1997), The Small Business Handbook: a Comprehensive Guide to Starting

and Running Your Own Business, third edn, Simon and Schuster.

Canetti, E., Blinder, A. & Lebow, D. (1998), Asking About Prices: A New Approach to

Understanding Price Stickiness, Russell Sage Foundation Publications.

Carlton, D. W. (1989), The Theory and the Facts of How Markets Clear: Is Industrial

Organization Valuable for Understanding Macroeconomics?, Vol. 1 of The Handbook of

Industrial Organization, Elsevier Science Publishers, chapter 15, pp. 909–946.

Chan, T. Y. (2002), ‘Estimating a continuous hedonic choice model with an application

to demand for soft drinks’. Mimeo, Washington University, St. Louis, Olin School of

Business.

Chiang, J., Chung, C.-F. & Cremers, E. T. (2001), ‘Promotions and the pattern of grocery

shopping time’, Journal of Applied Statistics 28(7), 801–819.
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