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Abstract 

This study compares X-12-ARIMA and MING, two new seasonal adjust- 

ment methods designed to handle outliers and structural changes in a time 

series. X-12-ARIMA is a successor to the X-ll-ARIMA seasonal adjustment 

method, and is being developed at the U.S. Bureau of the Census (Findley 
et al. (1988)). MING is a “Mixture based Non-Gaussian” method for sea- 

* sonal adjustment using time series structural models. It was developed for 

this study based on methodology proposed by Kitagawa (1990). 

The procedures are compared using 29 macroeconomic time series from 

the U.S. Bureau of the Census. These series have both outliers and structural 

changes, providing a good testbed for comparing non-Gaussian methods. For 

the 29 series, the X- 12-ARIMA decomposition consistently leads to smoother 

seasonal factors which are as or more “flexible” than the MING seasonal 

component. On the other hand, MING is more stable, particularly in the way 

it handles outliers and level shifts. 

This study relied heavily on graphical tools for comparing seasonal adjust- 

ment methods. Use of graphics is critical in forming the conclusions of this 

paper. 
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1 Introduction 

Seasonal adjustment at most statistical agencies is currently done using a procedure 
based on the X-ll-ARIMA method for seasonal adjustment, While X-ll-ARIMA 
has proven to be reliable and effective, it is primarily an ad hoc method. Re- 
searchers have explored model based alternatives to X-ll-ARIMA. Gaussian “time 

series structural models,” introduced by Gersch and Kitagawa (1983) and Harvey 

and Todd (1983), are a class of models currently enjoying a surge of interest. Time 
series structural models are based on using simple intuitive component models for 

the trend, seasonal and irregular. In a comparison of X-11 and structural models, 
den Butter and Mourik (1990) and Jain (1992) conclude that structural models are 
a competitive method. 

Outliers and “structural” changes (e.g., level shifts or ramps) cause problems 
with both X-ll-ARIMA and the Gaussian structural models. While X-ll-ARIMA 

.a provides some protection against outliers, it is not fully robust and cannot handle 
level shifts or other structural changes. The X-12-ARIMA procedure, a successor 
to X-ll-ARIMA, is being developed at the U.S. Bureau of the Census to handle 
additive outliers and level shifts (Findley et al. (1988), Monsell (1990)). 

Time series structural models can be adapted to non-Gaussian situations by 
assuming that the innovations of the component models are non-Gaussian (Kitagawa 

(1990)). For th is study, we have developed “MING”, which extends the structural 

model based seasonal adjustment to handle outliers and structural changes. MING 
is derived from a computer program by Kitagawa (1991). 

X-12-ARIMA and MING differ in very significant ways. X-12-ARIM. is a non- 
parametric method while MING is model based. The X-12-ARIMA seasonal filters 
are manually selected on the basis of diagnostic plots. By contrast, the seasonal 
decomposition of MING is automatically obtained by maximizing the likelihood. 

Finally, the two procedures adopt very different methods for handling outliers and 

level shifts. 
The X-1ZARIMA procedure is compared with MING using 29 macroeconomic 

time series from the U.S. Bureau of the Census. These series were chosen as a basis 
for comparison since each series contains both outliers and structural changes. The 

three main conclusions of our study are: 

1. For the 29 series, the X-12-ARIMA decomposition consistently leads to sea- 
sonal factors which “smoother” and more “flexible” than the MING seasonal 
component. This leads us to conclude that the X-12-ARIMA seasonal adjust- 
ments are generally more appealing for these series. 

2. According to sliding span statistics Findley et al. (1990), the MING procedure 
for handling outliers and level shifts leads to more stable seasonal adjustments 



than X-12-ARIMA. The lack of stability in X-12-ARIMA can be partly at- 
tributed to the discontinuous nature of its outlier/level shift detection scheme. 

3. Simple diagnostics are not adequate for comparing seasonal adjustment meth- 
ods. Graphical tools are essential for effective assessment. 

Section 2 discusses the outlier handling scheme for X-12-ARIMA. The MING 
procedure is described in section 3. Section 4 describes the data and the associated 
filters and models. The heart of the paper lies in sections 5, 6, and 7 which discuss 
the three main conclusions listed above. Other conclusions are given in section 8 

and the MING method is explored further in section 9. Finally, directions for future 

research are discussed in section 10. 
This paper is based on a fuller report by Bruce and Jurke (1992a), which we 

will refer to as [BJ92a]. A ssociated with the report is a “book” of plots (Bruce and 

Jurke (1992b)). 

= 2 X-12-ARIMA 

The X-11 method for seasonal adjustment was developed at the U.S. Bureau of the 
Census by Shiskin et al. (1967). X-ll-ARIMA is an extension of the X-11 method, 
developed at Statistics Canada by Dagum (1980). X-ll-ARIMA eliminates the 
asymmetric filters of X-11 by using ARIMA models to forecast beyond the ends 
of the series. Both X-11 and X-ll-ARIMA are nonparametric procedures, with a 
design based on practical considerations. 

Numerous empirical studies have examined the X-ll-ARIMA method: see, for 

example, Dagum (1978), Dagum and Morry (1984), den Butter et al. (1985), and 
Jain (1989). X-12-ARIMA offers several new features, including a new “language 
oriented” interface and the “sliding spans” diagnostics (Findley et al. (1990)). The 
primary new feature of interest in this study is the procedure for automatic detection 
of additive outliers and level shifts. This procedure is discussed in more detail below. 

2.1 X-1%ARIMA outlier/level shift identification proce- 
dure 

To avoid problems caused by additive outliers (AO’s) and level shifts (LS’s), X-12- 

ARIMA does a prior adjustment. AO’s and LS’s are identified using hypothesis tests 
based on the appropriate parametric intervention and ARIMA model. The series is 

adjusted using the estimated interventions. 
The idea of doing hypothesis tests to identify the type of outlier was first intro- 

duced by Fox (1972). Suppose Xt is a time series which behaves according to the 
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multiplicative Gaussian ARIMA (p, d, q) x (P, D, Q)s model. Let yt be the observed 
series, which is related to Xt by 

Yt might contain outliers, level shifts, etc., which are modeled by the O-l processes 
z,‘j) and the parameters [j* To model an “additive outlier” (AO) at time T, we set 

$1 = 1 t=T 
t 

t 0 t#T 

A “level shift” (LS) at time T is given by 

$1 1 tLT = 
0 t<T 

A hypothesis test for the presence of an A0 (or LS) at time T takes the form 

Ha : (j = 0 

Hi : 6 # O 

A large test statistic is indicative of an A0 (or LS). These ideas generalize to other 
types of interventions, such as innovations outliers, ramps, or variance changes. 

X-12-ARIMA incorporates tests for AO’s and LS’s in an iterative method for 
estimating parameters in a multiplicative seasonal ARIMA model. Suppose we 
have an initial estimate of the ARIMA parameters &a. The algorithm proceeds as 
follows: 

Step 0: j = 0. 

Forward Addition 

Step 1: Given &j, compute the t-statistics +tAo and ?ks corresponding to the hy- 

pothesis tests for AO’s and LS’s at times t = l,2, . . .,N. 

then go to step 5. Otherwise, flag the observation which is the most significant 

A0 or LS according to the t-statistics. 

Step 3: Subtract the least squares estimate {j of the flagged intervention from the 
series Yt. Re-estimate the parameters &j+i with the adjusted data. 
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Step 4: j = j + 1. Go to step 1. 

Backward Elimination 

Step 5: Let 0 be the set of indices corresponding to the identified AO’s and LS’s. 
Re-estimate the t-statistics for all identified AO’s and LS’s. 

Step 6: If 

then we are done. Otherwise, drop the least significant estimated intervention 
from the index set 0 and go to step 5. 

For step 1, an efficient algorithm is available for ARIMA models, reducing the 
computational burden of computing the test statistic for all observations simultane- 

. ously. In step 2, the cutoff C is used to determine if there are any more significant 
AO’s or LS’s remaining in the series. In this study, a cutoff of C = 3.1 is used. 

Note that only the most significant A0 or LS is identified on each iteration. This 
* “one-at-a-time” approach is computationally slower than identifying all significant 

AO’s and LS’s on each pass. However, for several of the series examined in this study, 

the multiple identification procedure is unstable and leads to poor decompositions. 

Hence, the multiple identification option is not recommended for general use. 
Other types of interventions could be incorporated into the procedure. However, 

for economic time series, the most important and natural situations to attempt to 
model in this manner seem to be additive outliers and level shifts. This iterative 
identification procedure was first developed by Chang and Tiao (1983). Hillmer 
et al. (1983) applied this iterative estimation method in the context of ARIMA 
model based seasonal adjustment. See Bell (1986), Chang et al. (1988), and Tsay 
(1988) f or ur er f th d evelopment of the method. 

3 MING 

Many model based approaches to seasonal adjustment have been proposed. Advan- 
tages of model based seasonal adjustment are articulated by Bell and Hillmer (1984). 
Models provide an interpretable decomposition whose characteristics adapt to the 
nature of each series. One approach towards model based seasonal adjustment is 
based on fitting ARIMA models: see, for example, Box et al. (1978). The ARIMA 
model is decomposed into trend, seasonal and irregular components, maximizing the 
variance of the irregular. This is often called the canonical decomposition. 

In this study, we work with an approach based on time series structural models. 
Gersch and Kitagawa (1983) and Harvey (1984) have explored the use of struc- 

tural models for seasonal adjustment (see also Kitagawa and Gersch (1984), Harvey 
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(1989), den Butter and Mourik (1990) and Jain (1992)). There are several advan- 
tages of structural model-based seasonal adjustment. Structural models are con- 
structed by using simple component models for the trend, seasonal, and irregular. 

Harvey (1989) and Harvey and Valls Pereira (1989) argue that structural models 
are more interpretable yield superior seasonal decompositions and adjustments than 
the canonical decomposition of ARIMA models. The fitting process is simpler for 
structural models, with only one or two basic model forms needed for a broad range 
of series (of the three models considered in this study, one model was consistently su- 
perior). Finally, structural models easily and naturally incorporate simple structural 
changes, such as level shifts and ramps. 

3.1 Gaussian Time Series Structural Models 

A time series structural model is based on forming models directly for each of the 
components in the decomposition 

r,=Tt+St+It. (1) 

Yt is some suitable transformation of the original observed series (in this study, Yt 

is the log-transformed data). Tt, St, and 1, are the trend, seasonal and irregular. 
The irregular is usually considered to be Gaussian white noise with zero mean and 
variance ai. This is denoted by 1t w GWN(O,al). 

A typical model for the trend is given by 

C = C-1 + h-1 + vt (2) 

where qt N GWN(O,ai). The term bt acts as a “slopen, and is permitted to evolve 
according to a random walk 

b t = b-1 + tt 

where & w GWN(O,r$). 
Following Harvey (1984)) we consider two different models for the seasonal com- 

ponent. Let s be the seasonal period (for monthly data s = 12). The first seasonal 
model, which makes up part of Harvey’s “Basic Structural Model” (BSM), is defined 

by 
s-l 

St = - C St-j + Wt 
j=l 

(3) 

where wt N GWN(0, I$). A n a It ernative and more flexible seasonal model is given 

by 
b/21 

s t= c Tit (4) 
j=l 
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with 

YIJ = yj,t-1cOSXj + yJ,t-lSinXj + Wj,t 

* 

7j,t = -+/j,j,t-lSinXj + ^Ij:t-lCOSXj + WTt 

where Xj = 2njj.s. The innovations Wj,t and w;,~ are uncorrelated with ~j,~ m 
GWN(O,ai,j) and wJ,~ N GWN(O,gi,j) for j = 1, , . . ,6. 

Modeling Calendar Effects 

Structural models are easily extended to handled such things as calendar and holiday 
effects. Instead of (l), we might use the model 

yt=Tt+Ct+St+It. (5) 
. 

where Ct represents the calendar effect. Ct is estimated as a fixed effect by construc- 
tion of the appropriate regression variables: see Bell and Hillmer (1983). Dynamic 

* models for trading days also fit nicely within the structural model framework: see 
Monsell (1983) and Dagum et al. (1988). 

3.2 Robustness through Gaussian Mixtures Models 

One of the strengths of the structural model is the simplicity and interpretability 
of the component models. This is illustrated when we consider non-Gaussian ex- 
tensions to the trend model. It can readily be seen that outliers in It, qt, and & 
translate directly into additive outliers, local level shifts, and ramps respectively. 

Hence, these types of events can be accommodated for in the model by assuming 

that It, vt, and & are generated from an appropriate outlier producing distribution. 

Gaussian mixture distributions are one way to model outliers. For example, to 

generate additive outliers, we assume that 

It - 
N(O,ai) with probability 1 - q 

W, 6;) with probability EI (6) 

where 6: >> a:. The factor q represents the “prior” probability of an additive 
outlier. 

To avoid too many mixture terms with small probabilities, it can be assumed 
that only one type of structural change can occur at a given time point. In other 
words, we shall assume that either a level shift or a ramp can occur, but not both. 



Hence, the joint distribution of qt and & is given by 

with probability 1 - erl - et 

with probability E,, 

with probability et 

(7) 

where 5: >> g,” and 5: > a( 2. The factors q and EC represent the prior probability 
of a level shift and ramp. 

The Gaussian mixture model has formed the basis for much of the research into 
non-Gaussian time series modeling. In the statistics literature, the model defined 
by (6) and (7) was introduced by Harrison and Stevens (1976), who called it the 
“Multiprocess Model” (see also Harrison and Stevens (1971)). This model has been 

= successfully used in a Bayesian setting for several applications: see, for example, 
Smith and West (1983) and Gordon and Smith (1990). Kitagawa (1990) uses a 
similar model for robust seasonal adjustment, except that CT,’ and 6: are constrained 
to be zero (so ramps but not level shifts are modeled). 

Seasonal breaks are not considered in this study, but (7) could easily be general- 
ized to do so. However, from the perspective of generating appropriate non-Gaussian 
disturbances, the seasonal models given by (3) and (4) may not be so useful. 

3.3 Technical Issues 

Evaluation of the Likelihood 

In structural time series models, the likelihood function is often decomposed in the 

form 

In the purely Gaussian case, (8) is readily computed by casting the model in state 
space form and applying the Kalman filter (see, for example, Harvey (1989)). For 
the Gaussian mixture model of (6) and (7), exact computation of (8) involves an 

algorithm with complexity of 6 NI This is because the one-step ahead predictive . 
distribution for Yt is a Gaussian mixture of 6t components. 

Different approaches have been adopted to circumvent this difficulty. Alspach 
and Sorenson (1972) develop a “Gaussian sums” method in which low probabil- 

ity components of the mixture are pruned. Pruning low probability components 
is known to cause problems (Kitagawa (1990)). Harrison and Stevens (1976) in- 
voke a collapsing procedure in which a number of terms in the mixture at each 
time are replaced with a Gaussian distribution. The replacement is done through 
moment matching, and minimizes the Kulback-Leibler distance. Kitagawa (1990) 
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adopts a collapsing approach similar to Harrison and Stevens. The main differ- 
ence is that while Harrison and Stevens collapse the same densities at each time, 
Kitagawa successively collapses the pair of densities which are “closest” in terms of 
Kulback-Leibler distance. Bruce and Martin (1992) combine a variety of pruning 
and collapsing methods in an adaptive tree growing algorithm. 

Obtaining the seasonal decomposition 

To obtain a seasonal decomposition, we need an estimate of the “smoothed” 
trend and seasonal. Most procedures yield the expected trend and seasonal: 

JqZI%, yz, - - *, YN) and E(S& Y2,. . . , YN). Using a “Gaussian sum” smoother, 

Kitagawa (1990) h s ows how we can actually get an estimate of the densities 

p(wL 6. * *, YN) and p(StlK, Yz,. . . , YN). From the densities, we could obtain 
a point estimate using the expected value. However, in the non-Gaussian sett.ing, a 
more natural point estimate is given by the median. 

A particularly nice feature about this approach is that we can readily obtain 
confidence intervals. In addition, Bruce and Cordera (1992) show how to obtain 

* estimates of the posterior probabilities of outliers, level shifts, and ramps. 

Initialization of the Filters 

To compute the likelihood (8) and to use the two-filter smoother of Kitagawa (1990), 
we need to handle densities such as p(YtlYl, Yz, . . . ,x-l). For t < 14 with monthly 
data and the models considered above, certain assumptions are needed about initial 
conditions. In the purely Gaussian case, the most natural approach is to assume a 
“diffuse prior”: see Ansley and Kohn (1985), Bell and Hillmer (1987), and De Jong 
(1991). In the G aussian mixture case, a “diffuse prior” could be used as well. The 
exact distribution, though, is a Gaussian mixture involving an intolerable number 
of terms for t bigger than 5 or 6. The various schemes for reducing the number of 
components do not work: the distributions are partially diffuse and it is not possible 
to determine which observations are likely outliers, level shifts, etc.. As a result, the 
current implementation of MING does not properly handle the initialization. This 
causes problems in the seasonal adjustments with three series (BTAPRI, BTNDRI, 
and ITVRUO). S ee section 6.5 of [BJ92a] for details. 

3.4 The MING program 

A non-Gaussian seasonal adjustment method based on time series structural models, 

called “MING”, was developed for this study. It is based on a computer program 

developed by Kitagawa (1991). It permits trend models of the form (2) and a choice 
of either (3) or (4) for the seasonal model. The irregular is assumed to be white 

noise. Gaussian mixture distributions of the form (6) and (7) can be specified. 
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The mixture distribution for structural changes, given by (7), can be extended to 
accommodate seasonal breaks as well. The method of Kitagawa (1990) is used for 
reducing the number of mixture terms in computing the likelihood and smoothed 
estimates. MING is implemented in Fortran- as a function in the S-PLUS language 

(S-PLUS (1991)). 

Ease of Use 

Potentially, MING is easier for the naive seasonal adjuster to apply than X-12- 
ARIMA. In this study, only the transformation choice was not automatic (but it 
could easily be done so). By contrast, both an ARIMA model and the seasonal 
filters had to be specified for X-12-ARIMA. 

Offsetting these advantages is the relative computational inefficiency of MING. 

In general, MING is an order of magnitude slower than X-12-ARIMA. However, 
much can be done to improve the speed of MING. With the increasing computing 

*power available to a broad spectrum of users, this should not be a major factor in 

the near future. 

Continuity property of MING 

An important property of the MING method is that it employs a continuous scheme 
for handling outliers and level shifts. MING can adapt to different magnitudes 
of AO’s or LS’s using appropriate posterior probabilities. Large AO’s or LS’s are 
given probabilities close to 1 while small AO’s or LS’s are given probabilities close 
to 0. By contrast, the X-12-ARIMA outlier prior adjustment procedure declares 
observations as either AO’s or LS’s or neither. Essentially, X-12-ARIMA assigns a 
posterior probability of either 1 or 0. As a result, we can expect the X-12-ARIMA 
seasonal adjustment to change discontinuously as an observation passes the threshold 
and is declared as an A0 or LS. While this discontinuity is mitigated by the outlier 

treatment intrinsic to X-11, we shall see that the MING outlier method leads to 
more stable seasonal adjustments. 

4 The Data, Filters, and Models 

4.1 The Data 

The empirical study involves 29 monthly U.S. macroeconomic time series, selected 
by time series staff at the Statistical Research Division, U.S. Bureau of the Census. 
These series have both outliers and structural changes (such as level shifts). Table 1 

lists the series along with their abbreviations. Of the 29 series, 13 are retail trade 
series, 7 are housing starts series, and 9 are inventory series. The series exhibit 
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a range of seasonal behavior. The retail trade series usually display very strong 
seasonal patterns. The construction series are often very erratic and quite difficult 
to adjust. The inventory series tend to have large level shifts but relatively stable 

adjustments. On the whole, this collection of economic time series gives a broad 
range of problems with which to assess and compare seasonal adjustment methods. 

Table 1: List of abbreviations for the 29 series studied and power transformations used by the 
SABL seasonal adjustment procedure. The choice of powers is roughly consistent with a logarithmic 

transform (power = 0). 

4.2 Log Additive Seasonal Decomposition 

Abbrev- SABL 
i&ion Series Description transform 

B1 BAUTRS Retail Sales of Automobiles 0 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
B10 
B11 
B12 
B13 

BFRNRS 
BGMRRI 
BGRCRS 
BHDWWS 
BLQRRS 
BMNCRS 
BSHORS 
BSPGWS 
BTAPRI 
BTNDRI 
BVARRS 
B WAPRS 

Retail Sales of Furniture 0 
Retail Sales of General Merchandise -0.5 
Retail Sales of Groceries 0 
Wholesale Sales of Hardware 0 
Retail Sales of Liquor 0 
Retail Sales of Men’s Apparel -0.25 
Retail Sales of Shoes 0 
Wholesale Sales of Sporting Goods 0.25 
Total Retail Sales of Apparel -0.25 
Retail Sales of Nondurables -0.25 
Variety Store Retail Sales 0.25 
Retail Sales of Women’s Apparel 0 

Cl4 CMW1HS One Family Housing Starts in the Midwest -0.25 
Cl5 CMWTHS Total Housing Starts in the Midwest 0 
Cl6 CNE1HS One Family Housing Starts in the Northeast 0.25 
C17 CNETHS Total Housing Starts in the Northeast 0.25 
Cl8 CSOTHS Total Housing Starts in the South 0 
C19 CWETHS Total Housing Starts in the West 0.25 
c20 C24THS Total Housing Starts - 2 to 4 0.25 

121 IBEVTI 
122 ICMETI 
123 IFATTI 
124 IFMETI 
125 IGLCTI 
I26 IHAPTI 
127 INEWUO 
I28 ITVRTI 
129 ITVRUO 

Total Inventories of Beverages -1 
Total Inventories of Cormmmications Equipment -1 
Total Inventories of Fats and Oils -1 
Total Inventories of Farm Machinery and Equipment 0 
Total Inventories of Glass Containers -0.25 
Total Inventories of Household Appliances -0.25 
Unfdled Orders for Newspapers and Magazines 0.25 
Total Inventories of TV’s and Radios 0.25 
Unfilled Orders for TV’s and Radios 0.5 

Time series staff at the Statistical Research Division identified a multiplicative de- 
composition in all of the series for the X-12-ARIMA seasonal adjustments. In this 

study, we transform the data by taking logarithms and multiplying by 1000 and then 
apply an additive seasonal adjustment. The log-additive seasonal adjustment is used 
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so that MING can be fairly compared with X-12-ARIMA. While multiplicative and 
log-additive seasonal adjustments should be similar, there is a consistent downward 
bias in the trend from the log-additive procedure (see Ozaki and Thomson (1992)). 

For simplicity and conceptual clarity, we have chosen not to consider other possi- 

ble transformations (e.g., square root). Table 1 displays the transformation powers 
for each of the series chosen by the robust seasonal adjustment procedure SABL 
(Cleveland and Devlin (1980)). The powers range from -1 to 0.5, with the majority 
being f0.25. While the SABL transforms may not be “optimal” (see Shulman and 

McKenzie (1984)), th ese results support the use of a logarithmic transformation. 

4.3 X-12-ARIMA Filters 

For the 29 series in this study, the options required by X-12-ARIMA were provided 
by the time series staff of the U.S. Bureau of the Census. This includes the choice of 

I ARIMA models, filters, and trading day and Easter effects. For the retail trade and 
inventory series, the default filters are used (see Dagum (1980)). For the construction 
series, a 3 x 9 moving average is used, yielding smoother seasonal factors than the 
default filter. Trading day prior adjustment is done for all of the retail trade series 
and three of the construction series. Prior adjustment for the timing of Easter is 
done for five of the retail trade series. 

4.4 MING Models 

Three types of seasonal models are fit to all 29 series: 

BSM: the “BSM” seasonal model given by (3), 

TRIG-l: the trigonometric seasonal given by (4) with.the assumption that all of 
the noise terms Wj,t have a common variance ai, 

TRIG-6: and the trigonometric seasonal given by (4) allowing different variances 

d,j* 

We will use the acronyms BSM, TRIG-l, and TRIG-6 to refer to these models. 
For each model, we fit the variance parameters c$, of, c$, and 0: (or r~i,~ in the 

case of TRIG-6). We also fit the prior probabilities of an additive outlier and a level 
shift (er and E,,). 

We did not optimize over the variances of the outlier and level shift processes, 
5; and 5:. Instead these variances are set to: 

where b&-r is the steady state one-step ahead prediction variance. The value of 100 
was chosen based on practical considerations. It seemed big enough to ensure that 
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the model would handle all conceivable outliers and level shifts but not so big as to 
distort the likelihood. Our experience agrees with that of Smith and West (1983) 
who suggest that the likelihood is relatively invariant with respect to 5; and 6:. 

A simplified version of the level shift and ramp model (7) is used in this study. 

The prior probability of a ramp q is set to zero, reducing the Gaussian mixture in 
(7) to just two terms. This restricted model provides for most of what is desired in 
terms of modeling structural changes while significantly reducing the computational 
burden. Section 9.4 explores a more general ramp model. 

4.5 Model Parameters 

Table 2 gives the maximum likelihood estimates of the parameters for TRIG-6 for 
each of the series. See appendix A for details on the fitting procedure. The table 

BAUTRS 1488 1.228e-08 0.004631 1.657 0.008848 0.0001354 X 
BFRNRS 285.9 9.559t08 67.15 0.3738 5.943005 0.0005969 R 
BGMRRI 81.22 1.514 0.005892 0.4867 0.0003415 0.0284 R 
BGRCRS 4.624 0.5419 100 9.696e-14 9.294e-05 0.0004777 R 
BHDWWS 471.2 7.394c05 354.3 0.6132 5.64%05 0.0001864 R 
BLQRRS 137.4 0.05058 121.7 0.2775 0.006969 0.004569 F 
BMNCRS 123.3 0.09107 335.6 4.963 8.679005 8.67.~05 R 
BSHORS 408 0.001657 317.2 1.616 7.074c05 0.008381 F 
BSPGWS 1934 9.571co5 843.3 4.77 0.006177 0.0002729 B 
BTAPRI 132.6 2.174~05 6.783e-06 0.1578 6.098e-05 0.002837 R 
BTNDRI 41.84 0.002471 0.05045 0.2091 0.0001406 0.01906 F 
BVARRS 134.1 0.0261 342.5 0.8838 0.000809 0.01346 F 
B WAPRS 189.1 0.0149 217.6 2.153 0.000111 0.0001306 B 

a C24THS 
CMWlHS 
CMWTHS 
CNElHS 
CNETHS 
CSOTHS 
CUSTHS 
CWETHS 

8946 
5728 
11940 
4596 
7683 
5014 
4276 
8078 

8.627t05 
0.0008224 
0.0001437 
5.12e-05 
0.001412 
0.001275 
3.132~06 
0.000324 

11830 
9063 
9377 
11230 
18370 
3083 
816.3 
397s 

3.336 
4.575 
9.969 
34.2 
17.77 
0.4219 
2.903 
2.895 

0.0007437 
0.028 

0.008784 
0.00503 
0.01361 
0.0004325 
4.054c05 
0.0005571 

IBEVTI 
ICMETI 
IFATT’I 
IFMETI 
IGLCTI 
IHAPTI 
INEWUO 
ITVRTI 

0.0006874 R 
0.0095 R 
0.00821 
0.000751 R 
0.001678 X 
0.001477 R 
4.3440-0s F 
0.0005949 R 

0.001752 R 
0.006383 R 
0.002057 B 
0.01885 R 
0.01075 R 
0.005982 X 
0.002101 R 
1.561~05 R 

ITVRUO 6574 0.01101 906.3 85.11 0.02277 0.003414 F 

152.6 
20.16 
4044 
284.6 
517.3 
443.3 
2221 
751.4 

0.2058 
17.83 

0.002189 
6.747 
0.1818 
0.02705 
0.9796 
18.72 

5.47e-08 
23.91 

2.959005 
26.04 

0.001409 
1.68%05 
0.000118 
0.006499 

0.521 
0.05469 
4.974 

1.503Hls 
0.1159 
0.6787 
4.472 
0.5567 

s.s29e-05 
1.052~08 
5.976e-05 
0.0009216 
0.0001653 
0.0001042 
7.64005 
0.0008571 

Probabilities 

Cl % 

Table 2: Structural model parameters as estimated by GAUSUM-STM for the TRIG-6 model. 

Note that 5: = C,“=I a~,j /6. The individual seasonal variances are given in Table 3. 
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displays the variances o:, of, oi, the mean of the variances of the seasonal component 

a~ = C~=l U~,j/S. and the prior probabilities E,, and 61. 
The type of convergence achieved by the optimizer is also given in Table 2. Five 

types of convergence are possible: (R)elative function convergence, (X)-convergence, 
(B)oth X- and relative function convergence, and (F)alse convergence (see appendix 
A for details). These are denoted in the table by the letters in the parentheses. A 
convergence code of R, X, or B indicates that the optimizer successfully found a 
local maximum. A convergence code of F means that the optimizer may be stuck 
at a non-critical value. 

Note that a few series have false convergence for TRIG-6. By contrast, almost 
all of the fits for the BSM and TRIG-l achieved successful convergence (Bruce and 

Jurke (1992b)). Th is is probably due to the number of seasonal parameters and the 

relative flatness of the likelihood. Since the TRIG-6 uses the maximum likelihood 
estimates of TRIG-1 as starting values, we expect that reasonably good estimates 

I are obtained in all cases. Furthermore, our experience with the optimizer indicates 
that many of the false convergences are at a local maximum. 

Comparison of Seasonal Parameters 

Table 3 compares the variances of the seasonal components for TRIG-l and TRIG- 

6. The TRIG-6 variances are given relative to the TRIG-l variance. Let u~,j for 

j = l,..., 6 be the variances for the TRIG-6 model and let ~2 be the variance for 

the TRIG-l model. Table 3 gives 0: and ~~,j z ~~,j/U~. 
For each series, the largest variance ~~,j is highlighted by a surrounding box. 

The dominant variability is in either at the seasonal frequency or the first harmonic, 
as one would expect. There are a few interesting exceptions: for the C24THS series, 
the dominant variance is the last harmonic! 

Table 3 also gives Akaike’s Information Criterion (AIC) for the BSM, TRIG-l, 
and TRIG-6 models. AIC is defined by 

AIC = -2 x logL+2p 

where log L is the log-likelihood at the maximum and p are the number of parameters 
fit. AIC gives a guide towards selecting the “best” model, and models with lower 
AIC values are preferable. The model with the minimum AIC value is marked by a 
box in table 3. 

In regards to goodness of fit, Harvey (1989) (p. 43) states that it is usually 
not necessary to optimize over all six variances of the trigonometric seasonal model. 

This is important since optimizing over six variances is far more laborious than 
optimizing over just one variance. However, the AIC’s of Table 3 favor TRIG-6 in 

several instances, sometimes by a substantial amount. This suggests that we should 
not blindly optimize over just one variance without good reason. In particular, it 
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would be useful to have a diagnostic that indicates when further optimization would 
not lead to a significantly better fit. 

5 Flexibility and Smoothness in the Seasonal Fac- 
tors 

In this study, we focus on the fEesib&ty and smoothness of the seasonal factors. The 
most important result of this study is that many of the 29 series compared, the 

BAUTRS 

BFRNRS 

BGMRRI 

BGRCRS 

* BHDWWS 

BLQRRS 

BMNCRS 

BSHORS 

BSPGWS 

BTAPRI 

BTNDRI 

BVARRS 

B WAPRS 

C24THS 

CMWlHS 

CMWTHS 

CNElHS 

CNETHS 

CSOTHS 

CWETHS 

IBEVTI 

ICMETI 

IFATTI 

IFMETI 

IGLCTI 

IHAPTI 

INEWUO 

ITVRTI 

ITVRUO 

TRIG-1 TRIG-6 variances AIC 
2 L L 1 c 1 11 BSM TRIG-1 

1 
uw *Id,1 uw,2 Qw,3 uw,4 cw,5 

L 
uw,6 TRIG-6 

0.84 0.0020 p.84J 2.44 0.54 0.0025 0.0027 

0.40 0.0011 0.86 1.51 0.48 0.37 

0.19 (12.091 

12.371 
2.90 0.88 0.041 0.43 0.015 

7.19015 27.87 0.37 0.069 17.69 0.046 134.9) 
0.31 1.14 1.54 0.045 18.031 0.76 0.48 

0.068 118.58 1 0.066 4.5s 0.36 0.12 0.95 

2.71 

1.61 

2.59 

0.059 El 6.16 5.96 2.93 11.7 0.0037 3.00 0.64 l.i5 

0.94 0.85 0.15 0.089 

0.26 2.37 0.39 0.071 

2.74 0.75 0.26 0.51 

2.01 1.21 3.12~05 7.92e-06 

0.073 1.39 0.00041 0.025 0.0029 

0.76 3.27006 0.97 0.53 0.016 

0.99 4.94 1.07 0.094 0.081 

3.33 0.010 0.23 0.10 1.29 0.39 13.991 

1.78 Iii4 7.55e-07 3.98 3.12~05 3.11c05 0.2555 

0.0067 82.7 0.80 0.25 0.19 

34.01 0.56 0.034 0.48 0.043 

5.54 

,E, g 
5.81 1.22 

, I 
0.0048 1.34 0.0036 

3.25t08 9437 

G[ 
42650 18049000 fizY%Gq 141800 250.6 

0.86 0.00042 0.037 0.00092 2.48 1.87 

0.072 2.73 0.31 0.28 6.12-z-05 

0.055 1.07 1.34 0.26 0.016 

1.22 4.47 2.320-07 0.34 0.052 

4.66elO 1.91 1 lO.lQ] 0.0087 1.49 2.34 3.43 

0.040 1.93 0.83 0.22 
h I 

113.841 0.30 0.36 

0.019 1207.6 1 6.32 0.00031 0.00018 1.78 1.19 

2.0 17.09 2.76 2.95 0.34 0.225 0.071 

0.25 5.97 0.44 0.24 0.024 1.84e-05 

49.98 1.22 16.24 1 0.50 0.91 0.066 1.28 - .lL 

2566 125651 2572 

2888 

1667 

1519 

2506 

2441 

3855 

3880 

pLJ 
3877 

3970 

)35641 
3686 

1664 

1500 

2493 

2435 

3853 El 3879 

3889 

2888 

3860 

3883 

3865 

3868 

3974 

3570 

3691 

Table 3: Seasonal parameters as estimated by GAUSUM-STM for the TRIG-l and TRIG-6 

models. The TRIG-6 variances are given as ratios to the TRIG-l varaince: 5: j G r~i j/uL. The 

AIC values are given for the BSM, TRIG-l, and TRIG-6. The model with the minim& AIC value 
is marked with a “*“. 
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X-12-ARIMA decomposition leads to smoother and more flexible seasonal factors 

as compared with the structural models. As we argue below, the “roughness” of 
the structural models is a serious problem which needs to be addressed in future 

research. 
This study also casts doubt about the usefulness of the “BSM” seasonal model, 

and indicates that optimizing over six variances in the trigonometric models often 
makes a significant difference. These results are discussed in more detail below. 

5.1 X-1%ARIMA Smoother and More Flexible 

Flexibility measures the amount that the seasonal effect for a given month is allowed 
to “bend” or change from year to year. In many series, the seasonal factors evolve 
over time. A certain amount of flexibility in a seasonal adjustment procedure is 

desirable to allow adaptation to this evolution. A procedure which is too rigid will 
not remove enough of the seasonality from the series. 

I Seasonal factors of a given flexibility can either be slowly varying or rapidly 
changing. This corresponds to a monthly effect which evolves smoothly or roughly 
from year to year. All things being equal, smoother seasonal factors are preferable. 

Hannan (1964) states 

. ..there seems little point in allowing for anything more than the very 
slowest change in seasonal variation. It would seem wrong here to con- 
cern oneself too much with faithfully representing a possibly rapidly 
changing seasonal because of the consequent risk of seriously distorting 
the series. 

In other words, we do not want to allow seasonal patterns to evolve into very different 
shapes in a short time frame. Rapid changing seasonal patterns are not what “most 
users’ think of as a seasonal effect. We are probably better off putting “excess” 

local variation of a seasonal pattern into the trend or irregular component. 
In summary, long term flexibility is-generally desirable but short term variability 

is not. We will show below that the long term flexibility of X-12-ARIMA is as 

great or greater than that of MING. However, the short term evolution of seasonal 

patterns for MING are much “rougher”. The X-12-ARIMA seasonal adjustments 

are generally more appealing for the business and inventory series. 
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1970 1980 

(a) 

1970 1980 

(b) 

Figure 1: Decomposition for IGLCTI based on (a) X-12-AR,IMA and (b) the TRIG-6 structural 
model. The top plot gives the untransformed data. The second, third and fourth plots show the 

trend, seasonal, and irregular. The vertical bar to the right of bottom two plots are the same 
length in real coordinates. The bars compare the relative strengths of the seasonal and irregular 

components. 

An Example: X-12-ARIMA More Flexible 

Figure 1 gives the seasonal decompositions obtained by the X-12-ARIMA and TRIG- 

6 methods for the IGLCTI series. The data, trend, seasonal and irregular are dis- 
played in the four plots (from top to bottom). Since a log-additive decomposition 
is used, the trend, seasonal and irregular are exponentiated: 

yt = expT’ expSt exp” 

Focusing on the seasonal component, the most obvious feature in this plot is the 
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Figure 2: SSI-plot for IGLCTI. The points are the log-transformed detrended series plotted by 
month. The estimated seasonal factors are compared for the BSM (short dashed line), TRIG-1 
(medium dashed line), TRIG-6 (long dashed line) and X-12-AFUMA (solid line). The horizontal 
solid line corresponds to the mean. 

To compare the different natures of the seasonal factors, we turn to the “SSI- 

Plot” of Cleveland and Terpenning (1982). Figure 2 gives a version of the SSI-Plot 
for the IGLCTI series, comparing X-12-ARIMA with the structural models. For each 
month, figure 2 displays the detrended transformed data as points (see appendix B 
for a description of the detrending procedure). The horizontal solid line corresponds 
to the mean. The seasonal factors are displayed for X-1ZARIMA (bending solid 

line), the BSM (short dashed line), TRIG-l (medium dashed line), and TRIG-6 
(long dashed line). 

The structural models show very little deviation from the mean effect, as we 
would expect from figure 1. However, X-12-ARIMA smoothly adapts to the data, 
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capturing such features as the slow variation of the August effect. 
Is this adaptivity is desirable? In other words, are we removing “true” seasonality 

from the series, or are we distorting the series by putting too much flexibility into 
the seasonal component. While this is partly a subjective issue, one way to check 
this is to see how much power has been removed around the seasonal frequency 
(recall that changing seasonal patterns over time will result in smearing of power in 
the periodogram). 

Figure 3: The top plot is the periodogram of the detrended data for IGLCTI. The seasonal 
and its harmonics, marked by dashed lines, are suppressed in this periodogram. The other plots 
give the periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG-6, and 
X-1ZARIMA. 

Figure 3 compares the periodograms of the detrended seasonal adjusted data (see 
appendix B for details). The top plot in figure 3 is the periodogram for the original 
data with the values at the seasonal frequency and its harmonics suppressed. This 
corresponds roughly to what one would obtain by fitting a fixed seasonal pattern. 
The subsequent plots show the periodograms for the BSM, TRIG-l, TRIG-6 and X- 

12-ARIMA procedures. We can see that X-1ZARIMA removes considerably more 

power around the seasonal frequency. 

18 



. 

January FebrUfW March 

Apil 
L 

May 

I 
June 

8 .- 8 
0 

E. 

0.0 O 00 8, 

$ .-e?~-,-.-.:~~ 

“-0 
- . . 

0 ” =- -.. 
O0 0 

0 0 

-!&@+$A J7 

0 

8 *. s H\ 
July Swtember 

8 

November December 

0 

0 
0 

OO 
$J*<v, 0 0 

0 

WI 0 
, I I , 

1970 1975 1990 1995 1970 1975 1900 1995 1970 1975 1980 1985 

Figure 4: SSI-plots for BMNCRS. The points are the log-transformed detrended series plotted 
by month. The estimated seasonal factors are compared for the BSM (short dashed line), TRIG-1 
(medium dashed line), TRIG-6 (long dashed line) and X-12-ARIMA (solid line). The horizontal 
solid line corresponds to the mean. 

Another Example: X-12-ARIMA Smoother 

An equally revealing example is given by the BMNCRS series. Figure 4 gives the 

SSI-Plot for the BMNCRS series (this is analogous to figure 2). In this case, the 
structural models are as or even more flexible then X-12-ARIMA. In fact, examina- 
tion of the periodogram shows that TRIG-6 removes slightly more power around the 
seasonal frequency and its harmonics than X-1ZARIMA (see figure I5 of [BJ92a]). 
However, this flexibility is achieved at a significant increase in roughness. The sea- 

sonal factors for structural models exhibit a great deal of seemingly undesirable local 
variation. 
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Some Conclusions 

I 

The help quantify these results, we have constructed some diagnostics based on the 

notions of flexibility and smoothness. We measure long-term seasonal flexibility by 
the year to year change in the smoothed seasonal factors. Denote the seasonal factors 
of the log-transformed data by St. Let St be as smoother version of St obtained by 

‘t = ,$, (7) St+l*j 
J- 

The diagnostic is given by 

SEAS FLEX z T 
tN-12 

c (a’2,$(. 
t=tlJ+12 

(9) 

SEAS FLEX corresponds roughly to the mean annual percentage change in the 

smoothed seasonal: e 
I exp & - exp St-12 

. 

exp k-12 

M A”&. 

Seasonal roughness is measured by simply looking at the mean absolute residuals 

from the smooth: 

ity 

SEAS ROUGH f $ 2 /St - s,I. (10) 
t=to 

Extra flexibility in the seasonal factors is only desirable if it removes seasonal- 
from the data. To measure this, we look at the remaining seasonality by the 

seasonally as reflected in the periodogram near the seasonal frequency s = 7r/6. 
Specifically, we define the statistic SEAS REMAIN by 

SEAS REMAIN 3 2 
j=- 2 

(11) 

where Is+j is the magnitude of the periodogram at frequency s + 27rj/N. 
Figure 5 displays the diagnostics SEAS ROUGH, SEAS FLEX and SEAS RE- 

MAIN. Two outlying series were removed from these plots for clarity (the structural 
models performed quite poorly for these series). The diagnostics have been “median 

corrected:” the median of the diagnostic for the four procedures is subtracted out 
for each series. 

For the moment, we concentrate on the comparison of X-1ZARIMA with TRIG- 

6. For the business series, according to SEAS ROUGH, X-1ZARIMA produces 

smoother seasonal factors than the TRIG-6 models. At the same time, the X-12- 
ARIMA seasonal is as or more flexible than TRIG-6. For the inventory series, the 
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Figure 5: (a) The diagnostic SEAS FLEX, given by (9), (b) the diagnostic SEAS ROUGH, given 
by (lo), and (c) the diagnostic SEAS REMAIN, given by (10). To remove the “series effect”, the 
diagnostics for each series are median corrected (i.e., the median of the diagnostic for the four 
procedures is subtracted for each series). 

X-12-ARIMA seasonal factors are more flexible and remove more seasonality than 
TRIG-6 without being any rougher. 

These results are not surprising. The smoothness of X-1ZARIMA seasonal fac- 
tors has been explicitly incorporated into the procedure based on practical consid- 
erations. By contrast, the seasonal factors for structural models are based on the 
maximum likelihood estimates. This does not guarantee seemingly desirable features 
such smoothness and long term flexibility. 

Only for the construction series are the results ambiguous. The construction 
series tend to be difficult to adjust and perhaps are less useful for evaluating proce- 
dures (since often no procedure is really adequate). 
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Figure 6: SSI-plots for BGMRRI. The points are the log-transformed detrended series plotted 
by month. The estimated seasonal factors are compared for the BSM (short dashed line), TRIG-I 

(medium dashed line), TRIG-6 (long dashed line) and X-12-ARIMA (solid line). The horizontal 
solid line corresponds to the mean. 

5.2 Rigidity of the BSM 

The BSM seasonal model is not as flexible as the trigonometric seasonal model. 
This is evidenced by figure 5(c), which shows that the BSM consistently removes 
leaves more power in the spectrum around the seasonal frequency. According to the 
diagnostic plots, TRIG-l adapts significantly better to changing seasonal patterns 
than the BSM in 8 series (B3, B7, B8, BlO, B12,121, 127,128). Recall that TRIG-l 
and BSM have the same number of parameters. If only one model is to be considered 

for seasonal adjustment, on the basis of these results, we would prefer TRIG-l. 
The BGMRRI series provides a dramatic example of the inadequacy of the BSM 

seasonal model. Figures 6 and 7 give the SSI-Plot and periodogram plot for the 
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Figure 7: The top plot is the periodogram of the detrended data for BGMRRI. The seasonal 
and its harmonics, marked by dashed line, are suppressed in this periodogram. The other plots 
give the periodograms for the detrended seasonally adjusted data for BSM, TRIG-I, TRIG-G, and 

X-12-ARIMA. 

BGMRRI series. The movements in the BSM seasonal factors bear little resemblance 
to the data! Considerable power is left in the periodogram both at and near the 

seasonal frequency. 

5.3 TRIG-6 More Flexible Than TRIG-l 

Figure 5(a) and 5(c) show that TRIG-6 is much more flexible and removes more 
seasonality than either TRIG-l or the BSM. This flexibility, however, is obtained at 
a significant increase in the roughness of the seasonal factors: see figure 5(b). Hence, 
in regards to seasonal adjustment, optimizing over additional parameters makes a 

significant difference. 
A good example of the flexibility gained (but smoothness lost) by optimizing 

over all six variances is given by the BGMRRI series: see Figures 6 and 7. Often 

the seasonal factors progress in flexibility from BSM to TRIG-l to TRIG-6. The 
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X-12-ARIMA seasonal looks like a smoothed version of the TRIG-6 one. 

5.4 Which Would We Choose? 

Choosing between the four seasonal adjustment procedures, we prefer X-12-ARIMA 
in 18 of the 29 series. In another 7 series, we have little or no preference between 
X-12-ARIMA and TRIG-6. The structural models are clearly preferred in only 4 
series. These choices are based on a collection of diagnostic statistics and plots (see 
[BJ92a] and Bruce and Jurke (1992b)) and ignore stability issues. 

We can classify our preferences of X-12-ARIMA into two types: those resem- 
bling the BMNCRS example and those resembling the IGLCTI example. With the 
BMNCRS series, X-12-ARIMA has as much “long term” flexibility as TRIG-6, but 
the seasonal factors are smoother. This holds true in 12 of the 29 of the series (Bl, 
B2, B3, B5, B7, BlO, Bll, B13, 121, 123, 127, 129). With the IGLCTI series, X-12- 
ARIMA is distinctly more flexible and removes more seasonality but is as smooth 
as TRIG-6. This holds true in 6 series (C14, C20, 122, 124, 125, 128). 

* In another 7 series, we do not have a strong preference for either X-12-ARIMA 

or TRIG-6 (B6, B8, B9, B12, C18, C19, 126). I n most of these series, though, the 
differences between X-12-ARIMA and TRIG-l or BSM are significant. 

In the remaining 4 series, X-12-ARIMA is either “too flexible” with no apparent 

advantage (B4), removes less seasonality (C15, ClS), or has problems in its outlier 

treatment method (C17). 
In general, X-12-ARIMA dominates for the business and inventory series. In 

series with little structure or linear changes in seasonal patterns, the differences 
between the methods is small. Both procedures can capture basically linear evolution 
in a seasonal cycle. The differences are the greatest in series which exhibit strong, 
non-linear changing seasonal patterns. 

6 Stability in the Seasonal Adjustments 

Stability in the seasonal adjustments is a crucial measure. In this study, we have 
chosen to study stability using the sliding spans statistics of Findley et al. (1990). 
Our results indicate that the structural models lead to more stable seasonal adjust- 
ments than X-12-ARIMA. This is to be expected since stability and flexibility are 
conflicting goals. However, part of the instability of X-1ZARIMA can be attributed 
to the discontinuous nature of its outlier/level shift detection scheme. We believe 
that the MING procedure for handling outliers and level shifts leads to more stable 

seasonal adjustments than X-12-ARIMA. 
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6.1 Sliding Spans Statistics 

The sliding spans of Findley et al. (1990) are one measure of volatility involving 
adjustment of the data using four overlapping spans of approximately eight years in 
length. We focus on the stability of the month-to-month percentage change in the 

seasonal adjustments. For time t and span k, these are defined as 

MMt(k) = 
exp&(k) - expAt-.l(k) 

exp At(k) 

where A,(k) is the log transformed seasonally adjusted value at time t in span k. 
Using the notation of Findley et al. (1990), the sliding spans statistic for time t is 

MM,“” = rnpx MM,(k) - n$n MM,(k) (12) 

where Ic varies over those spans that contain both months t and t - 1. Seasonal 
I adjustments with more than 35% of the months with MM,“” > 0.03 are almost 

never acceptable. Good seasonal adjustments seem to have less than 15% greater 
than the cutoff. This criteria is designed for the X-ll-ARIMA procedure and may 
not be suitable for the structural models. 

6.2 X-12-ARIMA Generally Less Stable 

We return to the IGLCTI series to illustrate the relative stability of X-12-ARIMA 
and the BSM fit. Note that the BSM fit is used for comparison in this case rather 

than TRIG-6. Figure 8 display the sliding span statistics Me for the IGLCTI 
series. The statistics for the X-12-ARIMA and BSM adjustments are displayed in 
the top and bottom plots respectively. The plots display MM,“” over the period of 
sliding spans. As a benchmark to judge stability, a dashed horizontal line is drawn at 
0.03. The histogram at the right of this plot shows the distribution of the MMtm. 

As figure 8 shows, the X-12-ARIMA adjustment is slightly less stable than the 
BSM adjustment. Some tradeoff between stability and flexibility is inevitable. Recall 
that the BSM seasonal factors are much less flexible than those of X-1ZARIMA for 
this series: see figures 2 and 3. In this case, the slight decrease in stability is probably 
a price worth paying for the significant increase in sensitivity. In [BJ92a], a similar 
example is given by the IFMETI series. 

According to sliding spans statistics, the X-1ZARIMA seasonally adjusted data 
is less stable than MING with the BSM fit in 16 series (Bl, B2, B7, B8, B9, B12, 
C14, C15, C18, C19, C20, 124, 125, 127, 128). X-12-ARIMA is significantly more 
stable for only two series, and only then because of problems with the initialization 
of the MING method (BlO and Bll; see section 3.3). 

Figure 9(a) gives scatterplots of the sliding span statistics MM,“” for the sea- 

sonal adjustments of X-12-ARIMA (h orizontal axis) and the BSM (vertical axis). 
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Figure 8: The sliding span statistics MM, max for the IGLCTI series for the (a) X-12-AFUMA 

and (b) BSM seasonal adjustments. As a benchmark to judge stability, a dashed horizontal line is 
drawn at 0.03. The histogram at the right of this plot shows the distribution of the MM?“. 

The .03 significance lines are marked by dased lines. Clearly more points lie below 
the line, indicating that the BSM produces more stable adjustments. A density 
estimate of the difference 

MM; E (MM,“” for X-12-ARIMA) - (MMf” for BSM) 

is given in the upper right comer. The 45’ line indicates where MMtA = 0. The 
median difference, marked by a line through the density estimate, is greater than 
zero. 

We emphasize that difference in stability is, in large part, to be expected. It is not 
a major concern given the increased flexibility of X-12-ARIMA. Figure 9(b) gives 

scatterplots of Miblj- for the seasonal adjustments of X-1ZARIMA (horizontal 
axis) and X-ll-ARIMA (vertical axis). As indicated by the median lines, there is 
not much difference in the stabilities of X-12-ARIMA and X-ll-ARIMA. Hence, 
most of the difference in stability we observe in figure 9(a) can be attributed to the 
difference in the flexibility of the seasonal adjustments. 

Figure 9(b) d oes hint towards a problem: while the median stability is not much 
different, X-12-ARIMA tends to have far more large values of Mr. We suspect 
this is due to the X-12-ARKMA outlier procedure. This is explored below. 
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Figure 9: Scatterplots of the sliding span statistics MMtmU for the seasonal adjustments of 
X-12-ARIMA (horizontal axis) and the BSM (vertical axis). The .03 significance lines are marked 
by dased lines. The density estimate in the upper right corner is of MM?. The 45” line indicates 
where MMtA = 0. The median difference, marked by a line through the density estimate, is greater 

than zero. 

6.3 Instability of X-120ARIMA Outlier Procedure 

A more worrisome cause of instability in X-1ZARIMA seasonal adjustments is in- 
stability in its outlier identification procedure. The root of the problem lies in the 
discontinuous nature of the X-12-ARIMA method for handling outliers and level 
shifts (see section 2). An observation is either declared as an outlier, a level shift, or 
neither. There is no mechanism in the current procedure for smoothly transitioning 
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between these different states. This naturally leads to instability in the seasonal 
adjustments. 

By contrast, the MING procedure uses a continuous scheme: an observation is 
assigned a posterior probability of being an outlier, level shift, or neither. The proba- 
bilities are estimated from the data and range from 0 and 1. As a result, the MING’s 
outlier procedure is less likely to cause instability in the seasonal adjustments. 

An Example 

To illustrate this we look at the BVARRS series. Figure 10 displays the sliding 
span statistics for the X-1ZARIMA adjustment BVARRS. The first plot shows the 
untransformed seasonally adjusted data obtained when the procedure is applied to 
each of four 8 year spans from 1978 to 1989. The second plot displays MMP”” 
of (12) over this time period, as in figure 8. As a benchmark to judge stability, 

dashed horizontal lines are drawn at k x 0.01 for k = 3,4,. . . . To pick up patterns 
of seasonal instability, boxplots of the MM,“” by month are shown in the fourth 

plot. In contrast to the IGLCTI series, the X-12-ARIMA adjustment is borderline 

in terms of stability: about 15% of MM,“” > .03 with the maximum value at .08. 

The third plot of figure 10 shows the outliers and level shifts detected by X-12- 
ARIMA in each span. One outlier was detected in each of the last three spans, as 

indicated by the points connected to the level by vertical lines. A small level shift was 

also detected in the second span, as indicated indicated by the “step” in the level. 
The size of the step or vertical line indicates the relative magnitude of the level shift 
or outlier. The source of the instability as reflected by MM,“” is clear: different 
outlier/level shift combinations are detected in each of the four spans! Large values 
of MM,“” can be directly associated with the different identifications of outliers 

and level shifts. 
The sliding spans plot for the BSM fit is given in figure 11. The first, second, 

and fourth plots are the same as in figure 10. By contrast with X-12-ARIMA, the 
BSM adjustment is still extremely stable: no values of MM,“” exceed .03. 

The third plot of figure 11 shows the posterior probabilities of the outliers and 
level shifts for each span. The probability of a level shift at each point in the series 
is plotted as a vertical line extending downwards from the horizontal line. Similarly, 
outliers would be indicated by vertical lines extending upwards (none were detected). 
The length of the lines correspond the posterior probability of (with the dashed line 
being one). The identification of outliers and level shifts is very stable. The posterior 
probability of the level shifts ranges from fairly high in the second span to moderate 

in the fourth span. Evidently, the ability to assign a range of posterior probabilities 
avoids the problems encountered by X-1ZARIMA. 

The BSPGWS series gives another example of the problems caused by the dis- 
continuous nature of the X-12-ARIMA outlier identification scheme (see [BJ92a]). 
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Figure 10: X-IZARIMA sliding spans for BVARRS. The top plot shows the seasonally adjusted 
data for the four spans The second and fourth plots display the statistic MM;“” over time and 
by months. The dashed horizontal line indicates the .03 cutoff: too many statistics bigger than .O3 
indicate an unstable adjustment. The third plot compares the outlier treatments over the spans. 
Outliers are indicated by points and level shifts by steps. 

Some General Conclusions 

X-12-ARIMA outlier identification procedure is less stable than the MING method 
for 13 series (Bl, B2, B8, B9, B12, B13, C15, C17, C18, C19, C20, 125, and 127). In 
all but one of these series, this instability appears to lead to significantly less stable 

seasonal adjustments (as measured by the diagnostic MM,""). 
The outlier procedure of MING is less stable for 6 series (B6, BlO, Bll, C16, 

124, 129). Th ree of these (BlO, Bll, and 129) are due to a problem with the initial- 
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Figure 11: BSM sliding spans for BVARRS. The top plot shows the seasonally adjusted data for 

the four spans The second and fourth plots display the statistic MLW~“~ over time and by months. 
The dashed horizontal lines indicate the .03 cutoff: too many statistics bigger than .03 indicate an 
unstable adjustment. The third plot compares the outlier treatments over the spans. Outliers are 
indicated by points and level shifts by steps. 

ization procedure (see below). In two others (B6 and 124), MING estimates several 
additional level shifts with moderate or low probability in one span. This has very 
little effect on the seasonal adjustments. For CNElHS, an outlier is only identified 
in two spans by MING, leading to quite a large value of MM,“” for that month 

(this it the type of instability which is more typical of X-12-ARIMA). 
It seems reasonably safe to conclude that the X-12-ARIMA outlier identification 

procedure is less stable. Furthermore, the instability of X-1ZARIMA has a greater 
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effect on the instability of the seasonal adjustments. These results all point to 
problems with the discontinuous outlier detection method of X-12-ARIMA. Similar 
results should hold in adding new observations or revising observations in a time 

series. 

7 The Need for Graphics 

We started this study with the aim of proving the superiority of the MING procedure 
for dealing with series laden with outliers and level shifts. We had to change course 
as we were confronted with what we perceived as problems in MLE/structural model 

based seasonal adjustment. In hindsight, these problems may seem obvious for the 
series studied. However, they only became apparent after perusing through literally 

hundreds of plots (see Bruce and Jurke (1992b)). Without these plots, it is quite 
likely that we would have reached very different conclusions. 

* A fixed set of numerical diagnostics can not be relied upon to uncover all potential 
problems in a seasonal adjustment. Looking at plots is vital for uncovering unusual 
features. With the advent of the modern computer workstation, perusal of many 
plots is no longer the burden it once was. With the right computing environment, 

it is now feasible to rapidly validate seasonal adjustments using both numerical and 
graphical diagnostics. 

7.1 Piot Driven Diagnostics 

Initially, our comparison was based on the diagnostics similar to those proposed by 
den Butter and Mourik (1990). The conclusions we reached in section 5 are not 
supported by these diagnostics ! It turns that these diagnostics are not sensitive 
enough to distinguish flexibility from roughness in seasonal factors, to show how 
well the seasonal factors fit the data, or to accurately determine the amount of 
seasonality remaining in the data. 

The diagnostics SEAS FLEX, SEAS ROUGH, and SEAS REMAIN were all 
constructed after we had formed preliminary conclusions through the plots. In 
particular, we found the SSI-Plot ( as in figure 2) and a plot of the periodograms (as 

in figure 3) especially valuable. 
While we looked at many other diagnostics (see [BJ92a]), we did not find these 

particularly revealing or enlightening in comparing X-1ZARIMA with the structural 
models. Hence, we have have not reported these here. 

7.2 Inadequacy of Simple Diagnostics 

The simple one-way ANOVA test for residual seasonality, while widespread in use, 
has little power and can be misleading. For the IFMETI series, the test has a “p- 
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value” of essentially 1 for all structural models, indicating no seasonality remaining 

in the residuals. On the other hand, the p-value for X-12-ARIMA is 0.761. On the 
surface, this would indicate that the structural models are quite adequate, and do a 

better job of removing seasonality from the data. Examination of the periodograms 
tells otherwise (see figures 19 and 20 of [BJ92a]): X-12-ARIMA seasonal factors 
adapt to the data in an appealing manner and considerable power is reduced in the 
periodogram around the seasonal frequency. 

The results also indicate that a better fitting model, according to AIC, doesn’t 
mean a more appealing seasonal factor. For example, compared with TRIG-l or 
BSM, TRIG-6 has a much lower AIC value for the ITVRUO series. However, exam- 
ination of the seasonal factors with the SSI Plot does not show a strong preference 
for TRIG-6. The ITVRUO series is difficult to fit, and in that sense is atypical 
(the series undergoes a variance shift in the latter portion). A more typical exam- 

ple is given by BLQRRS, f or which TRIG-6 has a slightly higher AIC value but 
significantly more flexible seasonal factors. 

* 8 Other Results 

The MING procedure is intrinsically more stable: see section 6. Beyond the question 

of stability, though, the different ways in which MING and X-12-ARIMA handle 
outliers and level shifts does not have a big impact on the seasonal adjustments. 
Whatever impact it does have is swamped by the fundamental differences in the 
decompositions (see section 5). Nonetheless, we did uncover several interesting 
results which are discussed below. 

8.1 Advantages of the MING outlier method 

For many of the series, MING detects fewer outliers/level shifts or the same number 
with lower probability (Bl, B2, B4, B5, B7, B9, B13, C16, C17, C19, 121, 123, 126, 
127, 128). For example, for the IFATTI series, X-12-ARIMA detects eight outliers 
and ten level shifts By contrast, TRIG-6 detects only 3 moderate probability level 
shifts and 5 low probability level shifts. This is a reflection of the rather arbitrary 
level at which the outlier threshold is set for the X-12-ARIMA procedure. Setting it 
to a higher level would obviously reduce the number of series for which X-12-ARIMA 
detects more outliers/level shifts. 

In some series, MING detects numerous low probability level shifts or outliers 
not identified by X-12-ARIMA (B3, B6, B8, B12, C14, C15, C20, 122, 124, 125, 129). 
For example, MING picks up several small level shifts for ICMETI not identified by 
X-12-ARIMA. These level shifts are barely visible in a plot of the seasonally adjusted 

data. For the series BLQRRS, MING models a “ramp” using two successive level 
shifts of moderate to high probability while X-12-ARIMA uses one large level shift. 
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. 

The MING procedure has two apparent advantages. First, it has an automatic 
way to adapt the “cutoff” level based on the likelihood. Second, it can incorporate 

small level shifts or outliers by giving them low probability. However, for all of the 
series listed above, the two procedures handle major outliers and level shifts in a 
similar manner. The only difference fox these series is the way in which the methods 
handle small outliers and level shifts. The advantages advantages offered by MING 
are more theoretical than practical. 
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Figure 12: The top plot shows the TRIG-6 seasonally adjusted data for BVARRS (points) with 
the TRIG-6 trend (solid line) and X-12-ARIMA trend (dashed line). Two outliers identified by 
X-1ZARIMA are circled. The bottom plot shows the posterior probability of an observation being 
an outlier (solid upward lines) or a level shift (solid downward lines) as estimated by TRIG-6. Also 
shown are outliers (dashed upward lines) and level shifts (dashed downward lines) as identified by 

X-12-ARIMA. 

8.2 Problems with MING 

Figure 12 illustrates a common problem with the MING procedure. The top plot 
shows the TRIG-6 seasonally adjusted data for BVARRS (points) with the TRIG-6 
trend (solid line) and X-1ZARIMA trend (dashed line). Two outliers identified by 
X-12-ARIMA are circled. The bottom plot shows the posterior probability of an 
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observation being an outlier (solid upward lines) or a level shift (solid downward 
lines) as estimated by TRIG-6. Also shown are outliers (dashed upward lines) and 
level shifts (dashed downward lines) as identified by X-12-ARIMA. 

Both X-12-ARIMA and MING pick up several major level shifts, but only the X- 
12-ARIMA procedure identifies outliers at 12/74 and 3/86. The plot of the seasonal 
adjusted data strongly supports this: 12/74 and 3/86 stand out as outliers. MING 
fails to detect the “obvious” in this case. 

This an illustration a general problem with the MING procedure. In several 
series, MING has a problem detecting moderate outliers if level shifts are present 
(B3, B12, 121, 123, 124, 126). When the series has mostly level shifts with a couple 
of outliers, the estimated posterior probability of the occurrence of an outlier tends 
to be very small. The converse holds as well: when a series has many outliers and 
a single level shift, the estimated posterior probability of a level shift is small (Bl). 

In the BVARRS series, where there are several obvious level shifts and two 
moderate outliers, MING estimates a relatively high prior probability to level shifts 
(Ed > .Ol). These give a small degree of protection against the two outliers in this 

* series (by increasing the variance). By giving a nearly zero probability to outliers 

( EI x 0) the likelih oo d is optimized since it does not incur the “penalty” of modeling 

outliers when there aren’t any (as is the case for all but two observations). 
The root of the problem is the decision to optimize of the prior probabilities 61 

and Ed. Alternative approaches, such as constraining the parameters, may produce 
better behavior in this regard. 

8.3 Local level shift or an outlier patch? 

X-12-ARIMA and MING occasionally use very different approaches to modeling non- 
Gaussian behavior in a number of series (B3, BlO, Bll, C18, 124, 129). Whereas 
the MING tends to treat these series using one or more level shifts, X-12-ARIMA 
identifies an outlier “patch”. An example of this is given by the BGMRRI series 

(see [BJ92a]). I n g eneral, when X-12-ARIMA and MING differ in this way, neither 

method is demonstrably superior. 

8.4 Difference in outlier treatments not as important 

While MING and X-12-ARIMA lead to quite different seasonal adjustments, the 
difference in the outlier procedures is usually only a second order contributing effect 
to the difference in seasonal adjustments. The difference in the seasonally adjusted 

data is primarily due to the different estimation methods of the seasonal factors 
(see section 5). See [BJ92a] for an example based on the IFMETI series illustrating 

that the outlier treatments can be substantially different without much effect on the 
seasonal factors. 
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In a few cases, the outlier treatments lead to quite notable differences in the 
seasonal adjustments (Bl, B3, B6, BlO, B12, C16, C17, 123). For CNETHS, the X- 
12-ARIMA procedure identifies 5 outliers in January and 4 in February. TRIG-6 also 

identifies most of these outliers, but generally with probability less than one. As a 
result of the outlier identifications, the X-12-ARIMA seasonal factors for January are 
elevated. According to the periodogram, there is considerable seasonality remaining 
in the X-12-ARIMA decomposition. For this series, it would seem that exceptionally 
low January values are part of the seasonal effect. The outlier procedure of X-12- 
ARIMA is perhaps adjusting too much for these values. 

Another example is given by the series BVARRS. Recall that MING has diffi- 
culty in picking up a fairly major outlier in this series at time 3/86 (see the above 
discussion and figure 12). This outlier seems to have leaked into the seasonal pattern 

- for the MING decomposition (see figure 30 of [BJ92a]). A less dramatic, and more 

typical, example is given by the BAUTRS series. Some of the largest differences 
between the seasonal adjustment are at times in which the outlier treatments are 

* different. However, the difference in the seasonal adjustments for BAUTRS are still 
mainly due to the different seasonal factors. 

For seasonal adjustment, the crucial thing is to deal with large or moderately 

large outliers and level shifts in an adequate manner. It is not crucial to handle small 

outliers or level shifts. The way in which the procedure deals with non-Gaussian 
behavior is not especially important: e.g., either local level shifts or an outlier patch 
may suffice. 

8.5 X-12-ARIMA trends are smoother 

X-12-ARIMA has smoother trends in all but 3 series (the exceptions are B4, B7, 
122). The decompositions of IGLCTI, given in figure 1, give a typical example of 
this. The X-12-ARIMA trends are visually more appealing. This is a well known 
,feature of the time series structural model seasonal decomposition. Harvey and Valls 
Pereira (1989) defend the rough trends yielded by structural models. 

Smoother trends for structural models can be obtained simply by constraining 
the variances (see section 9.1). Including a local AR trend in the STM’s may also 
produce smoother trends, although the fitting would become more difficult and 
perhaps unstable. 

9 More on MING 

We also pursued several other extensions and research issues regarding the MING 
procedure for seasonal adjustment. These include constraining the variances to ob- 
tain an adjustment closer to X-12-ARIMA, estimation of standard errors, modeling 
calendar effects, and incorporation of different outlier models. 
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9.1 Constraining the Variances 

The results of section 5 indicate that maximum likelihood estimation of structural 

models does not necessarily produce very good seasonal adjustments. One approach 

to improving the seasonal adjustments for the structural models is to fit a constrained 
version of the model. The basic idea is to find a model which closely mimics the 
X-11 filters. 

Let yt denote a time series for which the default filters of X-11 are “optimal” in 
a mean square error sense. Maravall (1985) d erives constraints on the parameters of 
the basic structural model (BSM) so that its autocorrelation function (acfi closely 
matches the acfof AAr2Yt. These parameters are given by (Maravall (1985); Harvey 

and Valls Pereira (1989)): 

a,2 = u2 a,2 = 0.1330~ a,2 = 0.167~~ 0; = 0.067~~ (13) 

* 
To fit this model, a single variance c2 is optimized. We call this constrained fit 
BSM-CONS. 

* We fit BSM-CONS to the 29 series to see if we could obtain seasonal adjust- 
ments which mimic those of X-12-ARIMA. The result was a resounding no: for the 
business and inventory series, the seasonal factors are only slightly more flexible and 

rougher than the origianl BSM fits For the construction series, non-default filters 
were used for X-12-ARIMA. Hence, the BSM-CONS adjustments are very poor and 
not comparable for the construction series. See [BJ92a] for details. 

Maravall (1985) k ac nowledges that equivalent acts do not translate into equiv- 

alent decompositions. Indeed, the unobserved components ARIMA model which 
yields a decomposition similar to that of X-11 involves more MA terms than BSM- 
CONS for both the seasonal and trend components. As a result, X-12-ARIMA 
produces smoother seasonal and trend components than BSM-CONS. 

9.2 Estimation of standard errors 

A big advantage of a model based procedure over X-12-ARIMA is in the availability 
of standard errors for the seasonally adjusted data. MING is especially good in this 
regard, since it incorporates outliers and structural changes within the model. MING 
actually produces an estimate of the posterior density, not just standard errors. 
Kitagawa (1987) g ives several nice examples of the advantages of non-Gaussian 

confidence intervals. See Kitagawa (1988) f or examples in the context of seasonal 
adjustment. 

Figure 13 gives the width of the 99% confidence intervals for the seasonal adjust- 
ments for the BVARRS series. The intervals widen towards the ends of the series, 
reflecting “end effects”. The intervals also tend to get wider near level shifts and 

outliers. However, the greatest uncertainty is not near the large level shift in 1976, 
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Figure 13: Width of the 99% confidence intervals for the BSM seasonally adjusted BVARRS data. 
- The intervals widen towards the ends of the series and near level shifts and outliers. However, there 

is not much uncertainty near the large level shift in 1976, which is easy to identify and model (see 
figure 12). 

* 

which is easy to identify and model (see figure 12). Rather, it is near the series of 
smaller level shifts in 1986. 

One could not expect the parametric outlier identification procedure of X-12- 
ARIMA to perform as well in this regard. This is because the standard errors 
are calculated under the assumption that the location of the outlier or level shift 
is known. This can make a big difference, since the timing of a local level shift 
or outlier patch is often in doubt, especially towards the ends of the series. In 

addition, the intervals produced by the ARIMA outlier identification procedure are 
purely Gaussian, and cannot capture the long tailed nature of the densities. 

9.3 Modeling calendar effects 

In the fits done for MING, trading day and Easter effects were handled by prior ad- 
justment based on X-1ZARIMA. Optimizing over trading day and Easter regression 
variables is not very critical, and is unlikely to lead to significantly different results. 
This is mainly because both MING and the ARIMA model underlying X-1ZARIMA 
give reasonable fits to the data and adequately deal with outliers and level shifts. 
Hence, fitting a fixed effects regression variable such as for trading day should be 
roughly equivalent with either procedure. See [BJ92a] for an example. 

9.4 Building in Ramps and Other Outlier Models 

For the sake of parsimony, simplicity, and computational efficiency, the model used 
to fit the series only accommodated level shifts. A slight generalization of this model 
can be obtained by inflating both the variances of qt and & in the second component 
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of the Gaussian mixture model (7): 

This more general “ramp” yields very similar estimates for the trend or seasonal 
in a representative subset of eight series. The series experiencing the largest change 
in the estimated trend is IFMETI, for which the maximum difference is only &OS%, 

The main benefit from including ramps may be to improve the overall fit from 

the model: see [BJ92a]. 

9.5 Handling Doublets 

Often economic data has two or three adjacent aberrant values, which we call a 

* “doublet” or “triplet”. These are due to strikes, weather, or any condition which 
has a temporary effect on the economy. For example, the CMWlHS series has a 
doublet at l/79 and 2/79, presumably caused by unusually cold weather. MING 
handles this patch using a combination of outliers and level shifts. This results in 
an “unnatural” trend which chases after the peaks and valleys. 

This behavior of MING stems from shortcomings in the model: the occurrence 
of an outlier is assumed to be independent of whether an outlier occurred at the 
previous observation. This is counter to what we know about economic (and many 
other) time series: outliers often come in patches. Indeed, the number of outliers 

in a patch often depends on the sampling interval. A sensible generalization of the 
outlier model is to allow Markov behavior in the outlier generating process. 

Let Zt be a O-l process which indicates whether an outlier has occurred at time 
t. We assumed in section 3.2 that p( 2, = lIZi,. . . , Z+1) = p( 2, = 1) = q. A more 

natural assumption is 

p(zt = ‘J’l,“‘, ‘t-1) =P(‘t = llz’-l> = I EI if Zt = 0 
eIo if zt = 1 (14) 

where ey >> q. Hence, if an outlier occurs at time t - 1, then an outlier is much 
more likely to occur at time t. 

Figure 14 gives a plot of the seasonally adjusted data for CMWlHS. The trends 
are compared for the “doublet” outlier model (14) and the standard outlier model 

(6). The trend for the standard model (dashed line) chases after the outlier pair in 
1979. The trend for the doublet model (solid line) completely excludes the outlier 
pair. In addition, although masked in figure 14, the trend for the doublet model 
smooths several sharp peaks prominent in the original trend. 
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Figure 14: A plot of the seasonally adjusted data for CMWlHS. The trends are compared for 

the “doublet” outlier model (solid line) and the standard outlier model (dashed line). The doublet 
outlier model interpolates through the outlier patch while the standard model produces a very 

unnatural looking trend. 

For this example, $ is set to 0.25. This prior was choosen based on empirical 
experimentation. Smaller values (6; < 0.1) tended to leave a small spike in the 
trend. Much larger prior values would be likely to drive the estimate ~1 to zero. 

For the CMWlHS series, X-12-ARIMA also has a very unappealing looking 
trend which chases after the doublet. The problem is that X-12-ARIMA models the 
qutlier pair using two adjacent level shifts. This is an artifact of the “one-at-a-time” 
outlier and level shift fitting approach. Fortunately, an ad hoc solution exists to 
make the X-12-ARIMA trends more appealing: search for adjacent or near adjacent 
level shifts of opposite sign, and replace them with an outlier patch. 

10 Conclusions 

On one level, this study can be viewed as an endorsement of X-12-ARIMA. The 

procedure adequately handles most of the series with both outliers and structural 
changes. The decompositions would appear to be more appealing than those gener- 
ated by a structural model based method. 

However, X-12-ARIMA has some significant shortcomings, such as the discon- 
tinuous nature of the outlier identification procedure. In addition, a procedure such 

as MING offers several potential advantages, including estimates of standard errors, 
generalization to multivariate seasonal adjustment, and an appealing underlying 
methodology. Hence, we should not give up on alternatives to X-1ZARIMA. 
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10.1 Current Research 

We are currently extending and refining the MING program. These include the 

following developments: 

1. MING is relatively slow. Several changes could be made to speed up the 
likelihood evaluations. In particular, use of a different criteria to determining 
which densities should be collapsed could lead to substantial improvements. 
More dramatic computation savings could be achieved if an adaptive tree 
approach, as in Bruce and Martin (1992), is adopted. 

2. The initialization method used for MING is clearly inadequate, as exhibited 

by several examples. One possible solution is to use an “EM approach”, esti- 
mating the posterior probabilities of outliers and level shifts in the beginning 
of the series using a backwards filter. This method is relatively time consum- 
ing to program. A simpler, but computationally expensive, approach is to 

estimate the initial conditions (see De Jong (1988) for the Gaussian case). 

3. Only one aspect of stability was examined in this paper. We are now examining 

the stability of the methods in regards to adding new observations on to the 

ends of the series. 

We plan to have an initial public domain release of the MING program by the 
end of January 1993. It is based on S-PLUS (1991) and will be available through 
the Statlib software library. 

10.2 Open Problems 

We feel this study has brought to attention a number of interesting research areas. 
Some of these include: 

Seasonal Models: The seasonal model used in the BSM is not sufficiently flexible 
for the purposes of seasonal adjustment. While the seasonal trigonometric 
model TRIG-6 is flexible enough, it does not produce sufficiently smooth sea- 
sonal factors when fit by maximum likelihood. The assumptions underlying 
seasonal models need to be investigated and alternative models should be ex- 
plored: see, for example, Harmon et al. (1970); Harvey and Valls Pereira 
(1989); Young (1988); Young and Ng (1990). 

Alternatives to MLE: The seasonal decompositions for structural models in this 
paper are based on the maximum likelihood estimates of the models discussed 
in section 3.1. While MLE’s have good statistical properties, they did not yield 

particularly good seasonal adjustments for the series studied. Since time series 
structural models tend to have flat likelihood surfaces, it may be possible to 
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obtain more appealing seasonal factors by constraining the model parameters 

without sacrificing much in terms of goodness of fit. 

In section 9.1, we constrained the parameters so that the adjustment for the 
BSM would more closely mimic that of X-12-ARIMA. However, the results 
were not very good, perhaps due to the inadequacy of the BSM seasonal model. 
A more promising approach, adopted by Young (1988); Young and Ng (1990), 
is to use a rich trigonometric seasonal model and choose parameters based on 
spectral considerations. 

Local AR Trend: Inclusion of a local AR component may help in a number of 
ways. By sopping up local variability, it may cause both the trend and the 
seasonal term to be smoother. Note that inclusion of an AR term will involve 
more difficult optimizations. 

w 

Outlier Models: Only a couple of possible outlier models were used in this study. 
It is worthwhile investigating whether more complex models offer any signifi- 

I 
cant improvement. In particular, experimentation needs to be done in terms 
of modeling seasonal breaks. Several of the series (e.g., BGMRRI) seemed to 
exhibit a seasonal break, and this appeared to cause problems in fitting the 
models. 

The MING procedure had difficulty in detecting one or two outliers when 
multiple level shifts were present in a series (see section 8.2). This could be 
solved by constraining the prior probabilities to be greater than a certain value. 

General Non-Gaussian Models: We have focused on some very specific non- 

Gaussian disturbances which are commonly observed in practice. Our core 
model, however, is always assumed to be Gaussian. An fruitful line of inquiry 
would be the explore non-Gaussian core models. 

The MING program can handle one class of such models: a Gaussian mixture 
distribution can be used for the core process in addition to or in place of the 
outlier process. 

Robust Initial Parameters: The initial parameters for the optimization of MING 
were obtained by first running X-12-ARIMA and then running REGCMPNT. 
For MING to be useful as a stand-alone routine, a good robust but fast method 
needs to be developed to estimate initial parameters for the optimizer. 

Better Parameterizations: Fitting time series structural models by maximum 

likelihood is often a difficult task due to the flatness of the likelihood. It may 
be possible to “tune” the optimizer to obtain successful convergence. A more 
fundamental solution to this problems lies in finding alternative transforma- 
tions of the parameters for easier optimization. 
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A Fitting Details for MING 

‘The likelihoods are maximized using the quasi-Newton nonlinear optimizer of Gay 

(1979) (see also Dennis et al. (1981)). The optimizer uses a trust region approach 
with a double dogleg step. Finite difference gradients are used with the BFGS secant 
update to the hessian. 

The initial values to the optimizer for the BSM are obtained by fitting the BSM 
Gaussian model. To ensure robust initial estimates, the outlier identification scheme 
of X-12-ARIMA are used to first identify AO’s and LS’s. These are included in the 
model as fixed regression effects. The fits are done using the program REGCMPNT 
(Monsell and Otto (1991)), h’ h w IC is more efficient than MING for purely Gaussian 
models. The TRIG-l model was fit with the initial values derived from the maximum 
likelihood estimates for the BSM. The TRIG-6 model was fit with the initial values 
derived from the maximum likelihood estimates for TRIG-l. 

Prior adjustment is done for trading days based on the REGCMPNT procedure. 
While MING accommodates fitting trading day variables, this involves nonlinear 

* optimization over six parameters, greatly increasing the computations. Some exam- 
ples indicate that further refinement of the estimates for trading day effect is not 
important (see section 9.3). 

Convergence Criteria 

The optimizer is considered to have converged successfully if little improvement has 
been achieved in the objective function from the previous iteration. This is known 
as “relative function convergence”, and is satisfied if 

IwJ(d - wJ(j - l>l 
1 log L(j)/ + 1 log L(j - l)[ 5 o.oooo5 (15) 

where log L(j) is the log-likelihood on the j-th iteration. Alternatively, the optimizer 
converges if the change in the estimated parameters is small. This is known as 
“relative X-convergence” and is satisfied if 

- 
maxi=l,...,p 1 

1q.i) &(j - 1)1 
Iii;(j)l + I&& - 1)1 1 5 O-Oo5. (16) 

where & is a vector of the scaled parameters. 

B Description of detrending procedures 

Detrending Procedure for the SSI Plot 

Let Tt, O*, and Lt, be the trend, outlier, and level shift components of the X-12- 
ARIMA decomposition. To obtain the points in the SSI-plots, we detrend the data 
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as follows: 

1. Subtract the level shifts and outliers from the trend: Tp = Tt - Ot - Lt. 

2. Smooth T’ to obtain a smooth trend: 

3. Add back in the level shifts to the smoothed trend to obtain our detrending 
sequence pt = T: + L,. 

4. Subtract pt from the data to obtain the observations plotted: g = yt - pt. 

. This above method was adopted since we are comparing several decompositions with 
possibly sharp breaks in the trend. 

Detrending Procedure for the Periodogram Plot 

The periodogram of the data is based on the g as computed above for the SSI Plot. 
The periodogram for X-12-ARIMA is based on the detrended seasonally adjusted 

data At. This is obtained as above except we also subtract the seasonal (and calendar 
component if present): 

A *=&S,--Ft 

The periodograms for the structural models BSM, TRIG-l, and TRIG-6 are 
similarly obtained, except that the appropriate trend is substituted for the X-12- 
ARIMA trend in step 1) above. 
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