

Evaluation of Terrestrial Lidar as a Tool for Monitoring Geomorphic Change at Archaeological Sites in Grand Canyon National Park

Brian Collins, Ph.D. USGS - Western Earth Surface Processes, Menlo Park, California

Presentation to the Glen Canyon Dam Adaptive Management Program Technical Work Group Meeting, Phoenix, Arizona April 8, 2008, 3:45pm

U.S. Department of the Interior U.S. Geological Survey

Outline

- Terrestrial lidarBackground
- Project 1 Comparison of total station to lidar data collection for gully thalweg
 - Results
- Project 2 Whole site change detection using terrestrial lidar
 - Preliminary results
- Future directions

Terrestrial Lidar

- A new technology
 - Used for documentation of existing conditions (including widespread use in archaeology)
 - Used for change detection of geomorphic landscapes (landslide, cliff erosion)
 - Not yet used for high resolution, small-scale change detection
- Capabilities
 - Collection of thousands of points per second
 - Accuracy of several millimeters to centimeters
 - Range of 2m to 1000m
 - Units can be made portable (USGS focus for difficult environmental conditions)
 - Issues with reflectivity, laser divergence, laser obliqueness, all affect data quality
- Summary
 - A high-resolution, highly accurate survey device for documenting and monitoring landscape surface change

How does it work?

How does it work?

Project 1 – Survey Method Comparison

- Purpose: compare site impacts and gully thalweg data collected between total station (TS) and terrestrial lidar (LIDAR)
- Topographic data collection
 - Focus only on gully thalwegs
 - Point accuracy
 - Data density
 - Feature detection
- Site impacts
 - Total survey time
 - Time in sensitive area
 - Footstep count

Project 1 – Data Collection

- May 2006 survey effort
 - May 2007 impact data also used
- Eight sites
 - 8 compared for impacts
 - 3 compared for topographic data
- Results available soon (USGS Open File Report – May 2008, 82p.)

Blue = impact evaluation sites Red = topographic data and impact eval. sites

Results: Site Impacts

- Total time in sensitive area is similar between methods
- For TS, time is concentrated in the gullies
- For LIDAR, time is concentrated at the instrument, outside the gullies

Results: Site Impacts

- Footstep impact is similar between LIDAR and TS methods
- Footstep locations are concentrated differently
- LIDAR utilizes two people outside the gullies, TS uses one person, in the gullies.

Results: Site Impacts

100 90 G:03:072D 80 Person hours G:03:072U 70 G:03:002 60 G:03:041 50 C:13:348 40 C:13:099 30 C:13:336 20 C:13:006 10 0 Lidar Average **TS** Average Mapping Method

CUMULATIVE AVERAGE MAPPING TIMES

Total mapping time is ~15% less for LIDAR

- Time savings is lost in post-processing
- Value is in the number of points collected (millions vs. hundreds)

Results: Data Density

Orange = Total Station Blue = Lidar

Site Number	Terrestrial LIDAR - # of ground points surveyed	Total station - # of ground points surveyed
AZ:C:13:006	1323471	953
AZ:G:03:041	1564445	656
AZ:G:03:072	455684	799

Results: Thalweg Location

Results: Long Profile Comparison

Project 2 – Change Detection Evaluation

- Purpose: determine if terrestrial lidar is capable of change detection at the centimeter/decimeter scale
- Focus on both gully erosion and whole site geomorphic change
- Investigate ability to monitor entire archaeologic sites for short- and long-term change

Project 2 – Data Collection

- May 2007 and September 2007 survey efforts
- Nine sites
 - All compared for topographic data
 - Cross-sections
 - Surface change maps
- Results available
 ~August 2008

Red = topographic data evaluation sites

Preliminary Results: Site with No Change

- 60 Mile Site
- Area of stabilized cryptogamic soil with incipient gullying
- Archaeological site exists over entire area
- Three gullies traverse site and discharge to an arroyo that discharges to the Colorado River

Preliminary Results: Surface Change Detection

May 2007 to September 2007 Surface Change Map at 60 Mile Site

Cross-section through site

Preliminary Results: Site with Change

- **223 Mile Upstream Site**
- Area of aeolian deposition with pronounced gullying
- Archaeological sites are immediately adjacent to gullies
- Three gullies traverse site and discharge directly into Colorado River

Preliminary Results: Surface Comparison

May 2007

September 2007

10cm Contour Maps of 223 Mile-US Site – Gully 3 Area

Preliminary Results: Surface Change Detection

May 2007 to September 2007 Surface Change Map at 223 Mile-US Site

Future Directions

- Rapidly changing technology
- Higher accuracy reduce model error from ~ 7cm to < 1cm.
- Longer range lower site impact?
- Digital photo draping feature identification and monitoring

Courtesy: RiegIUSA, Source: Neubauer et al., Combined High Resolution Laser Scanning and Photogrammetrical Documentation of the Pyramids at Giza

Conclusions and Future Directions

Project 1 - complete

- Viable data collection method
- Saves time in the field
- Does not reduce site impact appreciably
- Provides superior data coverage and ability to perform whole site monitoring

Project 2 – nearing completion

- Change detection is achievable 10 to 15 cm scale
- Excellent potential for identifying areas of incipient change
- Technology is new and changing
 - Newest generation of lasers addressed existing limitations
 - Feature and site monitoring via photo draping

Thank you.