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Various electrolyte materials for solid oxide fuel cells were fabricated by hot pressing 10 mol %  
yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina, particulates and 
platelets, each containing 0 to 30 mol % alumina. Flexure strength and fracture toughness of both 
particulate and platelet composites at ambient temperature increased with increasing alumina content, 
reaching a maximum at 30 mol % alumina. For a given alumina content, strength of particulate 
composites was greater than that of platelet composites, whereas, the difference in fracture toughness 
between the two composite systems was negligible. No virtual difference in elastic modulus and density 
was observed for a given alumina content between particulate and platelet composites. Thermal cycling 
up to 10 cycles between 200 to 1000 °C did not show any effect on strength degradation of the 30 mol% 
platelet composites, indicative of negligible influence of CTE mismatches between YSZ matrix and 
alumina grains.  
 
 
1. INTRODUCTION 
 

Solid oxide fuel cells (SOFC) are currently being developed for various power generation 
applications. The major components of a SOFC are the electrolyte, the anode, the cathode, and the 
interconnect. The two porous electrodes, anode and cathode, are separated by a fully dense solid 
electrolyte. Currently, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte in SOFC 
because of its high oxygen ion conductivity, stability in both oxidizing and reducing environments, 
availability, and low cost.1 However, similar to other ceramics, YSZ is brittle and susceptible to fracture 
due to the existence of flaws, which are introduced during fabrication and use of the SOFC. In addition, 
the properties of YSZ such as low thermal conductivity and relatively high thermal-expansion coefficient 
make this material thermal-shock sensitive. Fracture in the solid oxide electrolyte will allow the fuel and 
oxidant to come in contact with each other resulting in reduced cell efficiency or in some cases 
malfunction of the SOFC. Therefore, YSZ solid electrolyte with high fracture toughness as well as 
enhanced strength is required from a performance and structural reliability point of view.   

The objective of this study was to improve the strength and fracture toughness of the YSZ electrolyte 
for SOFC applications without adversely affecting its high-temperature ionic conductivity to an 
appreciable extent. The 10 mol % yttria-stabilized zirconia (10-YSZ) was reinforced with two different 
forms of alumina, particulates2 and platelets, each containing 0, 5, 10, 20, and 30 mol % alumina through 
mixing, milling, and hot pressing to full density. Flexure strength and fracture toughness of YSZ/alumina 
composites were determined at ambient temperature as a function of alumina content. Elastic modulus, 
density and microhardness were also determined at ambient temperature using appropriate methodologies. 
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Finally, thermal cycling experiment was conducted for the 30 mol % alumina platelet-reinforced 
composite to see any effect of residual stresses or microcracking on flexure strength, due to CTE 
(coefficient of thermal expansion) mismatches between YSZ matrix and alumina grains. 

 
 

2. EXPERIMENTAL METHODS 
 
 2.1. Processing 
 
 The starting materials used were alumina powder2 (high purity BAILALOX CR-30) from Baikowski 
International Corporation, Charlotte, NC, 10-mole % yttria fully stabilized zirconia powder (HSY-10) 
from Daiichi Kigenso Kagaku Kogyo Co., Japan, and alpha alumina hexagonal platelets (Pyrofine Plat 
Grade T2) from Elf Atochem, France. Appropriate quantities of alumina and zirconia powders were slurry 
mixed in acetone and mixed for ~24 h using zirconia media. Acetone was than evaporated and the powder 
dried in an electric oven. The resulting powder was loaded into a graphite die and hot pressed at 1500 °C 
in vacuum under 30 MPa pressure into 6” x 6” billets using a large hot press. Grafoil was used as spacers 
between the specimen and the punches. Various hot pressing cycles were tried in order to optimize the hot 
pressing parameters that would result in dense and crack free ceramic samples. The processing flow 
diagram is shown in Figure 1. Five different YSZ/alumina composites containing 0 to 30 alumina mol % 
were fabricated for each of particulate and platelet composite systems.  
 The billets were machined into flexure bar test specimens with nominal depth, width and length of  
3.0 x 4.0 x 50 mm, respectively, in accordance with ASTM test standard C 1161.3  Machining direction was 
longitudinal along the 50 mm-length direction. It should be noted that unlike transformation-toughened 
(from tetragonal to monoclinic) zirconias, the cubic ytrria-stabilized zirconia is very unlikely to induce any 
transformation-associated residual stresses on the surfaces of test specimens due to machining. The sharp 
edges of test specimens were chamfered to reduce any spurious premature failure emanating from those 
sharp edges. 

 
 

 
 
 
   
 
  
 
 
 
 
 
 
 
Figure 1. Processing flow diagram for 10 mol % yttria-stabilized zirconia/alumina composites, applied to both 
particular and platelet composites. 
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2.2. Strength and Flexure Toughness Testing 
 
Strength testing with flexure bar test specimens was carried out in flexure at ambient temperature in air. 

A four-point flexure fixture with 20 mm-inner and 40 mm-outer spans was used in conjunction with an 
electromechanical test frame (Model 8562, Instron, Canton, MA). A fast stress rate of 50 MPa/s was applied 
in load control the test frame to reduce slow crack growth effect of the materials. A total of 10 test 
specimens were tested for each composite. All testing was followed in accordance with ASTM test 
standards C1161.3  

Fracture toughness using flexure bar specimens measuring 3 x 4 x 25 or 50 mm was determined at 
ambient temperature in air using single edge v-notched beam (SEVNB) method.4 This method utilizes a 
razor blade with diamond paste with a grain size of 9 µm to introduce a final sharp notch with a root radius 
ranging 10 to 20 µm by tapering a saw notch.4  The sharp v-notched specimens with a notch depth of  
0.9 mm were fractured in a four-point flexure fixture with 20 mm-inner and 40 mm-outer spans using the 
electromechanical test frame (Model 8562, Instron) at an actuator speed of 0.5 mm/min. A total of five 
specimens were tested for each composite. Fracture toughness KIC was calculated based on the formula by 
Srawley and Gross.5 
 

2.3. Elastic Modulus, Density and Microhardness 
 
Elastic modulus determined at ambient temperature by the impulse excitation of vibration method, 

ASTM C 12596 using the flexure specimen configuration. Density was measured with a bulk mass/volume 
method using the same flexure specimens that were used in elastic modulus experiment. A total of five 
specimens were used for each composite in elastic modulus as well as in density measurements. 
Microhardness of the composites was evaluated at ambient temperature with a Vickers microhardness 
indenter (with an indent load of 9.8 N using five indents for each composite) in accordance with  
ASTM C 1327.7 
 

2.4. Thermal Cycling Test 
 
Thermal cycling test was carried out for the YSZ/30 mol % platelet alumina by applying a total of  

10 thermal cycles of heating (1000 °C) and cooling (200 °C) in air using five flexure specimens. The rate of 
heating and cooling was about 10 °C/min and 20 °C/min, respectively. These flexure specimens were then 
fractured in four-point flexure to determine their corresponding flexure strength. This testing was conducted 
to better understand the effect of CTE mismatches on flexure strength, possibly resulting in strength 
degradation due to residual stresses and/or microcracks induced by CTE mismatches between YSZ matrix 
and alumina grains.  
    
 
3. RESULTS AND DISCUSSION 
 

3.1. Materials 
 
SEM micrographs taken from polished cross-sections of various YSZ/alumina composites showed 

that alumina particulates2 as well as alumina platelets, in general, were uniformly dispersed throughout 
YSZ matrix. The results of X-ray diffraction analysis showed phases of cubic YSZ and α-alumina. TEM 
micrographs and dot maps indicated that an average, equiaxed grain size was about less than 1.0µm for 
YSZ matrix and that grain boundaries and triple junctions were clean for either 0 % or 30 mol % 
particulate composite, an indication of no or little existence of amorphous phase. No appreciable 
deformation or microcracks of adjacent grains that might occur due to thermoelastic mismatches between 
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YSZ matrix and alumina was not observed in the particulate composites2 from a (limited) TEM 
micrograph analysis.  

 
3.2. Flexure Strength and Fracture Toughness 

 
3.2.1 Flexure Strength—The results of strength testing for both particulate2 and platelet composites 

are shown in Figure 2. The strength increased with increasing alumina content, reaching a maximum at  
30 mol %. This trend in strength increase was more significant in particulate composites than in platelet 
composites. For a given alumina content, the strength of particulate composites was 15 to 30 % greater 
than the platelet composites counterpart. Particularly, the maximum strength occurring at 30 mol % for 
the particulate composite was 40 % greater than the ‘zero’-alumna content strength. Weibull modulus, 
despite a limited number (10) of test specimens, was in the range of 5 to 15, a little greater for the platelet 
composites than for the particulate composites. Fracture originated distinctly from surface-connected 
defects (“surface flaws”), associated with pores. Pores and/or severity of machining were found to be 
dominant strength controlling surface flaws, independent of alumina content for all the composites. 
Overall flaw sizes, ranging from 20 to 60 µm, were greater for the platelet composites as compared to the 
particulate composites. 

Some other zirconia/alumina composites exhibited a strength decrease with increasing alumina 
content, in part as a result of internal (tensile) residual stresses by the CTE mismatches between zirconia 
matrix and alumina particulate (or platelets).8,9 On the contrary, fracture toughness is known to increase 
due to more enhanced crack deflection/bridging. Based on the results of strength increase with increasing 
alumina content as seen in Figure 1, it can be stated that the alumina particulates or platelets used in this 
work might not have interacted with the matrix to produce residual stresses by CTE mismatches sufficient 
enough to degrade composite strength. This issue of CTE mismatches on strength degradation will be 
scrutinized with the result of thermal cycle testing in the later section. The reason why the particulate 
composites exhibited improved strength than the platelet composites is probably due to the fact that 
alumina particulates might have acted as more reinforcing medium than strength-controlling flaws, while 
alumina platelets acted the other way, typical of many platelets-reinforced composites.     

 
 

ALUMINA CONTENT, mol % 

0 10 20 30 40

F
L

E
X

U
R

E
 S

T
R

E
N

G
T

H
, σ σσσ

f [
M

P
a]

0

100

200

300

400

500

Platelets
Particulates

Four-point flexure; RT

 
 
Figure 2. Flexure strength of 10-YSZ/alumina particulate2 and platelet composites as a function of alumina content 
at ambient temperature in air. Error bars indicate ±1.0 standard deviations. The lines represent the best fit. 
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3.2.2. Fracture Toughness—A summary of fracture toughness testing is presented in Figure 3, in 
which fracture toughness determined by the SEVNB method was plotted as a function of alumina mol % 
for both particulate2 and platelet composites. Similar to the trend in flexure strength, fracture toughness 
increased with increasing alumina content, reaching a maximum at 30 mol %. Fracture toughness 
increased significantly by 65 and 62 %, respectively, for the particulate and platelet composites when 
alumina content increased from 0 to 30 mol %. It is noted that unlike the flexure strength the difference in 
fracture toughness between the particulate and platelet composites was negligible. It has been observed 
that an incompatibility is generally operative for many advanced ceramics between strength and fracture 
toughness in such a manner that one property increases while the other decreases. However, this was not 
the case for these two types of composite systems in this work, resulting in not only strength increase but 
also fracture-toughness increase with increasing alumina content.  

Although not presented here, it was observed that indent crack trajectories of both  
0 % and 30 mol % composites were characterized such that the straight path and greater COD (crack 
opening displacement) of a crack was typified for 10-YSZ (0 mol % composite); whereas, the tortuous 
path around alumina grains and less COD was exemplified for the 30 mol % particulate2 or platelet 
composite. More enhanced crack interactions with alumina grains with increasing alumina content is thus 
believed to be responsible for the increased fracture toughness for both composite systems. A notion that 
platelets would be more efficient in enhancing fracture toughness than particulates was not applicable in 
these composite systems. Note that the cubic YSZ is not a stress-induced, transformation toughened 
ceramic. Therefore, the increased fracture toughness with increasing alumina content would be a logical 
reasoning for the increased flexure strength observed from both composite systems, since flaw sizes of the 
both composites seemed to be narrowly distributed.  
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Figure 3. Fracture toughness of 10-YSZ/alumina particulate2 and platelet composites as a function of alumina 
content determined by the SEVNB method at room temperature. Error bars indicate ±1.0 standard. The line indicates 
the best-fit. 
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3.3. Elastic Modulus, Density and Microhardness 
 
The results of elastic modulus and density measurements are presented in Figure 4. Elastic modulus 

increased linearly with increasing alumina content for both particulate and platelet composites, resulting 
in little difference in elastic modulus between the two composite systems. Although not presented here, it 
was also found that elevated- temperature elastic modulus of the particulate composites up to 1000 °C 
was very close to that of the platelet composites. The prediction made based on the rule of mixture was in 
good agreement with the experimental data as shown in the figure. Density decreased linearly with 
increasing alumina content for both composite systems yielding a good agreement between the prediction 
(from the rule of mixture) and the experimental data. Microhardness increased with increasing alumina 
content for both composite systems up to 20 mol %. However, above 20 mol %, the corresponding 
mirohardness leveled up for the particulate composites and decreased appreciably for the platelet 
composites. 

 
   3.4. Thermal Cycling Test 
 

The result of thermal cycling test for the 30 mol % platelet composite is shown in Figure 5. As can be 
seen in the figure, there was no difference in strength between 0 (regular strength test) and 10 thermal 
cycles, indicating that repeated thermal cycling up to 10 times did not show any significant effect on 
strength degradation for the composite material. In other words, internal residual stresses or microcracks 
due to CTE mismatches between zirconia matrix and alumina grains possibly occurring in the thermal 
cycling were negligible to affect flexure strength of the composite material of interest.  Hence, it is 
concluded that CTE mismatches would not have been operative sufficient enough to degrade strengths of 
both composite systems. 
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Figure 4. Elastic modulus (by impulse excitation, ASTM C 1259) and density of 10-YSZ/alumina particulate and 
platelet composites as a function of alumina content. Error bars indicate ±1.0 standard. The line indicates the  
best-fit. 
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Figure 5. Flexure strength as a function of number of thermal cycles (between 200 and 1000 °C) for 10-YSZ/30 mol % 
platelet composite. The numbers in parentheses indicate average strength.  

 
 

3.5. Choice of Material Considering Structural Reliability and SOFC Performance 
 
As seen in the results, both flexure strength and fracture toughness increased with increasing alumina 

content, reaching a maximum at 30 mol %. For a given alumina content, flexure strength of the particulate 
composites was greater than that of the platelet composites, while fracture toughness of both composite 
systems remained almost identical. Elastic modulus increased with increasing alumina and density, by 
contrast, decreased with increasing alumina content. Therefore, in terms of a structural reliability point of 
view, a composite which is strongest (in strength), toughest (in fracture toughness), stiffest (in elastic 
modulus) and lightest (in weight) is certainly of the best choice, which undoubtedly leads to the 30 mol % 
particulate composite. This structural consideration, however, should not neglect the SOFC’s important 
electrical performance, oxygen (O2–)-ion conductivity. Preliminary results have shown that electrical 
conductivity of these composites was independent of alumina content. A more rigorous study of electrical 
conductivity measurements is under way. It is also expected that both composite systems would exhibit 
time-dependent behavior (slow crack growth, or fatigue) at elevated temperatures. As a consequence, the 
determination of life prediction parameters of a chosen YSZ/alumina composite at elevated temperature is 
a prerequisite to ensure accurate life/reliability of SOFC components, which will be an additional study in 
the future.  

 
 
4. CONCLUSIONS 
 
1. The 10-mol % yttria-stabilized zirconia (10-YSZ)/alumina composites reinforced with two different 

forms of alumina, particulates and platelets, each containing 0 to 30 mol % alumina were fabricated 
by hot pressing. 

2. Both flexure strength and fracture toughness increased with increasing alumina content, reaching a 
maximum at 30 mol %. For a given alumina content, strength of particulate composites was greater 
than that of platelet composites, while the difference in fracture toughness between the two composite 
systems was negligible. 
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3. No virtual difference in elastic modulus and density was observed for a given alumina content 
between the particulate and platelet composites. 

4. Thermal cycling up to 10 cycles between 200 to 1000 °C did not show any adverse effect on strength 
degradation of the 30 mol % platelet composites, indicative of negligible influence of CTE 
mismatches between YSZ matrix and alumina grains.  
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